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This paper proposes a wetting and drying treatment for the piecewise linear Runge-Kutta discontinuous
Galerkin approximation to the shallow water equations. The method takes a fixed mesh approach as
opposed to mesh adaptation techniques and applies a post-processing operator to ensure the positivity
of the mean water depth within each finite element. In addition, special treatments are applied in the
numerical flux computation to prevent an instability due to excessive drying. The proposed wetting
and drying treatment is verified through comparisons with exact solutions and convergence rates are
examined. The obtained orders of convergence are close to or approximately equal to 1 for solutions with
discontinuities and are improved for smooth solutions. The combination of the proposed wetting and
drying treatment and a TVB slope limiter is also tested and is found to be applicable on condition that
they are applied exclusively to an element at the same Runge-Kutta step.
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1. Introduction

The shallow water equations (SWE) describe flows for processes
such as tides, storm surge, and flows within ocean basins, on
shelves, in bays, through inlets, in rivers, and on coastal flood-
plains. Due to the wide ranges of spatial scales and complex geom-
etries that are present in many applications, unstructured grid
methods are an attractive solution strategy. Within the framework
of Finite Element (FE) solutions, the standard continuous Galerkin
(CG) method has been widely used (e.g. [1-6]) and, more recently,
the discontinuous Galerkin (DG) method has been applied [7-16].
The DG method has proven to be very effective in solving the SWE
and accurately represents long wave propagation as well as advec-
tion processes within a unified framework.

Many problems of interest involve wetting and drying zones
which occur, for example, in inter-tidal flats and/or in riverine
and coastal floodplains. In the wetting and drying zone, water inun-
dates or recedes as it is driven by tides, wind forces, and/or storm
surge. The difficulty in numerically modeling dry areas relates to
the obvious fact that there is no water in these areas, i.e. the water
column height is zero, and the SWE are only defined for wet regions.
This implies that we need to deal with moving boundary problems
for the SWE. Moving boundary problems for the shallow water
equations are often called wetting and drying problems. In this
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paper we present a wetting and drying method devised for the
Runge-Kutta discontinuous Galerkin (RKDG) solution to the SWE.

Existing wetting and drying treatments for CG based finite ele-
ment solutions are categorized into three types [17]. The first type,
mesh adaptation techniques, uses a deforming domain and mesh.
In this case, the domain and the finite element mesh are deformed
as water surface elevations change so that the boundary of the
mesh matches the edge of a water body. The mesh adaptation tech-
niques have advantages in accuracy as they can precisely track the
location of wetting and drying fronts. However, they tend to be
computationally expensive and encounter difficulties in handling
complex boundary shapes. As real world problems tend to have
intricate topographic contours and boundary shapes, a fixed mesh
is more suited to geophysical and engineering problems of interest.
Also, it seems that methods based on mesh adaptation techniques
do not always yield more accurate solutions than methods using
fixed meshes. The second type, mesh reduction techniques, dis-
cretely eliminate elements and nodes when the water depth falls
below a specified minimum. The eliminated elements and nodes
are restored when the water depth rises above a specified maxi-
mum. Because mesh reduction techniques involve discrete and
sudden elimination of elements/nodes, they may cause oscillations
as well as loss of mass and momentum. The last type, thin layer
techniques, also uses a fixed mesh. These techniques maintain a
thin layer of water in nominally dry elements. In this way, dry
elements are conceptually modeled by reducing flow without
eliminating elements or nodes. An advantage of the thin layer
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element approach is that mass can be conserved because elements
maintain full connectivity within the continuity or conservation of
water volume equation. Furthermore, water in nominally dry ele-
ments is kept in these elements until they are restored as fully
wet. On the other hand, conservation of momentum is not guaran-
teed. The thin water layer technique cannot place grid points pre-
cisely on shorelines since they use fixed meshes. The exact
shoreline may be located in the middle of an element. In such ele-
ments, an erroneous gradient is maintained in water surface as
part of the bottom may be higher than the height of the exact
shorelines and the water surface in such part is artificially lifted
above the bottom. This artificial gradient in water surface and
the gravity generate ficticious flows. Removing or preventing these
unphysical flows without altering physical ones is a difficult task
inherent in the thin water layer approach. Momentum conserva-
tion is often violated in this process [17,18]. The violation of
momentum conservation is only acceptable if the error is verified
to be sufficiently small.

DG methods have emerged as an attractive solution to the SWE.
The DG method is a FE method in that the formulation is based on a
weak weighted residual statement of the governing equations and
the solution is locally interpolated with bases of any order within
each element. On the other hand, DG methods and the finite vol-
ume (FV) methods are similar in that they both end up with the
element as a control volume. In fact, both DG and FV solutions
can locally conserve quantities in each element. A similar approach
to thin layer techniques is commonly used in FV schemes to deal
with dry cells. For example, Bradford and Sanders [19] used a tol-
erance in their two-dimensional FV scheme. In their model, up-
dated velocities are computed in a wet cell only if the water
depth is greater than the tolerance.

A few wetting and drying treatments for the DG SWE solutions
have been reported. Bokhove [20] used a mesh adaptation tech-
nique to track wetting and drying boundaries. As previously men-
tioned, mesh adaptation techniques are usually more accurate, but
also their algorithms tend to be more complex. As we plan to cou-
ple the hydrodynamics model with transport and other models, it
is desired to keep our algorithm less complex. We, therefore, prefer
wetting and drying treatments that use fixed meshes. The work of
Ern et al. [21] is the closest to our approach at present. They use a
slope modification technique to ensure the positivity of water
mass. Their method, however, adds mass when the positivity of
mass is violated. The method presented in this article does not vio-
late the positivity of mass without adding mass, taking advantage
of the fact that each element is considered as a control volume in
the DG spatial discretization.

In this paper, we propose a wetting and drying treatment that
uses fixed meshes for DG SWE solutions. Our wetting and drying
treatment adopts the thin water layer technique so that it can
achieve a good balance between accuracy and computational cost.
Our treatment monitors the water depth of each dry/partially wet
element and controls it by modifying water surface elevations at
the end of each Runge-Kutta time marching stage. This surface ele-
vation modification redistributes the water mass within an ele-
ment so that a positive water depth is maintained. The sum of
mass within an element is unchanged through the modification.
This ensures local mass conservation. Also, the surface elevation
modification is local in each element, i.e. it is done based on the
surface elevation and velocity of the element; it does not use the
states of the neighboring elements. This is beneficial in terms of
parallel computational efficiency because the locality reduces the
communication between subdomains. The proposed treatment
also involves special handling of numerical fluxes in order to en-
sure the positivity of water mass in each element.

This paper is organized as follows. In Section 2, our discretiza-
tion of the SWE based on the Runge-Kutta Discontinuous Galerkin

(RKDG) method is summarized. In Section 3, our new wetting and
drying treatment is described in detail. In Section 4, the robustness
and accuracy of the proposed method are verified for five different
wetting and drying problems, and, in Section 5, conclusions are
presented.

2. Governing equations and discontinuous Galerkin method
2.1. Governing equations
The two-dimensional SWE consist of the depth-averaged conti-

nuity equation and x and y momentum equations as written here
in conservative form:

a9 a
%+&(HU)+@(H0)_O7 (1)
0 (a2 1 5 d __oh
a(uH)—s—&<Hu +§g(H —h )>+8_y(HuU)7gé§’ 2)
] 0 d (2 1 o 5\  oh
E(yH)+§(Huy)+8_y<Hy +§g(H —h )) 7gC@, 3)

where ( is the elevation of the free surface measured from a refer-
ence level positive upward, h is the bathymetric depth measured
from the same reference level, but positive downward, H={+h
is the total height of the water column (water depth), g is the accel-
eration of gravity, u and v are the depth-averaged velocities in the x
and y directions, respectively. Additional forces such as bottom fric-
tion, viscous stresses, Coriolis force, tidal potential forces, and wind
surface stresses are not considered in this paper.
We define a variable vector as follows:

W= [W17W27W3]T = [C7p7 Q]Tv (4)
where p = uH and q = vH. The SWE can then be written in the fol-
lowing divergence form:

ow;
ot
where F; is the ith row of the flux function matrix whose columns

are the flux function vectors in the x and y directions denoted by
f, and f,, respectively:

+V F(w)=s;(w), ie{1,2,3}, (5)

uH vH
F=[f,.f,)= | H’+1g(H - h?) Huv 7 (6)
Huv HY* +1g(H* - 1Y)

and finally s; is the ith component of the vector s of source/sink
terms which is given by:

oh ah] T

a,géa (7)

5= {o,gc

2.2. Discretization

We first introduce the notation that will be used. Given a do-
main Q ¢ R?, which has been triangulated into a set of non-over-
lapping, but not necessarily conforming elements, let Q define
the domain of an element K and 9Qy denote the boundary of the
element. An inner product taken over Qy will be denoted by
(- Ve and an inner product taken over 9Qy will be denoted by
{*,")o0,- The outward unit normal vector of 9 will be denoted
by n.

We approximate w by wy, the components of which belong to
the space of piecewise smooth functions that are differentiable
over an element, but which allow discontinuities between ele-
ments. We denote this space of functions by V. The SWE are put
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into a discrete weak form by replacing w by wj,, multiplying each
equation by a test function v € V), integrating over each element,
and integrating the divergence term by parts:

(% (Wh);, U)g — (V0,F)g, + (-1, )0 = (S, V)g,, (8)

where (wy); is the ith component of wj,. Due to the fact that discon-
tinuities are permitted along 9, the flux F, which may be dual-
valued along 0Q, is replaced in the boundary integral by a sin-
gle-valued numerical flux denoted by F. Making this substitution
the discrete weak formulation of the problem is now given by:

(5w #) |~ (7B + (Fiom. o, = .00, Q

where l?,- is the ith row of F.

To complete the spatial discretization, we use the local Lax-
Friedrich flux to compute the numerical flux F (see, for example,
[22]), Gaussian quadrature to evaluate integrals, and Dubiner’s
orthogonal triangular basis functions [23]. The second-order Run-
ge-Kutta scheme is used for the time discretization. Cockburn
and Shu’s slope limiter [22] is applied. Refer to [16,24] for more de-
tails on our hydrodynamic model.

3. Wetting and drying treatment

Our wetting and drying treatment is based on the concept of the
thin water layer technique, which is explained in Section 1. The
most basic requirement to the wetting and drying treatment for
this approach is to keep the water column depth greater than zero
so that the SWE can have a stable numerical solution over the do-
main. A wetting (or drying) element is represented by reduced
flows; a completely dry element/node is represented by still water
of a small depth. To realize this concept, we first propose an oper-
ator to keep the water depth within an element positive pointwise
for the condition that the mean water depth of the element is po-
sitive. The positivity of the mean water depth is ensured by the
treatments for numerical flux computation, which will be intro-
duced in Sections 3.3 and 3.4.

In the discussion below, we assume triangular elements and lin-
ear approximations of surface elevation { and discharges p (=uH)
and q (=vH). After each stage of the Runge-Kutta method, the com-
puted surface elevation ¢, and discharges p and q are examined and
modified as necessary. As is common in finite element terminol-
ogy, we refer to the vertices of the triangle as nodes. Let Hx denote
the average water depth of element K, and {;, H;, p; and g; denote
the approximated surface elevation, water depth, discharge in
the x-direction, and discharge in the y-direction, at node
i € {1,2,3}, respectively.

3.1. Positive-depth operator

Here, we propose an operator to keep the water depth positive.
We name the operator the Positive-Depth (PD) operator and repre-
sent it by MIT,. The operator MIT, may be used in conjunction with
a TVB limiter AIl, in the k-stage Runge-Kutta time marching algo-
rithm as follows:

o Set w) = ATT,MIT,Py, (Wo);
e Forn=0,...,N—1 compute w*! as follows:
(1) Fori=1,...,k+ 1 compute the intermediate functions:

. i-1
w)) = AIT,MIT,, {Z oWy + ByAtLy, (wg”)}.
1=0

1 _ yik+D)
(2) set wpt' =w,

where Py, is a projection to the function space V; and o; and f; are
the constants of the Runge-Kutta method. The purpose of the oper-
ator MIT, is to prevent non-positive water depths. To define the
operator MIT;, we introduce a threshold Hy to detect nodes that
are about to dry.

We construct the operator MII, on piecewise linear solution
functions for the SWE in such a way that the following properties
are satisfied:

(1) Accuracy: if H, > Ho, V(x,¥) € Qx,
V(X,y) € QK~

(2) Conservation of mass: for every element K, we have

MIT;wy, = wy,

MII,H,dQ = H,dQ.
Q Q¢
(3) Water surface modification: the slope of water surface is
modified in such a way that

MIT Hy > Ho, V(x,y) € Qk

if this is possible without violating property 3.1. If not possi-
ble, then the water depth is set to the mean value over the
subdomain Hg:

MILHy = Hx, V(x.y) € Q.

Discharge limiting: discharge vanishes at a node if the water
depth at the node is less than Hy. The removed discharge is
distributed to other nodes to recover the momentum
conservation unless the water depth is less than Hy at all
the nodes.

=

Note that these properties do not prohibit violation of momen-
tum conservation while the second property requires mass conser-
vation. We allowed loss of momentum to ensure that discharge at
the wetting and drying front vanishes. To satisfy the properties
listed above, it is clear that we have to introduce two different
operators: an operator for the water depth, which is denoted by
MHﬁ, and the other operator for the discharge, which is denoted
by MIT,.

In general, we can write a piecewise linear function u, with the
values at the nodes u; and the linear basis functions ¢; that take a
value of 1 at node i and O at the other two nodes as follows:

3
Uh(X,y) = Zui¢i(xvy)7 (va) € Q.

i=1

We denote by H, and H; the water depth updated by the operator
MHﬂ and its nodal values, respectively. Then, we have

3
Hy=MIT{H, =Y Hig:. (10
i=1

We now determine H; to complete the definition of the operator
MIT:

(1) If H; > Ho, Vi e {1,2,3}, then

Hi=H; Vie{1,2,3}. (11)
(2) If Hx < Ho, then
Hy=Hx, Vie{1,2,3}. (12)

(3) Otherwise, we first find the order of nodal indices
n; € {1,2,3} that satisfies the following inequalities:

Hy, < Hp, < Hp,, (13)

then, determine Iflnl, ITI,12 and ﬁn3 in the following sequence:
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(a) Set ITI,.I:
H,, = Ho. (14)
(b) Set ﬁnzz

Hy, = max(Ho, Hy, — (Ha, —Hn,)/2). (15)
(c) Set ﬁn3:
ﬁ"3 :Hnaf(ﬁnl 7H“1)7(ﬁn27H"2)‘ (16)

With the operator MHﬁ, the water depth in element K is kept
the same if the water depth is greater than or equal to Hy at all
the nodes. If the mean water depth is less than or equal to Hy,
the updated depth, ﬁh, is set to be Hg; i.e. the slope of the surface
elevation is changed to be parallel to the bottom. Otherwise, the
slope of the depth H, is limited in such a way that H, > H, for
all (x,y) € Qk by redistributing water mass locally in an element.
The division by two in Eq. (15) is introduced to lower the depths
at nodes n, and n3 by an equal amount. This is more clearly ex-
plained by assuming Ho < Hy, — (ITI,11 —Hp,)/2 and substituting
Eq. (15) into Eq. (16) to get
H"3 :H"3 _(Hnl _H"1)/2' (17)
The second property (mass conservation) is always satisfied as Eq.
(16) leads to

Hp, + Hy, + Hy, = Hy, + Hy, + Hy,. (18)

It is clear that the operator MII¢ satisfies the first, second and third
properties.

We next define a discharge operator MH’,;. Discharge in the x-
direction p, can be written with the values at the nodes, p; as
follows:

3
bn = Zpi¢i- (19)
i=1

H >H, = [Cglgman =6

_h2> -hl == |hK|min :hZ

1€ kltmax < Hoy — 1A gl in = Element K is
of flood-type.

— Element K is
dry.

¢=0

L.

Fig. 2. Schematic defining the still water problem. Initially wet elements are
shadowed in gray.

We define ©;, nyos and Ap as follows:

©; = O(H; — Hy), (20)
3
Moos = 3 0, (21)
i-1
3
Ap=> pi(1-6y), (22)
-1
where ©(-) is the unit step function defined as
0 ifa<O,
= 23
() {1 if a>0, (23)

H,>H, = g[:CQ
-hy>-hy = I, =h,

C,>-h, —> Element K is
of dam-break-type.

Fig. 1. Examples of the dam break-type and flood-type wetting/drying situations.
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@; is the flag that tells whether node i is wet or dry based on the
updated water depth, n,, is the number of wet nodes and Ap is
the sum of discharge in the x-direction at the dry nodes.

The operator MH{I is now defined as follows:

3

Pr=MITp, = > piy, (24)
i-1

where

Pi = Oi - (p; + Ap/Npos). (25)

Eq. (25) distributes the momentum removed at dry nodes to wet
nodes. The operator Ml'If satisfies the first and fourth properties.
It violates the momentum conservation only when H; < H, for all
ie{1,2,3}.

The discharge in the y-direction, g,, is limited by the same oper-
ator Ml‘[ﬁ:

(n = MIT,g,. (26)
3.2. TVB slope limiter

In RKDG methodes, a slope limiter may need to be applied to re-
move high-frequency oscillations to avoid instability. Thus we use
Cockburn and Shu’s TVB limiter [22]. The details of their slope lim-
iter are not repeated here. We write only the definition of the mod-
ified minmod function as the parameter M will appear when we
solve test problems with the slope limiter. Note that the choice
of M is problem-dependent. The modified minmod function, m(-),
is defined as follows:

i 2
m(al,...,am):{“l if | < MAY?,

27
m(ay,...,am), otherwise, 27)

where m(-) is the minmod function and a;’s are arbitrary numbers.

Gravity Canceled in Dry Elements
1e-16

8e-17 1
6e-17 E

4e17 | 1

2e-17 f/\/m

0 10 20 30 40 50 60
Time (sec)

Maximum of Discharge (m2/s)

Gravity Not Canceled

0.8 :

06 ]

04} ]

0.2 1 1

Maximum of Discharge (m2/s)

0 10 20 30 40 50 60
Time (sec)

Fig. 3. Time history of the maximum magnitude of the discharge over the entire
computational domain. Top: the gravity terms are canceled, bottom: the gravity
terms are not canceled.

As reported in [21], a wetting and drying treatment and a slope
limiter may artificially activate each other. This conflicts may cause
an instability. Therefore, the slope limiter is applied only when the
wetting and drying treatment is not applied at the same RK step.

3.3. A stability condition for the thin water layer approach

The goal of this section is to provide a sufficient condition to en-
sure the positivity of mean water depth in each element. We begin
by considering the balance between the existing mass in an ele-
ment and the outgoing discharge through its boundary. The bal-
ance is, in fact, written as the mass conservation equation as in
Eq. (9) for i = 1. We wrrite it here again with some rearrangements:

OHy =
(5¢1), = (Fiomiha, (28)

where test function vis replaced with 1 as we are now interested in
the total water mass in the element and net mass exchange be-
tween neighboring elements. Since we assume that our element is
triangular and the interpolation is linear, Eq. (28) can be further
rewritten with the mean water depth Hy as follows:

2
dt
where Ag is the area of element K. Eq. (29) is then discretized in
time using the s-stage Runge-Kutta method as follows:

Z{allHK

i—1
= {ociz (H:(?AK - At& (E) -m, 1>891<> }’
e it

oy =0, i=1,...;s (30)

HyAx) = <F1 ‘M, 1)0, (29)

M = Hy HYAx = Atﬂd( -, 1>()9K}

where superscript (I) indicates quantities in the Ith Runge-Kutta
stage. The sufficient condition to ensure the positivity of the mean
water depth of element K is

MY >0, Vie{l,...s} (31)

Dam at x=0

Fig. 4. Schematic defining the dam break problem. The Ax of the computational
mesh shown above is 5 m.

Table 1

Model parameters for the dam break problem and drying Riemann problem.

Case ID Slope limiter M Hp (m)
D1 Not applied - 10°°
D2 Applied 1 10-°
D3 Applied 0.1 10°°
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We define My as

MY, = HY Ac — Atg—z (F - m 1) . (32)

Egs. (30) and (32) lead to

My =" oM. (33)
=0

Since Z;;(])acil =1and oy > 0, Vi, for a general Runge-Kutta meth-
od, M is a convex combination of M{. Also, the combinations of
(i,) where a; = 0 can be ignored as ; = 0 if o = 0 [25]. Therefore,
Eq. (31) is satisfied sufficiently if

My, >0, VIe{0,....i—1loy#0}. (34)

Eqgs. (32) and (34) give the following restriction on At to satisfy Eq.
(31) sufficiently:

) _
ar< i Hiche e @001y, S0,
Bu (FY - m,1),0,
Ve {0,....i—1|oy # O}. (35)

Eq. (31) is satisfied with any At if (F" -, 1), < 0. We choose non-
negative B; for the sake of efficiency and our choices of o; presented
in [24] are also non-negative. Thus, if the mean water depths of pre-
vious Runge-Kutta stages, ﬁ}(”, are positive, then the right hand side
of Eq. (35) is positive. Therefore one can always find a positive At
that ensures the positivity of mass integrated over an element;
ie. M,(? > 0. Furthermore, once the positivity of the mean water

Table 2
[? error norms and convergence rates of the dam break problem: Case D1.

Ax 12(0) Rate L*(p) Rate [%(q) Rate

20.00 6.22E-04 - 6.91E-03 - 1.79E-04 -

10.00 3.19E-04 0.97 3.63E-03 0.93 6.03E-05 1.57
5.00 1.59E-04 1.00 1.79E-03 1.02 2.04E-05 1.56
2.50 7.96E—-05 1.00 8.74E-04 1.04 7.26E—-06 1.49
1.25 4.01E-05 0.99 4.33E-04 1.02 2.64E-06 1.46

Fitted - 0.99 - 1.00 - 1.52

Table 3

L* error norms and convergence rates of the dam break problem: Case D2.

Ax 12 Rate L?(p) Rate 1%(q) Rate

20.00 6.31E-04 - 6.98E-03 - 3.04E-04 -

10.00 3.25E-04 0.96 3.68E-03 0.92 6.72E-05 0.22
5.00 1.81E-04 0.85 2.04E-03 0.85 7.16E-05 —0.09
2.50 1.01E-04 0.83 1.16E-03 0.82 1.73E-05 2.05
1.25 5.44E-05 0.90 6.17E-04 0.91 8.34E-06 1.05

Fitted - 0.88 - 0.87 - 1.23

Table 4
[* error norms and convergence rates of the dam break problem: Case D3.

Ax 120 Rate *(p) Rate [%(q) Rate

20.00 6.53E—-04 - 7.15E-03 - 3.39E-04 -

10.00 3.55E-04 0.88 3.83E-03 0.90 1.56E-04 1.12
5.00 1.93E-04 0.88 2.05E-03 0.90 5.86E-05 1.41
2.50 1.03E-04 0.90 1.10E-03 0.90 2.27E-05 1.37
1.25 5.48E—05 0.92 5.89E-04 0.90 7.97E—-06 1.51

Fitted - 0.89 - 0.90 - 1.36

depth is ensured, the PD operator will ensure the pointwise positiv-
ity of water depth by the water surface modification.

One can set a sufficiently small At to satisfy Eq. (35). However, it
is not easy to estimate the right hand side of Eq. (35). It is rather
more practical to consider the condition of Eq. (35) in a wetting
and drying treatment so that the positivity of the mean water
depth is satisfied with any given At. Therefore, we consider manip-
ulating the numerical fluxes between neighboring elements in
such a way that mass exchange is prohibited once the violation
of Eq. (35) is detected. To detect this violation, the flux F\’ must
be computed once, and if the violation is detected with the com-
puted flux, then a new flux must be recomputed so that it satisfies
F).n=0.

We compute the numerical flux that prohibits mass transfer in
the form of the reflection flux. The reflection flux is computed by
an approximated Riemann solver with wi, = ({in, Pin, @) and
w = (4 p¥ g). The symbol w;, is the vector of variables on
the elemental boundary from the interior of the element. The sym-
bol w¥ represents the reflected variable vector defined as follows:

GF = i, (36)
ref )
pin .n= 7{pm } -, (37)
q{flf Qin
ref .
in ~t:{pm}~t, (38)
ref Qin

in

where t is the unit tangential vector to the elemental boundary 9Q.
The reflection numerical flux can be written as follows:

F = F(w;,, w). (39)

' " Time=40 -
ey, Time=8.0 o 1
)X& 4 Time =12.0 =
Q
X

Exact -—-----

Surface Elevation (m)

-300 -200 -100 0 100 200 300

30

20

Discharge (m#/s)

-300 -200 -100 0 100 200 300
X (m)

Fig. 5. The computed solutions of the dam break problem: Case D1.
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The violation of Eq. (35) is detected on each edge of a triangular ele-
ment and the reflection numerical flux is used only on those edges.

3.4. Flux between dry elements

Besides the flux modification, to ensure the positivity of the
water depth, flux between dry elements is also modified to pro-
hibit water mass exchange between neighboring dry elements.
The reasons why the mass/momentum exchange needs to be re-
stricted are threefold; (1) to prevent unphysical oscillations from
propagating to dry regions, (2) to prevent dry elements from losing
all their mass, and (3) to save computation time. The third reason
may need some explanation. As long as neighboring elements are
coupled through a numerical flux, all the elements including dry
elements must be considered in the computation. We can decouple
neighboring dry elements by evaluating the flux between dry ele-
ments as the reflection flux. After decoupling neighboring dry ele-
ments, all the wet elements and only the dry elements neighboring
a wet element should be considered in the computation. The rest of
the dry elements can be neglected to save computational time. In
our present code, this idea to save computational time has not
been implemented and both wet and dry elements are considered
in computation.

Here we define the wet-or-dry status of element K. Let oy de-
note the wet-or-dry status; i.e. ! = 0 if element K is dry at the Ith
Runge-Kutta stage and w}“ = 1 otherwise. The wet-or-dry status is
determined as follows:

wy = o} "O(Hy — Ho) + (1 — i )@ (Hy — Ho)O(|lk lymax

where |{

IHmax
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is the surface elevation at a point where the water

depth is the greatest over Q. The symbol |hg|.;, represents the
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tional mesh shown above is 5 m.

Table 5

L* error norms and convergence rates of the drying Riemann problem: Case D1.

Ax L2(0) Rate *(p) Rate L%(q) Rate

20.00 1.53E-03 - 0.06 - 3.96E-04 -

10.00 6.75E-04 1.18 2.62E-02 1.20 8.67E-05 2.19
5.00 3.31E-04 1.03 1.31E-02 1.01 2.82E-05 1.62
2.50 1.72E-04 0.95 6.93E-03 0.91 9.95E-06 1.50
1.25 9.00E—-05 0.94 3.70E-03 0.91 3.59E-06 1.47

Fitted - 1.01 - 1.00 - 1.67
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highest bottom depth over Q. Note that the positive direction of
the bottom depth is vertical downward. This wet-or-dry judgment
is partially based on Bates and Hervouet’s classification of dam-
break-type and flood-type wetting/drying elements [18]. Examples
of the dam-break-type and flood-type wetting/drying situations are
depicted in Fig. 1.

Table 6
L* error norms and convergence rates of the drying Riemann problem: Case D2.
Ax 12(2) Rate L%(p) Rate L%(q) Rate
20.00 1.53E-03 - 6.05E—02 - 6.66E—04 -
10.00 6.83E-04 1.17 2.67E-02 1.18 3.08E-04 1.11
5.00 3.57E-04 0.94 1.40E—-02 0.93 2.09E-04 0.56
2.50 1.98E-04 0.85 7.72E-03 0.86 1.36E-04 0.61
1.25 1.06E—04 0.90 4.14E-03 0.90 7.07E-05 0.95
Fitted - 0.95 - 0.95 - 0.77
Table 7
[* error norms and convergence rates of the drying Riemann problem: Case D3.
Ax L0 Rate 1%(p) Rate 1%(q) Rate
20.00 1.50E-03 - 6.12E-02 - 1.05E-03 -
10.00 7.04E-04 1.09 2.76E-02 1.15 9.32E-04 0.18
5.00 3.57E-04 0.98 1.37E-02 1.01 3.80E-04 1.30
2.50 1.93E-04 0.89 7.36E-03 0.90 1.60E—04 1.24
1.25 1.05E-04 0.88 3.98E-03 0.891 6.37E—05 133
Fitted - 0.95 - 0.98 - 1.06
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Fig. 9. The computed solutions of the drying Riemann: Case D1.
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To prevent mass/momentum exchange between dry elements,
we compute the reflection flux defined in Section 3.3 and use it
as a numerical flux along the inter-element boundary that is sand-
wiched by dry elements. Thus, with this reflection flux, interaction
between neighboring dry elements no longer exists.

3.5. Cancellation of gravity terms

While an element is wetting or drying, till it gets fully wet or
dry, an artificial gradient in surface elevation may be observed as
the slope is limited by the slope of the bottom. This artificial slope
of surface elevation induces unphysical gravitational force accord-
ing to the gravity terms in the momentum equations. Thus we can-
cel the gravity terms in dry elements, in which a)}“ =0.

In our formulation presented in Eq. (9), the acceleration of grav-
ity, g appears in F;, F; and s;. In evaluating the domain integration
terms that contain F; and s;, we simply set g = 0 if element K is dry
(i.e. w}? =0). On the other hand, in obtaining a single-valued
numerical flux f,-, it is incorrect to set g = 0 since it will violate
the balance between the boundary integration terms and domain
integration terms. In a wet element neighboring a dry element,
in evaluating the domain integration terms, which contains F;
and s;, g will be set to a prescribed non-zero value.

To achieve consistent evaluations of ?,» with that of F; and s;, we
allow dual-valued numerical fluxes on such inter-element bound-
aries that are sandwiched by wet and dry elements. One of the
numerical flux vectors is computed in the standard way with a pre-
scribed non-zero g. This standard numerical flux is used to evaluate
the boundary integrals of wet elements. The other flux is the one
for dry elements. We compute it with the same Riemann solver,
but with g = 0. Denoting the numerical flux computed with g =0
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Fig. 10. The computed solutions of the drying Riemann: Case D2.
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by F¢, the numerical flux is redefined on the inter-element bound-
ary of wet and dry elements as follows:

F
F= f:; on the wet side,
Fs ]
>
F= | F| on the dry side.
S
10 Tme-40 o g p—
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N | ! |
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Fig. 11. The computed solutions of the drying Riemann: Case D3.
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Fig. 12. Schematic defining the Carrier-Greenspan problem. The Ax of the
computational mesh shown above is 0.025 m.

Note that, only on the dry side, the momentum fluxes are replaced
with those computed with g = 0. Thus we violate the momentum
conservation to cancel the gravity terms. On the other hand, the
same mass flux is used on both sides. Therefore, mass conservation
is intact.

4. Numerical tests

In this section, we verify the wetting and drying method pro-
posed in the previous section. We consider still water at rest, the
dam break problem, the drying Riemann problem over a flat bot-
tom, the Carrier-Greenspan solution and a parabolic bowl prob-
lem. Convergence studies are conducted for the last four
problems. The influence of slope limiting is investigated in some
of the test problems. The influence of the threshold Hy is examined
for the Carrier-Greenspan problem. The behavior of the wetting
and drying method in a two-dimensional problem is tested in
the parabolic bowl problem.

Convergence rates are computed by measuring the following L?
error norm:

2(w) :% [/Q(wh - w)deF, (41)

where Q is the entire computational domain, A is the area of the do-
main Q, wy, is the numerical solution of {, p or g, and w is the exact
solution.

4.1. Still water at rest

We test our wetting and drying treatment with respect to
whether it can produce still water at rest. The problem definition
and the finite element mesh are depicted in Fig. 2. The slip bound-
ary condition with no normal flow is applied to the entire bound-
ary. The Courant number is set to 0.1. The surface elevation is
initially set to 0 on the nodes where the bottom is below the datum
level. The surface elevation on the other nodes are set to 107> m
above the bottom elevation. The initial discharges are set to zero.
Thus the water body is initially at rest.

In Fig. 2, initially wet elements are shadowed in gray. The water
front is not straight since the mesh is unstructured. The wet-or-dry
judgment introduced in Eq. (40) tends to estimate a smaller wet re-
gion. This is a desirable property as one should avoid inducing a fic-
titious flow generated by an artificial gradient in water surface

Table 8

Model parameters for the Carrier-Greenspan problem.

Case ID Slope limiter M Ho
CG1 Not applied - 10°°
CG2 Applied 10 10°°
CG3 Applied 1 1075
CG4 Not applied - 1074
CG5 Not applied - 103
Table 9

L* error norms and convergence rates of the Carrier-Greenspan solution: Case CG1.
Ax %0 Rate L*(p) Rate L%(q) Rate
0.10000 8.50E-03 - 5.30E-03 - 2.14E-04 -
0.05000 5.58E-03 0.61 1.42E-03 1.90 7.70E-05 1.48
0.02500 2.65E-03 1.07 7.11E-04 1.00 2.55E-05 1.59
0.01250 9.56E—04 1.47 2.57E-04 147 6.82E—06 1.90
0.00625 4.67E-04 1.03 1.17E-04 1.14 2.65E—-06 1.37
Fitted - 1.09 - 1.35 - 1.62
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near a water front. It approaches the actual water front as mesh
resolution is increased.

Fig. 3 shows the time histories of maximum of the magnitude of
discharges over the entire computational domain. In this figure, the
effect of the gravity cancellation, which was introduced in Section
3.5 is examined. The upper part of the figure is produced from the
solution computed with the gravity cancellation. The lower part of
the figure is the case without the gravity cancellation. From the
upper figure, it is observed that the water body practically stays
still if the gravity terms are canceled. From the comparison of
the upper and lower figures, it is clear that the gravity cancellation
removes the fictitious gravity force. The maximum magnitude of
discharges did not grow over the level shown in Fig. 3 in longer
simulations for either case.

4.2. Dam break on a dry bed

In this section, we solve the one-dimensional dam break prob-
lem on a dry bed using a 2D mesh. The numerical solution is com-
pared with the analytical solution provided in [26]. Fig. 4 shows
the computational domain, the initial condition, and one of the

Table 10

[? error norms and convergence rates of the Carrier-Greenspan solution: Case CG2.
Ax I2(2) Rate L?(p) Rate 1%(q) Rate
0.10000 1.07E-02 - 5.22E-03 - 3.89E-04 -
0.05000 5.42E-03 0.98 1.51E-03 1.79 7.96E-05 2.29
0.02500 2.65E-03 1.03 7.14E-04 1.08 3.17E-05 1.33
0.01250 9.67E—04 1.46 2.51E-04 1.51 1.08E-05 1.56
0.00625 4.76E-04 1.02 1.03E-04 1.28 3.75E-06 1.52
Fitted - 1.15 - 1.39 - 1.63
Table 11

L* error norms and convergence rates of the Carrier-Greenspan solution: Case CG3.
Ax L2(2) Rate L2(p) Rate L%(q) Rate
0.10000 9.54E-03 - 5.63E-03 - 3.03E-04 -
0.05000 5.56E—-03 0.78 1.58E-03 1.83 1.20E-04 1.33
0.02500 2.70E-03 1.04 7.13E-04 1.15 3.68E-05 1.71
0.01250 9.65E—-04 1.48 2.49E-04 1.51 1.17E-05 1.65
0.00625 4.75E-04 1.02 1.01E-04 1.30 3.07E-06 1.93
Fitted - 1.12 - 143 - 1.66
Table 12

L* error norms and convergence rates of the Carrier-Greenspan solution: Case CG4.
Ax Z© Rate L(p) Rate L%(q) Rate
0.10000 8.61E-03 - 5.12E-03 - 3.27E-04 -
0.05000 5.00E-03 0.78 1.84E-03 1.48 1.24E-04 1.40
0.02500 2.67E-03 0.90 7.40E-04 1.32 4.53E-05 1.45
0.01250 1.04E-03 1.36 2.69E-04 1.46 5.87E-06 2.95
0.00625 5.45E-04 0.93 1.27E-04 1.09 2.17E-06 1.44
Fitted - 1.02 - 1.34 - 1.89
Table 13

L* error norms and convergence rates of the Carrier-Greenspan solution: Case CG5.
AX 12(0) Rate  L[%(p) Rate  [%(q) Rate
0.10000 1.42E-02 - 4.68E-03 - 1.15E-04 -
0.05000 6.23E-03 1.19 1.92E-03 1.28 7.85E-05 0.55
0.02500 3.36E-03 0.89 8.06E—-04 1.25 1.32E-05 2.57
0.01250 2.31E-03 0.54 4.94E-04 0.71 5.10E-06 1.38
0.00625 1.75E-03 0.40 4.43E-04 0.16 2.07E-06 1.30
Fitted - 0.75 - 8.80 - 1.55

computational meshes used in the convergence study presented
later. The left side of the dam located at x = 0 is initially wet and
has still water with the depth of 10 m. The right side of the dam
is an initially dry region where the initial water depth is set to
H,. The parameter H, is set to 10™> m in this test problem. The
acceleration of gravity is 10 m/s%. The Courant number is 0.1. Lat-
eral slip and no normal flow boundary conditions are applied to
all boundaries.

The convergence study is conducted with three sets of parame-
ters shown in Table 1. In Case D1, the slope limiter is not applied. In
Cases D2 and D3, the slope limiter is applied with different values
of the TVB parameter M for a sensitivity check. The L? error norms
of Cases D1, D2 and D3 are shown in Tables 2-4, respectively. The
rows of the tables labeled as “Fitted” are least square fits of the
data. The L? error norms are computed with the solutions at
t = 8s. The convergence rates of the non-slope limiting case (D1)
are close to or equal to 1 for { and p, and approximately 1.5 for
g. The convergence rates close to 1 are satisfactory as one cannot
expect a convergence rate greater than 1 if the solution contains
a discontinuity. The dam break problem contains a discontinuity
in the initial condition. The convergence rate of L*(q) is consider-
ably greater than 1. This is because the solution is smooth in the
y-direction.

The convergence rates degrade when the slope limiter is ap-
plied. The combination of the PD operator and TVB limiter does
seem to decrease the order of convergence to less than 1, but it
is within an acceptable range. Shown in Figs. 5-7 are the exact
solutions and the numerical solutions computed with Ax=5m
for each of the three cases D1, D2 and D3. The horizontal axis cor-
responds to the horizontal variable x. The values of the solutions at
vertices (x,y) for each y are plotted on the vertical axis. Note that
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Fig. 13. The computed solutions of the Carrier-Greenspan problem: Case CG1.
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the numerical solutions vary slightly with y, unlike the analytical
solution, which is independent of y in this case. In these figures,
relatively large errors are found near the wetting front. Comparing
these figures, it is observed that spurious oscillations are more
forcibly depressed as a smaller value of M is used.

4.3. Drying Riemann problem

In this section, we test the proposed method in a drying situa-
tion on a flat bottom. We set up a Riemann problem in which a
dry region emerges, shown schematically in Fig. 8. The analytical
solution is described in [20]. The configuration shown in Fig. 8 sat-
isfies the drying criterion /gH, + —u;+ u, < 0. Two expan-
sion waves that propagate away from each other result in a dry
region, which appears at t > 0. The acceleration of gravity is set
to 10 m/s? and the Courant number is set to 0.1.

The convergence study is conducted with the same sets of
parameters used for the dam break problem in the previous section
and shown in Table 1. The L* errors computed with solutions at 8s
are shown in Tables 5-7. The convergence rates of Case D1 are
approximately 1 for { and p, and approximately 1.7 for q. These
are reasonable convergence rates, considering the fact that this
drying Riemann problem also contains a discontinuity in the initial
condition. It is also observed that the slope limiter does not signif-
icantly affect the order of accuracy of { and p. Relatively large deg-
radation occurs in I*(q) when the slope limiter is applied. It is
presumed to be due to the fact that the slope limiter induces a
small gradient in the y-direction in the surface elevation and it in
turn drives flow in the y-direction.

Shown in Figs. 9-11 are { and p computed with Ax = 5m. The
numerical solutions agree well with the exact solution. The figures
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Fig. 14. The computed solutions of the Carrier-Greenspan problem: Case CG3.

also demonstrate that spurious oscillations are more forcibly de-
pressed as a smaller value of M is used.

4.4. Carrier-Greenspan solution

The Carrier-Greenspan solution considers a periodic wave
propagating up and down a sloping beach [27]. This problem
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Fig. 15. The computed solutions of the Carrier-Greenspan problem: Case CG5.

Table 14
L* error norms and convergence rates of the parabolic bowl problem: t = /2.

Ax L2(0) Rate L*(p) Rate L%(q) Rate

400.0 3.56E-06 - 3.05E-06 - 2.54E-06 -

200.0 1.85E-06 0.94 1.39E-06 1.13 1.13E-06 1.17

100.0 9.01E-07 1.04 5.38E-07 1.37 4.49E-07 1.34
50.0 4.10E-07 1.13 2.10E-07 1.36 1.72E-07 1.38
25.0 1.75E-07 1.23 8.00E—-08 1.39 6.67E—-08 1.37
12.5 7.18E—-08 1.29 3.18E-08 133 2.69E-08 1.31

Fitted - 1.13 - 1.33 - 1.33

Table 15
L* error norms and convergence rates of the parabolic bowl problem: t = .

Ax L2(0) Rate L%(p) Rate L%(q) Rate

400.0 5.48E—06 - 4.99E-06 - 4.66E—-06 -

200.0 2.89E-06 0.93 4.43E-06 0.17 3.99E-06 0.22

100.0 1.20E-06 1.27 3.18E-06 0.48 2.77E-06 0.53
50.0 4.96E-07 1.28 1.60E-06 1.00 1.44E-06 0.95
25.0 2.05E-07 1.27 7.09E-07 1.17 6.33E-07 1.18
12.5 8.58E—-08 1.26 3.03E-07 1.23 2.73E-07 1.22

Fitted - 1.22 - 0.83 - 0.84
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involves both wetting and drying in each period. We use a con-
figuration similar to that of [20]. The computational domain
and a computational mesh with Ax =0.025 are shown in
Fig. 12. The acceleration of gravity is set to 1 to solve the dimen-
sionless SWE. The Courant number is 0.1. The slope is inclined at
45°, Parameters such as the amplitude and frequency of a peri-
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odic wave are selected such that the front reaches infinite steep-
ness against the slope at periodic instants [20]. Unlike two test
problems in the previous sections, the solution of this test prob-
lem does not contain a discontinuity. The boundary condition
along the offshore boundary is applied through the numerical
flux.

t=0
“° I I I I " Bottom ——
Exact ----------
2r Numerical, Ax = 200+
Numerical, Ax = 100 x
E
= 15}
il
g
o 1
w
05 F
0 - L
-4 -3 -2 -1 0 1 2 3 4
y (km)
t=21/6
“o I I I I " Bottom ——
Exact -
2r Numerical, Ax =200  +
Numerical, Ax = 100 x
E
Z 157}
k]
T
k] r
w
05
0OF
4 3 2 4 0 1 2 3 4
y (km)
t=41/6
=0 Bottom ——
Exact -
2f Numerical, Ax = 200 +
Numerical, Ax = 100 x
€
=~ 15}
kel
<
k] r
w
05
0F
4 3 2 4 0 1 2 3 4
y (km)
2.5
2}
€
=~ 15}
kel
s
@ 1F
w
0.5
0F

Numerical, Ax =200  +
Numerical, Ax = 100 x

t=1/6
25 i i i i " Bottom ——
Exact -
ot Numerical, Ax = 200 +
Numerical, Ax = 100 x
E
- 15¢
il
©
s 1f
w
0.5
0L . . . : . . .
-4 -3 -2 -1 0 1 2 3 4
y (km)
t=31/6
25 i i i i " Bottom ——
Exact -
sl Numerical, Ax = 200 +
Numerical, Ax = 100 x
E
-z 15}
9
g
s 7
w
0.5
0 5
-4 -3 -2 -1 0 1 2 3 4
y (km)
t=51/6
2.5 Bottom ——
Exact -
sl Numerical, Ax =200  +
Numerical, Ax = 100 x
E
Z 15¢
9
g
s 7
w
0.5
0 L
-4 -3 -2 -1 0 1 2 3 4
y (km)
t=1
Bottom ——
Exact -

4 3 2 -

0 1 2 3 4

y (km)

Fig. 16. The initial and computed surface elevations of the parabolic bowl problem.
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We compute L? error norms for five sets of parameters shown in
Table 8. We compare Cases 1, 2 and 3 to find the influence of the
slope limiter. We compare Cases 1, 4 and 5 to check the influence
of the threshold Hy.

The L? errors are computed with solutions at t=4 s and the
convergence rates of five cases are shown in Tables 9-13. The
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computed order of accuracy is approximately 1.1 for { and 1.4 for
p if no slope limiter is applied and H, = 10~°. The convergence rate
of q is approximately 1.6. The order of accuracy is greater than 1.0
and better than what we obtained in the previous problems with
discontinuities. However, it is still less than the optimal order of
accuracy, which is 2. This may be attributed to the use of a fixed
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Fig. 17. The initial and computed discharges in the y-direction of the parabolic bowl problem.
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mesh, or, as Bokhove discussed in [20], it may be due to the infinite
steepness of the surface elevation solution. If we compare Cases
CG1, CG2 and CG3, it is confirmed that accuracy is not affected sig-
nificantly by the slope limiter. Comparing Cases CG1, CG4 and CG5,
it is found that the convergence significantly slows down if Hy is
large. It is presumed that the threshold Hy must approach zero as
Ax approaches zero in order to obtain convergence to an exact
solution. On the other hand, it is also observed that, in practical
applications, accuracy may not be sensitive to a selection of Hg
as long as element sizes are relatively large.

Shown in Figs. 13-15 are the results of Cases CG1, CG3 and CG5,
respectively. All the results agree well with the exact solution. A
steep gradient in the solution at t = 1.5 is also captured well.

4.5. Parabolic bowl

Here we test the proposed method for a two-dimensional axi-
symmetric phenomena. The bottom depth is a paraboloid and pre-
scribed as h(x,y) = ar> where o is a positive constant and
r = /X% +y2. At an initial state, the water surface is also in a par-
abolic shape and the velocity is zero. The exact solution is periodic
in time with a period 7. One can find the exact solution in [28]. The

water depth H(r,t) is non-zero for r < \/(X + Y cos wt) /a(X* — Y?)
and the exact solution is given within the range as follows:

1 2 w2 r?
Hrt=o— (Y- X)— 42
0 = X Veosar ™™ (X + Y cos wt)? “2)
WXy, t), v(x,y, 1)) = _M@ X) (43)
7y7 bl 7y1 - X+YCOSQ)t 272 bl

where w? = 8go and X and Y are constants such that X > 0 and
|Y| < X. The period is T = 27/®.

We use a similar set of parameters to what Ern et al. used in
[21]. The constants, o, X and Y are set to 1.6 x 107" m~!, Tm™",
and —0.41884 m', respectively. The acceleration of gravity is set
to 10 m?/s. The computational domain is a square with the side
length of 8000 m. The Courant number is set to 0.12. The slope lim-
iter is applied with M = 0.01.

We compute the L* error norms for five different mesh resolu-
tions. The errors are computed at two times: t =7/2 and t = 1.
Since the exact solution is periodic and wetting occurs in the first
half of a period and drying occurs in the second half of a period, the
norms measured at t = 7/2 and t = T represent errors in wetting
and drying, respectively. The obtained error norms and orders of
convergence are shown in Tables 14 and 15.

The computed convergence rate is 1.1 for { and is 1.3 for p and ¢
in the wetting stage (Table 14). The computed convergence rates in
the drying stage are 1.2 for ¢ and 0.8 for p and g. These rates are
below the optimal value, which is 2, but are acceptably good for
the reasons stated in the previous section. The errors and conver-
gence rates for { in the wetting and drying stages are comparable
while the errors in p and q in the drying stage are larger by an order
of magnitude than those in the wetting stage if compared at
Ax = 12.5 m. Also, the convergence rates for p and g in the drying
stage starts small, but increase steadily as the grid resolution gets
improved. This indicates that numerical solutions of p and q enter
an asymptotic range later than (. If we compare the convergence
rates at Ax = 12.5 m, they are comparable in the wetting and dry-
ing stages. Overall, one may get a worse accuracy in p and q in the
drying stage, but one can expect accuracy improvement both in the
wetting and drying stages at rates greater than 1 in all dependent
variables, {, p and q once a resolution reaches an asymptotic range.

Plotted in Figs. 16 and 17 are { and g along x = 0, respectively.
Exact solutions and numerical solutions obtained with two grid
spacings, Ax = 100 and 200 m, are compared in the figures. One

may notice that more errors are found in the drying stage
(t/2 < t < 7). This may indicate that our wetting and drying treat-
ment can be improved further especially in the drying stage.

5. Conclusions

A wetting and drying treatment was proposed for the RKDG dis-
cretization to the shallow water equations. The proposed method
uses fixed meshes. A post-process operator, which is called the
PD operator, was introduced as a part of the proposed wetting
and drying treatment. A combination of the proposed wetting
and drying treatment and a TVB slope limiter was tested. It was ob-
served that our wetting drying treatment and the tested slope lim-
iter work fine if they are applied exclusively in each element.

The order of convergence was examined for four test problems.
The numerically estimated order of accuracy reaches 1 for
solutions with discontinuities and it becomes considerably better
than 1, but less than the optimal rate, which is 2, for smooth
solutions.

The numerical flux is controlled in such a way that the positivity
of the mean water level within each finite element is ensured with
any time step as long as the CFL condition is not violated. This spe-
cial flux treatment on the numerical flux enabled us to compute all
the test cases stably with reasonably large Courant numbers. No
excessive drying was detected in any element during the computa-
tions and therefore there was no need to add mass to such ele-
ments. Without this flux treatment, one may need to either use
much smaller time step or add mass to excessively dry elements.

The proposed method was tested only with the linear triangular
element. Extention to higher order interpolation is open to future
work.
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