Radiative B meson Decays at BaBar

Colin Jessop University of Notre Dame

Motivations

Window to new Physics

 Help measure the unitarity triangle

Test QCD technology

Radiative Penguin Decays

The Penguin Zoo

Several different types of penguins (not including gluonic penguins)

I will focus today mostly on electromagnetic penguins. BaBar has results on all these processes

Sensitivity to New Physics

Example: If SUSY exact $B(b \rightarrow s\gamma) = 0$

New Physics enters at same order (1-loop) as Standard Model

Sensitive to many models - very extensive literature

Penguin Theory – A brief Overview B mesons are low energy decays at scale $\mu = m_b \sim 5$ GeV

Formulate a low energy effective theory :

Generalization of Fermi Theory of β -decay.

Ci: Wilson Coefficients – contains short distance (high energy) perturbative component

Qi: Local Operators - contains long distance (low energy) non-perturbative component

 μ (renormalization) scale dependence cancels in C and Q

Wilson Coefficients

S/d

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts} \sum_{i=1}^{10} C_i(\mu) Q_i(\mu)$$

Ci i=1,2 current-current, i=3-6 gluonic penguins i=7-10 Electroweak Penguins Cicalculated at μ =Mw and evolved down to μ =mb.

Matrix Elements

S/d

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts} \sum_{i=1}^{10} C_i(\mu) Q_i(\mu)$$

<X|Q|B> are long distance (low-energy) non-perturbative component

If X is exclusive state e.g $| K^* \gamma > two possibilities$

- 1. Lattice QCD: Lattice spacing >> compton wavelength of b -> Large errors
- 2. QCD sum rules: Relates resonances to vacuum structure of QCD

Neither approach gives precise estimates – limits exclusive physics. Uncertainties cancel in ratios of modes or asymmetries.

Inclusive measurements are much more sensitive to new physics

General Considerations

	Exclusive		Inclusive
Mode (#Events in~400fb-1)	B->K*γ Ο(500)	B->ρ/ωγ Ο(50)	B->Xsγ O(5000)
Backgrounds	Small	Large	Large
Theory Uncertainty	Large 30-50%	Medium (in ratios) 15%	Small 7%

B factories: $e+e- \rightarrow Y(4S) \rightarrow BB$

B factories operate at the Y(4S) resonance (10.58 GeV)

hadronic cross-sections: udsc:bb = 3.4:1.1 nb

in the Y(4S) frame the B mesons are practically at rest

→ PEP-II is an asymmetric collider 9.0 GeV electrons vs 3.1 GeV positrons

Integrated luminosity

Currently 10 BB event per second.

since 2000 BaBar has recorded 430M BB events

about 8% of data is taken below the Y(4S) resonance

results presented here are based on 90 fb⁻¹ - 340 fb⁻¹ on-resonance data

Other B meson experiments

Though BELLE has larger datasets BaBar remains competitive

BaBar will stop running in 2008. Hope for 1000 fb-1 at that time.

The BaBar detector

0000000

Electromagnetic Calorimeter 6580 CsI crystals e+ ID, π^0 and γ reco Instrumented Flux Return 19 layers of RPCs µ and K_L ID

Cherenkov Detector (DIRC) 144 quartz bars K, π, p separation

1.5 T magnet

9 GeV

electrons

Drift Chamber 40 layers, tracking + dE/dx

3 GeV

positrons

Silicon Vertex Tracker 5 layers of double-sided silicon strips

Radiative penguin decays of **B** mesons

First observation of penguins by CLEO. Now it's a background !

Continuum Backgrounds

Production of u,d,s,c quark and τ pairs underneath Y(4s) 25 Υ(1S) \rightarrow Hadrons)(nb) 20 15 $\Upsilon(2S)$ 10 Υ(3S) σ (e⁺e⁻ Υ(4S) 5 10.58 9.44 9.46 10.00 10.02 10.34 10.37 10.54 10.62 Mass (GeV/c^2)

Lorentz boost makes a jet-like topology

Event Shape Variables

Construct "Shape" variables to distinguish between isotropy and jets

Angle between thrust and photon

Neural net combination of suite of topology variables effective with multicomponent background

B's have lifetime and decay weakly. uds decays promptly and strongly

Net Flavor = $(N(e+) - N(e-)) + (N(\mu+) - N(\mu-)) + (N(k+) - N(k-))$

Signal Variables for Exclusive Reconstruction analyses

Sensitivity can be enhanced by performing two dimensional likelihood fits to signal and background.

The CKM matrix

Standard model explanation of CP violation is a single phase in the CKM matrix V.

The unitarity triangle

Matter-Antimatter Asymmetry in Universe

CP violation is an essential component of the presumed mechanism for generating this asymmetry

But: The Standard model has insufficient CP violation to account for the observed asym.

Presumably extra CP violation comes from new physics that couples to quarks or leptons

Measurement of $b \rightarrow d\gamma$ Decays

 $B^+ \rightarrow \rho^+ \gamma$

Mass projections from 4d fit

6.3 sigma observation

BABAR, hep-ex/0607099, 347 M BB

Comparison of $b \rightarrow d\gamma$ Branching Fractions

$$\int \frac{b}{u} \cdot c, t \wedge d + \frac{b}{$$

Extracting $|V_{td}/V_{ts}|$ from $b \rightarrow d\gamma$ Decays

Belle, PRL 96, 221601 (2006).

Theoretical uncertainties limiting both approaches.

Inclusive Penguins: $\Gamma(B \rightarrow X s \gamma)$

$$\Gamma(B \to X_s \gamma) = \Gamma(b \to s \gamma) + \Delta^{non-pert}$$

Quark-hadron duality

The non-perturbative corrections are a few percent.

Recently a new NNLO calculation for $B(B -> X_s \gamma)$ has been completed

$$B(B \rightarrow X_{s} \gamma) = 3.15 \pm 0.23 \times 10^{-4}$$

(Misiak, Asatrian, Bieri, Czakon, Czarnecki, Ewerth, Ferroglia, Gambino Gorbahn, Greub, Haisch, Hovhannisyan, Hurth, Mitov, Poghosyan, Slusarczyh)

Major undertaking involving thousands of diagrams. New precise Calculation has renewed interest in the field

Compare to NLO: $B(B \rightarrow X_s \gamma) = 3.61 \pm 0.43 \times 10^{-4}$

Theory Errors on $B(B \rightarrow Xs\gamma)$

KB-

Scale dependence on µb

Theory errors from choice of Renormalization scales

As go to higher orders this is reduced as expected.

At NLO the choice of charm quark renormalization scale had been a Problem.

New calculation resolves this issue and errors are now understood

Quark-Hadron duality

A fully inclusive measurement can be related directly to quark calculation

To be fully inclusive must measure all the photon spectrum

Inclusive Photon Spectrum

Information about motion of b-quark should be universal – i.e like a structure function and so can be applied to other inclusive processes

Experimental ChallengeMonte Carlo : Just require γγ Model Dependence

Note additional BB background

To reduce large backgrounds without cutting on γ or Xs i.e a fully inclusive measurement

Two Methods for inclusive $B \rightarrow X_s \gamma$

Differ in treatment of Xs

Method	Advantages	Disadvantages
Fully inclusive don't reconstruct X _s	Closest correspondence to inclusive $B(B \rightarrow X_s \gamma)$.	More Backgrounds
Sum of exclusive $B \rightarrow K n(\pi) \gamma$	Less background due to additional kinematic constraints. Better E_{γ} resolution.	More model dependence due to finite set of explicitly reconstructed $B \rightarrow X_s \gamma$ decays.

Technique II "Fully Inclusive": $B \rightarrow X_{s\gamma}$

Suppress continuum background by requiring a "lepton tag" from recoiling B (5% Efficiency for x1200 reduction in background)

qq + ττ MC **BB MC** Signal MC Xs leptor 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Reconstructed E*y (GeV) B Xc

Remaining continuum subtracted with off-resonance data -> statistical uncertainty

Multi-component BB background

Fully Inclusive BB background

Component	%
π^0	64
η^0	17
\overline{n}	8
$e\pm$	4
<u>ա & η'</u>	3
Other	4

Each BB component measured independently in data. Precision of these measurements is dominant systematic.

BABAR Fully Inclusive $B \rightarrow X_s \gamma$, w/lepton tag (PRL Oct 23 2006) 88.5×10⁶ $B\overline{B}$ events

Summary of $B \rightarrow Xs$ g Branching Fraction Measurements

Theory is NNLO prediction (2006) $B(B \rightarrow X_s \gamma) = 3.15 \pm 0.23 \times 10^{-4}$

$B(B-X_{s\gamma})$ constraints many models

Example: Two Higgs doublet model $M_{H+}>300$ GeV cf. direct search > 79.3 Ge

Future Precision of $B(B \rightarrow X_{s\gamma})$

Expect 5% precision from full dataset

Direct CP asymmetry is sensitive to non MFV SUSY

$$A_{cp}(B \to X_{s+d}\gamma) = \frac{\Gamma(B \to X_{s+d}\gamma) - \Gamma(B \to X_{s+d}\gamma)}{\Gamma(\overline{B} \to X_{s+d}\gamma) + \Gamma(B \to X_{s+d}\gamma)}$$

Fully-Inclusive: Lepton charge tags flavor. Dilution from mixing.

 $A_{cp}(B \rightarrow X_{s+d}\gamma) = -0.110 \pm 0.115(stat) \pm 0.017(sys)^{\gamma}$

Asymmetry consistent with Standard Model and previous measurements

Extracting Vbc and Vbu

Use inclusive measurements of lepton spectra

Motion of b quark is dominant theoretical Uncertainty

Use $B \rightarrow X_{s\gamma}$ to significantly increase precision

Moments

• Fit predicted moments of inclusive processes $b \rightarrow clv$ and $b \rightarrow s\gamma$ for various cuts on kinematic variables in HQE:

$$\left\langle M_{x}^{n} \right\rangle_{E_{l} > E_{0}} = \tau_{B} \int_{E_{0}} M_{X}^{n} d\Gamma = f_{n}^{x} (E_{0}, m_{b}, m_{c}, \mu_{G}^{2}, \mu_{\pi}^{2}, \rho_{D}^{3}, \rho_{LS}^{3})$$

$$\begin{array}{c} \text{e or I} \\ \text{energy cut} \\ \text{b-quark} \\ \text{mass} \end{array} \begin{array}{c} \text{c-quark} \\ \text{mass} \\ 1/m_{b}^{2} \text{ and } 1/m_{b}^{3} \end{array}$$

$$\begin{array}{c} \text{Calculations available in "kinetic" and "1S" renormalization schemes} \\ \text{Benson, Bigi, Gambino, Mannel, Uraltsev} \\ \text{Benson, Bigi, Gambino, Mannel, Uraltsev} \\ \text{Several papers} \end{array} \begin{array}{c} \text{Bauer, Ligeti, Luke, Manohar, Trott} \\ \text{PRD 70:094017 (2004)} \\ \end{array}$$

$$\begin{array}{c} \text{47 measured moments used from DELPHI, CLEO, BABAR, } \end{array}$$

BELLE, CDF (and, of course, the B lifetime)

Results: Spectrum Moments vs E_y

most precise moments from BaBar fully inclusive

Curves are theory prediction using measured b->Xclv moments

Demonstrates assertion that b quark motion is universal

Extraction of V_{bc} , m_b , μ_{π}

V _{cb} (10 ⁻³)	$41.96 \pm 0.23_{exp} \pm 0.35_{HQE} \pm 0.59_{\GammaSL}$
m _b _[kin] (GeV)	$4.59 \pm 0.025_{exp} \pm 0.030_{HQE}$
μ_{π}^{2} [kin](GeV	$0.401 \pm 0.019_{exp} \pm 0.035_{HQE}$

 $|V_{cb}|$ determined to <2%

 m_b to 1%; crucial for $|V_{ub}|$

Buchmüller and Flächer, PRD 73: 073008 (2006)

[kin]/[1S] values agree after scheme translation

Extracting Vub

$$\Gamma(B \to X_u l \nu) = \frac{G_F |V_{ub}|^2 m_b^5}{192\pi^3} \left[1 - O\left(\frac{\alpha_s}{\pi}\right) - O\left(\frac{\Lambda_{QCD}^2}{m_b^2}\right) + \dots \right]$$

mb enters as mb⁵ so 1% error in mb gives 2.5% error in Vub

Other HQE parameters estimated from $B \rightarrow X_{s\gamma}$ enter into non-perturbative terms

$|V_{ub}|$ from B->XIV

Statistical	±2.2%
Expt. syst.	±2.8%
<i>B->Xclv</i> model	±1.9%
<i>B->Xulv</i> model	±1.6%
Theory	±5.9%

Error dominated by theory (mb and HQE parameter estimation)

7.2% error down from 15% in 2003. 5% ultimately

Current status of Unitarity Triangle

 $sin(2\beta)$ measured to 4.7%

Vtd/Vts measured to 3.7%

All constraints consistent with Standard model

Summary

Large datasets have allowed us to catalog the rare penguin decays

Penguins contributing to precision measurement of the triangle

precision measurements of $b->s\gamma$ strongly constrains new physics

Technique 1 – Semi-Inclusive

Xs

 $E_{\nu} =$

 $\frac{m_B^2 - m_{Xs}^2}{2m_B}$

Reconstruct in bins of M_{Xs} and convert to $E\gamma$

Multicomponent fit to extract signal

Dominant systematic is modelling missing final states

BABAR B \rightarrow X_s γ with Sum of Exclusive Final States

Energy Range	Branching Fraction (10 ⁻⁴)
<i>E</i> _γ >1.9 GeV	$3.27 \pm 0.18^{\scriptscriptstyle +0.55 \scriptscriptstyle +0.04}_{\scriptscriptstyle -0.40 \scriptscriptstyle -0.09}$
$E_{\gamma} > 1.6 \text{ GeV}$ (extrapolated)	$3.35 \pm 0.19^{\scriptscriptstyle +0.56 \scriptscriptstyle +0.04}_{\scriptscriptstyle -0.41 \scriptscriptstyle -0.09}$

averages over two shape-function schemes errors: stat, sys, variation of shape fcn params

<i>E</i> _γ Moments	Value (GeV or GeV ²)
$\left\langle E_{\gamma} \right\rangle$	$2.321 \pm 0.038^{+0.017}_{-0.038}$
$\left\langle E_{\gamma}^{2} \right\rangle - \left\langle E_{\gamma} \right\rangle^{2}$	$0.0253 \pm 0.0101^{+0.0041}_{-0.0028}$

• E_{γ} (min) = 1.897 GeV

Other Results on Fully inclusive $B \rightarrow X_s \gamma$

CLEO, PRL 87, 215807 (2001), 9.1 fb-1

Belle, PRL 87, 061803 (2004), 140 fb⁻¹ Belle, hep-ex/0508005

 $BF = (3.21 \pm 0.43 \pm 0.27_{-0.10}^{+0.18}) \times 10^{-4}$ Measure for $E_{\gamma} > 2.0$; extrap. to $E_{\gamma} > 0.25$ GeV Measure for $E_{\gamma} > 1.8$ GeV; extrap. to full

m_b and μ_{π} from b->sy

"Kinetic Scheme" (Benson, Bigi and Uraltsev)

Mass of b quark (GeV)

Fit to moments in kinetic scheme scheme to obtain $\mu\pi$ and m_b

Ellipse because of correlations between first and second moments

Fit includes theory errors

Results: Moments

$$\left\langle E_{\gamma}^{B}\right\rangle \approx \frac{m_{b}}{2}$$
$$\left\langle E_{\gamma}^{B2}\right\rangle - \left\langle E_{\gamma}^{B}\right\rangle^{2} \approx \mu_{\pi}^{2}$$

(kinetic energy of b)²

Theory is Bigi,Benson and Uraltsev (Nucl Phys B 710 371 2005) using BaBar measured B->Xclv moments PRL 93 011803 2004

 $m_B = 4.6 GeV, \mu_{\pi}^2 = 0.45 GeV^2$ Curves are theory prediction using measured b->Xclv moments

b->sy and V_{ub}

 V_{ub} is extracted from inclusive B->X_uIv decays. Photon spectrum from b->s_{γ} helps reduce the uncertainty in determination.

e.g. BaBar result: PRL 96:221801 (2006)

Fully reconstruct recoiling B and Study semileptonic decay Mx in B->X_uIv

Relate
$$\int_{0}^{m_{\max}} \frac{d\Gamma_{b \to u}}{dm_{\chi}} dm_{\chi}$$
 to $\int_{E_{\min}}^{m_{B}/2} \frac{d\Gamma_{b \to s\gamma}}{dE_{\gamma}} W(E_{\gamma}, E_{\min}) dE_{\gamma}$

 $|V_{ub}| = (4.43 \pm 0.38(stat.) \pm 0.25(sys.) \pm 0.29(theory) \times 10^{-3}$