
Notes on Normal Modes 2.

I have looked at Paula’s notes on the Langevin equation in Normal Nodes and her results
coincide fairly well with with our early work. My only real comments are that if we define our
N body system as having positions x = [x1, x2, · · · , x3N ]T, velocities v = [v1, v2, · · · , v3N ]T,
System forces F(x) = [F1(x), · · · , F3N (x)]T, random forces R = [R1, · · · , R3N ]T and the
‘mass’ and ‘coefficient’ matrices for the original system as

M =




m1 0 · · ·
0 m1 0 · · ·
0 0 m1 0 · · ·
0 0 0 m2 · · ·
...
· · · mN−1 0 0 0
· · · 0 mN 0 0
· · · 0 0 mN 0
· · · 0 0 0 mN




,

Γ =




γ1 0 · · ·
0 γ2 0 · · ·
0 0 γ3 0 · · ·
...
· · · 0 0 0 γ3N




,

then we could write the original system as

Mẍ = F−MΓv −R. (1)

Given that we have normal mode ‘positions’ c = [c1, c2, · · · , cm]T, corresponding 3N ×m
matrix of column eigenvectors Q, initial positions x0 and

x = x0 + Qc,

we can rewrite (1) as

MQc̈ = F−MΓQċ−R. (2)

If we multiply through by QT we get

QTMQc̈ = QTF−QTMΓQċ−QTR,

as Paula did. However, as Paula pointed out, the term QTMQ is not diagonal and so
‘mixes’ the components of c. As an alternative we can rewrite (2) as

c̈ = QTM−1F−QTΓQċ−QTM−1R, (3)

since Q is orthonormal and M is invertible.
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For the purposes of developing the normal mode integrator code in Protomol, I ignored
the two Langevin terms so that we have

c̈ = QTM−1F, (4)

for the real system forces and

c̈ = Ωc, (5)

for the normal mode evolution. Here Ω is the diagonal m × m matrix of eigenvalues of
the system corresponding to the eigenvectors in Q, which represent the squares of the
frequencies of c.

As a test system I used a single water molecule which has 3 modes, two high frequency
and one lower frequency. The results compare the original molecular dynamics with the
solutions to (4) and (5), with both all modes and the two fast modes constrained, can be
seen at http://www.nd.edu/ csweet1/normalmodes.html.

2


