

Recent Results in Rare Decays at BaBar

Colin Jessop

University of Notre Dame

Representing the BaBar Collaboration At the Xth International Conference on Heavy Quarks and Leptons

Rare Decay Searches

Motivation: To search for rates enhanced over SM predictions that may arise from new virtual heavy mass particles in quantum loops

- 1. Search for $B \to K \nu \overline{\nu}$
- 2. Search for $B \to K^+ \tau^+ \tau^-$
- 3. Search for $B^0 \rightarrow \gamma \gamma$
- 4. Measurement of $B \rightarrow X_d \gamma$

The BaBar Dataset

BaBar collected 468 M BB pairs between 2000-2007 and 54 fb⁻¹ off-resonance data

The BaBar Detector

Search for $B \to K v \bar{v}$

Experiment BF (90% CL) Dataset Reference Belle < 1.4 x 10⁻⁵ 492 fb⁻¹ Chen etal PRL 99 221802, 2007 BaBar < 5.2 x 10⁻⁵ 82 fb⁻¹ Aubert et al. 94 1018011

Search for $B \to K_V \overline{v}$: Experimental Technique

Identify BB events by tagging with semi-leptonic $B \rightarrow D^{(*)} I_V$ decays

Search for $\,B \to K \nu \bar{\nu}\,$:Background Suppression

Nobs is from on-resonance data, Nbkg is expected from MC, ϵ is signal efficiency derived from MC

Mode	$\epsilon(\%)$	N_{sig}	N_{bkg}	N_{obs}	N_{excess}
K^+	0.16	2.9 ± 0.4	$17.6\pm2.6\pm0.9$	$19.4^{+4.4}_{-4.4}$	$1.8^{+6.2}_{-5.1}$
K_s^0	0.06	0.5 ± 0.1	$3.9\pm1.3\pm0.4$	$6.1^{+4.0}_{-2.2}$	$2.2^{+4.1}_{-2.8}$
$low-q^2$	0.24	2.9 ± 0.4	$17.6\pm2.6\pm0.9$	$19.4_{-4.4}^{+4.4}$	$1.8^{+\overline{6.2}}_{-5.1}$
high- q^2	0.28	2.1 ± 0.3	$187\pm10\pm46$	164_{-13}^{+13}	-23_{-48}^{+49}

Search for $B \rightarrow Kvv\overline{v}$:Results

arXiv:1009.1529

No signal observed but most stringent limits to date are set

Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$

 $B^+ \rightarrow K^+ \tau^+ \tau \sim 50\%$ of total inclusive rate

Standard Model rate comparable to $\mu^+\mu^-$ or e^+e^- channels but new physics with a mass dependent coupling such as a Higgs in the Next-to-MSSM could enhance by $(m_{\tau}/m_{\mu})^2 \sim 280$ (G.Hiller PRD 70 034018 (2004))

Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$

Analysis Technique

Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$: Backgrounds

Search for $B^+ \rightarrow K^+ \tau^+ \tau^-$: Results

Systematic	%
B Counting	1.1
Tag Efficiency	3.2
Signal Efficiency	14.8
Background Estimation	17.3

Expected Bkgd: 64.7 +/- 7.3

Data Events: 47

 $B (B^+ \rightarrow K^+ \tau^+ \tau^-) < 0.0033 (90\% CL)$

(First limit to date)

Search for $B^0 \rightarrow \gamma \gamma$

Standard Model \bar{B}^0 u, c, t $W^ B(B^0 \rightarrow \gamma \gamma) \sim 3 \times 10^{-8}$
(Bosch and Buchalla,, JHEP 0208:054 (2002)) \bar{d} $W^ B(B^0 \rightarrow \gamma \gamma) \sim 0208:054 (2002)$ \bar{d} Physics Beyond Standard Modelb $W^ B(B^0 \rightarrow \gamma \gamma) \sim O(10^{-7})$
Aliev and Turin, PRD 58 095014
(2HDM models or R-parity violating SUSY)

Experimental constraints from $b \rightarrow d\gamma$ experiment

Previous Measurements

Experiment	BF (90% CL)	Dataset	Reference	
L3	< 1.9 x 10 ⁻⁵	2.95x10 ⁶ (Z→had)	Acciarri et al. Phys. Lett. B, 363, 1995	
BaBar	< 1.7 x 10 ⁻⁶	19 fb ⁻¹	Aubert et al. PRL 87, 24, 2001	
Belle	< 6.1 x 10 ⁻⁷	104 fb ⁻¹	Villa et al. PRD 73, 2006	
ABAR.	Colin Jessop at Heavy Quarks and Leptons			

$B^0 \rightarrow \gamma \gamma$ Backgrounds

$$B(B \rightarrow \gamma \gamma) = (1.7 \pm 1.1(stat.) \pm 0.2(sys.)) \times 10^{-7} \quad (1.9\sigma significance)$$

$$B(B \rightarrow \gamma \gamma) < 3.3 \times 10^{-7} at 90\% C.L.$$

Colin Jessop at Heavy Quarks and Leptons

arXiv:1010.2229

Measurement of $B \rightarrow X_d \gamma$ and Extraction of $|V_{td}/V_{ts}|$

Measurement with penguins to search for New Physics

Previously used ratio of exclusives ($\rho,\omega\gamma/K^*\gamma)$ but limited by form factor uncertainty

Inclusive method is theoretically cleaner

Use the sum-of-exclusives technique (~50% of modes covered. Largest systematic from missing modes)

$$B \rightarrow X_{d}\gamma \qquad B \rightarrow X_{s}\gamma$$

$$B^{0} \rightarrow \pi^{+}\pi^{-}\gamma \qquad B^{0} \rightarrow K^{+}\pi^{-}\gamma$$

$$B^{+} \rightarrow \pi^{+}\pi^{0}\gamma \qquad B^{+} \rightarrow K^{+}\pi^{0}\gamma$$

$$B^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}\gamma \qquad B^{+} \rightarrow K^{+}\pi^{-}\pi^{+}\gamma$$

$$B^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma \qquad B^{0} \rightarrow K^{+}\pi^{-}\pi^{0}\gamma$$

$$B^{0} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}\gamma \qquad B^{0} \rightarrow K^{+}\pi^{-}\pi^{+}\pi^{-}\gamma$$

$$B^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{0}\gamma \qquad B^{+} \rightarrow K^{+}\pi^{-}\pi^{+}\pi^{0}\gamma$$

$$B^{+} \rightarrow \pi^{+}\eta\gamma \qquad B^{+} \rightarrow K^{+}\eta\gamma$$

Measurement of $B \rightarrow X_d \gamma$ and Extraction of $|V_{td}/V_{ts}|$

C

 $471M B\overline{B}$

Measure for $M_{X_{ds}} < 2.0 \ GeV^2$ $\frac{\Gamma(B \to X_d \gamma)}{\Gamma(B \to X_s \gamma)} = 0.040 \pm 0.009(stat.) \pm 0.010(sys.)$ Correct for unmeasured $M_{X_{dx}} > 2.0 \ GeV^2$ using Kagan & Neubert (*PRD* 58 094012) spectrum with $m_{\rm h} = 4.65 \pm 0.05 \ \mu_{\pi}^2 = -0.52 \pm 0.08 \ (HFAG)$ Extract $\left|\frac{V_{td}}{V}\right|$ using the calculations of Ali,Asatrian & Greub using β as input rather than (ρ, η) (Phy. Lett. B 429 87 (1998)) $= 0.199 \pm 0.022(\text{stat.}) \pm 0.024(\text{sys.}) \pm 0.002(\text{th.})$ $\frac{V_{td}}{V_{t}}$ Belle $(\rho, \omega)\gamma$ $0.195^{+0.020}_{-0.019}\pm0.015$ BaBar $(\rho, \omega)\gamma$ 0.233+0.025+0.022 Average $(\rho, \omega)\gamma$ $0.210 \pm 0.015 \pm 0.018$ arXiv 1005.4087v1 PRD 82:051101 2010 BaBar X, y 0.199 ± 0.032 ± 0.001 **B Mixing Average** Radiative Decay Avg 0.206 ± 0.019 UNIVERSITY OF NOTRE DAME 0.45 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 $|V_{td}/V_{ts}|$

BaBar continues to mine its dataset for evidence of physics beyond the Standard Model in rare B decays:

Most stringent limits presented for

 $B(B \rightarrow K \nu \nu) \le 1.4 \text{ x } 10^{-5}$

 $B(B \rightarrow K^+ \tau^+ \tau^-) < 3.3 \text{ x } 10^{-3}$

 ${\rm B}({\rm B}^{0} \rightarrow \gamma\gamma ~) < 3.3 ~ x ~ 10^{\text{--}7}$

Measurement of $\frac{\Gamma(B \to X_d \gamma)}{\Gamma(B \to X_s \gamma)} = 0.040 \pm 0.009(stat.) \pm 0.010(sys.)$ $\frac{\left|\frac{V_{td}}{V_{ts}}\right| = 0.199 \pm 0.022(stat.) \pm 0.024(sys.) \pm 0.002(th.)$

Techniques developed will hopefully be used to observe these modes at SuperB !

