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SUMMARY

Two common strategies for solving the shallow water equations in the �nite element community are
the generalized wave continuity equation (GWCE) reformulation and the quasi-bubble velocity approx-
imation. The GWCE approach has been widely analysed in the literature. In this work, the quasi-bubble
equations are analysed and comparisons are made between the quasi-bubble approximation of the prim-
itive form of the shallow water equations and a linear �nite element approximation of the GWCE
reformulation of the shallow water equations. The discrete condensed quasi-bubble continuity equation
is shown to be identical to a discrete wave equation for a speci�c GWCE weighting parameter value.
The discrete momentum equations are slightly di�erent due to the bubble function. In addition, the
dispersion relationships are shown to be almost identical and numerical experiments con�rm that the
two schemes compute almost identical results. Analysis of the quasi-bubble formulation suggests a re-
lationship that may guide selection of the optimal GWCE weighting parameter. Copyright ? 2004 John
Wiley & Sons, Ltd.

KEY WORDS: quasi-bubble; generalized wave continuity equation; shallow water equations; �nite
elements; dispersion relationship

1. INTRODUCTION

The generalized wave continuity equation (GWCE) formulation and the quasi-bubble ap-
proximation are two popular techniques for successfully solving the shallow water equa-
tions within a �nite element framework. Many early attempts to employ the �nite element
method for solving the shallow water equations failed because solutions were polluted by large
numerical oscillations which obscured the physical solution. For the past 20 years, there has
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been substantial research in the shallow water community to improve �nite element mod-
els and this sustained e�ort is well documented elsewhere [1, 2]. The success of discrete
schemes based on the GWCE formulation is due to a monotonic dispersion relationship which
yields non-oscillatory solutions [3]. Good results have also been presented for the quasi-bubble
scheme [4] but no analysis is available to explain the success of this scheme.
The GWCE method manipulates the primitive shallow water equations in continuum form

prior to application of the �nite element method, and was �rst developed by Lynch and Gray
[5] and Kinnmark and Gray [6, 7]. The temporal derivative of the continuity equation is com-
bined with the spatially di�erentiated momentum equations to which a weighted continuity
equation is added. The resulting new equation is used instead of the primitive continuity state-
ment. Using the operator notation of Kinnmark [3], the linearized continuity and momentum
equations are de�ned by the following notation:

L≡ @�
@t
+ h

(
@u
@x
+

@v
@y

)
=0 (1)

Mx ≡ @u
@t
+ �u+ g

@�
@x
=0 (2)

My ≡ @v
@t
+ �v+ g

@�
@y
=0 (3)

where u and v are the x and y depth-averaged velocities, � the surface elevation, h the
bathymetric depth, � the bottom friction coe�cient and g the gravitational acceleration. The
GWCE equation is formulated as

GWCE≡ @L
@t

− @Mx

@x
− @My

@y
+GL=0

=
@2�
@t2

+G
@�
@t

− gh
(
@2�
@x2

+
@2�
@y2

)
+ (G − �)h

(
@u
@x
+

@v
@y

)
=0 (4)

The new equation possesses second derivatives in time and space which gives the appearance
of the classical ‘wave equation’, and is what gives the technique its name. The constant G
is a numerical parameter that controls the balance of wave equation and primitive continuity
equation. As G→ 0, the equation becomes a pure wave equation, and when G�0, the equation
reduces to the primitive continuity equation.
Extensive analysis of the GWCE has demonstrated that the scheme is stable and leads

to a monotonic dispersion relationship [3, 6–10]. The GWCE approach has been successful
because the monotonic dispersion relationship means that the solution does not inherently
generate a second arti�cial high wave number solution associated with spurious modes. The
GWCE formulation has been very successful for a wide range of applications.
The quasi-bubble concept adds resolution to the velocity approximation while preserving

the standard linear elevation discretization and was �rst introduced by Mewis and Holz [11].
New velocity nodes are added to the centre of existing �nite elements and interpolation
for velocity is re-de�ned. A traditional bubble function enhances the velocity discretization
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with the addition of a quadratic interpolating function which has the appearance of a bubble
which provides the concept’s name. However, the quasi-bubble discretization employs a linear
approximation of the bubble, hence ‘quasi’ bubble [11]. The FE velocity space is enriched by
the additional velocity node at the centroid of each triangle and by subdividing each triangle
into three linear velocity subtriangles.
The quasi-bubble scheme has been widely exercised as part of the Telemac model which

has been developed, and is used extensively, by Electricit�e de France (EDF) [12–14]. The
Telemac algorithm is based upon a standard Galerkin approach. Results have been presented
that appear well behaved and undamped, but no rigorous analysis has been presented [4].
Moreover, no dispersion characteristics have been presented in the literature.
In this paper, truncation error analysis and Fourier-based dispersion analysis are employed

in one and two dimensions to examine and compare the behaviour of the two schemes. For
this study, attention is restricted to solutions of the harmonic form of the governing equations.
The harmonic continuity equation is

(î!)�+ h
(
@u
@x
+

@v
@y

)
=0 (5)

and the x and y momentum equations are

(î!+ �)us+ g
@�
@x
=0 (6)

and

(î!+ �)v+ g
@�
@y
=0 (7)

where ! is the temporal frequency and î≡√−1. The harmonic GWCE is

(î!)(î!+G)�+ (G − �)h
(
@u
@x
+

@v
@y

)
− gh

(
@2�
@x2

+
@2�
@y2

)
=0 (8)

and is used in conjunction with the two-dimensional harmonic form of the momentum equa-
tions. Spatial discretizations are applied to the harmonic form of the governing equations. By
casting the equations into harmonic form, the e�ects of a �nite element spatial discretization
may be evaluated independently from the choice of time-stepping algorithm. Note that the
solutions for the harmonic equations should be the same as the solutions from a consistent
time-stepping algorithm with �t→ 0.
The formal order of convergence of the discrete approximations for each scheme may

be found by substituting a Taylor series expansion for the nodal unknowns. When this is
done, some of the terms cancel and what remains is called the modi�ed equation and is the
actual equation which the discrete equations approximate. A discrete scheme is consistent if
the modi�ed equation reduces to the original di�erential equation as the grid spacing tends
to zero. The terms that appear in the modi�ed equation in addition to the terms from the
original di�erential equation de�ne the truncation error terms.
The dispersion relationship is found through a well-established method [8, 9, 15–17] of

performing a Fourier expansion for the nodal unknowns that appear in the discrete equations.
Since the governing equations are linear, the solution may be examined by analysing the
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Figure 1. Two-dimensional dispersion surface for the continuum equations.

behaviour of one Fourier component. The dispersion relationship for the continuous linearized
shallow water equations is

!=
î�
2
±
√

gh(k2x + k2y)−
( �
2

)2
(9)

where kx and ky are the two wave numbers [1]. Allowing �→ 0 and de�ning the non-
dimensional variables

�≡ !L
�
√

gh
(10)

Kx ≡ kx�x
�

(11)

and

Ky ≡ ky�y
�

(12)

permits the magnitude of the analytical dispersion relationship to be expressed as

�=
(

L
�x

)(
K2

x +
(
�x
�y

)2
K2

y

)1=2
(13)

and is shown in Figure 1 for L=�x=�y. The continuum relationship is monotonic ev-
erywhere. The dispersion surfaces for the discrete schemes will all be compared with this
surface.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:689–714



SIMILARITIES BETWEEN QUASI-BUBBLE AND GWCE 693

2. ONE-DIMENSIONAL EQUATIONS

2.1. Quasi-bubble scheme

Discretization of the one-dimensional form of Equations (5) and (6) with the quasi-bubble
enrichment for the velocity space is achieved in one-dimension by adding a velocity node in
the centre of each element and associating linear basis and weight functions for the velocity
on the re�ned velocity grid. Elevation unknowns are de�ned only at the inter-element nodes,
but the velocity unknowns are de�ned at the inter-element nodes and the centre nodes. Thus,
the velocity approximation is de�ned on a grid with twice the resolution of the elevation
grid. The weighting and interpolating functions are all equal to the standard linear chapeau
functions with the caveat that the functions used for velocity have non-zero support over half
the distance of the elevation functions.
The weighted residual statement for the governing equations weights the continuity equation

with �j ∫
�

(
(î!)�+ h

@u
@x

)
�j d�=0 (14)

and the momentum equation with  m∫
�

(
(î!+ �)u+ g

@�
@x

)
 m d�=0 (15)

where j=1; : : : ;NPE and m=1; : : : ;NPU. The two sets of basis functions, �(x) and  (x), are
functions of the spatial co-ordinate x and are used to expand elevation and velocity

�(x)�
NPE∑
j=1

�j�j (16)

and

u(x)�
NPU∑
m=1

um m (17)

where NPE is the number of elevation nodes and NPU is the number of velocity unknowns.
When the approximations of Equations (16) and (17) are used, the discrete system may be

written using implied summation on repeated indices

MEjk�k + Bjnun =0

MUmnun + Cmk�k =0
(18)

With the four matrices,

MEjk ≡ (î!)
∫
�e

�j�k dx (19)

MUmn ≡ (î!+ �)
∫
�e

 m n dx (20)
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Figure 2. The one-dimensional basis functions for elevation and velocity.

Bjn ≡ h
∫
�e

�j
@ n

@x
dx (21)

Cmk ≡ g
∫
�e

 m
@�k

@x
dx (22)

To populate the matrices and complete the discrete scheme, the basis functions must be
de�ned and the integrals evaluated. To simplify the integrations, the basis functions are de�ned
on a master element in a local co-ordinate system, s, such that

s∈ [−1; 1] (23)

for each element. The basis functions for the master element are illustrated in Figure 2 and
have the following de�nitions. The elevation bases are

�1 = 1
2(1− s)

�2 = 1
2(1 + s)

(24)

and the velocity bases are de�ned piecewise

 1 =

{−s for s∈ − 1¡s¡0

0 for s∈ 0¡s¡1

 2 =

{
1 + s for s∈ − 1¡s¡0

1− s for s∈ 0¡s¡1
(25)

 3 =

{
0 for s∈ − 1¡s¡0

s for s∈ 0¡s¡1
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Figure 3. Portion of a one-dimensional grid.

Using the above de�nitions, the elemental matrices are

MEjk = (î!)
�x
6

[
2 1

1 2

]
(26)

MUmn = (î!+ �)
�x
12



2 1 0

1 4 1

0 1 2


 (27)

Bjn =
h
4

[−3 2 1

−1 −2 3

]
(28)

Cmk =
g
4



−1 1

−2 2

−1 1


 (29)

A global system of unknowns is generated by summing the contributions from all the
elements, accounting for inter-element C0 functional continuity and incorporating elevation
and velocity boundary conditions at the appropriate nodes. The discrete equations at an inte-
rior node for a one-dimensional partition of the x-axis into non-overlapping elements, as in
Figure 3, may be summarized by the following three equations. The elevation equation for
node j is

(î!)
�x
6
(�j−1 + 4�j + �j+1) +

h
4
(uj+1 − uj−1) +

h
2
(uj+1=2 − uj−1=2)=0 (30)

The momentum equation for node j is

(î!+ �)
�x
12
(uj−1=2 + 4uj + uj+1=2) +

g
4
(�j+1 − �j−1)=0 (31)

and the momentum equation for node j + 1=2 is

(î!+ �)
�x
12
(uj + 4uj+1=2 + uj+1) +

g
2
(�j+1 − �j)=0 (32)
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Owing to the local support of the elemental quasi-bubble function which is identically zero
outside of its element, the momentum equations associated with the centre node only involve
nodal unknowns from one element. This permits a static condensation procedure [18] in which
the bubble function unknowns may be eliminated at the element level. The procedure is to
substitute the momentum equations for the j± 1

2 velocity nodes into the discrete jth momentum
and continuity equations. In this way the j± 1

2 variables do not appear, and the global discrete
continuity stencil for the �j unknowns becomes

(î!)
�x
6
(�j−1 + 4�j + �j+1)− 3

4
gh

�x(î!+ �)
(�j−1 − 2�j + �j+1)

+
h
8
(uj+1 − uj−1)=0 (33)

while the new discrete stencil for uj is

(î!+ �)
�x
12
(−uj−1 + 14uj − uj+1) +

g
2
(�j+1 − �j−1)=0 (34)

After substituting the Taylor series expanded around node j into Equation (33), the modi�ed
quasi-bubble momentum equation is

(î!)�+
h
4

@u
@x

− 3
4

gh

(î!+ �)

@2�
@x2

+(�x)2
(
(î!)
6

@2�
@x2

− gh

16(î!+ �)

@4�
@x4

+
h
24

@3u
@x3

)
+H:O:T:=0 (35)

for which the spatial truncation error is O((�x)2). Substituting the Taylor series into Equa-
tion (34) results in the modi�ed momentum equation

(î!+ �)u+ g
@�
@x
+�x2

(
(i!+ �)
12

@2u
@x2

+
g
6

@3�
@x3

)
+H:O:T:=0 (36)

which also has a second-order leading truncation error term.

2.2. GWCE scheme

The discrete GWCE has been derived elsewhere [3, 5], and the derivation will not be repeated
here. The one-dimensional, harmonic version of the GWCE is

(i!)(i!+G)�+ (G − �)h
@u
@x

− gh
@2�
@x2

= 0 (37)

Equal-order, linear basis and weighting functions are used to discretize Equation (37) and
the one-dimensional form of Equation (6). The discrete equations for each node j are the
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discrete GWCE

(î!)(î!+G)
1
6
(�j−1 + 4 �j + �j+1)− gh

�x2
(�j−1 − 2�j + �j+1)

+(G − �)
h
2�x

(uj+1 − uj−1)=0 (38)

and the discrete momentum equation

(î!+ �)
6

(uj−1 + 4 uj + uj+1) +
g
2�x

(�j+1 − �j−1)=0 (39)

The modi�ed equations for both of these discrete equations are O((�x)2).
The leading order and subsequent truncation terms for the quasi-bubble condensed modi�ed

continuity Equation (35) can be shown to be identical to the corresponding truncation errors
in the modi�ed GWCE equation. This can be readily ascertained by directly comparing the
two discrete stencils.

2.3. Similarity of the discrete stencils

The discrete GWCE shown in Equation (38) is very similar to the discrete quasi-bubble stencil
in Equation (33). If Equation (38) is rewritten by multiplying both sides by �x and dividing
by î!+G to yield

(î!)
�x
6
(�j−1 + 4 �j + �j+1)− gh

�x(î!+G)
(�j−1 − 2�j + �j+1)

+
(G − �)

(î!+G)

h
2
(uj+1 − uj−1)=0 (40)

then a term-by-term comparison may be made with Equation (33). Equating the coe�cients
of the second and third terms in Equations (40) and (33) yields two relationships for G. Both
relationships lead to the constraint

G=
î!+ 4�
3

(41)

Substituting this value for G into the discrete GWCE results in exactly the same equation
as the discrete quasi-bubble equation (33). Consequently, the quasi-bubble discretization for
elevation is shown to be equivalent to a discrete GWCE with a speci�c value of G.
It is also noted that the discrete stencils for the momentum equation for the GWCE im-

plementation, Equation (39), and for the quassi-bubble implementation, Equation (34), are
identical with the exception of the mass matrix terms. For a lumped formulation, both equa-
tions would be identical.
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2.4. Dispersion analysis

The dispersion properties are an indication of propagation characteristics and more importantly
reveal whether a scheme excites a dual wave number response. Since the governing equations
are linear, the solution may be examined by analysing the behaviour of one generic Fourier
mode. This permits the dependent variable at a node j to be replaced by the Fourier mode

uj = uoeîkxj = uoeîk( j� x)

�j = �oeîkxj = �oeîk( j� x)
(42)

where k is the wave number. The xj co-ordinate is expressed in terms of the distance from a
reference node, and the result when the Fourier substitution is made is a square matrix system
for the Fourier amplitudes, �o and uo. For a non-trivial solution to exist, the determinant of
the matrix must equal zero, and this constraint yields a relation between the wave number k
and the harmonic frequency !.
When the Fourier substitutions are made into the pair of discrete quasi-bubble equations

given by Equations (34) and (33), the matrix system obtained for the �o and uo Fourier
amplitudes is 

 î!(î!− �)�2 + 9
2

gh
� x2 �1 î 3h

4� x (î!− �)�

î
6g
�x

� (î!+ �)�3



{

�o

uo

}
=

{
0

0

}
(43)

Constraining the determinant produces the dispersion relationship

!=

(
î�
2

)
±
(
9
2

gh
�x2

[
�1
�2
+

�2

�2�3

]
−
( �
2

)2)1=2
(44)

where

�1 = cos(k�x)− 1 (45)

�2 = cos(k�x) + 2 (46)

�3 = 7− cos(k�x) (47)

�= sin(k�x) (48)

The non-dimensional variables in Equations (10) and (11) may be used to cast Equation
(44) into non-dimensional form. With �→ 0 the magnitude of the non-dimensional dispersion
relationship for the quasi-bubble scheme is

�=
(
9
2�2

[
�1
�2
+

�2

�2�3

])1=2
(49)
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When the Fourier substitutions are made into the discrete GWCE scheme, the following system
is obtained for the Fourier amplitudes for a generic value of G:


−!
6
(!− îG)�2 − gh

�x2
�1 î

h
2�x

(G − �)�

î
g
2�x

� (î!+ �)
�2
6



{

�o

uo

}
=

{
0

0

}
(50)

where �1, �2, and � are given in Equations (45), (46) and (48). When G= � is substituted
into Equation (50), the dispersion relationship is

!=
(
i�
2

)
±
(
6gh
�x2

[−�1
�2

]
−
( �
2

)2)1=2
(51)

When �→ 0, non-dimensionalizing yields

�=
(
6
�2

[−�1
�2

])1=2
(52)

The GWCE dispersion relationship depends upon the value of G [19]. In the previous
section, it was demonstrated that the discrete quasi-bubble equations are nearly identical to a
GWCE formulation for a speci�c selection of G. Consequently, it is desired to compare the
dispersion relationships of these two schemes when Equation (41) is satis�ed. Substituting
Equation (41) into (50) and setting the determinant to zero yields the dispersion relationship

!qbG=

(
î�
2

)
±
(
27

gh
�x2

[
�2
6�1

+
12�2

�21

]
−
( �
2

)2)1=2
(53)

which may be expressed in non-dimensional variables. When �→ 0 the magnitude of the
non-dimensional dispersion relationship is

�qbG=
(
27
�2

[
�2
6�1

+
12�2

�21

])1=2
(54)

The non-dimensional dispersion relationships for the continuum solution, the quasi-bubble
scheme and the GWCE scheme with G= �, G=(î!+ 4�)=3, and G=∞ are plotted in
Figure 4. One sees that the dispersion curves for the quasi-bubble and GWCE schemes
are very similar. As expected, the dispersion relationship for the GWCE scheme with the
appropriate G value does compare very closely with the quasi-bubble dispersion curve. The
quasi-bubble curve is still slightly closer to the analytical curve over most of the wave number
range, but the two relationships are very close and are identical as K → 0 and 1. As the value
of G increases, it is well known that the GWCE dispersion curve will begin bending down
toward the primitive relation and in the limit as G→∞, the GWCE dispersion curve will fold
completely to zero and recover the dispersion curve associated with a linear �nite element
discretization of the primitive equations. Kolar et al. [19] showed that optimal values for G
are in the range G= �→ 10� and for G is much larger than 10� that oscillatory solutions result
due to degradation of the dispersion properties. Moreover, it has been empirically observed
that satisfying mass conservation requires a lower limit of acceptable G values of G ∼ 0:0001
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Figure 4. Dispersion relationships for the quasi-bubble (QB), GWCE with G= �, GWCE with
G=(î!+ 4�)=3, G=∞ and continuum equations.

in deep water. The value of G suggested by Equation (41) gives very similar values to what
has been empirically found. Figure 4 shows that the GWCE scheme has optimal dispersion
properties for G very close to the value given by the expression in Equation (41). For val-
ues much lower than this G, the dispersion curve is too high. For values much higher than
this G, the dispersion relationship begins to fold and the monotonic properties diminish. The
dispersion curve for the quasi-bubble scheme closely approximates the analytical curve over
a large range of wave numbers, and where deviations occur, they are small. Thus, it appears
that the quasi-bubble discretization ‘chooses’ the value of G which yields optimal dispersion
properties.

3. TWO-DIMENSIONAL EQUATIONS

3.1. Quasi-bubble equations

The derivation of the discrete quasi-bubble scheme in two dimensions is very similar to the
one-dimensional derivation. The continuity equation is weighted with the elevation basis and
the momentum equations are weighted with the velocity basis, yielding one constraint for
each elevation node and one constraint for each velocity node. The discrete scheme may be
written as

MEjk�k + Axjnun + Ayjnvn =0

MUmnun + Bxmk�k =0 (55)

MUmnvn + Bymk�k =0
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SIMILARITIES BETWEEN QUASI-BUBBLE AND GWCE 701

1 2

3

4

t1

t2

t3

Figure 5. The triangular quasi-bubble master element.

The matrices will be populated by assembling the contributions from each element and by
performing the integrations on a triangular master element. The elevation basis is de�ned on
the standard triangular �nite element and the functions are the standard linear �nite element
basis functions. The velocity basis functions are re-de�ned on a new master element, shown
in Figure 5. The new triangle has an additional node located at the centroid of the element
and three sub-triangles within it. There is an x and y velocity value for each node and a set of
standard linear basis function associated with each sub-triangle. Thus, the quasi-bubble basis
function is piecewise linear. Developing the element matrices associated with the velocity basis
proceeds by assembling contributions from the three sub-triangles exactly as one assembles
standard elements. It is not necessary to de�ne explicitly the co-ordinates of the quasi-bubble
nodes when creating a �nite element grid of the domain. A standard �nite element grid is
all that is necessary. When the integrations are required, an element of the grid is mapped to
the standard master element, which is further divided as in Figure 5. The elemental velocity
‘mass’ matrix is

MUij = (î!+ �)
∫
�
 i j d�

= (î!+ �)
(∫

t1
 i j d� +

∫
t2
 i j d� +

∫
t3
 i j d�

)

= (î!+ �)
Ae

36



4 1 1 2
1 4 1 2
1 1 4 2
2 2 2 6


 (56)

where Ae is the area of element e. The same piecewise strategy is used to populate the other
matrices in Equation (55). The following de�nitions are used for the x and y nodal di�erences

a1 = x3 − x2 a4 = x4 − x2 a7 = x4 − x3

a2 = x1 − x3 a5 = x3 − x4 a8 = x4 − x1

a3 = x2 − x1 a6 = x1 − x4 a9 = x2 − x4

(57)
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and

b1 =y2 − y3 b4 =y2 − y4 b7 =y3 − y4

b2 =y3 − y1 b5 =y4 − y3 b8 =y1 − y4

b3 =y1 − y2 b6 =y4 − y1 b9 =y4 − y2

(58)

Using the above variables, the elemental matrices are

Axjm ≡ h
∫
�e

�j
@ m

@x
d�

=
h
18




4b1 4b6 + b7 4b8 + b9 −3b1
4b4 + b5 4b2 b8 + 4b9 −3b2
b4 + 4b5 b6 + 4b7 4b3 −3b3


 (59)

Ayjm ≡ h
∫
�e

�j
@ m

@y
d�

=
h
18




4a1 4a6 + a7 4a8 + a9 −3a1
4a4 + a5 4a2 a8 + 4a9 −3a2
a4 + 4a5 a6 + 4a7 4a3 −3a3


 (60)

Bxmj ≡ g
∫
�e

 m
@�j

@x
d�

=
g
18




2b1 2b2 2b3

2b1 2b2 2b3

2b1 2b2 2b3

3b1 3b2 3b3




(61)

Bymj ≡ g
∫
�e

 m
@�j

@y
d�

=
g
18




2a1 2a2 2a3

2a1 2a2 2a3

2a1 2a2 2a3

3a1 3a2 3a3




(62)
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Figure 6. A patch of six equilateral triangle elements.

and

MEij ≡ î!
∫
�e

�i�j d�

= (î!)
Ae

12



2 1 1

1 2 1

1 1 2


 (63)

To assemble a representative discrete equation in two dimensions, a con�guration of ele-
ments must be considered. The elemental contributions from each of the six triangles shown
in Figure 6 will be assembled into a discrete equation for the centre node in the patch of
elements. The discrete continuity equation for node 4 is

î!(�1 + �2 + �3 + 6�4 + �5 + �6 + �7)

+
h
�x

(
2
3
(u3 − u1) +

2
3
(u7 − u5) +

4
3
(u6 − u2) + (u11 − u9) + (u12 − u8)

)

+
h
�y

(2(v1 − v5) + 2(v3 − v7) + (v8 − v9) + (v12 − v11) + (v13 − v10))=0 (64)

The discrete x and y momentum equations for node 4 are

(î!+ �)(u1 + u2 + u3 + 12u4 + u5 + u6 + u7 + u8 + u9 + u10 + u12 + u13)

+2
g
�x

((�3 − �1) + (�7 − �5) + 2(�6 − �2))=0 (65)

and

(î!+ �)(v1 + v2 + v3 + 12v4 + v5 + v6 + v7 + v8 + v9 + v10 + v12 + v13)

+2
g
�y

((�1 − �5) + (�3 − �7))=0 (66)
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The quasi-bubble node numbers are 8–13, each having an x and y momentum equation pair
associated with it. The u and v velocities associated with them all have the same form. The
equations for node 8 will be presented as typical:

u8 =
g

�x(î!+ �)
(�2 − �4)− 1

3
(u1 + u2 + u4) (67)

v8 = 2
g

�y(î!+ �)
((�2 − �1) + (�4 − �1))− 1

3
(v1 + v2 + v4) (68)

The expressions for the quasi-bubble nodes only contain values from the three vertices of
the triangle in which they are located. Consequently, they may be eliminated from Equations
(64)–(66) as in the one-dimensional derivation. The resulting system includes the elevation
and velocity values at nodes 1–7 only. The quasi-bubble nodal values could be recovered as
a post-processing step once the calculation is complete. When the quasi-bubble values are
eliminated, the three discrete equations for node 4 at the centre of the patch of elements are,
for �,

(î!)(�1 + �2 + �3 + 6�4 + �5 + �6 + �7)

+
2gh

(î!+ �)�y2
(−2(�1 + �3) + (�2 + 6�4 + �6)− 2(�5 − �7))

+
8gh

(î!+ �)�x2
(−�2 + 2�4 − �6) +

2h
3�x

((u3 − u1) + 2(u6 − u2) + (u7 − u5))

+
h
�y

((v3 − v7) + (v1 − v5))=0 (69)

and for u and v

(î!+ �)(u1 + u2 + u3 + 30u4 + u5 + u6 + u7)

+6
g
�x

((�3 − �1) + 2(�6 − �2) + (�7 − �5))=0 (70)

and

(î!+ �)(v1 + v2 + v3 + 30v4 + v5 + v6 + v7)

+9
g
�y

((�1 − �5) + (�3 − �7))=0 (71)

Now one can examine the leading order truncation error associated with the discrete quasi-
bubble equations. The modi�ed equation for elevation, found after substituting the Taylor-
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series expansions for �, u, and v about node 4 into Equation (69), is

(î!)�+
1
3
h
(
@u
@x
+

@v
@y

)
− 2
3

gh

(î!+ �)

(
@2�
@x2

+
@2�
@y2

)
+O((�x)2;�x�y; (�y)2)=0 (72)

As was the case for the one-dimensional equations, the quasi-bubble modi�ed elevation equa-
tion is very similar to the modi�ed GWCE. In fact truncation errors can be shown to be
identical for a speci�c selection of G. Furthermore, the modi�ed momentum equations can
be shown to be O((�x)2; (�y)2).

3.2. Similarity to the discrete GWCE

It was shown previously that the one-dimensional discrete quasi-bubble continuity equation
was equivalent to a one-dimensional discrete GWCE for a speci�c value of G. To demonstrate
that equivalency exists between the two schemes in two dimensions, consider the discrete
GWCE for node 4,

(î!)(�1 + �2 + �3 + 6�4 + �5 + �6 + �7)

+3
gh

(î!+G)�y2
(−2(�1 + �3) + (�2 + 6�4 + �6)− 2(�5 + �7))

+12
gh

(î!+G)�x2
(−�2 + 2�4 − �6)

+
(G − �)

(î!+G)

2h
�x

((u3 − u1) + 2(u6 − u2) + (u7 − u5))

+
(G − �)

(î!+G)

3h
�y

((v1 − v5) + (v3 − v7))=0 (73)

Observe that the nodal unknowns appear in identical combinations in Equations (69) and
(73) with di�erences only in the preceding coe�cients. Equating the coe�cients yields four
relationships:

(G − �)
(i!̂+G)

2h
�x

=
2h
3�x

(74)

(G − �)
(i!̂+G)

3h
�y

=
h
�y

(75)

12

(î!+G)

gh
�x2

=
8

(î!+ �)

gh
�x2

(76)

and

3

(î!+G)

gh
�x2

=
2

(î!+ �)

gh
�x2
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=  Original Node

=  Quasi-Bubble Node

Flow Direction

Effective grid for 1D flow in 
the 2D patch:

Node spacing for a 1D grid:

Figure 7. The di�erence between e�ective two-dimensional node spacing and one-dimensional
node spacing for quasi-bubble grids.

Solving for G in any of these four constraints leads to the same relationship for G
given by

G=
(î!+ 3�)

2
(77)

When this value of G is used, the discrete GWCE stencil of Equation (73) becomes iden-
tical to the discrete quasi-bubble continuity stencil of Equation (59). Consequently, the one-
dimensional �nding extends to two dimensions and the quasi-bubble approximation may be
seen to be equivalent to a GWCE formulation with a speci�c value of G. This also means
Equations (73) and (69) have identical truncation error.
The expression in Equation (77) is a slightly di�erent relationship than Equation (41)

obtained from the discrete one-dimensional equations. The origin of this subtle di�erence is
found in the two-dimensional quasi-bubble formulation where the distribution of nodes is
always di�erent from a one-dimensional quasi-bubble formulation. Consider the e�ect of an
assumed one-dimensional �ow in the x-direction through the grid patch shown in Figure 7,
and note the grid spacing seen by the discrete stencil. A one-dimensional grid is also shown,
for which the additional quasi-bubble nodes are in the centre of the element, resulting in an
e�ective grid doubling. The additional nodes for the two-dimensional triangles result in an
e�ective grid re�nement that is more than a doubling. For this reason, the two-dimensional
discrete continuity equation will never reduce exactly to the one-dimensional stencil. This
e�ective grid re�nement explains the di�erence in one and two dimensional relationships
for G. Despite the di�erence in the two expressions, they are still very similar. With actual
values for ! and �, very similar values of G are computed from each expression. For example,
with !=0:0001 and �=0:0003 Equation (41) gives G=0:000401 and Equation (77) gives
G=0:000453. Each relationship expresses a similar physical balance.
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3.3. Dispersion analysis

Following the strategy outlined in Reference [1], the dispersion relationship for the discrete
quasi-bubble scheme and GWCE scheme can be developed. After the Fourier modes

�j = �oeîkxxj+îky yj = �oeîkx( j� x)+îky( j�y)

uj = uoeîkxxj+îky yj = uoeîkx( j� x)+îky( j�y)

vj = voeîkxxj+îkyyj = voeîkx( j� x)+îky( j�y)

(78)

are substituted into the set of discrete quasi-bubble equations given by Equations (69)–(71)
the system matrix for the Fourier amplitudes is


(î!)(�2 + 3)− 8gh

(î!+ �)�x2
�2 − 2gh

(î!+ �)�y2
�3 î

2h
3�x

�1 î
h
�y

�2

î
6g
�x

�1 (î!+ �)(�1 + 15) 0

î
9g
�y

�2 0 (î!+ �)(�1 + 15)



(79)

When the determinant of the system matrix is set to zero, the dispersion relationship for the
discrete quasi-bubble scheme is obtained:

!qb =

(
î�
2

)
±
[(
4

gh
�x2

)(
2�2

�1 + 3
− �21
(�1 + 3)(�1 + 15)

)

+
(

gh
�y2

)(
2�3

�1 + 3
− 9�22
(�1 + 3)(�1 + 15)

)
−
( �
2

)2]1=2
(80)

The trigonometric constants are

�1 = cos(kx�x) + cos
(
kx�x
2

+ ky�y
)
+ cos

(
kx�x
2

− ky�y
)

�2 = cos(kx�x) + 1

�3 = 2 cos
(
kx�x
2

+ ky�y
)
+ 2cos

(
kx�x
2

− ky�y
)
− cos(kx�x)− 3 (81)

�1 = sin
(
kx�x
2

+ ky�y
)
+ sin

(
kx�x
2

− ky�y
)
+ 2 sin(kx�x)

�2 = sin
(
kx�x
2

+ ky�y
)
− sin

(
kx�x
2

− ky�y
)
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Figure 8. Two-dimensional dispersion surface for the quasi-bubble scheme.

When �→ 0 and using the non-dimensional variables presented in Equations (10)–(12), the
non-dimensional quasi-bubble dispersion relationship is

�qb =
1
�

√
4�21 + 3�

2
2

(�1 + 3)(�1 + 15)
− 16(�1 − 3)
3(�1 + 3)

(82)

which is shown in Figure 8.
The GWCE dispersion relationship was derived in Reference [8]. With the same trigono-

metric constants as in Equation (81), the GWCE dispersion relationship is

!GWCE =

(
î�
2

)
±
(
gh
�1

[
12
�x2

�2 +
3
�y2

�3

]
−
( �
2

)2)1=2
(83)

and the non-dimensional relationship with �→ 0 is

�GWCE =
1
�

√
12�2 + 4�3

�1
(84)

and the non-dimensional surface is presented in Figure 9.
The dispersion surfaces in Figures 8 and 9 are typical of all the surfaces for the quasi-

bubble and GWCE schemes. The monotonic behaviour described by the one-dimensional
relationship carries over to the two-dimensional result, and in fact, a slice along the Ky-axis
is identical to the one-dimensional result. However, a slice along the Kx-axis is not identical
to the curve obtained from a one-dimensional derivation, but it is still monotonic. The reason
for this is the ‘staggering’ of nodes in the x-direction and is fully explored in Atkinson
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Figure 9. Two-dimensional dispersion surface for the GWCE scheme.

et al. [8]. It is signi�cant that the GWCE and quasi-bubble schemes both possess monotonic
dispersion properties for all directions, and it is this property that distinguishes them from
many other schemes. For instance, a standard linear �nite element discretization and many
mixed interpolation approximations of the primitive shallow water equations possess folded
dispersion relationships. As a consequence, these schemes cannot avoid oscillatory solutions.
The well-documented success of the GWCE and quasi-bubble scheme is due to the monotone
dispersion property.

4. NUMERICAL EXPERIMENTS

Numerical experiments are performed on the well-known quarter annular harbor test case [20]
to verify the prediction that the two schemes will provide similar solutions when the value
of G is appropriately chosen. Solutions were computed on the mesh shown in Figure 10,
which corresponds to the patch of elements in Figure 6 that was used to construct the discrete
equations. Simulations were performed for an M2 wave with an amplitude of 5ft (1:524m) on
the open boundary. The normal velocity is set to zero on the land boundary. Runs were made
with bathymetry that varies quadratically from 10 ft (3:048 m) at the inner (land) boundary
to 62:5 ft (19:05 m) at the outer (open) boundary. A small friction value of �=0:0001 was
de�ned. The GWCE computations were obtained with the Adcirc code [21], and the quasi-
bubble calculations were obtained with the Telemac [14] computer code. A time step of 5 s
was used for all calculations such that errors in the solution are dominated by the spatial
discretization. For this small time step and within the range of depths in these simulations,
the Courant number is very small and ranges from Cr=0:0018 to 0:0045.
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Figure 10. The computational mesh used for numerical experiments.

For this test case, the analytical solution is radially symmetric, so oscillations may be
seen by plotting the maximum and minimum values at successive radial locations. The exact
solution has four components, sine and cosine amplitudes for elevation and for radial velocity.
Four plots are presented for each run. The solid line is the exact solution, and the symbols
represent the maximum and minimum of the computed result at each radial location. Since
the exact solution is radially symmetric, noisiness of the solution is revealed by the degree
to which the maximum and minimum values deviate from each other.
Numerical results obtained with the quasi-bubble scheme are shown in Figure 11. There

are no observable ‘2�x’ oscillations. The results are consistent with the two-dimensional
dispersion analysis which predicts smooth solutions.
The �rst set of GWCE calculations was performed with G=0. Results from calculations for

G=0 are shown in Figure 12 and are consistent with the dispersion analysis and demonstrate
the monotonic dispersion properties of this scheme. None of the numerical solutions exhibit
‘2�x’ oscillations. Although the computed solution is radially symmetric and smooth, there
is some deviation from the analytical solution for this value of G.
A second set of GWCE calculations was performed to test the �ndings of the previous

section by comparing a GWCE computation with a value of G given by Equation (77) to
the quasi-bubble results. The analysis was based upon the harmonic form of the governing
equations which yields an imaginary G, but the computational codes are based upon the full
equations. Thus, a real-valued coe�cient must be used for the numerical experiments. The
value

G=
(î!+ 3�)

2

=

∣∣∣∣∣ î(0:0001405) + 3(0:0001)2

∣∣∣∣∣
≈ 0:0002 (85)
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Figure 11. Results for the quasi-bubble scheme on the ‘6eq’ grid with quadratic bathymetry.

was used for the Adcirc computations. The GWCE results are shown in Figure 13 and in
fact are nearly identical to those obtained by the quasi-bubble-based Telemac model. This
con�rms the analysis by demonstrating the close similarity of the GWCE and quasi-bubble
schemes when G is chosen appropriately. Also, note that the accuracy has improved greatly
from the runs where G=0, as shown in Figure 12. The improvement is due to the choice
of G which brings the discrete dispersion relationship closer to the analytical relationship.
This demonstrates that better results are obtained when the discrete dispersion surface is
closer to the analytical dispersion surface. This case also demonstrates that the expression in
Equation (77) de�nes an optimal G value and may be a useful tool for selecting the correct
G balance.
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Figure 12. Results for the GWCE scheme on the ‘6eq’ grid with quadratic bathymetry and G=0.

5. CONCLUSIONS

Comparison of the discrete equations for the GWCE scheme and the quasi-bubble scheme has
demonstrated that these schemes are very similar. Moreover, their discrete continuity stencils
are shown to be identical for an appropriately selected value of G. The discrete momentum
stencils are also very similar with the exception of the mass matrix. It is concluded that the
quasi-bubble scheme is almost equivalent to the GWCE scheme with a speci�c weighting
coe�cient, G.
It is further demonstrated that the quasi-bubble scheme and the GWCE scheme with the

G derived to make them equivalent, have dispersion properties that are near optimal. Em-
pirical studies [19] for the optimal choice of G that balances smooth solutions and mass
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Figure 13. GWCE results with G = 0.0002 on the ‘6eq’ grid and quadratic bathymetry.

conservation have suggested that G should be chosen proportional to the friction parameter
� and also has a lower limit. The relationships in Equations (41) and (77) imply the same
balance and additionally suggest that the lower limit for G is proportional to the frequency.
Two-dimensional dispersion surfaces for the GWCE scheme and the quasi-bubble scheme have
also been presented. Both are entirely monotonic and very similar. Both schemes exhibit grid-
and direction-independent propagation behaviour, which is an ideal property. Additionally, dis-
persion properties remain similar for one-dimensional and two-dimensional implementations.
Numerical results for the quarter annular test problem are consistent with the dispersion anal-
ysis and demonstrate the excellent dispersion properties of these schemes. In fact it is clear
that the G speci�ed using Equation (77) leads to the best possible GWCE solution and is
almost identical to the quasi-bubble solution.
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The analyses presented here allows immediate improvement in GWCE-based codes through
the identi�cation of a G value with near optimal properties. In addition, this study explains
that the success of the quasi-bubble algorithm is due to its excellent dispersion properties.
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