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SPECIAL ISSUE ON SCIENTIFIC OCEAN DRILLING: LOOKING TO THE FUTURE

Contributions of Scientific Ocean Drilling 
to Understanding the Emplacement of Submarine 

LARGE IGNEOUS PROVINCES 
and Their Effects on the Environment

By Clive R. Neal, Millard F. Coffin, and William W. Sager

Thin section production in progress, 
Integrated Ocean Drilling Program 
Expedition 324, Shatsky Rise. Photo 
credit: John Beck, IODP/TAMU
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INTRODUCTION
Volcanic plateaus on the ocean crust 
represent the oceanic equivalents of 
continental flood basalts. Some of 
these formed in nascent ocean basins 
(e.g., Kerguelen Plateau/Broken Ridge in 
the southern Indian Ocean), and the ear-
liest outpourings contain the geochem-
ical signature of continental crust con-
tamination (e.g., Storey et al., 1992; Neal 
et al., 2002; Kinman et al., 2009). Others 
formed within an oceanic setting and are 
free from the contamination of continen-
tal crust, which allows an examination 
of the deeper mantle source regions for 
these voluminous eruptions (e.g., Shatsky 
Rise, Ontong Java Plateau, Hikurangi 
Plateau, and Manihiki Plateau in the 
Pacific Ocean; Heydolph et  al., 2014; 
Fitton et  al., 2004; Hoernle et  al., 2010; 
Timm et  al., 2011). This paper outlines 
scientific ocean drilling contributions 
to understanding the origins, evolution, 

and environmental impacts of three oce-
anic LIPs—the Ontong Java Plateau and 
the Shatsky Rise in the Pacific Ocean, 
and the Kerguelen Plateau/Broken Ridge 
in the Indian Ocean.

Ontong Java Plateau 
The Ontong Java Plateau (OJP) is situ-
ated in the Southwest Pacific and cov-
ers an area of 1.86 × 106 km2 (Coffin and 
Eldholm, 1994; Table 1), about the size of 

Alaska, Greenland, or Western Europe 
(Fitton and Goddard, 2004). However, 
OJP-like basalts also have been recov-
ered from the Nauru, East Mariana, and 
Pigafetta basins that surround the OJP 
(e.g., Saunders, 1986; Castillo et al., 1992, 
1994), more than doubling the area of 
these basalts to ~4 × 106 km2. Based on 
a variety of geophysical data, the crustal 
thickness of the OJP is estimated to 
be between 30 km and 43 km, with an 
average around 36 km (e.g.,  Furumoto 
et al., 1970, 1976; Murauchi et al., 1973; 
Hussong et  al., 1979; Miura et  al., 1996; 
Richardson and Okal, 1996). Gladczenko 
et  al. (1997) estimated the volume of 
the OJP to be between 44.4 × 106 km3 
and 56.7 × 106 km3; the lower estimate 
is assuming the plateau formed on pre- 
existing older oceanic crust and the 
higher assumes it formed on young crust 
at a spreading center. The OJP consists of 
two parts: the main, or High Plateau in 
the west and north and the Eastern Salient 
to the east, the latter having been split 
during the opening of the Stewart Basin 
(e.g., Neal et al., 1997; Figure 1a). The OJP 
lies generally between 2 km and 3 km 
water depth, although the central High 
Plateau region rises to ~1,700 m below 
sea level. The OJP is isostatically com-
pensated (e.g.,  Sandwell and McKenzie, 
1989), with much of the plateau surface 
being relatively smooth, but the top of 
the plateau is punctuated by several large 
seamounts, including Ontong Java atoll, 
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TABLE 1. Sizes of oceanic large igneous provinces.

Name Area
(106 km2)

Volume
(106 km3) References

Ontong Java Plateau 1.86 44 –57 1,2,3

Manihiki Plateau 0.77 9–14 1,4

Hikurangi Plateau 0.4–0.8 6.4–18.8 5

Shatsky Rise 0.48 6.9 6

Kerguelen Plateau/Broken Ridge 2.3 15–24 1

 1 = Coffin and Eldholm (1994)  2 = Neal et al. (1997)
 3 = Gladczenko et al. (1997) 4 = Eldholm and Coffin (2000)
 5 = Hoernle et al. (2010) 6 = J. Zhang et al. (2016)
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Tauu atoll to the west, and Nukumanu 
atoll to the north (Figure 1a). The pla-
teau has been considered the product 
of plume volcanism, formed through 
the pressure release melting of a large 
packet of mantle material rising from the 
deep interior as a bulbous plume head 
with a long tail that extends back to the 
source region (e.g., Richards et al., 1989; 
Campbell and Griffiths, 1990). In this 

scenario, the impact of the plume head 
on the rigid lithosphere should induce 
uplift (e.g.,  Griffiths et  al., 1989; Hill, 
1991), but the lack of subaerial volca-
nism at the thickest part of the OJP High 
Plateau, coupled with a lack of any iden-
tifiable plume tail evidence, has called the 
origin of the OJP via a surfacing plume 
head into question (e.g., Korenaga, 2005).

The OJP collided with the Solomon 

Arc along its southern and southwest-
ern borders (Figure 1a), which pro-
moted a change in subduction direc-
tion from the southwest to the northeast 
around 27–23 million years ago (Ma; 
Coleman and Kroenke, 1981; Cooper 
and Taylor, 1985; Petterson et  al., 1997, 
1999). Consequently, subaerial out-
crops of OJP basalt are present on the 
islands of Malaita, Santa Isabel, Makira, 

FIGURE 1. (a) Ontong Java Plateau with location names and previ-
ous scientific ocean drilling sites. (b) Shatsky Rise with previous sci-
entific ocean drilling sites identified (modified from Sano et al., 2012). 
(c) Locations of the Kerguelen Plateau/Broken Ridge, the Ninetyeast 
Ridge, and the Southeast Indian Ridge with scientific ocean drilling 
and dredge sites identified (modified from Neal et al., 2002).

a

b

c
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and Ramos, which have been exam-
ined through a number of field seasons 
(e.g.,  Petterson et  al., 1997, 1999, 2009; 
Petterson, 2004; Tejada et al., 1996, 2002). 
Recently, it has been argued that the OJP 
may be much bigger than previously 
thought, as the Manihiki (~0.8 × 106 km2; 
Coffin and Eldholm, 1994. Table 1) and 
Hikurangi (~0.5 × 106 km2; Hoernle 
et  al., 2010; Table 1) plateaus have been 
hypothesized to have formed with the 
OJP, but were subsequently rifted apart 
(Taylor, 2006; Chandler et al., 2012, 2015; 
Hochmuth et al., 2015). 

Shatsky Rise 
Shatsky Rise (SR), located ~1,500 km east 
of Japan, stretches over ~1,700 km and 
covers an area of ~0.5 × 106 km2 (about 
the size of California), with an estimated 
igneous volume of 6.9 × 106 km3 (J. Zhang 
et  al., 2016; Table 1). It is proposed to 
have erupted at a triple junction of diver-
gent plate boundaries due to the conver-
gence of magnetic lineation groups at 
Shatsky Rise (e.g., Sager et al., 1988, 1999; 
Nakanishi et al., 1989). It is comprised of 
three principal volcanic massifs, Tamu, 
Ori, and Shirshov (Figure 1c; Sager et al., 
1999). Tamu was built on oceanic crust of 
Late Jurassic-Early Cretaceous age, while 
the Ori and Shirshov massifs were built 
on progressively younger crust. The Tamu 
Massif, with a volume of 2.5 × 106 km3, is 
thought to have erupted at flood basalt 
rates of ~1.7 km3 yr–1 (Sager and Han, 
1993), which is three orders of magnitude 
greater than the eruption rate of Kilauea 
(~0.002 km3 yr–1). This massif represents 
a shield volcano that could be the largest 
on Earth, rivaling the size of the largest 
such edifice in the solar system, Olympus 
Mons on Mars (Sager et al., 2013), with a 
maximum thickness of ~30 km (Korenaga 
and Sager, 2012). The size, morphology, 
and trend of decreasing edifice volume 
over time appears to fit the plume head 
hypothesis, with a transition from volu-
minous plume head eruptions at Tamu 
Massif to smaller-scale eruptions from 
the narrower plume tail farther along 
the plateau (Nakanishi et al., 1999; Sager, 

2005). However, Shatsky Rise is unique 
among the large western Pacific oceanic 
plateaus because it formed during a time 
of magnetic reversals (Late Jurassic and 
Early Cretaceous, ~145–125 Ma) so that 
spreading ridge magnetic anomalies were 
recorded within the plateau, promising 
to allow the connection with mid-ocean 
ridges to be examined (Sager, 2005). This 
is corroborated by geochemical evidence 
pointing to a system with strong mid-
ocean-ridge basalt characteristics.

Kerguelen Plateau/Broken Ridge 
The conjugate Kerguelen Plateau/Broken 
Ridge (KP/BR) in the southern Indian 
Ocean (Figure 1b) together cover a vast 
area (~2.3 × 106 km2—a little over three 
times the size of California; Coffin and 
Eldholm, 1994; Table 1), stand 2 km to  
4 km above the surrounding ocean floor, 
and have thick mafic crusts of 15 km 
to 25 km (Charvis et  al., 1995; Operto 
and Charvis, 1995, 1996; Borissova 
et al., 2003) and an estimated volume of 
15–24 × 106 km3 (Coffin and Eldhom, 
1994; Table 1). In addition, it has been 
estimated that in total ~2.5 × 107 km 
of mafic crust has been produced from 
the Kerguelen hotspot source(s) since 
~130 Ma (Coffin et  al., 2002). The 
Cretaceous Kerguelen Plateau/Broken 
Ridge large igneous province (LIP) is 
interpreted to represent voluminous vol-
canism associated with arrival of the 
Kerguelen plume head below young 
Indian Ocean lithosphere (e.g.,  Coffin 
et  al., 2002; Whittaker et  al., 2015). 
Subsequently, rapid northward move-
ment of the Indian Plate over the plume 
tail formed a 5,000 km long hotspot 
track from ~82 to 38 Ma, the Ninetyeast 
Ridge (e.g.,  Seton et  al., 2012). The KP 
itself is divided into distinct domains: 
the southern (SKP), central (CKP), and 
northern Kerguelen Plateau (NKP); 
Elan Bank; and the Labuan Basin 
(Figure 1b). Multichannel seismic reflec-
tion data show that numerous dipping 
intra-basement reflections interpreted as 
subaerial flood basalts form the upper-
most igneous crust of the Kerguelen 

Plateau/Broken Ridge (Coffin et al., 1990; 
Schaming and Rotstein, 1990). Magma 
output has varied significantly through 
time, beginning with low volumes con-
temporaneous with or postdating con-
tinental breakup in Early Cretaceous 
time, extending through at least one and 
possibly two peaks in Early and Late 
Cretaceous time into a preexisting and 
growing ocean basin, and finally tapering 
to relatively steady state output in Late 
Cretaceous and Cenozoic times.

At ~40 million years ago, the newly 
formed Southeast Indian Ridge (SEIR) 
intersected the Kerguelen plume’s posi-
tion. As the SEIR migrated northeast 
relative to the plume, hotspot magma-
tism became confined to the Antarctic 
Plate. From ~40 Ma to the present, the 
Kerguelen Archipelago, Heard and 
McDonald Islands, and a northwest- 
southeast trending chain of submarine 
volcanoes between these islands were 
constructed on the northern and central 
sectors of the Kerguelen Plateau/Broken 
Ridge. Taken together, a ~130 million- 
year long record of volcanism is attributed 
to the Kerguelen plume.

COMPOSITIONAL AND AGE DATA
Ontong Java Plateau
The OJP basement has been stud-
ied through Deep Sea Drilling Project 
(DSDP) Leg  30 (Site  289; Stoeser, 1975) 
and Ocean Drilling Program (ODP) 
Leg  130 (Sites 803 and 807; Kroenke 
et  al., 1991; Mahoney et  al., 1993a,b) 
and Leg  192 (Sites 1183–1187; Fitton 
et  al., 2004). In addition, fieldwork 
has been conducted on the obducted 
portions of the OJP where they out-
crop in the Solomon Islands on Santa 
Isabel, Malaita, Ulawa, Ramos, and 
San Cristobal (Makira) (Tejada et  al., 
1996, 2002; Birkhold-VanDyke et  al., 
1996; Neal et  al., 1997; Petterson et  al., 
1997, 1999, 2009; Birkhold-VanDyke, 
2000; Petterson, 2004). Four very similar 
basalt formations have been recognized: 
Kroenke, Kwaimbaita, Wairahito, and 
Singgalo, with the Kwaimbaita basalts 
being the most voluminous. The basalt 
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compositions are similar (Figure 2a), but 
there are key differences in the incom-
patible trace element (ITE) abundances, 
ratios, and observed isotopic ratios, 
which give insights into magma chamber 
processes underlying OJP formation, as 
well as subtle differences in mantle source 
regions for these different basalt forma-
tions. The Singgalo and Wairahito basalts 
sit on top of the Kwaimbaita Formation, 
as do the Kroenke basalts (as demon-
strated at Site  1185; Mahoney et  al., 
2001). The Kroenke Formation basalts 
are the most primitive (and ITE depleted; 
Figure 2a,d) recovered from the OJP, 
being magnesian tholeiites containing 
11.8–13.2 wt.% MgO and relatively low 
abundances of ITEs (Fitton and Goddard, 
2004). The Kwaimbaita and Singgalo 
Formations are named after type locality 

rivers on the island of Malaita (Tejada 
et al., 2002). Singgalo basalts correspond 
to the Unit A basalts and Kwaimbaita 
to Units C–G basalts (Unit B is a 1–2 m 
limestone interbed) from ODP Leg  130, 
Site 807, in the north of the High Plateau 
(Figure 1a; Mahoney et al., 1993a,b), and 
the Singgalo composition is also present 
at ODP Leg 192, Site 1183, as a vitric tuff 
in the sediment above the Kwaimbaita 
basalts (Tejada et  al., 2004). The 
Wairahito Formation basalts are named 
after the type locality, Wairahito River, 
on the island of Makira (San Cristobal). 
The Kwaimbaita basalts are the most 
abundant type, found across the High 
Plateau and the Eastern Salient (Mahoney 
et  al., 2001). They are evolved tholeiites 
containing generally 6–8 wt.% MgO, 
although the Kwaimbaita Formation 

basalts from the island of Ulawa are more 
primitive (9.8–11.2 wt.% MgO), but all 
Kwaimbaita type have higher abundances 
of ITEs than those from the Kroenke 
Formation (Figure 2a). The Wairahito 
Formation contains basalts that are even 
more evolved with higher ITE abun-
dances (notably Nb) than the Kwaimbaita 
basalts (Figure 2a) and 4.5–7 wt.% MgO 
(Birkhold-VanDyke, 2000; Shafer et  al., 
2004; Petterson et al., 2009). Basalts from 
the Kroenke, Kwaimbaita, and Wairahito 
formations are isotopically indistin-
guishable from each other, indicating 
they were derived from similar mantle 
sources (e.g.,  Shafer et  al., 2004; Tejada 
et al., 2004), and at least the Kroenke and 
Kwaimbaita basalts have been related by 
crystal fractionation of olivine (Fitton and 
Goddard, 2004). The Singgalo Formation 

FIGURE 2. Primitive mantle normalized (Sun and McDonough, 1989) trace element plots of average basalt compositions from: (a) the Ontong Java 
Plateau (OJP; Birkhold-VanDyke et al., 1996; Birkhold-VanDyke, 2000; Petterson et al., 2009; Tejada et al., 1996, 2002, 2004; Fitton and Goddard, 
2004; Shafer et al., 2004); (b) Shatsky Rise (SR; Mahoney et al., 2005; Sano et al., 2012); (c) Kerguelen Plateau/Broken Ridge (KP/BR) ODP Leg 183 
data (Neal et al., 2002; Weis and Frey, 2002); and (d) all data on the same plot. Normal mid-ocean ridge basalt (N-MORB) composition taken from 
Sun and McDonough (1989).

a

c d

b
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is stratigraphically higher than the 
Kwaimbaita Formation and has similar 
MgO contents (6.3–7.8 wt.%), but higher 
abundances of the ITEs (Figure 2a). 
This is seen across the plateau from the 
islands of Malaita, Makira, and Santa 
Isabel in the south of the OJP to ODP 
Leg 130 Site 807 in the north, and since 
the Singgalo basalts are isotopically dis-
tinct, they must have been derived from a 
different source region than the Kroenke, 
Kwaimbaita, and Wairahito basalts 
(Mahoney et  al., 1993a,b; Tejada et  al., 
1996, 2002; Birkhold-VanDyke, 2000). 

The bulk of the OJP formed around 
122 Ma with vast outpourings of sub-
marine lava flows that are remarkable 
for the overall homogeneity of their 
basalt compositions (e.g.,  Tejada et  al., 
1996, 2002; Chambers et al., 2002, 2004; 
Fitton and Goddard, 2004). Kwaimbaita 
Formation basalts are found across the pla-
teau, including from the Solomon Islands 
in the south (Santa Isabel, Malaita, Ulawa, 
Makira) and at all cored sites (except 
Site  1187 that recovered only Kroenke 
basalts). Distinct plagioclase-rich cumu-
late xenoliths are also found in some 
Kwaimbaita flows across the plateau 
(Kinman and Neal, 2006). Although the 
Singgalo Formation basalts are strati-
graphically above those of the Kwaimbaita 
formation, the 40Ar/39Ar ages of the for-
mer are indistinguishable within the rel-
atively large (±1–2 million year) ana-
lytical age uncertainties (e.g.,  Mahoney 
et  al., 1993a,b; Tejada et  al., 2002). The 
Kroenke Formation basalts, potentially 
the parent to the Kwaimbaita basalts 
(Fitton and Goddard, 2004), are found 
only at Sites 1185 and 1187 from ODP 
Leg  192, and a few basaltic clasts from 
Site 1184 have the Kroenke basalt signa-
ture (Shafer et  al., 2004). The Wairahito 
Formation basalts are known only from 
Makira in the Solomon Islands and again 
as clasts in the volcaniclastic sequence 
from Site  1184 (Birkhold-VanDyke, 
2000; Shafer et  al., 2004). The unaltered 
basaltic glass in the lower portion of the 
Site 1184 core is of Kwaimbaita composi-
tion (White et al., 2004). Thus, from what 

we know so far about the OJP, the vari-
ation in basaltic types occurs around the 
margins of the plateau. There were also 
periodic eruptions subsequent to the 
main ~122 Ma outpouring of magma, 
again concentrated around the edge of 
the plateau, that produced Kwaimbaita-
type lavas. This could occur through peri-
odic remelting of the Kwaimbaita source 
at progressively lower degrees of partial 
melting (Birkhold-VanDyke et  al., 1996; 
Birkhold-VanDyke, 2000). Compiling the 
Ar-Ar ages for OJP basalts yields the fol-
lowing eruption periods (all uncertainties 
are 1 sigma of the mean):
• 121.1 ± 3.8 Ma, n = 26 (ODP Sites 

289, 807, 1183, 1184, 1185, 1886, 
1187; islands of Malaita, Ramos, Santa 
Isabel). Data from Mahoney et  al. 
(1993a,b), Chambers et  al. (2002, 
2004), Tejada et al. (1996, 2002).

• 90.5 ± 3.3 Ma, n = 13 (ODP Site 803; 
islands of Makira, Santa Isabel). Data 
from Mahoney et al. (1993a,b), Tejada 
et al. (1996), Birkhold-VanDyke et al. 
(1996), Birkhold-VanDyke (2000).

• 61.1 ± 4.6 Ma, n = 8 (islands of Makira 
and Santa Isabel). Data from Tejada 
et al. (1996), Birkhold-VanDyke et al. 
(1996), Birkhold-VanDyke (2000).

• 36.6 ± 1.2 million years ago, 
n = 4 (island of Makira). Data from 
Birkhold-VanDyke et  al. (1996), 
Birkhold-VanDyke (2000).

Shatsky Rise 
This oceanic plateau was drilled spo-
radically by DSDP and ODP, principally 
for paleoceanographic data from its car-
bonate sediment cap (e.g.,  Bralower 
et  al., 2006). The basement of Shatsky 
Rise was drilled during ODP Leg  198 
(Site 1213 on Tamu; Shipboard Scientific 
Party, 2002; Mahoney et  al., 2005) and 
Integrated Ocean Drilling Program 
(IODP) Expedition 324 (Sites U1346 on 
Shirshov; U1347, U1348 (volcaniclastics 
only) on Tamu; U1349, U1350 on Ori; 
Expedition  324 Scientists, 2010; Sano 
et  al., 2012). Cores recovered both pil-
low lavas and massive flows, with a trend 
from thick, massive flows at Tamu Massif 

to mainly pillow lavas at Shirshov Massif. 
The core interval recovered at Site U1347, 
with intervals of massive flows separated 
by pillow lavas, appears much like that 
from Leg 192 Sites 1185 and 1186 on the 
OJP (Shipboard Scientific Party, 2001), 
implying similar volcanic emplacement. 
The shift in volcanic style with time is con-
sistent with the expected waning of volca-
nism from high effusion (thick, massive 
flows) to lesser effusive outpourings (pil-
low lavas) with the transition from plume 
head to tail (Sager et al., 2011, 2016). 

The picture that emerged was that 
Shatsky Rise, although a large LIP, has 
strong links to and geochemical similar-
ities with mid-ocean ridges (Mahoney 
et  al., 2005; Sager, 2005). Five magma 
types have been described from the 
plateau: normal, low-Ti, high-Nb, and 
U1349 types (Figure 2b; Sano et al., 2012). 
Additionally, the basalts from Site  1213 
(Leg 198) are also distinct, being depleted 
relative to the normal-type (Figure 2b). 
The normal type basalt composition is 
the most abundant in volume, appears on 
all three massifs, and is similar to normal 
mid-ocean ridge basalt (N-MORB) com-
position, but with a slight relative enrich-
ment of the highly ITEs. The low-Ti type is 
distinguished from the normal type basalt 
by slightly lower Ti contents at a given 
MgO, and slight enrichment of the more 
incompatible ITEs (Figure 2b). The com-
positions of high-Nb basalts are charac-
terized by distinctively higher contents of 
the ITEs relative to the other types. U1349 
type basalts are composed of more prim-
itive and depleted compositions com-
pared with other SR basalts (Figure 2b). 
Modeling demonstrates that compositions 
of the normal-, low-Ti-, and high-Nb-
type basalts evolved through fractional 
crystallization of olivine, plagioclase, and 
augite in shallow magma chambers (Sano 
et al., 2012; Heydolph et al., 2014), akin to 
mid-ocean ridge volcanism.

Ages (Ar-Ar plateau) for Shatsky 
Rise were derived from two samples 
of basalts from Tamu Massif Site  1213 
(Leg  198) by Mahoney et  al. (1995) of 
143.7 ± 3.0 Ma and 144.8 ± 1.2 Ma. A 
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longer section of cored basalt was recov-
ered by Expedition 324 at Tamu Massif and 
yielded basalt ages of 143–144 Ma in the 
lower portion, but a significantly younger 
age of 133.9 ± 2.3 Ma was obtained in the 
upper section (Geldmacher et al., 2014). 
Compiling of 40Ar/39Ar (Mahoney et al., 
2005; Koppers, 2010; Geldmacher et  al., 
2014; Heaton and Koppers, 2014; Tejada 
et al., 2016) and magnetic anomaly (Sager 
et  al., 1999; Nakanishi et  al., 1999) ages 
shows an age progression to the northeast 
from Tamu Massif (~144–129 Ma) and 
the Ori Massif (142–134 Ma) to Shirshov 
Massif (137–136 Ma), with the Papanin 
Ridge yielding ages of 128–121 Ma.

Kerguelen Plateau/Broken Ridge
Basement material has been recov-
ered through drilling on Broken Ridge 
and each part of the Kerguelen Plateau 
during ODP Legs 119 (Site  738), 120 
(Sites 747, 749, 750), and 183 (Sites 1136-
1142). Only Leg  183 recovered basalt 
from Broken Ridge (Sites 1141–1142), 
with scientific dredging on Broken Ridge 
affording additional samples from this 
part of the KP/BR (e.g.,  Mahoney et  al., 
1995). Compositions are dominantly 
tholeiitic, but are highly variable across 
the Kerguelen LIP (Figure 2c), with alkali 
basalts sitting atop Broken Ridge, and 
trachytes, dacites, and rhyolites found 
at Sites 1137 (as clasts in conglomerate 
horizons) and 1139 on Skiff Bank (Frey 
et al, 2000). The latter is interpreted to be 
part of a later shield volcano constructed 
on top of the basaltic plateau (Kieffer 
et al., 2002). The geochemical data show 
that a continental component must be 
present in some of the KP/BR base-
ment lavas (e.g.,  Frey et  al., 2002; Ingle 
et  al., 2002a; Neal et  al., 2002), perhaps 
derived from the Eastern Ghats of east-
ern India for Site 1137 (Nicolaysen et al., 
2001; Ingle et  al., 2002a,b). Continental 
remnants must therefore have occurred 
at shallow depths within the Indian 
Ocean lithosphere and contaminated 
the rising mantle- derived melts. The 
basalts recovered from CKP Site  1138 
and NKP Site  1140, however, do not 

contain the continental crustal signature 
(Neal et al., 2002).

Duncan (2002) reported basement ages 
for the Leg 183 basalts, and Whitechurch 
et  al. (1992) for Leg  120 basalts. Their 
basalt 40Ar/39Ar plateau ages from SKP 
Sites 749, 750, and 1136 are 109 ± 0.7 Ma, 
118.2 ± 5 Ma, and 118.99 ± 2.11 Ma, respec-
tively; from Elan Bank Site 1137, the age 
is 107.53 ± 1.04 Ma; from CKP Sites 1138 
and 1139, the ages are 100.51 ± 1 Ma and 
68.57 ± 0.61 Ma, respectively; from NKP 
Site  1140 is 34.34 ± 1.22 Ma, and from 
Broken Ridge Sites 1141 and 1142, the ages 
are 95.17 ± 0.77 Ma and 94.87 ± 0.91 Ma, 
respectively. On the basis of these data, 
the Kerguelen Plateau/Broken Ridge has 
been built in several stages over the last 
~130 million years.

Paleolatitudes of Kerguelen Plateau/
Broken Ridge and Ninetyeast Ridge 
basalts suggest 3°–10° southward motion 
of the hotspot relative to the rotation axis, 
a finding that can be modeled by large-
scale mantle flow influencing the loca-
tion of the plume conduit (Antretter et al., 
2002). At ~40 Ma, the newly formed SEIR 
intersected the plume’s position. As the 
SEIR migrated northeast relative to the 
plume, hot spot magmatism became con-
fined to the Antarctic plate. From ~40 Ma 
to the present, the Kerguelen Archipelago, 
Heard and McDonald Islands, and a 
northwest- southeast trending chain of 
submarine volcanoes between these 
islands were constructed on the north-
ern and central sectors of the Kerguelen 
Plateau/Broken Ridge.

Combined with the above results and 
age determinations for basalt from the 
Ninetyeast Ridge (Duncan, 1978, 1991), 
age determinations from basalt and 
lamprophyre attributed to the Kerguelen 
hotspot in India, Western Australia, and 
Antarctica (Coffin et al., 2002; Kent et al., 
2002) make the ~130 million-year-long 
record of Kerguelen hotspot activity the 
best documented of any hotspot trace 
on Earth. Magma output has varied sig-
nificantly through time, beginning with 
low volumes contemporaneous with or 
postdating continental breakup in Early 

Cretaceous time, extending through at 
least one and possibly two peaks in Early 
and Late Cretaceous time into a preexist-
ing and growing ocean basin, and finally 
tapering to relatively steady state out-
put in Late Cretaceous and Cenozoic 
time. The 25 million-year-long duration 
of peak hotspot output at geographically 
and tectonically diverse settings is chal-
lenging to reconcile with current plume 
models. Coffin et  al. (2002) proposed 
two alternatives to the standard Hawaii 
model for hotspots, one involving multi-
ple mantle plume sources and the other a 
single, but dismembered, plume source. 
Alternatively, Lin and van Keken (2005) 
proposed a model of secondary instabili-
ties resulting from the interaction between 
thermal and compositional buoyancy 
forces in a thermochemical mantle plume. 

LIP PETROGENESIS
The three oceanic LIPs described here 
represent three different examples of 
flood magmatism. The OJP and SR con-
tain basalts that have ~MORB-like com-
positions, but both have a “high-Nb” 
magma type (“Wairahoito-type” on the 
OJP; “high-Nb-type” on the SR) that is 
distinct from MORB (Figure 2a,b). No 
basalt from the OJP or SR contains any 
evidence of a continental signature in their 
basalt compositions. The KP/BR does 
contain a continental crustal signature in 
some of the basalts so far recovered, pre-
dominantly in the southern and central 
portions. The basalt ages for the differ-
ent LIPs also suggest differences: the OJP 
appears to have erupted regularly every 
~30 million years after the ~122 Ma erup-
tion (which was the largest), whereas SR 
basalt ages indicate that the main edifices 
were created near the time of surround-
ing lithosphere formation (Geldmacher 
et  al., 2014; Heaton and Koppers, 2014; 
Tejada et al., 2016), implying that volca-
nism occurred at or near the spreading 
ridges (consistent with the MORB-like 
character of the lavas). The KP was ini-
tiated at the breakup of India, Antarctica, 
and Australia, with trapped continen-
tal selvages at least in the SKP and CKP. 
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It also appears that magmatic flux waxed 
and waned in that the KP/BR was built 
in stages (Duncan, 2002). Explaining the 
origin of these three LIPs through a uni-
fied model has proven difficult. 

Ontong Java Plateau
Much of the OJP was erupted in deep 
water, which was used to argue against 
a plume head origin for the plateau 
(e.g.,  Korenaga, 2005). The central por-
tion of the OJP was taken to be on the 
High Plateau (Figure 1a) where the crust 
is thickest, but lavas recovered here at 
Site  1183 still showed deepwater erup-
tions, as did other sites on the high pla-
teau (Fitton and Goddard, 2004; Roberge 
et al., 2004, 2005). Evidence for subaerial 
eruptions, as expected from a surfacing 
thermal plume (Campbell, 2007), sur-
prisingly came from the only Eastern 
Salient drilling, at Site 1184 (Figure 1a), 
where the volcaniclastic sediment con-
tain glass shards indicating shallow erup-
tion (Roberge et  al., 2005), and sev-
eral horizons of carbonized wood were 
recovered in the volcaniclastic sequence 
(Shipboard Scientific Party, 2001; 
Thordarson, 2004). Neal et al. (1997) pre-
dicted there was between 1 km and 4 km 
of uplift if the OJP formed from a sur-
face plume head. As noted above, this 
was not over the thickest part of the OJP, 
as Site  1183 gave an eruption depth of 
over a kilometer (Roberge et  al., 2005), 
but actually in the Eastern Salient at 
Site 1184. Using the basalt compositions, 
estimates of partial melting for the OJP 
range from ~23%–30% of garnet peridot-
ite (Fitton and Goddard, 2004) or melt-
ing over a pressure range (i.e., polybaric 
melting) that started in garnet peridotite 
and ended shallower in spinel peridotite 
(Neal et al., 1997). These melting condi-
tions are consistent with a rising plume 
head to explain the OJP, but there is no 
evidence of a long-lived hotspot track 
associated with the OJP, as plate recon-
structions show that the nearby Louisville 
seamount chain is not a viable candidate 
(e.g., Yan and Kroenke, 1993). 

Taylor (2006) suggested that, based 

upon seafloor fabric data, three oceanic 
plateaus in the western Pacific (Ontong 
Java-Manihiki-Hikurangi; Figure 3) were 
all formed by a singular huge magmatic 
event and subsequently rifted apart. For 
example, comparison of seafloor fab-
ric data between the Hikurangi and the 
Manihiki plateaus shows they have con-
jugate margins separated by a former 
spreading center, the Osbourn Trough 
(Billen and Stock, 2000; Figure 3) that 
opened up and separated them (Taylor, 
2006). Ages of Integrated Ocean Drilling 
Program Expedition 329 basalts collected 
just north of the Osbourn Trough indicate 
that rifting of the Hikurangi and Manihiki 
plateaus was “superfast” (~190 mm yr–1), 
and that the ocean floor basalts produced 
by this now extinct spreading center were 
akin to basalts from the Ontong Java and 
Manihiki plateaus (G.-L. Zhang and Li, 

2016). Subsequent kinematic plate recon-
structions also show the plausibility of 
this hypothesis (Chandler et  al., 2012, 
2015; Hochmuth et  al., 2015), which 
has been termed the Ontong Java Nui or 
Greater Ontong Java event. These three 
plateaus sit on ocean crust of similar ages, 
show similarities in their basalt com-
positions (Figure 4) and seismic veloc-
ity structures, and formed at roughly the 
same time (Ingle et  al., 2007; Hoernle 
et al., 2010; Timm et al., 2011; Chandler 
et al., 2012, 2015; Hochmuth et al., 2015; 
Golowin et  al., 2018). Interestingly, 
reconstruction of these oceanic pla-
teaus to when they were conjoined shows 
the central portion located around the 
Eastern Salient of the OJP, the only part 
that once was subaerial. While this is con-
sistent with the plume model, the lack of 
a plume tail for these plateaus is not. Also, 

FIGURE 3. Map of the Western Pacific with Ontong Java, Manihiki, and Hikurangi Plateaus and loca-
tion names. Map modified from Hoernle et al. (2010)
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if the three plateaus formed at the same 
time, it would represent the largest mag-
matic event recorded (~59–90 × 106 km3 

of magma production; Table 1). 

Shatsky Rise
Geochemical data from most cored 
lavas give major element ratios that are 
near normal MORB but trace elements 
that imply deeper melting than at nor-
mal mid-ocean ridges (Sano et al., 2012). 
Both major element geochemistry and 
immobile trace element geochemis-
try indicate 15%–23% partial melting, 
greater than normal mid-ocean ridge 
values (Sano et  al., 2012; Husen et  al., 
2013) but less than the 30% estimated 
for the OJP (Neal et al., 1997; Fitton and 
Goddard, 2004). The degree of melting 
implies slightly (~50°C) higher mantle 
temperatures than normal (Sano et  al., 
2012; Sager et al., 2016). 

IODP Expedition 324 was envisioned 
as a test between competing hypothe-
ses for the formation of oceanic plateaus: 
a thermal mantle plume head (Richards 
et  al., 1989; Coffin and Eldholm, 1994) 
versus shallow, plate-controlled volca-
nism (Foulger, 2007). Many of the results 
from the expedition can be framed by the 

plume head model (e.g., Heydolph et al., 
2014). Physical characteristics, includ-
ing crustal thickness, large magmatic 
emplacement, apparent rapid emplace-
ment, and possible formation at the edge 
of the Pacific LLSVP (Large Low Shear-
wave Velocity Province; Burke et  al., 
2008) are all consistent with the plume 
head hypothesis. Deeper melting than 
normal MORB, greater percentage of 
partial melt, and greater than normal 
temperature are also consistent with this 
model. Other characteristics can be sim-
ilarly interpreted. Whereas Tamu Massif 
lavas are homogeneous in composition 
with nearly normal MORB chemistry, 
those from the other massifs are more 
heterogeneous, including some that are 
enriched both isotopically and in incom-
patible trace elements, interpreted as evi-
dence that the source contained recycled 
oceanic crust, possibly brought up from 
the lower mantle (Heydolph et al., 2014). 
The shift to more heterogeneous geo-
chemistry with the lesser volcanic flux 
of smaller Shatsky Rise edifices was sug-
gested to be indicative of a plume head 
to plume tail transition because model-
ing indicates that lower mantle chem-
ical heterogeneities can be preserved 

in plumes with predominantly verti-
cal motion and limited stirring and at 
lower degrees of melting (Farnetani et al., 
2002; Heydolph et al., 2014). Shatsky Rise 
samples are also anomalous in 3He/4He 
ratios, which were found to be lower 
than MORB values (Hanyu et al., 2015). 
Similarly, vanadium isotopes were also 
found to be different than those found in 
MORB (Prytulak et al., 2013).

Despite the seeming preponderance 
of evidence pointing toward a plume 
source, the connection with ridge volca-
nism was also strengthened, and some of 
the plume indications are unequivocal. 
For example, while the predominant lava 
type is close to MORB in major element 
and isotopic chemistry (Sano et al., 2012), 
some characteristics interpreted as favor-
ing a plume origin, including volume, 
flux, volume and flux variations over 
time, and high degrees of partial melting, 
could also occur from shallow melting of 
a fertile source (e.g., King and Anderson, 
1995; Foulger, 2007). However, geochem-
ical modeling indicates a shallow source 
could not have generated the erupted 
basalt compositions (Sano et  al., 2012; 
Husen et al., 2013). 

Other indicators are equivocal. 
Although basal sediments cored on 
Expedition  324 were deposited in shal-
low water (Sager et  al., 2011), in accord 
with evidence from volatiles that erup-
tions were in water <1 km deep (Shimizu 
et  al., 2013), there is little core or geo-
physical evidence of significant subaerial 
exposure (Sager et  al., 2013, 2016). This 
does not support the prediction of signifi-
cant uplift by a thermal plume (Campbell, 
2007). Furthermore, the inferred anom-
alous temperature is much less than 
expected (~100°–200°C) for a strong ther-
mal plume. Other inferences are model- 
dependent. Compositional heterogeneity, 
although indicative of source heteroge-
neity, does not necessarily imply a deep 
plume. Likewise, recycled crust can be 
found at shallow depths (Foulger, 2007), 
and is not necessarily material recycled to 
the deep mantle. Moreover, the Jurassic 
position of Shatsky Rise is probably 

FIGURE 4. Zr/Y vs. Nb/Y plot for Ontong Java, Manihiki, and Hikurangi basalts after Fitton et al. 
(1997). Data sources as in Figure 2 plus Ingle et al. (2007), Hoernle et al. (2010), Timm et al. (2011), 
Golowin et al. (2018). OJP = Ontong Java Plateau. MAN = Manihiki. HIK = Hikurangi.
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uncertain by ~1,000 km because of poor 
constraint on the total northward drift of 
the Pacific Plate during the Cretaceous. 
As a result, its reconstructed position rel-
ative to the LLSVP is also not well known.

Recent research into improving the 
mapping of magnetic anomalies over 
Shatsky Rise provides a stronger link to 
mid-ocean ridge volcanism, indicating 
that all of the massifs record linear anom-
alies and thus were formed by spreading 
(Huang et al., 2018). These results suggest 
that whatever the source of the Shatsky 
Rise volcanism, it occurred through a 
spreading center (which was the path of 
least resistance), and this may be why 
many oceanic plateaus apparently formed 
near spreading ridges. The reason that 
Expedition  324 research was unable to 
separate plume from plate mechanisms 
may be that they are inextricably inter-
twined (Sager et al., 2016).

Kerguelen Plateau/Broken Ridge 
The uppermost basement lavas forming 
the LIP range widely in Sr, Nd, and Pb 
isotopic ratios, and each scientific ocean 
drilling site has distinctive isotopic char-
acteristics (Frey et al., 2003). This points 
toward differences in source materials 
and their proportions in the Kerguelen 
mantle source(s). Site 1140 basalt erupted 
within 50 km of the SEIR axis at 34 Ma, 
and the geochemical characteristics of 
Site 1140 lavas can be explained by mix-
ing, in varying proportions, components 
derived from the Kerguelen plume and 
the source of SEIR MORB (Weis and Frey, 
2002). In contrast, lavas from Site  738 
on the SKP (Mahoney et  al., 1995), and 
from Site 1137 on Elan Bank have radio-
genic isotopic ratios that reflect a small 
and variable but significant role for con-
tinental crust in their petrogenesis (Weis 
et al., 2001; Ingle et al., 2002b). The iso-
topic evidence indicating a role for con-
tinental crust correlates with a relative 
depletion in abundance of Nb. As to the 
origin of the continental components 
contributing to the LIP lavas, interca-
lated within the basaltic flows at Site 1137 
is ~26 m of fluvial conglomerate with 

clasts of garnet- biotite gneiss containing 
zircon and monazite (Frey et  al., 2000) 
of Proterozoic age (Nicolaysen et  al., 
2001). This constitutes the first and only 
unequivocal evidence of the presence of 
continental crust within the Kerguelen 
Plateau/Broken Ridge and in any other 
oceanic plateau drilled so far. The geo-
chemical data indicate that the signature 
of continental crust is widely distributed 
in Cretaceous basalt forming the upper-
most basement of the LIP. The most com-
pelling examples are at Site  738 (SKP), 
Site 1137 (Elan Bank), and Site 747 (CKP) 
(Mahoney et al., 1995; Ingle et al., 2002b; 
and Frey et al., 2002, respectively).

A plume source, but more complex 
than a single plume head and tail model, 
for the basalt forming the Kerguelen 
Plateau/Broken Ridge remains a via-
ble hypothesis. Like the active plumes of 
Hawaii, Iceland, and the Galápagos, lavas 
forming the Kerguelen Plateau/Broken 
Ridge are isotopically heterogeneous. 
Challenging questions posed here are: to 
what extent is this heterogeneity intrin-
sic to the plume, and to what extent does 
the heterogeneity reflect mixing between 
quite different components, such as 
oceanic and continental lithosphere. 
For lavas from some of the Kerguelen 
Plateau/Broken Ridge sites, the isoto-
pic heterogeneity undoubtedly reflects 
mixing of plume-related components 
with components derived from depleted 
asthenosphere (Site  1140) or continen-
tal lithosphere (Sites 738, 747, and 1137; 
Frey et al., 2003). 

Evidence from ODP Legs 119, 120, and 
183 clearly demonstrates that large parts 
of the SKP and CKP that are now sub-
marine were originally subaerial during 
at least the final stages of plateau con-
struction (Coffin et al., 2000; Mohr et al., 
2002). Subsidence estimates for ODP drill 
sites indicate that the various parts of the 
Kerguelen Plateau/Broken Ridge sub-
sided at a rate comparable to that for nor-
mal Indian Ocean lithosphere (Coffin, 
1992; Wallace, 2002). Hence, the original 
maximum elevations would have been 
1 km to 2 km above sea level, and much of 

the SKP’s ~500,000 km2 area would at one 
time have been above sea level (Coffin, 
1992). The SKP and CKP supported a 
dense conifer forest with various fern 
taxa and early angiosperms in late Albian 
to earliest Cenomanian time (Francis and 
Coffin, 1992; Mohr et al., 2002). By latest 
Cenomanian time, the CKP had subsided 
to a depth that allowed open marine sed-
iments to accumulate.

On Broken Ridge, the vesicularity and 
oxidative alteration of basement basalts 
at Sites 1141 and 1142, which formed 
close to the CKP (Figure 1), are also con-
sistent with a subaerial environment 
(Keszthelyi, 2002). At SKP Site  1136, 
inflated pāhoehoe lavas lack features of 
submarine volcanism (e.g.,  pillows and 
quenched glassy margins), suggesting 
subaerial eruption. The igneous basement 
complex of Elan Bank (Site 1137) includes 
basaltic lava flows that erupted subaeri-
ally, as indicated by oxidation zones and 
the presence of inflated pāhoehoe flows. 
Some interbedded volcaniclastic rocks 
were deposited in a fluvial environment, 
consistent with subaerial eruption of the 
basalt. The NKP (Site 1139) was also sub-
aerial during its final stages of forma-
tion, as indicated by a succession of vari-
ably oxidized volcanic and volcaniclastic 
rock. After volcanism ceased, paleoenvi-
ronments changed from intertidal (beach 
deposits) to very high-energy, near-
shore (grainstone and sandstone), to low- 
energy offshore (packstone), to bathyal 
pelagic (ooze) (Coffin et al., 2000). 

ENVIRONMENTAL IMPACT 
It has been hypothesized that eruption 
of flood basalts affected the surface envi-
ronment (e.g., Self et al., 2005, 2008) and 
potentially prompted mass extinctions 
(e.g.,  Keller, 2005). The extent of envi-
ronmental impact related to LIP volca-
nism depends on whether eruptions were 
subaerial or submarine, and whether the 
magma passed through coal, petroleum, 
and/or evaporite deposits on the way to 
the surface, supplementing the magma’s 
volatile content (Neal et al., 2008; Svensen 
et  al., 2009). The other important factor 
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in assessing the environmental impact of 
LIP formation is determining the flux of 
volcanism. It is unfortunate that many of 
the erupted lavas are low-K tholeiites, as 
the uncertainty of 40Ar/39Ar ages is usually 
between one and two million years. This 
uncertainty makes it impossible to assess 
the flux of volcanism during LIP forma-
tion and to determine how many eruptive 
episodes there were, though these topics 
remain top priorities in understanding 
LIP formations and their impacts on the 
environment (Neal et al., 2008).

Evidence indicates a link between LIP 
formation and environmental crises. For 
example, the largest mass extinction at the 
Permo-Triassic boundary was synchro-
nous with the eruption of the Siberian 
and Emeishan Traps (Wignall, 2005; 
Wignall et al., 2009). Oceanic LIP forma-
tion would have had a more subtle envi-
ronmental impact, given the general sub-
marine nature of the eruptions (e.g., Ernst 
and Youbi, 2017). In order for submarine 
LIP formation to generate a global impact 
on the ocean, the ocean needs to be well 
mixed, but LIP volcanism alone could 
not have released enough CO2 to have a 
global environmental impact (e.g.,  Kerr, 
2005; Kerr and Mahoney, 2007; Naafs 
et  al., 2016). However, it is likely that a 
complex positive feedback mechanism 
triggered by the volcanically derived CO2 
led to increased CO2 and elevated tem-
peratures associated with submarine oce-
anic plateau volcanism (e.g., Kerr, 2005). 
The initial emissions from oceanic pla-
teau volcanism were probably a mixture 
of CO2, SO2, and halogens (Self et  al., 
2005), which would have made the ocean 
at least more anoxic and acidic locally. 
This increased acidity would have led to 
the dissolution of shallow-water carbon-
ates, thus releasing more CO2 to the ocean 
and the atmosphere (Kerr, 2005). In addi-
tion, the main phase of Ontong Java 
Plateau formation (~120 Ma) appears to 
correlate with a massive release of meth-
ane, which may have come from warming 
of methane hydrate that had been stored 
beneath the ocean floor (Jahren, 2002; 
Naafs et  al., 2016). As CO2 solubility 

decreases, the warmer the ocean water 
becomes. Kerr (1998) proposed that such 
a scenario would relatively rapidly result 
in the establishment of a runaway green-
house effect. Also contributing to oceanic 
anoxia is the fact that a warmer ocean dis-
solves less O2 (de Boer, 1986).

The reaction of O2 with trace metals 
and sulfides in hydrothermal fluids as well 
as enhanced phytoplankton growth also 
decrease the amount of oxygen in seawater 
(Sinton and Duncan, 1997). Injection of 
a large hydrothermal plume could easily 
rise through the water column and spread 
laterally over a significant proportion of 
the ocean’s surface. The metal-rich waters 
of such massive hydrothermal plumes 
may well have stimulated increased lev-
els of organic productivity (e.g., increased 
iron can stimulate phytoplankton pro-
ductivity) in nutrient-poor surface waters 
(Coale et  al., 1996; Sinton and Duncan, 
1997). Such productivity could have led to 
further oxygen reduction in ocean waters 
as organic material decayed and sank 
through the water column.

While there is evidence for the sub-
aerial eruption of parts of the KP/BR 
and OJP, most of these plateaus (and SR) 
formed through submarine eruptions. If 
the Ontong Java, Manihiki, and Hikurangi 
plateaus formed from a “superplume” 
event (see Larson, 1991), the environ-
mental impact may have been immense. 
A global oceanic anoxic event (OAE-1a or 
the “Selli” event at 124–122 Ma; Coccioni 
et al., 1987; Méhay et al., 2009) was coin-
cident with the initial (and largest) erup-
tion of the OJP at ~122 Ma. Tejada et al. 
(2009) show a causative link between OJP 
emplacement and OAE-1a using osmium 
isotopes, where two large influxes of 
non-radiogenic osmium were observed 
within a period of ~2 million years start-
ing in the lower Aptian and ending just 
above OAE-1a. These Os influxes are con-
sistent with huge outpourings of mantle- 
derived submarine basalts though major 
eruptions at the formation of the Ontong 
Java Nui. While the formation of the OJP 
(and potentially the formation of the 
Manihiki and Hikurangi Plateaus) had 

global implications for the surface envi-
ronment, this event also changed the 
nature of the upper mantle in the western 
Pacific. The oceanic crust that pre-dates 
this event is different in composition 
from that which post-dates it (Janney and 
Castillo, 1997). 

Shatsky Rise erupted prior to the OJP 
over a period of ~24 million years, from 
145 Ma to 121 Ma, with the largest erup-
tions occurring earlier and volcanism 
waning thereafter (e.g., Sager et al., 2016; 
Tejada et al., 2016). Two OAEs over this 
period have been reported: the Weissert 
Event (late Valanginian at ~140.5 Ma) 
and the Faraoni Event (late Hauterivian 
at ~131 Ma) (e.g.,  Erba et  al., 2004; 
Jenkyns, 2010). OAEs were also form-
ing during the construction of the KP/BR 
(OAE-1b,c,d occurring at approximately 
111.5 Ma, 103–104 Ma, and 100 Ma, 
respectively; e.g.,  Erba, 2004). This sug-
gests that all three LIPs studied here 
had major effects on ocean chemistry, 
although the links between the SR and 
the KP/BR with OAEs are not as com-
pelling as the link between the OJP and 
OAE-1a (e.g., Tejada et al., 2009). 

FUTURE OCEANIC LIP DRILLING
In 2007, a multidisciplinary group 
of 80 scientists met July 22–25 at the 
University of Ulster in Coleraine, 
Northern Ireland, to discuss strategies 
for advancing our understanding of LIP 
formation, evolution, and environmen-
tal impacts (Neal et al., 2008). This work-
shop produced a series of questions that 
could be addressed, at least in part, by sci-
entific ocean drilling:
• To what extent do melting anomalies 

reflect excess fertility in the mantle 
rather than excess mantle temperature?

• Do thermo-chemical plume models 
account for the observations of uplift 
and basalt chemistry around oceanic 
plateaus?

• What is the internal architecture of an 
oceanic LIP?

• Do LIPs initiate continental breakup, 
or does continental breakup initiate 
LIP development?
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• What was the mode(s) of LIP emplace-
ment? Fissure eruptions (e.g.,  OJP)? 
Large volcanic centers (e.g., SR)?

• Was there more than one pulse of volu-
minous volcanism associated with LIP 
formation or were there a series of 
smaller magmatic pulses?

• How long did the pulse(s) of LIP volca-
nism last?

• What were the environmental impacts 
of such voluminous volcanism?

• Are there differences between subaer-
ial and submarine LIP emplacement?

• What is the overall architecture of an 
oceanic plateau sequence?

• What is the nature of seaward- 
dipping reflectors that are highly sig-
nificant components of several LIPs 
(e.g., North Atlantic, Kerguelen)?

• What is the relationship between felsic 
LIP magmas and the more common 
mafic (basaltic) varieties?

• Are environmental perturbations, 
including mass extinctions, directly 
caused by LIP emplacement?

While it can be argued that in the 
~12 years since the last LIP workshop, 
progress has been made in addressing at 
least some of these questions, they still 
remain valid for developing future scien-
tific ocean drilling strategies. Neal et  al. 
(2008) highlighted a number of ways sci-
entific ocean drilling could advance our 
understanding of LIPs:
• Obtaining deep sections within mul-

tiple LIPs to examine magmatic (and 
therefore mantle source) variability 
through time

• Defining the nature of melting anoma-
lies (i.e.,  compositional vs. thermal) 
that produce LIPs

• Defining precise durations of oceanic 
LIP volcanic events

• Defining modes of eruption-constant 
effusion over several million years 
or several large pulse events over the 
same time interval

• Establishing relationships among oce-
anic LIPs, OAEs, and other major envi-
ronmental changes (e.g., ocean acidifi-
cation and fertilization)

Obtaining a continuous record of syn-
LIP sediments may be one of the most 
important endeavors for the future. With 
such materials, we will be able to address 
the last three points above. Potential 
sites include the sediments on top of the 
Magellan Rise in the Southwest Pacific, 
which could be used to examine the dura-
tion of volcanic events, modes of erup-

tion, and environmental impacts of the 
Ontong Java, Hikurangi, and Manihiki 
oceanic plateaus. Mercury may be a 
promising new tracer for fingerprinting 
major volcanic events recorded in sedi-
ment (Font et al., 2016; Jones et al., 2017). 

An example of what has changed since 
2007 is provided in work on the OJP, 
beneath which there was reported to be 
an anomalous seismically slow region 
that extends to 300 km beneath the pla-
teau (Richardson et  al., 2000). This had 
been interpreted to represent the depleted 
mantle root that remained after a super-
plume (see Larson, 1991) formed the OJP, 
and that is now (still) moving with the pla-
teau (Klosko et al., 2001). Subsequent seis-
mic data have questioned this interpreta-
tion. For example, Covellone et al. (2015) 
used a combination of Rayleigh wave data 
extracted from ambient noise and earth-
quakes (and an iterative finite-frequency 
tomography method) to show that shear 
wave speeds were actually faster beneath 
the OJP, rather than slower as found in 
earlier work (Richardson et  al., 2000; 
Klosko et al., 2001). This was interpreted 

as being consistent with eclogite entrain-
ment by the surfacing plume head, which 
also retarded surface uplift. The fast seis-
mic signature in the mantle beneath the 
OJP down to ~300 km was also supported 
by Japanese ocean bottom seismome-
ter data (Isse et al., 2018; Obayashi et al., 
2018). However, the geochemistry of 
erupted OJP basalts is not consistent with 

eclogite in the mantle sources (e.g., Tejada 
et al., 2004). Further research is required 
to resolve this issue.

It is important to realize that the last 
scientific ocean drilling conducted on 
the OJP was 19 years ago (Leg  192 to 
the OJP in 2000), 10 years ago for the SR 
(Expedition  324 in 2009), and 20 years 
ago for the KP/BR (Leg 183 in 1998/1999). 
Since that time and based upon the data 
already obtained through drill cores, new 
questions can be asked that can be only or 
best addressed by scientific ocean drill-
ing. Examples include:
• What is (are) the possible interaction(s) 

of LIP emplacement and the plate tec-
tonic cycle (continental breakup, the 
subduction process, enhancement of 
mid-ocean ridge spreading)?

• What, if any, is the temporal relation-
ship between LIP events and changes 
in the reversal frequency of Earth’s 
magnetic field (e.g.,  the formation of 
the OJP is approximately synchronous 
with the beginning of the Cretaceous 
Normal Superchron; e.g., Granot et al., 
2012, and references therein)?

 “It is evident that large igneous provinces 
can have global environmental impacts, and 

understanding their origin and evolution is 
important for understanding how our planet 

has evolved, potentially from the core-mantle 
boundary to the surface environment.

”
. 
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• What role do LIPs have in initiation 
of continent formation and continen-
tal growth (e.g.,  Wrangellia and OJP; 
Samson et  al., 1990; Wignall, 2001; 
Kerr, 2003; Miura et al., 2004)?

• Do all LIPs have the chemical inven-
tory of LIPs to produce ore depos-
its, such as those associated with the 
Siberian Traps (e.g.,  Naldrett et  al., 
1996; Malitch et al., 2014)?

• Can the magnitude of the environ-
mental effects induced by LIP eruption 
be quantified?

The first 50 years of scientific ocean 
drilling have informed us about the for-
mation, evolution, and environmental 
impacts of oceanic LIPs. Based upon pre-
vious results, the next 50 years will see 
new expeditions to investigate oceanic 
LIPs that will address more sophisticated 
questions. Such investigations would also 
inform us of similar volcanic constructs 
on the Moon, Mars, Mercury, and Venus 
(e.g.,  Head and Coffin, 1997; Hansen, 
2007; Head et al., 2011; Neal et al., 2017).

SUMMARY
Scientific ocean drilling has given us major 
insights into the origin and evolution of 
the three LIPs highlighted here. However, 
the data thus far collected show each has 
unique characteristics that are difficult 
to reconcile with a unifying petrogenetic 
model. For example, the KP/BR still has 
an active hotspot, whereas the OJP and 
SR do not. The OJP is remarkable in that 
its compositional homogeneity is transi-
tional between normal (N-)MORB and 
enriched (E-)MORB across the plateau, 
whereas SR in the early stages (Tamu 
Massif) is similar to N-MORB, but sub-
sequent eruptions at the Ori and Shirshov 
massifs include both geochemically more 
enriched and depleted compositions. The 
KP/BR has highly variable basement lava 
compositions, with a continental crust 
signature present in lavas from the south-
ern and central KP, and there is strong 
evidence of subaerial eruptions across 
the plateau. The OJP and KP/BR appear 
to have formed through punctuated 

volcanic events, whereas SR was formed 
by one relatively long event. 

Neal et  al. (2008) summarized future 
LIP drilling targets that are still valid 
today. One issue, however, that could be 
resolved by future LIP drilling (and not 
included in the compilation by Neal et al., 
2008) is that the OJP may be much larger 
than originally thought, as the Manihiki 
and Hikurangi plateaus are hypothesized 
to have formed from the same magmatic 
event that formed the OJP. Only one site 
has been drilled on Manihiki (DSDP 
Leg  33, Site  317) and none have been 
drilled on Hikurangi. Most of the data we 
have for each of these plateaus are from 
dredged samples. This huge magmatic 
event also affected the Pacific upper man-
tle as MORB prior to the OJP was of a 
different composition than MORB that 
post-dates its formation. 

What is common among the OJP, the 
SR, and the KP/BR is that coincident 
with or shortly after their emplacements, 
a crisis in the world ocean resulted in an 
unprecedented die-off that is highlighted 
by global black shale horizons represent-
ing oceanic anoxic events. It is evident 
that LIPs can have global environmen-
tal impacts, and understanding their ori-
gin and evolution is important for under-
standing how our planet has evolved, 
potentially from the core-mantle bound-
ary to the surface environment. 
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