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1078 1.} WESTERINK AND D. SHEA

development of these upwinded or Petrov-Galerkin formulations as lollows, Christie et af.’!
Jintroduced upwinding or linear basis elements by adding a quadratic modification to the standard
linear test functions. Heinrich et al.* extended upwinding to two dimensional linear elements.
Hughes?® then showed how upwinding could be accomplished more efficiently by shifting the
quadrature points within an element. The concept of upwinding then proceeded to higher-order
elements. Heinrich and Zienkiewicz* developed upwinding for 9-node Lagrangian elements and 8-
node serendipity elements, and Christie and Mitchell® briefly looked at upwinding of one-
dimensional cubic elements. Most of these early schemes were similar in that the effect of adding
artificial diffusion was accomplished by adding a modification function to the test functions which
was one degree higher than the basis functions. In addition, through difference equation analysis
for the one-dimensional steady-state problem, formulae were developed which specified the
optimal amount of upwinding needed Lo ohtain the exact solution at the nodes.

Through the study of two-dimensional problems, it was independently discavered by Hughes
and Brooks® and Kelly et al.” that artificial diffusion was only desirable, and could be
implemented, in the direction of fow, thereby eliminating the problem of crosswind diffusion. The
strenmline upwind approach, as it came to be known, allowed oscillations to be suppressed simply
by adding an optimal amount of artificial diffusion directly to the physical diffusion tensor while
using a Bubnov-Galerkin formulation. Hughes and Brooks® and Brooks and Hughes” then
proposed a lormulation which modifies the usual tesi functions by a perturbation dependent upon
the velocity field and the derivative of the basis [unctions. This scheme is called the streamline
upwind/Petrov—Galerkin {SU/PG) method. It differs [rom the original technique of upwinding of
finite elements in that the test [unctions are no longer modified by a higher degree polynomial, bat
are actually perturbed by a lower degree function than the element shape functions. SU/PG
offered the benefits of eliminating crosswind diffusion in a consistent framework and as such
eliminated some of the problems of streamline upwinding. Donea er al.'® then developed an
alternative approach to streamline upwinding by perturbing the steady-state transport equation,
by subtracting from the original equation the scalar product of its gradjent and a vector of
upwinding parameters, and applying the standard Bubnov-Galerkin method to discretize this
perturbed equation. They apply their scheme in conjunction with bi-quadratic elements,

With a good grasp of the steady-state problem, attention then began to shift to the time-
dependent case. As the transient problem came under closer scrutiny, it was observed that the time
dependency introduces new numerical difficulties, such as additional numerical dispersion and the
inaccurate representation of peak phase speed. It was quickly recognized that merely adding
* artificial diffusion using the techniques and optimal formulae derived for the steady-state problem
generally produced overly diffusive solutions. Especially for difficult temporal discretizations (i.c.
high Courant number), remedial methods originally derived for steady-state problems are
incapable of addressing characteristics associated with the time dependency. To this end, a
number of modellers have recently developed approaches which successfully bring the time -
“dependency into more active consideration. Tezduyar and Hughes'" and Tezduyar and Ganjoo'*
have modified the perturbation terms for SU/PG so that they are also dependent upon Courant
number. Yu and Heinrich!? have considered a Petrov—Galerkin approach which utilizes
space-time finite elements and also includes the time dependency in their upwind modifying
functions. .

In this paper, we shall explore the use of upwind modifying functions which are two polynomial
degrees higher than the basis functions used to approximate the variable. This approach is
specifically geared towards improving the accuracy of time-dependent convection dominated
problems and results in modifications to the transient term. This class of methods was proposed
by Dick,'* who examined a cubic modification to linear test functions in combination with the
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original standard quadratic modification. In this paper we extend this approach by developing a

quartic modification for quadratic test functions. Through analysis and examples we shall
" examine the effects and roles of cubic and quadratic upwinding on linear elements and of quartic
" and cubic upwinding on quadratic elements. o ;

GOVERNING EQUATIONS AND DISCRETIZATION DEVELOPMENT

We consider the dne-dimensional form of the convective-diffusive transport equation:

dep a¢_' FEFR
: a[+u———D,‘_l {1

dx £x
on the interval I. We apply the finite element method to resolve this equation in space. Thus, we
first developa weighted residual form of (1) by weighting it with some test [unction w, integrating
over the interval T and adding to this the weighted error incurred at at most one diffusive fiux

specified boundary point. Finally, integrating the diffusion term by parts and accounting for
boundary relationships leads to the desired weak weighled residual [orm ol (1):

gp o dg ow dep
@@ . ge 0P OW [ qy=D 2w
L{(aﬁ“ax)wnax (3.\'} =R

The finite element approach is now applied by assuming that the variable ¢ and the weighting
function w may be represented by C° piecewise continuous functions over a sequence of finite
elements. This leads to a global system of differentially time-dependent equations:

o dd - o
M +A+Bp=P 3)

(2)

Xtun houndary

where ¢=vector of nodal unknowns, M =mass matrix, (A-+B)= stifness matrix, where A
. =convection matrix and B=diffusion matrix, and P =diffusive boundary flux loading vector.

- The structure and characteristics of the matrices M and (A + B) are determined both by the
~ degree of the C° trial functions used to represent the variable ¢ and by the degree of the CP test or
weighting functions used to represent the weighting lunction w. For the Bubnov—Galerkin
method, the same interpolating functions are used both as trial and test functions. Furthermaore,
- the convective contribution to the stiffness matrix is non-symmetric. When convection is the
dominant transport mechanism, the highly non-symmetric stiffness matrix results in the well-
. known oscillations. For the Petrov—Galerkin method, different orders of interpolation are used to
_represent the trial and test functions. Traditionally the test or weighting functions have been
modified by a pelynomial one degree higher or lower than the trial functions. For steady-state
problems, these traditional Petrov—Galerkin methods have typically aimed to increase the degree
of symmetry of the convection matrix. However, for time-dependent problems the mass matrix is
significant and its role in obtaining accurate solutions should receive as much consideration as the
convection matrix in any upwinding scheme.

The time discretization of (3) is implemented through the use of a Crank-Nicolson finite

difference scheme to obtain

[M+-L;—(A"+?+B"+'):|¢"*l=[m A(A“+B~)]¢"+%P~“+%P" G

2
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where n+ | and n represent the future and current ume Ievels and A=time step. This schcmc is
second order accurate in time.

DEVELOPMENT OF N+1 AND N +2 UPWIND WEIGHTING FUNCTIONS

(i) Linear elements with guadratic and cubic upwind weighting functions

Upwinding for linear finite elements was first developed by Christie et al.! {or the steady-state
Jorm of the convection—diffusion equation. These investigators introduced a quadratic modifying
function of the form

Fop(&)=3(1+O(1 =) (5)

This quadratic function is added to the standard linear trial functions 4, and ¢, to produce the
following upwinded weighting functions:

Wy =1 —2Fqgpl(d) (6a)
wy=r; +aFqgp(d) : (6b)

where x equals the quadratic upwinding coefficient. The standard trial functions, the quadratic
modification function and the resulting upwinded test functions are all plotted in Figure 1{a). Since
we designate the degree of the basis function interpolation as order N and we add an upwind bias
which is one pelynomial degree higher than the basis functions, we will classify this as an N +1
degree upwind method.

The coefficient « determines the amount of quadratic upwind bias. For the steady-state case it is
possible to choose « such that the exact solution is obtained at the nodes. Christie et al.! showed
that this optimal z is given by

2

_ b
=coth i"—; (7)

aupl

where y =uh/D is the Peclet number. However, for the transient case, the truncation errors can not
be eliminated with the specification of any amount of quadratic bias # and thus there is no precise
definition of an optimal «. Tf we try to use (7) for transient problems, we are in effect contributing a
low-order truncation error term which successfully suppresses oscillations but does so at the
expense of degrading general solution accuracy.

In order to improve the solution to the time-dependent problem, Dick'® proposed that, in
addition to the quadratic bias, a cubic modifying function be added to the weighting functions.
This cubic function has the form

Fal@=3E+DE-D (®)
and results in weighting functions of the form
Wy =4 ‘““ﬁFcu(_f) ' (9a}

wa=i;+ fFey(C) | {3b)
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Figure 1. Trial [unctions, upwinded modilying function and resulting upwinded test functions for linear elements: (a)
quadratic (V + 1 deyree) modification; (b) cubic (N + 2 degree) modification; {¢) combined quadratic and cubic modification

where 8 equals the amount of cubic upwind bias. This cubic modification together with the cubic
upwinded weighting functions are shown in Figure 1(b). It is noted that these cubic upwinded
weighting functions are symmetrical with respect to each other over the element, unlike the
traditional quadratic upwinded weighting functions. Symmetrical weighting functions lead to flow
direction invariant upwinding coefficients for the one-dimensional problem. Since the resulting
upwind weighting functions are the trial functions modified by a polynomial which is two degrees
greater, we will refer to this as an N +2 degree upwind method. We note that Dick actually
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considered only the cf_gmbined quadr;xti_c and cubic. biased weighting functions of the form
=~ PO~ BFeuld) o
wy =12 +aFqp(€}+ fiFculf) (10b)

The combined modifying function and resulting weighting [unctions are shown in Figure l{c).
These combined weighting functions have lost their symmetry by including the quadratic bias. We
shall consider both analytically and experimentally the effects of each modifying function Fyp{¢)
and Fo (&), separately and in combination. ~ ~ o

Using the weighting functions given in (10), we can readily show that the elemental matrices
which combine to form the global matrices in (4) equal

hl2 1 hf -1 —1 h| —1 1
[ £ J— — — i
M 6[1 2}”“4[ | 1]+‘G24[ | —1] (1)
o _ 4 -1 1 u 1 =1
A 2[—: 8 ] I A (11b)
Bm"’“%[._i —:] : (11c)

where fi=node to node distance. The leading term in each expression represents the elemental
matrix derived from the standard Galerkin method, whereas the non-zero second and third terms
respectively represent the additions due to the quadratic and cubic modifying functions. It is noted
that the quadratic bias influences both the mass and convection matrices, while the cubic bias .
influences the mass matrix only. Hence the cubic modification affects only a time-dependent
problem. Furthermore, the cubic upwind contribution to these elemental matrices would vanish in
the case of a lumped mass formulation. : ‘

By assembling the element matrices in (11) and substituting into {4}, global equations for any
non-boundary node, j, are obtained: o

(L, # B _w_m_ DY
iTt\6A "4A 24A dh 4h 27

epr (L e B w m D
Pi-1\ T6A 4A 24A 4h 4h 2P

2 g wu D
UL N . U BRI TR
4] (3A 12A+2h+hl)

; 2 f  ou D
+¢1(_EE+12A+E+F)
I e f wu au D
A+t | _~ " o4 "
+¢j“(6A TV PR 21:2)

1 D
o B u ow )=D

:'f e i — e — 7
+¢J+‘( catia T 24A Eh an e (12)
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We note that (12} can be related to the generalized hyperbolic difference equation given by
Tezduyar and Hughes!! by selecting o =2tu/h, where © equals a generalized SU/PG upwinding
parameter, and selecting f§=24(r— 1/6), where r equais a mass matrix element quadrature
coefficient (r=1/4 corresponds to a 1-point Gauss rule and r=1/6 corresponds to the exact 2-
point Gauss rule). Thus, while N + 1 upwinding on linear one-dimensional elements corresponds
to standard SU/PG, N +2 upwinding corresponds to selecting a diflerent integration rule for the
mass matrix. Furthermore, (12) is also in part similar to the discretized equation obtained for Yu
and Heinrich's'? quadratic-in-time-linear-in-space weights. However, while our cubic bias affects
the transient term, their time weighting component modifies the convective term.

(i} Quadratic elements with cubic and quartic upwind weighting functions

Heinrich and Zienkiewicz* first introduced an upwind formulation for use with quadratic
interpolation. The cubic modification function these investigators developed is also given by
equation {8). This cubic modification is added to the standard quadratic triai functions ¥, i, and
t#5 as [ollows:

wy =t 2, Feyld) (13a)
Wy =fs 4 Feyl(C) (13b)

wy =ty —2F (S {13c)

where o, equals the cubic bias for the corner nodes and =, equals the cubic bias for the mid-
element nodes, The standard quadratic trial functions, the cubic modification [unction Fy(¢} and
the resulting upwinded weighting functions are all shown in Figure 2(a). The cubic upwinded
: ‘weighting functions are non-symmetric over the element, as was the case {or the quadratic upwind
biased linear weighting functions. Furthermore, we note that, since the cubic weighting functions
are only one polynomial degree greater than the quadratic trial functions, we can also classily this
as an N+ 1 degree upwind method. Owing to the distinctly different nature of the corner and mid-
element nodes the best values of 2, and x. will not be the same. Optimal values for these
coefficients have been determined for the steady-state case,! but again these do not carry over to
the transient case.

We now introduce a new upwinding function which is two polynomial degrees higher than the
quadratic trial functions being considered. The resulting quartic modiflying function is given by

Forl@=2(—*+8) (14)

and the resulting weighting functions are given by

wy =t — B Forl(d) (15a)
wa =, +4f, Forl(d) . (15b)-
wy=tr;—f. F (S} (15¢)

where fi. and fi, respectively represent the quartic corner node bias and mid-element node bias.
The pertinent [unctions are shown in Figure 2(b). These quartic biased quadratic upwind (N +2
degree) weighting functions are symmetrical with respect to each other over the element (w, with
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respect to wy and wa with respect to itself), as was the case for the cubic biased linear (N + 2 degree)
weighting functions. We note that, for linear elements, quadratic and cubic upwinding are
respectively classified as N+ 1 and N +2 degree upwinding, while for quadratic elements, cubic
and quartic upwinding respectively represent the N +1 and N + 2 degree bias. The combined cubic
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function and resuiting upwinded test functions for quadratic elements: {a}
(N +2 degree) modification; {c} combined cubic and quartic modification

and quartic biased weighting functions may be expressed as

Wy =t “'Qchu(é)—ﬁcFQRt‘:) |
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W=y +do, Foy(E)+ 48, Forl(8) (16b)

wy =3 — o Fey(l) —~BFqll) {16c)

The resulting combined modifying and weighting functions are shown in Figure 2(c). We shall
consider both cubic and quartic upwinding, separately and in combination.

The use of quadratic trial functions together with upwinded cubic/quartic test functions leads to
the lollowing elemental matrices:

042 T [0 0 s,
L et 400 0 —
MU= 216 2j+o % 40,
-1 2 4 —10z. O 10,
A 94 =248, =94,
+T7_(5 368, 960, 364, : {17a)
- 913: - 24[3: _gﬁc
-3 4 - 00, —40, 20u,
ey 7| _ L — -
A 6 4 0 41+ 130 B0e, 160et,, 80¢,,
1 —4 3 20, —40x, 20,
21, 0 =218,
+f_"d —84f, 0O 848, (17h}
A 0 =214
5 7 -8 1 b 8. =148, A
et — 16 — —28 36 —28
B N 8 —8 +5oh B i B {17c)
1 -8 7 70. —148. 18.

The cubic modifying function on quadratic elements affects the transient and convective terms, as
did the quadratic upwinding on linear elements. Quartic upwinding on quadratic elements, unlike
cubic upwinding on linear elements, affects all terms in our transport equation. Assembling these
elemental equations leads to corner node equations which involve 5-point approximations, and
mid-element node equations which involve 3-peoint approximations.

ANALYSIS OF N+1 AND N+2 DEGREE UPWINDING FOR LINEAR ELEMENTS

In order to better understand the effects that N+1 and N <2 degree upwinding have on the
solution, we perform a truncation error and Fourier analysis for the linear element case,

{i} Truncation error analysis

The truncation error is read:ly computed by first Taylor series expanding the nodal difference
equation (12) about ¢}. We then consider the form of the original partial differential equation (1)
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and perform sequential substitutions and/or take spatial derivatives such that equations of the
following form are g_encrated: :

2 __ 00, 5T

T —-u—a—xu+D e (18a)
Pop L0 P *¢
e _209P Sp—t D
_ FrE e e 2ub Bx3+D'6x“ (180)
and _
) iy P
axﬁt__u6x2+D ax? : (18c)
G ) &td 3¢
¢ _ 2% _aup D% 18
T TR P Ry PO (18d)
and so forth.

Substituting these expressions into the Taylor series expanded form of (12} will allow the

.grouping of terms with equal order spatial derivative of ¢. Thus, collecting and re-arranging lerms

leads. to the truncation error

1 a l 4 63(;5"
s{ec-p-jomalis

+h"[—

_ 2 1 3 1, 1 . ¢ 2
+h‘*\i(_——-+—cl+-—C“—ﬁﬂpgc‘ﬂ)—ﬂ?(l"C'}

u &G
24 ox*

r Oy

(2C2— f)-+a{l—C?) +%_(2a 6C2+ B+ GCa):]

153 10
1 1 1 2 - 65¢3’
+;(-C+3C —Cﬁ—ld)+:,,—z(ﬁc '66“)}53 dx?
+H.O.T. | )

where C=uA/h is the Courant number. :

‘Let us first examine the case of pure convection with D=0and y= . For this case, the standard
Bubnov—Galerkin solution is such that O(h)* and Ok)? truncation lerms are associated only with
the time discretization whereas the O(h)* term refiects the combined effects of time and space
discretization errors. Since for y=o00, 2 10 longer appears in the O(h)* term in equation {19), there

is no mechanism by which N +1 degree upwinding can eliminate this leading-order truncation

term. However, it is readily apparent that we can eliminate the O(h)* truncation term through

N +2 degree upwinding by selecting
=2C> (20)

This choice of B also forces the non-a-dependent portion of the O(h)® term to vanish. Thus the
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truncation error now appears as

o 3 b 4(#; 4 1 ! 4 u US(PJ‘
T =h [a:(l-—C")]ﬁ e +h —E—}-GC-—B—O-C -—-a—(l—C) 74 B +H.O.T. (21)

For Courant numbers other than unity, we can only eliminate the O(h)? term in {21} by selecting
a==0. This yields a solution which is in general O(h}* accurate. Any combination of non-zero « and
B still requires that §=2C? in order to eliminate the O{/)* term. However, the solution will in
general be only O(h)® accurate. Finally, we note that at C =1 and with our selection of 8. both the

O(h)? and O(h)* truncation terms vanish regardless ol the choice of , yielding a solution which is at
least O(h)® accurate.

For problems with combined convection and diffusion, N + 1 upwinding does allow for the
elimination of the O(h)* truncation term in equation (19) by setting

However, this selection of « tends to increase the magnitude of the coefficient of the O(h)* term by
up to several orders of magnitude. This increase in the O(h)? term becomes more substantial with
higher v values. In order to eliminate the O(h)? truncation term for y< with N+2 degree
upwmdmg, we keep the same value of B as for the pure convection case. Tn general, this choice of
also tends to markedly decrease the magnitude of the coefficient of the O(h)* term. This decrease
becomes increasingly more significant with larger y and C values.

Thus, our truncation error analysis indicates that N+ 1 degree upwinding does not offer an
effective mechanism for eliminating truncation terms in time-dependent problems. It can not
delete the leading-order {time) truncation term for purely convective cases, while for cases with
diffusion it eliminates this O(f)? term (with a Peclet- and Courant-number-d: pendent « coefficient)
at the cost of increasing the importance of the O(h)* term. N +2 upwinding, on the other hand,
offers a very attractive mechanism {or eliminating truncation terms: The choice f = 2C? eliminates
the leading-order (time) truncation term for both purely convecting and convective—diffusive
cases, Furthermaore, this non-Peclet-dependent selection of ﬁ eliminates the O(h)* term entirely for
7= co while it reduces it substantially for y<oo. Finally, it is indicated that combining N+ | and
N +2 degree upwinding still requires that §= 2C? to eliminate the leading O(h)? truncation term
but will re-introduce an O(h)’ truncation term.

(ii} Fourier analysis

We now study the effects of N+ 1 and N +2 upwinding methods by applying standard Fourier
analysrs to the nodal dlfferencc equation (17) We substitute into (12)

g=gge/mn - (23)

where £; =numerical amplification factor for a component with spatial wavelength L. After some
manipulation we obtain

.2
LiT 55

22 (24)
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where

Il
Zl=(8+2,6+ 12ac+249-) cos (—7;1)4—(16—2,5‘— 121C—24%>
_ v

+,/~—l(—-12a—-12C)sin(-2-3:—h—) , (25a)

C It c
ZZ=(8+2ﬁ— 12&C—24;’->c05 (—?)+(16—-2,ﬁ+ 12164-24—1;)

+/ —I(*—lZa-I—lZC)sin(z-%[-{!—) {(25b)

Taking into consideration the analytical amplification factor for a component with wavelength 4,

é,,_i=[cos (thC {})—\/———1 sin (2::(?2{)] exp[—(%) (2%)1 } (26)

in addition to the number of time steps necessary to propagate a component through its entire
wavelength, allows the definition of the following error criteria. First, the errorin the amplification
of a component of wavelength £ which occurs over ane wavelength or the ratio of numerical to
analytical damping may be expressed as

R. Foel AN LIC) @
l_‘é’n—-ll )

Second, the phase error_of a cnmpoﬁeni of wavelength J after one complete wavelength equals:

Coar L (mE
_——— LI 2
g W tan (Re '51) 2 (28)

The origin of the wiggle problem in linear equations is the poor phase propagation behaviour of
the numerical scheme. Thus, it is natural that our goal in using any upwinding scheme should be to
substantially improve the phase error while not adversely affecting the numerical to analytical
damping ratio. To this end, we examine the required N + 1 degree upwinding coefficient « to
produce perfect phase behaviour (i.c. 8 =0) for a given 4/k ratio at y=co. Figure 3 shows that the
required = values vary widely, depending on the A/h value. However, an optimal range of a values
is indicated by the shaded region. This range of « vaues tends to significantly improve the phase
behaviour at the short wavelengths while not deteriorating the phase properties at the inter-
mediate and/or longer wavelengths. Table I compares the damping ratio R and phase lag 6 of the
standard solution and the N + 1 degree upwinded solution obtained by using an « value for each C
value from the middle of the optimal range indicated in Figure 3. We note that N +1 degree
~ upwinding can be made very effective in improving phase behaviour, especially at low Courant
numbers. However, along with the dramatic reduction in # comes a substantial decrease in R over
a refatively broad range of A/h values such that the N+ 1 degree upwinded solution is markedly
overdamped at short and even intermediate wavelengths. Itis not senerally perceived as desirable
to introduce excessive damping to either eliminate or control wiggles.'® Reductions in a large
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Figure 3. 2 values required to produce perfect phase behaviour (0=0) for various Ai/h ratios at y=ao

Table [. Comparison of damping ratio and phase lag behaviour for various schemes at 7=

‘ Combined

. Standard N+1 N2 N+1/N+2
Bubnov—Galerkin Petrov-Galerkin Petrov—Galerkin Petrov-Galerkin

c ik R g R g R 0 R 0
01 26667 10000 —19176 00425 —04661 10000 —1-7240 04960 —1-6631
4-0 1-0000 —0-2944 04956 —0-0035 10000 01964 (0-8665  —0-1855
80 . 1-0000 —00175 09288 —0-0013 1-0D00 0-0045 0-9869 00050
500 1-0000 —0-0000 09997 —Q-0001 10000 00004 10000 00004
05 2:6667 1-0000 - 2- [3‘1 1 00704 10675 10000 —12786 (5327 —12014
40 1-0000 —0-3429 (+4391 01257 10000 =01371 0-8996 —0-1282
80 1-0000 —0-0927 08866 —00437  1-0000 00032 09902 0-0036
500 1-0000  —00021 09995 00020 1-0000 00003  1-0000 0-0003
0-9 2-6667 10000 - —2-3143 (7594 04458 10000 —0-2744 08527 —0-2387
4-0 1:6000 —1-0054 (-8041 01913 10000 —-0-0279 09755  —00255
80 10000 —0-2563 (8988 00192 10000 00007 09976 0-0008
50-0 1-0000 —0-0067 09971  —00055  1-0000 00001 10000 00001

enough to significantly limit this adverse numerical damping lead to phase behaviour which is
again similar to the standard solution. Thus N + 1 degree upwinding is not a viable approach to
improve the overall quality of the solution.

Figure 4 shows the N +2 degree upwinding coefficients § required to produce perfect phase
behaviour at various A/h values at y= co. The f values which ensure that §=0 for the range of 4/h
values converge to =20 as C—1-0. Furthermore, the curves for higher 4/h values lie increasingly
closer and, in the limit as A/h—co, merge into the curve defined by §=2C* We recall that this is
the value of # which eliminates the O(h)* and O(h)® truncation terms for the case y= oo. The fact
that the curves for lower /h values do not coincide with the upper limit curve can be explamed by
considering the magnitude of the spatial derivatives and their associated coefficients in the
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Figure 4, § values required 1o produce perfect phase behaviour (0 =0) for various Afk ratios at y=o

truncation series (19). The shaded region in Figure 4 defines the overall optimal range of ff values
for a given C which substantially reduces phase lag at the shorter wavelengths while not
developing a significant phase lead at intermediate and/or long wavelengths. Table [ compares the
damping ratio and phase lag of the N +2 upwinded solution which uses # values defined in the
middle of the shaded region in Figure 4 to the N+ 1 upwinded and standard solutions. N2
degree upwinding increasingly improves the overall phase behaviour as C increases. In fact, at
C=1-0 the phase behaviour is perfect. However, this improvement in phase still leads to perfect
damping behaviour, as is also the case for the standard Bubnov-Galerkin method with a
Crank—Nicolson time scheme. Finally, we note that for C> 1, N +2 degree upwinding continues
to be able to eliminate truncation terms in a stable manner. However, the required values of f#
exceed 2, which will adversely affect the properties of the system matrix which must be solved.

Combining N+ 1 and N+ 2 degree upwinding again introduces artificial damping into the
solution. The amount of « specified affects the extent of damping over the A/h range and large
values lead to damping behaviour similar to that of N +1 degree upwinding alone. However,
applying small « values in conjunction with the optimal f§ values used for N +2 degree upwinding

alone does allow for the introduction of controlled damping which only affects the very short
" wavelengths and not the intermediate or longer wavelength range. This is illustrated in Table [
where = equals 01 and the same f§ values are used as for the pure N + 2 degree upwinding case. We
also note that this imited introduction of  improves phase behaviour slightly.

For cases with y< o, N+ | degree upwinding is still able to substantially reduce phase errors.
However, the x values necessary are highly y and C number dependent. Furthermore, the
technique.remains overly diffusive over almost the entire range of convection dominated y values.
Only at very low y values, such as 2,is N+ 1 degree upwinding able to improve phase behaviour
(mostly in the intermediate /h range) without introducing excessive numerical diffusion. On the
other hand, N +2 degree upwinding continues to be able to effectively improve phase behaviour
while not adversely affecting the damping ratio over most of the convection dominated y range.
The optimal § values appear only weakly dependent on y, although the relative improvement
achieved with N +2 upwinding decreases at very low y. Furthermore, the effect of § decreases with
lower C values as in the pure convection case. L _

Thus, the results of Fourier analysis indicate that, while both N + I and N -2 degree upwinding
can improve phase behaviour for convection dominated problems, only N + 2 degree upwinding
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can do so without introducing excessive artificial damping. N +2 degree upwinding is especiaily
effective in improving the quality of the solution for difficult temporal discretization cases.
Furthermore, combined N + 1 and N + 2 degree upwinding also degrades the damping behaviour.
However, very small amounts of « in conjunction with the optimal § values do allow for controlled
damping of only the shortest wavelengths.

NUMERICAL EXAMPLES

In order to illustrate the performance characteristics of the previously described upwinding
techniques, we now examine a one-dimensional example problem with a Gaussian plume of
standard deviation o = 264 travelling in pure convection (D=0, u ={-5). The node to node distance
remains constant at k=200 for all examples shown. All numerical solutions are compared to the
analytical solution at £ =9600, although a number of different time steps are used such that a range
of Courant numbers can be examined. This allows us to discern the difference between time and
spatial discretization difficulties. The example cases are examined using the standard or
Bubnov—Galerkin method in addition to N 4+1 and N +2 degree upwind or Petrov-Galerkin
methods, both separately and in combination. The Crank—Nicolson scheme is the only time
~ discretization scheme considered. A variety of error criteria are listed in the Appendix for each
case. ' ' :

(i) Linear elements with quadratic and cubic upwind weighting functions

In this sub-section we shall examine the use of Lagrange linear interpolation for the trial
functions in conjunction with linear test functions with added quadratic (N + 1 degree) and/or
cubic {N +2 degree) modifying functions.

'Figure 5(a) shows the siandard Galerkin solution after 100 time steps of A=96. The Courant

number, C=0-24, is relatively low. This solution is plagued by trailing oscillations and a drop in
peak concentration. The first attempt to improve this result is shown in Figure 5(b), for which the
classical quadratic upwind method has been used. The quadratic bias of ¢=0-7 manages to
improve phase behaviour and for the most part eliminates trailing oscillations, but does so at the
expense of the introduction of artificial diffusion which causes a further drop in the peak. No
optimal value of o exists for this problem and the value of « chosen will always represent a trade-off
between overall accuracy, peak accuracy and oscillation amplitude.
" Figure 5(c) illustrates that the use of cubic upwinding results in a much better solution
compared to either the standard Galerkin or the quadratically upwinded solution. Both the
amplitude and symmetry of the distibution have substantially improved owing to the improved
phase properties of N +2 upwinding. However, oscillations still follow the plume aithough their
amplitudes have been reduced and their character changed as compared to the standard Galerkin
results (shown in Figure 5(a)). We note that, when experimenting with choices of f, an optimal
value becomes apparent when the majority of the error criteria listed in the Appendix are
minimized. For this case the optimal § was determined to be 0-30. Increasing ff beyond 0-30
eventually results in a leading dip, an overall phase lead of the plume itsell and a deterioration of
plume symmetry owing to the phase lead at intermediate wavelengths becoming important.
Finally, Figure 5(d) illustrates the combined effects of quadratic and cubic upwinding. The
addition of quadratic bias to the cubic bias eliminates most of the remaining oscillations but at the
cost of damping the peak and a decrease in overall accuracy. The symmetry of the plume achieved
with the cubic bias has been retained. Again the optimal value of § is readily established and is
unaffected by the addition of the quadratic bias. However, no optimal value of « can be established
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since the use of any amount of quadratic bias again represents a trade-off between the existence of
oscillations and the addition of artificial damping The value of o used for the case shown in Figure
5(d) is equal to (-10, substantially reduced from that used in the quadratic upwinding only case.
However, we deem that the best overall plume results when o is set to zero and only cubic
upwinding is applied.

We now consider the same problem but decrease the number of time steps to 30 and increase the
time step to A =320 such that the plume is convected to the same position, but at a higher Courant
number, C=0-80. Thus we have increased the difficulty of the time discretization. This is reflected
in the results for the standard Galerkin solution shown in Figure 6(a). The overall quality of the
solution has substantially deteriorated from the previously considered lower Courant number
case which was solved with the standard Galerkin method (Figure 5(a)). Specifically, the amplitude
of the trailing oscillations has increased, the peak is further depressed and the plume itseif now
exhibits a substantial phase lag. Figure 6(b} again indicates that N+ degree upwinding can
improve phase properties reasonably well. However, this is again at the cost of substantially
deteriorating peak accuracy and gradients. While lowering « does allow for slightly less damping
of the peak (although the peak will not be any better than the already excessively lowered standard
peak in Figure 6(a)), the solution again becomes overall lagged, loses its symmetry and is left with a
single large trailing dip. :

Cubic upwinding, on the other hand, does a superb job at improving the accuracy of the
solution, as is shown in. Figure 6(c). Peak amplitude and overall plume phase have been
dramatically improved and, furthermore, oscillations have been essentially eliminated. The
optimal value of f at this Courant number is readily determined to be 1-37. It is noted that the
overall quality of this high Courant number solution is much better than the optimal cubic biased
solution at low Courant number (case in Figure 5(c)). The effect of combined quadratic and cubic
bias is shown in Figure 6(d). Although the addition of a small amount of z does slightly improve
the solution at the foot of the plume and reduce the few remaining osciilations which were seen in
Figure 6(c), it is at the cost of adding artificial damping, as is reflected by the lowered peak. Again
the optimal value of f remains the same as when cubic upwinding is applied by itsell and no
optimal value of o can be defined.

When the Courant number increases to unity, cubic upwinding with §=2:00 yields the exact
solution at the nodes. Furthermore, the solution for this case is entirely insensitive 10 x as long as
the optimal value of §=2-00 is retained. ' '

Thus, all the essential leatures of N+ 1 and N+ 2 degree upwinding predicted in the analysis
section have been well verified. Although quadratic upwinding on linear elements can be made
effective in improving phase behaviour, it does so at the cost of introducing excessive artificial
damping. The optimal cubic upwinded solution gives exceilent phase behaviour without
introducing any damping. This solution is always dramatically better than either the standard
Galerkin or any quadratic upwinded solution. Extensive numerical experimentation over a
Courant number range of 011 £C<1-0 and using a variety of plume widths indicates that the
optimal cubic bias f increases with C in the manner shown in Figure 7. These optimal
experimental § values essentially correspond to the curve shown in Figure 4 which defines § such
that §=0 for A/h=5-0. The cubic biased solution improves as the Courant number increases with
overall accuracy, peak amplitude and overall phase getting better and oscillation amplitudes
decreasing. Thus both temporal and, when C is high, spatial accuracy are enhanced. The solution
at C=1-0 is very special in that a perfect numerical solution can be attained by using the correct
amount of cubic bias (f=2-0) and, lurthermore, in that the addition of any amount of quadratic
bias has absolutely no effect on the solution. In general, combined N+1 and N+2 degree
upwinding introduces artificial damping. However, when very small values of & are applied with
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Figure 7. Optimal cubic upwinding on linear elements factor . found through numerical experimentation, as a function of
Courant number

the previously defined optimal § values, this damping can be effectively limited. Nonetheless, if the
problem is such that significant energy exists at these short wavelengths, overall solution and peak
accuracy will deteriorate. Finally, the introduction of physical diffusion into our test problems
indicates that the optimal f values found for our pure convection cases are not very sensitive to
Peclet number y and that these values continue to improve the solution over almost the entire
convection dominated y range.

(i) Quadraric elements with cubic and quartic upwind weighting functions

We now examine the use of Lagrange quadratic interpolation lor the trial functions in
conjunction with quadratic test functions which have an added cubic (N + 1 degree} bias in
addition to our newly developed quartic (N + 2 degree) bias.

First, we re-examine the low Courant number problem, with C={}24, previously considered
with linear elements. The standard Galerkin solution with quadratic elements is excellent, as is
illustrated in Figure 8(a). The plume is very well represented and only a few very small oscillations
lag the plume. Adding a small amount of cubic bias does not really improve the averall solution. In
lact, Figure 8(b) shows that the peak is pushed up slightly beyond the analytical value. We deem
that the optimal values of cubic upwinding for both the mid-element node o, and for the corner
node a_ are zero. '

A small amount of quartic upwinding, Figure 8(c), is able to slightly enhance the quality of the
already very good standard soiution, mainly by slightly improving the symmetry of the solution.
For this case the optimal quartic corner node bias is f. =015 and the optimal mid-element node
bias is f,=0-075. Finally, the combined use of cubic and quartic bias does not improve the
solution. In fact, the tendency of the cubic bias to push up the peak too far is again seen in Figure
8(d)and thus the optimal cubic bias values are zero. It is noted that the optimal quartic bias values
remained the same regardiess of the amount of cubic bias introduced.

The same problem is now computed using a high Courant number, C=0-8. The more difficult
time discretization has substantially degraded the quality of the solution, as is indicated in Figure
9{a). The peak is down and substantially lags the exact selution. In addition, a number of rather
large oscillations follow behind the plume. Figure 9(b) illustrates that, while cubic upwinding on
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quadratic elements tends to push the peak up, it does not improve the overall solution at all. In
fact, increasing a,, and . excessively can lead to unstable solutions.

Quartic upwinding, Figure 3(c), restores a truly excellent solution. The overall quality of this
solution at a high Courant number is much better than the best solution at a low Courant number,
which was already a very good solution. The optimal quartic upwinding coefficients are again
readily established, and for this Courant number, f.=2-00 and f,=600. Finally, as is seen in
Figure 9{(d}, the combined use of cubic and quartic upwinding has little effect although it again
degrades the general solution quality as compared to the use of quartic upwinding alone.

Through numerical experimentalion we have established optimal values of quartic mid-element
node and corner node bias. Optimal values depend only on C and are shown in Figure 10. For
time-dependent problems, the optimal amount of cubic upwinding on quadratic elements is
always equal to zero, both when used in conjunction with quartic upwinding and by itsell. In
general, standard quadratic element solutions at low C are already very good and only a very
small amount of quartic bias is necessary to achieve the optimal upwinded solution. Thus,
quadratic interpolation is by itsell able to effectively handle the spatial discretization for problems
with relatively easy time discretizations without really necessitating the use of quartic upwinding.
At higher C values, the time discretization difficulties cause the standard solution to deteriorate
substantially. Quartic upwinding effectively returns an excellent solution and in fact the optimal
quartic upwinded solution improves as the Courant number increases. The optimal quartic bias
values increase along with increasing Courant number. We note that guartic upwinding in
conjunction with quadratic elements in general produces better results than cubic upwinding on
linear elements. Above C =0-8, quartic upwinding is no longer eflective at improving the quality of
Lhe solution. Finally, we note that problems which include diffusion indicate that optimal quartic
bias values do not depend on the Peclet number 7. :

CONCLUSIONS

We have examined the solution of the transient convection dominated transport problem using
N+1 and N+2 degree Petrov-Galerkin methods to resolve the spatial dependency and a
‘Crank-Nicolson scheme to resolve the time dependency. Although traditional N+ 1 degree
upwinding methods, which employ test functions one degree higher than the trial functions, have
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Figure 10, Optimal quartic upwinding ot quadratic elements, found through numerical experimentation, as a funetion of
Courant number. Values for both mid-glement node bias A, and corner node bias f, are shawn
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been quite successful in accurately solving steady-state problems, they are incapable of improving
the solution for difficult time problems. Quadratic upwinding on linear elements eliminates the
spurious oscillations in the solution at the cost of adding excessive artificial damping. Cubic
upwinding on quadratic elements does not generally improve the quality of any solution and, in
fact, can even lead to unstable solutions. In general, N + | degree upwinding is unable to producea
well defined optimal solution and at best yields some type of compromise solution.

N +2 degree Petrov~Galerkin methods, which use test functions two degrees higher than the
trial functions, show a remarkable ability to improve both spatial and especially temporal
accuracy. Cubic upwinding on linear elements leads to dramatically improved results as compared
to both the standard Bubnov—Galerkin solution and the N + | degree Petrov-Galerkin solution.
Although optimal cubic upwinded solutions at low C values still include some small oscillations,
the peak amplitude and phase have clearly improved. Furthermore, these solutions improve as the
Courant number approaches unity and a perfect numerical solution is obtained at C=1. It is
stressed that these cubic upwinded solutions, unlike quadratic upwinding, do not add any artificial
damping to the solution. Quartic upwinding on quadratic elements yields truly excellent results
over the entire Courant number range. [n fact, these quartic upwinded solutions are almost perfect
in all aspects. Only a very small amount of guartic upwinding is required at low C values since the
standard quadratic solution is already very good. The quality of the optimal quartic upwinded
solution also improves as the Courant number increases up to C=0-8. Furthermore, quartic
upwinding also yields solutions which exhibit perfect analytical damping. The optimal N+2
degree upwinded solution for both linear and quadratic elements is always well defined and the
associated N +2 degree upwinding coefficients are readily established. These optimal upwinding
coefficients do not vary with the amount of diffusion for convection dominated problems.

In general, we feel that for time-dependent linear problems, N +2 degree upwinding on linear
elements should be applied in and of itself and not in conjunction with the traditional N + | degree
upwinding which always adds some amount of artificial damping. This is because the small
remaining wiggles in the solution are manifestations of the gradients of the distribution being such
- that significant energy exists at A/h ratios within a range where these components of the solution
-are still not sufficiently well propagated. An appropriate amount of mesh refinement will allow for

the improvement of phase behaviour and thus will eliminate wiggles without resorting to damping
the peak and degrading overall solution quality. However, {or non-linear problems where the
governing equations may permit the physical transfer of energy to the smallest resolvable scales,
controlled numerical damping may be useful when physical damping is not sufficient at these
lowest scales. It is noted that a reasonable amount of mesh refinement is unable to solve this
problem. Thus, for non-linear problems, a small amount of N + 1 degree upwinding together with
N +2 degree upwinding may be appropriate for linear elements. Finally, [or quadratic elements,
N +2 degree upwinding should be applied by itself for both linear and non-linear problems since
for this case N + 1 degree upwinding does nat offer the possibility of controlled damping at low Afh
ratios.
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APPENDIX

To quantify how well the numerical solutions represent the exact solution, a table of errors is
presented for the example problems based on the following definitions.!”
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Error £1: Integral measure of the overall error of the numerical solution.

m{t}| Jo

l L 112
El=— [ j (mm(x, 1) — 7, 1)? dx]

Value for exact solution=0-0
Error E2: Discrete measure of the overall error of the numerical solution.

i 142
52=—|:Z (70— ¢ (x5 1)) ]

mity| 5

Yalue for exact solution=00
Error E3: Point measure of the artificial damping of the numerical solution {peak depression).

e (11— iz (1)

Ei=
ez 1)

Value for exact solution=00
Error E4: Point measure of the maximum spurious oscillation in the numerical solution.

Ed=

lffn,"n“;: neg ()
hmax ()

Value for exact solution=0-0 :
Error E5 Point measure of the phase shilt introduced in the numerical solution.
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Table 1. Table of error critéria for example problems

Fig. El E2 - E3 . E4 .E5 E6

5{a) 0-006182 {0-000463 0-102794 0121774 (0-000000 ;0-000048
5(b} 0007773, 0-000317 0-223424 0032213 {-000000 0-000000
5(c) 0-002910 0-000201 0-041088 0-037532 0-000000 0-000212
5(d) 0-003532 (0-000201 0-084018 00 19359 0-000000 (-000007
6(a) 0-015666 0-001161 0-173435 0-274874 0-041667 0000119
6(b} 0009227 0-000621 0-274061 022135 0-000000 —0-000062
6ic) 0-001740 0-000079 0-012801 0011506 0-000000 0-000052
6(d) 0002254 0-000092 0-038199 0005854 0-000000 0000002
B(a} 0001471 0-000068 0-000541 (0095944 0-000000 0-000154
8(b) 0-001413 0-300062 0007314 0-005994 0-000000 0-000406
8(c) 000214 0-000045 0-004231 0007821 0-000000 0-000226
8(d} 0-001200 0-000048 (-008116 0-006171 0-000000 0-000333
9a) 0-014804 (-001063 0-147398 0-230520 0-044167 0-000327
9(b}) 0016274 0-001184 0033778 0-338399 0039167 0000074
9(c) 0-001054 0-000020 0-00G005 0-004461 0-000000 0-000073

9(d) 0-001259 0-000036 0-010708 0-002632 0-000000 0-000092




PETROV-GALERKIN METHODS : 1101

Value lor exact solution=00
Error E6: Integral measure of mass preservation.

1 L
=10—— A d:
E6 s J.u ™™ (x, f)dx

Value for exact solution: 0-0
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