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SUMMARY

Quasi-bubble �nite element approximations to the shallow water equations are investigated focusing on
implementations of the surface elevation boundary condition. We �rst demonstrate by numerical results
that the conventional implementation of the boundary condition degrades the accuracy of the velocity
solution. It is also shown that the degraded velocity leads to a critical instability if the advection
term is present in the momentum equation. Then we propose an alternative implementation for the
boundary condition. We refer to this alternative implementation as a discontinuous boundary (DB)
implementation because it introduces at each boundary node two independent mass–�ux values that
result in a discontinuity at the boundary. Numerical results show that the proposed DB implementation
is consistent, stabilizes the quasi-bubble scheme, and leads to second-order accuracy at the surface
elevation speci�ed boundary. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The 2D shallow water equations (SWE) are obtained from the Navier–Stokes equations by
assuming a hydrostatic pressure distribution and a uniform velocity pro�le in the vertical
direction. The SWE are a very e�cient formulation to describe a class of �uid dynamics
phenomena to which the shallow-water long-wave assumption is applicable. That class of
phenomena includes storm surges, tidal �uctuations, tsunami waves, and forces acting on o�-
shore structures. As seen in the Navier–Stokes equations, primitive approaches such as the
standard Galerkin �nite element formulation are not accurate for the SWE because 2�-scale
spurious oscillations arise. While many �nite element formulations have been investigated in
order to eliminate spurious oscillation [1, 2], the quasi bubble-function approach, which was
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introduced by Mewis and Holz [3] to the SWE and extensively used in the Telemac model
[4, 5] developed by Electricit�e de France (EDF), has many advantageous properties. Mewis
and Holz showed numerical results and demonstrated that the quasi-bubble scheme eliminates
spurious oscillations without requiring any non-physical damping. In their calculations, the ad-
vection term was not included. Atkinson et al. [6] compared the quasi-bubble scheme with the
generalized wave continuity equation (GWCE) scheme which is another extensively exercised
SWE solution with very low numerical damping. They demonstrated by dispersion error anal-
yses with linearized harmonic formulations that the quasi-bubble scheme has a very accurate
monotonic dispersion relationship, which theoretically indicates the potential of the quasi-
bubble scheme to eliminate spurious oscillations. We implemented the quasi-bubble scheme
for the SWE with the advection term expecting smooth solutions. However, our numerical re-
sults showed non-physical oscillations. It was observed that the quasi-bubble scheme leads to
a signi�cant instability when surface elevation is speci�ed as an essential boundary condition.
We supposed that the advection term in the momentum equation might cause the spurious os-
cillations at the boundary. In fact, when the advection term was dropped from the momentum
equation, we did not see any undesirable oscillations, and the calculation was very stable.
Kolar et al. [7] derived a unique �nite element formulation using generalized functions,

and suggested an alternative implementation of the boundary conditions for the SWE. Their
formulation demonstrates that boundary conditions should be implemented by treating normal
�uxes as natural conditions with the �ux interpreted as external to the computational domain.
They applied the alternative implementation to the GWCE in order to improve the mass-
conserving properties. The alternative implementation allows us to have a pair of velocity
values at each open boundary node; one of them is a velocity de�ned for the internal domain,
and the other is a velocity de�ned for the external domain.
Extending their idea to the momentum equation, we derived another alternative implemen-

tation of the boundary conditions, which utilizes the external velocity to augment the order
of accuracy of the momentum equation. Since two velocity values de�ned from the interior
or exterior domain can have di�erent values, we refer to this implementation as a discon-
tinuous boundary (DB) implementation. Adopting the DB implementation and a modi�cation
described later, the quasi-bubble scheme performed very stably and provided very smooth
solutions.
In this article, we �rst demonstrate how the conventional implementation causes an instabil-

ity in conjunction with the advection term and surface-elevation essential boundary conditions.
Then the details of the DB implementation are introduced, followed by numerical experiments
that support the consistency, stability, and high-order accuracy of the proposed formulation.

2. GOVERNING EQUATIONS AND NUMERICAL SCHEMES

2.1. Shallow water equations

2D SWE are written as

@�
@t
+∇ · (Hu)=0 (1)

@u
@t
+ u · ∇u+ �u+ fck × u+ g∇� − �

H
�(Hu)=

1
H
F (2)
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where � is the surface elevation, H = h + � is the total water depth, h is the bathymetric
depth, u=(u; v) is the horizontal velocity �eld, fc is the Coriolis parameter, k is the local
vertical vector, g is the gravitational acceleration, � is the bottom friction coe�cient, and � is
the depth averaged turbulent viscosity. Surface wind stress, variable atmospheric pressure, and
tidal potential are expressed through the body force F. Equation (1) is the continuity equation
in primitive form, and Equation (2) is the momentum equation in non-conservative form. In
the following discussion, we use the 1D SWE deduced from Equations (1) and (2). In 1D
form, the Coriolis term is dropped. For further simpli�cation, the di�usion term and the body
force term are excluded from the momentum equation. Thus we deal with the following 1D
form of the shallow water equations:

@�
@t
+

@Hu
@x

=0 (3)

@u
@t
+ u

@u
@x
= − g

@�
@x

− �u (4)

On a domain � let (·; ·)� denote the L2(�) inner product. To distinguish boundary inte-
grations we will use the notation 〈·; ·〉@�. The weighted residual statements of the governing
equations (3) and (4) are (

@�
@t
+

@Q
@x

; �I

)
�
=0 (5)

(
@u
@t
+ u

@u
@x
+ g

@�
@x
+ �u;  J

)
�
=0 (6)

where �I and  J are the globally de�ned bases of test functions, and Q=Hu. The upper-case
subscripts, I and J , represent globally assigned node numbers, while lower-case subscripts,
i, j, l, m, and n, which will be used later, represent local elemental node numbers.
Now we adopt the quasi-bubble scheme in order to obtain a �nite element formulation. In

the quasi-bubble scheme the standard linear bases are used as both interpolation functions for
the surface elevation and the test functions for the continuity equation, while quasi bubble-
function bases are used as both interpolation functions for velocity and the test functions for
the momentum equation. The 1D standard linear bases �i and the quasi bubble-function bases
 i are depicted in Figure 1 and de�ned in local co-ordinates s as

�1 = 1
2(1− s) (7)

�2 = 1
2(1 + s) (8)

 1 =

{−s for s∈ − 1¡s¡0

0 for s∈ 0¡s¡1
(9)

 2 =

{
1 + s for s∈ − 1¡s¡0

1− s for s∈ 0¡s¡1
(10)
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Figure 1. The 1D basis functions.

 3 =



0 for s∈ − 1¡s¡0

s for s∈ 0¡s¡1
(11)

Functions are then piecewise interpolated by those basis functions and nodal values as

v= v(e)i �(e)i (12)

w=w(e)j  (e)j (13)

�= �(e)i �(e)i (14)

u= u(e)j  (e)j (15)

where the summation rule over i∈ {1; 2} and j ∈ {1; 2; 3} is implied. In the above equations,
v is the test function for surface elevation, and w is the test function for velocity. v(e)i , w

(e)
i ,

�(e)i , and u(e)i are nodal values of each function. �(e)i and  (e)i are elementwise-de�ned basis
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functions in the global co-ordinate x. Superscripts (e) indicate that the functions and nodal
values are de�ned in or belong to element e. The summation rule over e∈ {1; 2; : : : ; N − 1}
is also implied. N represents the number of standard nodes.
Substituting the element-based discretizations into Equations (5) and (6) yields(

@�(e)l

@t
�(e)l +Q(e)

m
@ (e)m

@x
; �(e)i

)
�(e)

= 0 (16)

(
@u(e)m

@t
 (e)m + u(e)m u(e)n  (e)m

@ (e)n

@x
+ g�(e)l

@�(e)l

@x
+ �u(e)m  (e)m ;  (e)j

)
�(e)

= 0 (17)

Then we have element-matrix formulations of the approximated shallow water equations:

ME(e)il
@�(e)l

@t
+ B(e)im Q(e)

m =0 (18)

MU(e)jm
@u(e)m

@t
+C(e)jm (u

(e))u(e)m + gD(e)jl �(e)l + �MU(e)jm u(e)m =0 (19)

where

ME(e)il = (�
(e)
i ; �(e)l )�(e) =

L(e)

6

[
2 1

1 2

]
(20)

B(e)im =

(
�(e)i ;

@ (e)m

@x

)
�(e)

=
1
4

[−3 2 1

−1 −2 3

]
(21)

MU(e)jm = ( 
(e)
j ;  (e)m )�(e) =

L(e)

12



2 1 0

1 4 1

0 1 2


 (22)

C(e)jm = ( 
(e)
j ;  (e)m )�(e)

d (e)n

dx
u(e)n

=
1
6






2 1 0

1 2 0

0 0 0


 [−1 1 0] +



0 0 0

0 2 1

0 1 2


 [0 − 1 1]






u(e)1

u(e)2

u(e)3


 (23)

D(e)jl =

(
 (e)j ;

@�(e)l

@x

)
�(e)

=
1
4




−1 1

−2 2

−1 1


 (24)
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As seen in Figure 1, the test functions at bubble nodes have a non-zero value within only
one element that contains the centre node. In other words, the velocity at the centre node can
be determined by the momentum equations associated with one element instead of solving
globally assembled momentum equations. Thus the allocation of the bubble-function nodes
permits a static condensation procedure [8]. Thanks to this procedure one can reduce the
dimension of the simultaneous equations, and avoid a signi�cant increase of computing time,
which might occur due to the additional degrees of freedom of the bubble-function nodes.
Mewis and Holz [3] reported that the quasi-bubble scheme augmented computation time up to
approximately 20% as compared to standard linear elements, and it could be reduced further
by e�cient programming.
For the temporal discretization, the predictor multi-corrector method is employed using

the �rst-order forward-di�erence method as a predictor and the Crank–Nicolson method as a
corrector.
The test problem that will be presented later includes two kinds of boundary conditions; one

of them is an open boundary condition, the other is a land boundary condition. The former,
the open boundary condition, is given by specifying surface elevation at the boundary, and a
velocity value is not speci�ed. The latter, the land boundary condition, is given by velocity
equal to zero in the normal direction to the boundary. In the following sections we speci�cally
discuss implementations of the open boundary condition.

2.2. The conventional implementation of open boundary condition

The main focus of this paper is on the implementation of the open boundary condition.
In this section we look into the conventional implementation, and we show an instabil-
ity that is caused by the conventional implementation in conjunction with the quasi-bubble
scheme.
In the conventional implementation the open boundary is set by dropping the continuity

equation associated with the open boundary nodes at which the surface elevation is given. This
procedure may reduce available information, which is described by the dropped continuity
equation. We assert that the lack of information about mass continuity degrades the order
of accuracy at the boundary node when one adopts the quasi bubble-function method and,
possibly, other mixed methods as well.
We support this hypothesis by showing results of a test problem, which was investigated

by Kolar et al. [7]. The test problem is depicted in Figure 2. Conditions for the problem

h=5.0 m

ζ

Open
Boundary

Land
Boundary

0

x
0 50 km

Figure 2. Test problem.
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Table I. Conditions for the test problem.

Channel co-ordinates 06x650 km
Channel water depth 5 m
Bottom friction � 0:0001 s−1 (constant)
Simulation time 10 M2-tidal cycles
�t Adjusted to maintain a Courant number = 0:1
�x 2:5 km unless noted otherwise
�M2 =�x 125 unless noted otherwise
Boundary conditions �(0; t)= 1:0 sin(2�t=12:42h)m

u(50; t)= 0:0 ms−1

Initial conditions Cold start: �(x; 0)= u(x; 0)= 0:0
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Figure 3. Snapshot of surface elevation at 96 396 s obtained with the conventional boundary condition
implementation and with the advection term in the momentum equation.

are described in Table I. A land boundary is located at x=50 km, and an open boundary is
located at x=0 km with an M2 tide forcing of 1 m amplitude.
Snapshots of the results at 96 396 s are shown in Figures 3 and 4. As seen in these plots,

the numerical solutions are degraded by unphysical or spurious oscillations. The calculation
gets out of the range of double-precision at 98 538 s, 60 timesteps after the timestep of
Figures 3 and 4. In order to determine the reason for the instability, we solved the same
problem with the momentum equation in which the advection term is dropped. Figures 5 and
6 show snapshots at the same timestep as Figures 3 and 4. In this case the calculation is
stable, and no apparent oscillations are observed. However, we note that the velocity shows a
small bump at the �rst bubble-function node from the open boundary, as indicated in Figure
6. This bump may be related to the degraded accuracy at the open boundary node.
In order to determine the order of accuracy at each node, we apply Richardson Extrapolation

to get an error estimate [9, 10]. The error estimate is obtained as follows. First we assume
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Figure 4. Snapshot of velocity at 96 396 s obtained with the conventional boundary condition
implementation and with the advection term in the momentum equation.
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Figure 5. Snapshot of surface elevation at 96 396 s obtained with the conventional boundary condition
implementation and without the advection term in the momentum equation.

that the exact value equals the approximate value plus given order errors, i.e.

ye=yh + chp + dhp+1 + ehp+2 + · · · (25)

where ye is the exact solution, yh is the approximate solution corresponding to spacing h. The
coe�cients c, d, and e depend on the derivatives in the interval. Assuming that the lowest
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Figure 6. Snapshot of velocity at 96 396 s obtained with the conventional boundary condition
implementation and without the advection term in the momentum equation.

order error term dominates subsequent terms in the error series, then for three di�erent grid
spacings h1, h2, and h3, we have

ye = yh1 + chp
1

= yh2 + chp
2

= yh3 + chp
3 (26)

Given grid spacings hi and the approximated solutions yhi , Equation (26) can be solved for p:

p= ln
(
yh2 − yh1

yh3 − yh2

)/
ln r (27)

where we assumed that

h1
h2
=

h2
h3
= r (28)

In the following cases r¿1. We expect p to be equal to 2 because the quasi-bubble scheme
adopts the piecewise linear interpolation. We then take a temporal average p′

i of p at each
node i

p′
i =

NT∑
t=0

pt
i=NT (29)

where pt
i is the estimated order of accuracy evaluated by Equation (27) at node i at timestep

t, and NT is the number of timesteps.
We calculated the same test problem without advection with three di�erent grid spacings,

h1 = 5000, h2 = 1250, and h3 = 312:5m. The values of p′
i for surface elevation and velocity are
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Figure 7. Estimated order of accuracy for surface elevation at each node for a conventional boundary
condition implementation and without the advection term in the momentum equation.
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Figure 8. Estimated order of accuracy for velocity at each node for a conventional boundary condition
implementation and without the advection term in the momentum equation.

shown in Figures 7 and 8, where p′
i are evaluated at each standard node in the coarsest grid.

Nothing is plotted at x=0 km in Figure 7 or at x=50 km in Figure 8 because Equation (27)
always gives zero at nodes where an essential boundary condition is given. What we observe
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in Figures 7 and 8 is that, while the surface elevation exhibits second-order accuracy over
the whole domain, the velocity achieves a signi�cantly lower order accuracy at x=0 than at
other nodes. We suggest that this degradation in accuracy of the velocity at the open boundary
node originates in the implementation of the boundary condition, because the conventional
implementation of essential conditions ignores one of the simultaneous equations by setting
the test function at the boundary to zero. It may also be hypothesized that the quasi-bubble
method, and probably other mixed methods as well, are more signi�cantly a�ected by the
lack of the condition because one nodal continuity equation is related to a larger number of
nodal momentum equations than in other standard schemes. The cases presented here and
the precedence considerations indicate that the lower-order accuracy in velocity at the open
boundary must be remedied in some way to eliminate the instability arising from the advection
term.

2.3. Alternative implementations

In standard Galerkin formulations, Green’s theorem is applied to terms that include second
or higher-order derivatives. On the other hand, in the unique formulation that was proposed
by Kolar et al. [7], Green’s theorem was applied to the mass �ux term in the continuity
equation, which is seen as the second term in Equation (5) in the 1D case. Applying Green’s
theorem, or integration by parts in 1D cases, to the second term of Equation (5), we have(

@�
@t

; �I

)
�

−
(
Q;
d�I

dx

)
�
+ 〈Q;�I 〉@� =0 (30)

Kolar et al. suggested that the �ux Q in the boundary integral term in Equation (30) should
be interpreted as external to the computational domain. In other words, we have two di�erent
�ux values at each boundary node; one of them is de�ned for the internal domain, and the
other one is de�ned for the external domain. Denoting the �ux Q for the external domain by
Q̂, and evaluating the boundary integral, Equation (30) yields(

@�
@t

; �I

)
�

−
(
Q;
d�I

dx

)
�
+ Q̂N�I (xN )− Q̂0�I (x0)=0 (31)

where x0 is the x co-ordinate at the left end of the domain, and xN is the x co-ordinate at
the right end of the domain. Q̂0 and Q̂N represent the nodal values of the external �ux Q̂
at x= x0 and x= xN , respectively. In the following discussion, we assume that the left end
of the domain is an open boundary, and the right end of the domain is a land boundary. In
order to focus on the treatment of the open boundary, the land boundary is implemented in
the conventional way. This is achieved by assuming Q̂N =QN , denoting the nodal value of
the internal Q at the right end by QN . Equation (31) is then rewritten as(

@�
@t

; �I

)
�

−
(
Q;
d�I

dx

)
�
+QN�I (xN )− Q̂0�I (x0)=0 (32)

Further, for I =0, (
@�
@t

; �0

)
�

−
(
Q;
d�0
dx

)
�

− Q̂0 = 0 (33)
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because �0(x0)=1 and �0(xN )=0. The external �ux Q̂0 can be treated as a new unknown,
because �0 is known from the open boundary condition. Thus, the number of unknowns is
consistent with the rank of the set of simultaneous equations.
The treatment of the boundary condition above is so far the same as Kolar et al. introduced

in Reference [7]. They succeeded in dramatically improving the global mass conservation
property with this unique implementation.
We extend their idea further to the momentum equation and utilize the newly obtained Q̂0

in order to get an accurate integration of the advection term. Applying integration by parts to
the advection term in Equation (6), we have(

@u
@t

;  J

)
�

−
(
u;

@
@x
(u J )

)
�
+
(
g
@�
@x

;  J

)
�
+ (�u;  J )� + 〈u; u J 〉@� =0 (34)

which leads to(
@u
@t

;  J

)
�

−
(
u
@u
@x

;  J

)
�

−
(
u2;
d J

dx

)
�
+
(
g
@�
@x

;  J

)
�
+ (�u;  J )� + 〈u2;  J 〉@� =0 (35)

Following a similar approach to that of Kolar et al. [7], it can be shown that u in the boundary
integration term in Equation (35) should be viewed as external to the domain. Denoting u
external by û and evaluating the boundary integration, Equation (35) is rewritten as

(
@u
@t

;  J

)
�

−
(
u
@u
@x

;  J

)
�

−
(
u2;
d J

dx

)
�
+
(
g
@�
@x

;  J

)
�

+ (�u;  J )� + u2N J (xN )− û20 J (x0)=0 (36)

where we assumed ûN = uN for the same reason as we set Q̂N to QN . û0 is obtained from

û0 =
Q̂0

H0
(37)

where H0 = �0 + h0, and �0 and h0 are given by the boundary condition and the problem
de�nition, respectively. For J =0, Equation (36) can be rewritten as(

@u
@t

;  0

)
�

−
(
u
@u
@x

;  0

)
�

−
(
u2;
d 0
dx

)
�
+
(
g
@�
@x

;  0

)
�
+ (�u;  0)� − û20 = 0 (38)

because  0(x0)=1 and  0(xN )=0. We expect that utilizing Q̂0 obtained from Equation (33),
which is absent in the conventional implementation, improves the accuracy of the advection
term. Since the �ux Q and the velocity u are discontinuous at the boundary, we refer to this
implementation as a discontinuous boundary (DB) implementation.
We �rst tested the DB with the problem described in Section 2.2 excluding the advection

term in the momentum equation. The results show that the proposed implementation exhibits
approximately second-order accuracy for velocity at x=0, which used to be �rst-order when
we tested the conventional implementation. However, when we tested the DB implementation
with the advection term, we encountered a kind of instability, which is di�erent from what
we saw in the conventional implementation. After several stabilizing techniques were tried in
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order to remedy this instability, we found that an upwinded de�nition of û0 leads to a stable
scheme. Thus we upwind û0 as follows

û0 =




Q̂0=H0 if Q̂0¿0

Q0=H0 if Q̂0¡0
(39)

A similar technique can be found in the context of the discontinuous Galerkin method [11].
Since û0 is upwinded along the streamline, we refer to the modi�ed DB implementation as
the stream-line upwind discontinuous boundary (SUDB) implementation.
Recalling the element-wise interpolations de�ned in Equations (12)–(15), Equation (36)

yields an element-wise discretization, i.e.

(
@u(e)m

@t
 (e)m ;  (e)j

)
�(e)

−
(
u(e)m u(e)n  (e)m

d (e)n

dx
;  (e)j

)
�(e)

−
(
u(e)

2

m  (e)m ;
d (e)j

dx

)
�(e)

+

(
g�(e)l

@�(e)l

@x
;  (e)j

)
�(e)

+ (�u(e)m  (e)m ;  (e)j )�(e) + u2N J (xN )− û20 J (x0) (40)

We then have element-matrix formulations of the approximated momentum equation in the
SUDB implementation

MU(e)jm
@u(e)m

@t
−C(e)jm (u

(e))u(e)m − E(e)jm u(e)
2

m + gD(e)jl �(e)l (41)

+ �MU(e)jm u(e)m + u2N J (xN )− û20 J (x0)=0 (42)

whereMU(e)jm , C
(e)
jm , and D

(e)
jl are de�ned in Equations (22)–(24), respectively. E

(e)
jm is de�ned as

E(e)jm =

(
d (e)j

dx
;  (e)m

)
�(e)

=
1
2




−1 −1 0

1 0 −1
0 1 1


 (43)

Some numerical results of the proposed implementation will be shown in the next section.

3. NUMERICAL VERIFICATION

The same problem described in Section 2.2 was tested using the proposed formulation in-
cluding the advection term. Figures 9 and 10 are snapshots for surface elevation and velocity,
respectively, at the same timestep as Figures 3–6. The solution is very smooth and there is
no bump as in Figure 6. The orders of accuracy estimated by Equation (29) are shown in
Figures 11 and 12. Solutions for three grid spacings, i.e. h1 = 5000, h2 = 1250, and h3 = 312:5
in metres, were used to evaluate p′

i . We see some small perturbations in Figures 11 and 12.
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Figure 9. Snapshot of surface elevation at 96 396 s obtained with the SUDB implementation and with
the advection term in the momentum equation.
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Figure 10. Snapshot of velocity at 96 396 s obtained with the SUDB implementation and with the
advection term in the momentum equation.

This might be due to the advection term, which was not considered in the case shown in
Figures 5 and 6. Despite the small perturbations in the convergence rates, the solutions are
smooth, and we have not observed any instabilities with the proposed scheme. In addition, a
signi�cant improvement is observed for velocity at x=0. The order of accuracy for velocity
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Figure 11. Estimated order of accuracy for surface elevation at each node for the SUDB implementation
with the advection term in the momentum equation.
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Figure 12. Estimated order of accuracy for velocity at each node for the SUDB implementation with the
advection term in the momentum equation.

at x=0 has improved to 1.86 from 1.04 in Figure 8. We suggest that the more accurate
velocity value at the boundary stabilizes the scheme by giving a more accurate evaluation of
the advection term.
In order to check the convergence rate and the consistency of the SUDB method, we took

the di�erence between solutions calculated with various grid spacings and a solution obtained

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1451–1468



1466 S. BUNYA, J. J. WESTERINK AND S. YOSHIMURA

200 500 1000 2000 5000
10

-6

10
-5

10
-4

10
-3

10
-2

Grid Spacing (meters)

E
n

Grid Convergence

Surface Elevation
Velocity

Figure 13. Grid convergence study over the domain for the SUDB implementation with the
advection term in the momentum equation.

with a very �ne grid. We assume that the solution obtained with the �ne grid approximates
the exact solution with a su�ciently small discrepancy. Letting hc and hf denote the grid
spacings of the coarse and �ne grids, respectively, and representing solutions with those grids
by yc and yf , respectively, we de�ne an error indicator for the coarse grid as

En=
1
NT

NT∑
k=1

1
N

√
N∑
i=1
(|yc − yf |xi ;tk )2 (44)

which represents a time-averaged root-mean-squared error. In Equation (44), NT is the number
of timesteps of the coarse grid, N is the number of nodes of the coarse grid, and yc and
yf are either surface elevation or velocity. It is expected that En should decrease with the
square of the grid spacing. We used �ve coarse grid spacings, h1 = 5000, h2 = 2500, h3 = 1250,
h4 = 625, and h5 = 312:5m, to obtain yc. The reference solution yf is calculated with the �ne
grid spacing of 39:0625m. The indicator En is plotted in Figure 13 for both surface elevation
and velocity. The �gure shows steady decreases, as we expected. The order of accuracy
obtained from the slopes is 2.07 for surface elevation and 1.96 for velocity, which agrees
well with the theoretical order of accuracy for linear �nite elements.
Our remaining concern is to see whether the external �ux Q̂0 approaches the internal �ux

Q0 for higher resolution grids. We de�ne another error indicator Eb as

Eb=
NT∑
t=1

|Q̂t
0 − Qt

0|=NT (45)

which is the time-averaged di�erence between the external and internal �ux. We used �ve grid
spacings, h1 = 5000, h2 = 2500, h3 = 1250, h4 = 625, and h5 = 312:5 m. The results are shown
in Figure 14, which shows a steady convergence at the rate of 1.85. This rate approximately
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Figure 14. Grid convergence study for the duplication boundary �ux values obtained with the SUDB
implementation and with the advection term in the momentum equation.

agrees with the order of accuracy for velocity at the boundary node obtained by Equation (29)
and seen in Figure 12.
These �gures and convergence rates support the conclusion that the proposed method is

consistent and approximately holds the theoretical order of accuracy expected for standard
linear �nite elements. Although the velocity at the boundary node shows a slightly lower order
of accuracy, it has been signi�cantly improved from what we obtained using the conventional
implementation.
The most important improvement is that the proposed implementation eliminates spurious

oscillations and stabilizes the quasi bubble-function scheme, which is unstable if the essen-
tial condition on surface elevation is implemented in the conventional way and advection is
included.

4. CONCLUSIONS

The quasi-bubble scheme has an ideal monotonic dispersion property [6], which indicates
that it should not generate non-physical or spurious oscillations. In addition, the use of the
primitive form of the SWE and static condensation procedures make the scheme very e�cient
with respect to computational resources. However, our numerical results with the quasi-bubble
scheme show that the conventional implementation of an essential surface-elevation boundary
condition degrades the accuracy of the velocity at the boundary node, and causes the interior
domain solution to deteriorate by introducing spurious oscillations. These spurious oscillations
are destructive enough to make the scheme unstable. Our numerical experiments also show
that the spurious oscillations occur in conjunction with the advection term. In order to remedy
this instability, the SUDB implementation has been developed in this paper, which is obtained
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by extending the unique formulation introduced by Kolar et al. [7]. The �ux from the external
domain is de�ned by the continuity equation at the boundary node, which is usually dropped
in the conventional implementation. The SUDB implementation enables us to utilize all con-
ditions that can be obtained from the shallow water equations. The results of our numerical
investigation show that, reformulating the momentum equation and using the �ux from the
external domain in the boundary integral derived from the advection term, the quasi-bubble
scheme becomes stable and increases the order of accuracy at the boundary. The consistency
of the proposed scheme is also con�rmed by thorough numerical veri�cation.
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