
A System for Management of Computational Fluid
Dynamics Simulations for Civil Engineering
Peter Sempolinski and Douglas Thain

Computer Science and Engineering
University of Notre Dame

Email: psempoli@nd.edu and dthain@nd.edu

Daniel Wei and Ahsan Kareem
Civil & Environmental Engineering & Earth Sciences

University of Notre Dame
Email: zwei1@nd.edu and kareem@nd.edu

Abstract—We introduce a web-based system for management
of Computational Fluid Dynamics(CFD) simulations. This system
provides an interface for users, on a web-browser, to have
an intuitive, user-friendly means of dispatching and controlling
long-running simulations. CFD presents a challenge to its users
due to the complexity of its internal mathematics, the high
computational demands of its simulations and the complexity
of inputs to its simulations and related tasks. We designed this
system to be as extensible as possible in order to be suitable
for many different civil engineering applications. The front-end
of this system is a webserver, which provides the user interface.
The back-end is responsible for starting and stopping jobs as
requested. There are also numerous components specifically for
facilitating CFD computation. We discuss our experience with
presenting this system to real users and the future ambitions for
this project.

I. INTRODUCTION

Civil Engineering, among its many aspects, requires atten-
tion to be payed to the flow of wind over structures. One
way to gain a greater understanding of the interaction of
wind and structures is to use Computational Fluid Dynamics
(also known as CFD). However, CFD is one of the most
challenging types of scientific computing. Typically, a civil
engineer who wishes to use CFD must immediately consult
with a CFD professional to perform even a basic simulation.
One of our goals for this project is to develop tools that can
make CFD more widely useable for various types of civil
engineering. In particular, a long-term motivating goal of this
project is to eventually produce a “virtual wind-tunnel” that
would allow users in non-CFD engineering fields to upload
and analyze designs for CFD analysis, without having to re-
train themselves in CFD. Also, we are interested in providing
resources for beginning users of CFD, to help such beginners
understand the nature of CFD work. These motivations serve
as long-term goals for this project, providing direction for both
present and future work.

In this paper we introduce a task management system for
creating and managing CFD simulations. Our design has two
major pieces, a web-based front-end which controls interaction
with the user and a back-end task manager which controls the
dispatch of CFD tasks to various back-ends. One of our key
design interests in building these two pieces was to make them
extensible, so that the front-end can present many different
options for CFD simulations to the user and the back-end can

interface with many different execution environments. In addi-
tion to these two major components, we developed a number of
smaller tools, integrated into our system, specifically intended
for the management of CFD tasks.

In the following sections, we discuss the problems related to
performing CFD, the overall architecture of our system and the
specific tools which we built to help us in managing CFD. We
also describe our current progress and the experiences which
we have had presenting this system to groups of users. We
close with our expectations for further development.

II. CHALLENGES FROM CFD

CFD is the science of using numerical schemes to solve
and analyze fluid-related problems. The basis of CFD is the
Navier-Stokes Equation which is a precise description of all
kinds of continuous flow. The Navier-Stokes Equation is a
complex transport equation system (second order, coupled
nonlinear, chaotic system). Therefore, it is extremely difficult
to find an analytical solution. Furthering the understanding
of these equations remains an unsolved problem for which
there is great interest. A problem regarding solutions to these
equations is even labeled by the Clay Mathematics Institute
as one of their famous “the Millennium Prize” problems [1].

Starting from the late 1970s, solutions to the Navier-Stokes
equation were pursued by the discretization method. This
method, because of gradually increasing computing power,
has met with tremendous success. By the end of the 1980s,
together with traditional statistical analysis and wind tunnel
testing, CFD has been shown to be a critical and reliable
research tool in fluid mechanics. However, it remains that
one of the key bottlenecks of CFD analysis is limitations on
computing power [2].

In order to increase the accuracy and speed of CFD, various
approximations and models have to be used. All of them
are difficult both in terms of physics and programming. For
example, which discretization scheme should be used, central
differencing or upwind schemes? How should one model the
near wall turbulence? In addition, challenges remain in parallel
computing and multiphase flow along with many other con-
siderations. Things become more complicated in engineering
applications of CFD because of boundary conditions and flow
patterns. For example, in wind engineering, the flow is mostly
turbulent, with a high Reynolds number, separated but also



accompanied with reattachment, and the bluff body could be
moving.

The work of CFD, however, is not confined to the sim-
ulation. A compete CFD analysis includes Pre-processing,
Solving and Post-processing. Each of these presents additional
challenges. In the Pre-Processing stage, mesh generation is
required. A mesh is the spatial discretization of the compu-
tational domain. At each simulation time-step, values such
as fluid velocity and pressure are computed for each cell in
the mesh. The properties of the mesh often play a huge role
in determining simulation time and accuracy. Furthermore,
a poorly constructed mesh can render a simulation useless.
Mesh construction is sufficiently complex that special tools
are needed to perform it.

With regard to computer science, there are several key
facts about CFD analysis and its application to engineering
problems:

• CFD code is usually very large and difficult to maintain,
port, install, verify and validate.

• The learning curve of CFD is very steep and requires
knowledge of fluid mechanics, mathematics and computer
science.

• Because of the massive computational resources needed
for CFD simulations, it is usually necessary to dispatch
jobs to back-end computing resources.

• Because of the difficulty of configuring “good” CFD, is
useful to be able to monitor simulations in progress and
stop and correct simulations that are wrong, rather than
wait for completion.

• The CFD simulation is actually only a small part of
a CFD workflow, increasing the practical difficulties
involved.

• The results of CFD often make more sense with some
visualization. This includes both graphs and pictures of
properties of the flow fields.

We are building a platform, specifically interested in the
civil engineering audience, to address these challenges listed
above. To do this, we have constructed a system which
comprises a front-end for user interaction and a back-end
for dispatching tasks. By providing the front-end as a web-
based portal, we can tune the user difficulty with regard to
the complexity of the simulations the user runs. To do this we
implemented an extensible, modular system, in which CFD
cases, (a single CFD simulation, and accompanying data and
tasks, is called a case) each has a type. This type is both
a template and a link to a module in the user interface.
In this way, we can create templates for beginner users or
advanced users, depending on need. Moreover, by tuning
the modules which we make available to users, we can, by
varying degrees, conceal the underlying complexity of the
CFD code. Of course, by devising templates and case types
which correspond to various CFD situations, we can give users
the option of various kinds of simulations. Our ambition is
to include settings such as wind tunnel testing, 2D sectional
model, or 3D wall-mounted model. We can also tune, (or

allow users to tune, depending on the template) the turbulence
modeling, which is one of the most prominent factors affecting
a simulation.

The back-end for our system is designed to take CFD tasks
and dispatch them to appropriate execution platforms. Since a
true CFD workflow involves more than the simulation, each
CFD case requires several different types of tasks, which might
be better suited to different execution platforms. For example,
the actual simulation for a large 3D simulation would require
an execution platform that can perform massive computation,
preferably in parallel. However, a post-processing task for a
smaller simulation might run faster if simply run locally on the
server hosting our system. Therefore, we designed the back-
end to have extensibility as well, allowing us to incorporate
multiple execution platforms to our back-end and run tasks
where they are best suited. Finally, in order to insure the
credibility of our platform, we primarily use OpenFOAM as
our back-end CFD code which has been well-verified and
extensively validated with regard to mesh handling, turbulence
modeling, numerical schemes, and unsteady and steady solvers
[3]. Moreover, OpenFOAM is open-source code, which makes
it particularly suited to our needs. As of right now, we are
using the default mesh generator of OpenFOAM.

III. PREVIOUS WORK

Placing scientific computing resources on the web, is, of
course, not new. One example is the Astrophysics Simulation
Collaboratory which makes use of the Cactus computational
toolkit [4]. Perhaps one of the quintessential examples is the
HubZero platform, which is designed for creating websites to
facilitate collaboration and research [5]. One popular example
deployment of this is nanoHub, which is an online resource
hub for nano-electronics [6].

Web portal technology is also employed for monitoring grid
resources. For example, GridSphere is specifically designed
to host a variety of different applications for the purpose of
giving users easy access to grid resources [7]. Also, the JGrid
infrastructure augments web technology with Java interfaces,
to further enhance user control of grid resources [8]. Also,
for visualizing data that results from log-running computation,
VizLitG is a framework for accessing and viewing remotely
stored data sets [9].

Of course, in addition to platforms providing computation
resources, there are many purely informative websites in
scientific computing. In CFD, a good example is CFD-online,
which provides a wiki and other information of general interest
to CFD professionals [10]. Our contribution is to develop an
execution platform specifically tuned to CFD, intended to a
civil engineering audience.

IV. SYSTEM ARCHITECTURE

Our system is composed of two main pieces each of which
can be configured with a high degree of extensibility. These
components are the front-end and the back-end core. The
front-end will take user input to create files for the tasks to be
run. The front-end deposits task descriptions into a database,



Fig. 1. System Diagram

which is read by the back-end core. The back-end core will
dispatch tasks to various execution environments, depending
on configuration and the specification of the front-end. See
Figure 1 on how the major parts fit together. In addition to
these main pieces, there are several smaller parts (not in the
figure) specific for supporting CFD work.

One of the main tensions for this design was to balance
the need for extensibility with the need for the system to be
effectively tailored to CFD. That is, we wanted our system
to be extensible, in both the front-end, so we can provide a
user interface for many different kinds of CFD tasks that our
users might want, and the back-end, which can communicate
equally with several different computational systems, in order
to send different tasks to the appropriate execution system.
However, we also had to limit this extensibility, in order to
provide an an environment with sufficient support for CFD.
We discuss the implementation details below.

A. Life-cycle of a Task

The foundation of our system is not a particular software
component. Rather it is a specific understanding of the states
of tasks as they are run. In Figure 2, we have the state diagram
for all our tasks. The reason why the state diagram is so
important is that it precisely defines the relative duties of the
front-end and the back-end. Each valid state transition can
either be performed by the front-end or the back-end. The
front-end may start tasks, by transitioning to the Pending state,
and cancel tasks by transitioning to the To Cancel state. The
back-end attends to running the tasks by transitioning through
the Running state into the Done state. (Or the Error state if
some thing goes wrong.) By being clear about what each state
transition is supposed to do to a task, we can also be precise
about what each action on a task is, allowing us to define
the interface for our computing backend. Also, by being very

Fig. 2. Task State Transitions: Tasks start in the Initial state at the top
and end in one of the terminal states at the bottom. Transitions, with rare
exceptions, are designated to either the front-end or the back-end, to prevent
errors.

precise about what is and is not a valid state transition, it is
easier to detect errors and to deal with situations where both
the front-end and the back-end are modifying a task’s state.

In brief, the nine states are:
• Initial: This is the starting state of all tasks.
• Pending: The front-end will transition a task into this state

to signal that the user wants the task to run. The task
will stay in this state until the back-end has confirmed
the successful execution of all pre-requisite tasks.

• Queued: When the task is ready to run, the back-end core
will check if the actual execution back-end for this task
is willing to accept more tasks. The task will remain in
this state until the task can be run.

• Running: When the back-end starts a task, the task is
moved to this state to signal that the task is running.

• To Cancel: The front-end will transition a task to this
state to signal that the user has requested that the task be
canceled.

• Canceling: The back-end will transition a task to this state
to acknowledge that it is attempting to cancel the task.

• Canceled: The back-end will transition a task to this state
when it has confirmed that the canceled task is no longer
running.

• Done: This state means that the task has successfully
completed.

• Error: If something goes wrong, the task is moved to the
error state. For example, if a program for a task exits with
a non-zero exit code, the error state will be used. Or, if
the server crashes, tasks falsely marked as running will
be set to error when the server restarts.

When a task is created, it is first placed in an Initial state.
When a task reaches one of the final states, Canceled, Done



or Error it can be ‘reset’. When a task is ‘reset’, the results
of that task are rolled back. That is, outputs for that task are
deleted. After that, the record for the task in the database is
replaced by a new task record, set in the Initial state. The
old, previous record is retained in the database but marked
as ‘defunct’. This feature allows users to retry failed tasks
without destroying or overwriting records of previously run
tasks in the database. Also, each individually run task has a
unique task id.

One particularly useful thing about this state system is that it
helps prevent users from accidentally starting extra tasks due to
their impatience or confusion. The command to start a task is
not a command to create a new task. Rather, it is a command
to transition from Initial to Pending. So, for example, if a
user, in frustration, clicks the start button three times he will
not start three tasks. The first command will perform the state
transition. The second and third commands will try to perform
the same transition on the same task, but will not be able to
since the task is no longer in the Initial state.

V. FRONT-END

The front-end is programmed in PHP [11], running on
an Apache webserver [12], and communicates with a mysql
database [13]. This aspect of the front-end is fairly conven-
tional. The front-end has several responsibilities in our system.
It manages users, security and authentication, similar to a
typical web application. It also performs file management by
creating, deleting and otherwise controlling user files, which
are organized into groups of cases. (In this system, a “case” is
a collection of files for one simulation setup, but might involve
several tasks needed to run and analyze that simulation.) The
front-end also gives commands to the back-end, by way of a
task database. The front-end creates records of tasks to be run,
specifying the task to be run, how the task is to be run, and
any command line parameters.

In order to make this system as extensible as possible, each
group of cases for a user has a particular type, which is shared
by all cases in that group. For a particular case type, a set of
functions must be implemented as a PHP module to handle
that type of case. This PHP code serves as the specific user
web-interface for a particular type of case. Whenever a case
is created, accessed or otherwise touched, the front-end will
pass execution to the appropriate function. For most of these
functions, a specific data structure containing most data about
the current case is available to the function when it executes.
Also, a number of helpful utility functions are implemented to
make it more simple to place tasks in the database (and other
common commands) with reference to the current case.

To demonstrate, in Figure 3, we have the case management
screen just after a case has been created. The case is part of a
group of cases using the Circular Cylinder template. The status
line for the case indicates that it is ready to generate a mesh.
(With the default values for the template.) Each case template
module is required to have a function that gives this status. We
click on the hypertext that says “Case #1” to see the screenshot
in Figure 4. Each case template module is required to have

Fig. 3. Case Management Screen just after a case is created

Fig. 4. A Circular Cylinder Case, before anything is run

Fig. 5. Mesh Parameters

a “display” function. Figure 4 shows this for the Circular
Cylinder case type. In Figure 5, you can see part of the screen
for adjusting parameters for the mesh. (The rest scrolls down.)
From this screen we can set the mesh parameters and also
request a mesh preview. Once we are satisfied with all of our
parameters, in the main management screen of the case, (see
Figure 4) we click the buttons to start all the tasks.

After a while, the various steps run and finish. If we were
dissatisfied with the results of a step, we could click a “Reset
Task” button to roll back the case to before that step. Then, we
change our parameters and try again. We can view the results
of all of the computation, in visual form. Figures 6 and 7 show
a graph and an image from among the many available results
for this kind of case.

This, however, is only a demonstration of one very simple
type of case. The main advantage to the extensible, modular
design for the front-end, especially with regard to our applica-
tion in CFD for Civil Engineering is that we can create many
different kinds of CFD templates with specific user interfaces



Fig. 6. A graph of some results. The data for the graph can also be
downloaded

Fig. 7. An image of a velocity field result. Note: This was a short simulation,
so the flow only went a short distance.

for each kind of case. This allows for cases that hide most
details from the user, or cases that show more details to the
user. This is more helpful since we are interested in making
CFD more user-friendly for applications in civil engineering.

The front-end also has a number of administrative tools
implemented, which allow administrative users to monitor or
change the tasks being dispatched and the overall state of the
system, as well as manage users.

VI. CFD SUPPORT COMPONENTS

The role of the front-end is to produce files and database
entires for various tasks. In order to do this, a number of extra
components, in addition to the two main components, are used
to facilitate the use of CFD in our system

A. Middle Manager

The middle manager is primarily designed for instances
in which the case in question is controlled by a more user-
friendly module in the front-end, which is hiding the more
tricky details from the user. For some kinds of cases, this
means that a large number of files must be managed. In
particular, when a case is created, a number of files must be
placed with default values. Similarly, sometimes, if a file set
is complex, a single changed parameter results in changes to
many files. Finally, if a task fails, then a user would want to
roll back to before the task is run by deleting specific files. We
found that placing this file management code in the front-end
template modules (described above) was often unwieldy.

The middle-manager is a command-line program (written
in python), with a number of functions in the front-end that

can invoke it. This program works by reading from a set
of directories of template files which guide its actions. Each
template is comprised of a configuration and a set of guiding
files. The middle-manager has two main kinds of functions.
First, it allows variables to be set for a specific case. When a
variable is set (for example, flow velocity), according to the
configuration of the corresponding template, the text in the
actual case files is changed. Second, if specific files are to
be deleted in order to undo the running of a task, this tool
can be told to simply undo a task by the name of that task.
The middle-manager will use the template configuration files
to determine which files to delete and then delete them.

B. Structured Mesh Generation and Preview Assistant

One of the more challenging aspects of working with CFD
software, (in our case the OpenFOAM solver) is that the
input files that define the mesh are often obscure. Of course,
given the mesh complexity, one rarely produces the mesh
by hand, but rather uses mesh generation tools based on a
mesh dictionary to produce the mesh. Unfortunately, the inputs
to this mesh generation can also be difficult to understand.
Moreover, the mesh generation can be a long-running task,
which means that we need to find ways of giving users a
faster “preview” mesh. We solve both these problems by
using a custom made library (written in python) which can
generate a mesh dictionary for certain kinds of structured mesh
generation and estimate the size of the mesh without running
the full mesh generation.

In Figure 8 we show the relationship between the input
to our structured mesh library, a mesh dictionary and a true
mesh. The input to our library is a short python program,
about ten lines at most, which gives a high level description
of the simulation. This program calls functions in our library
to define the object to be simulated, the size of the simulation
area, the mesh properties near the object and elsewhere. There
are a number of different objects to choose from, each with
its own structured mesh configuration.

With all of this information, this mesh dictionary producing
library creates data structures for the various blocks in the
mesh dictionary. It insures that adjacent blocks are consistent
in mesh number and ratio and estimates the number of mesh
cells within a block. The sum of these is used to estimate the
final mesh size and uniformly rescale the mesh if needed. The
usefulness of this is in the desire for a mesh preview. Since the
preview should not take too long, we set a maximum tolerable
mesh size for a preview. If we want the full mesh, this library
will produce the full dictionary. If we want the preview, this
library will check the mesh size and rescale down if needed.
As such, we can use the same parameters and programs to
produce a full mesh or a preview.

The main achievement of this component is that, at least
for the structured mesh types it understands, we are translating
from more understandable geometric descriptions of the mesh,
which are easier to visualize. So, in Figure 8, the high level
description on the left gets translated by our mesh library
functions to the block mesh dictionary in the middle. (Which



Fig. 8. Progression from a simulation idea to a mesh

we visualize by showing the mesh blocks.) The actual mesh
generation software (which is in the CFD software package)
performs the meshing to make the dictionary into a real mesh.

Of course, the downsize to this library is that it is limited to
the specific structured meshes which it knows how to compute.
Right now the program is constrained to a 2D mesh on a
specific set of objects. We are researching other meshing tools
to allow us more flexibility. (See the section on future work.)
However, whatever new tools we use and incorporate, we
are sure to preserve the rescale-for-preview idea of this mesh
utility and the strength of being able to translate from a high-
level description.

C. Execution Monitoring
One of our long-term goals for this project is to build a large

degree of task monitoring to determine the correctness of CFD
simulations in progress. To facilitate this, we have constructed
a number of scripts designed for parsing the simulation output
as it proceeds. So far, we have been interested in monitoring
the simulated time and the Courant numbers. Monitoring the
simulated time is useful because this is the key information
needed to estimate simulation progress. Courant numbers
quantify the number of mesh points across which flow moves
in a single time-step. If the courant numbers are wrong, it
means that either the mesh or the simulation time-step length
need to be adjusted.

We have constructed some tools which pull the simulation
time and the Courant numbers and process them as the
simulation runs. We are still working on how to retrieve that
information from various remote execution systems. However,
if one is using the “local” execution environment, then our web
portal reports estimated percentage completion and produces
real-time self-updating graphs of the maximum Courant num-
bers of a simulation as it runs. We hope to expand this concept
by retrieving this info from remote execution platforms as well
and adding to the data which can be monitored.

D. Result Visualization
The best way to get a quick idea of how a simulation ran is

to use some form of visualization. This includes both graphs

and images of the various pertinent values in flow fields. While
OpenFOAM comes with tools for such visuals, these are for
desktop users with direct access to the data files. Since we are
routing our visuals over the web, we needed to develop our
own scripts for looking at various result files and producing
graphs and images for the user. This data includes things like
velocity fields, pressure fields, and graphs of force coefficients
and graphs along the wake-stream line behind an object. Most
importantly, this includes a visualization of the mesh. In order
to make our data accessible to users, we developed some tools
to produce these visuals, which can then be accessed by the
front-end and displayed.

VII. BACK-END CORE

The back-end core is responsible for reading instructions
from the database and starting or canceling jobs accordingly.
Like the front-end, the back-end is built with a extensible
design. The core of the back-end interacts with the database,
procuring data about tasks to be run. The backend is designed
to be able to interact with a variety of what we call “execution
environments”. For our purposes in this paper, an execution
environment is a way to run executable code. For example, our
first execution environment simply ran the code locally on the
same server as the back-end core. For each kind of execution
environment, six functions must be implemented for the back-
end core to use it. The six functions to be implemented are:
Initialize, Cleanup, IsFull?, IsDone?, Cancel and Start. See
the Table 1 for details. In this way, we designed the system
to extensibly be able to run code in many different kinds of
places. It is the front-end’s responsibility to specify a task
type by setting this value in the database entry for that task.
The back-end core, based on its configuration and the user
permissions, will use that type to decide upon an environment.

We have implemented back-end execution environments for
both local execution, (that is, running the process on the server)
and dispatching to a system called Work Queue. The Work
Queue system is a batch job system that runs on a classic
master-worker setup, and has many different applications that
have been built on or around it [14] [15] [16]. In our section on



future work, we discuss our plan for even more such modules.
The back-end has a configuration file which is read when-

ever the server is started. This configuration specifies, among
other things, the parameters for each desired execution envi-
ronment. For example, our implementation that sends tasks to
the Work Queue system includes a parameter for specifying
the port of the Work Queue, and our implementation for
running jobs locally includes a parameter for capping the
number of tasks run at one time.

VIII. OUR EXPERIENCE

We have had two opportunities to test this system on
unfamiliar users. In each case, we were both encouraged by the
results and learned some lessons in how to make the system
better.

A. First Version

The first version of the project was used to allow users to
run a channel flow simulation. This provided the necessary
tools for a case-study in ‘crowd-sourcing’ [17]. This was our
first attempt at deploying the system with real users. At the
time, many of the features described in this paper were not
yet implemented. This was our first step in integrating a task
control back-end with the CFD code and provided a great
deal of insight into how to robustly design such a system. Our
most important finding in this experience was the critical need
to contain the number of threads running simultaneously on
the server. Out of this experience came the IsFull? function
in the back-end, the ability to set a task “cap” for the local
execution environment and certain front-end enhancements to
prevent users from starting too many tasks at once.

B. Second Version

In order to test the most recent version, we enlisted the
aid of a group of students in a civil engineering class. These
students were asked to perform some simulations of fluid
motion over a circular cylinder. We consider this a reasonable
proof-of-concept for the following reasons. First, while the
environment was simplified, these relative beginners were
still able to perform basic CFD simulations and produce real
results. Second, this group of total newcomers to both CFD
and this system were able to run their simulations without any
complaints or crashes in the system.

We have also been improving since this second version. In
particular, we note that the middle-manager component was
added after this second trial.

IX. FUTURE WORK

The single most important avenue for expanding this project
is to use the extensibility of the front-end and back-end to
produce more modules for more applications. Since we have
built up the core of our system and confirmed its reliability,
we now intend to branch out into using it as a basis for more
and more useful civil engineering applications. In this way, we
can move toward our motivating goals of making this a true
civil engineering toolkit of CFD. In order to do this, we will
emphasize:

• Mesh Generation: Right now, we are confined to the
specific set of meshes which we can produce for our
mesh generation. In order to broaden our applications
for our users, especially for importing custom geometries
for analysis, we must incorporate better mesh tools and
expand upon the mesh supporting tools which we have
developed. In particular, we wish to use more varied
mesh generation techniques, including unstructured mesh
generation [2]. By gathering more mesh-making tools,
we can perform mesh generation on complex or even
arbitrary bluff bodies, making our system that much more
useful to our intended civil engineering audience.

• Front-end Modules: We need more front-end modules to
do more tasks. We are interested in developing tools to
vary between beginners and experts, as well as allowing
for more varied simulation types. Included in this devel-
opment are plans to extend the capacity of the system to
handle a greater variety of CFD analyses useful for civil
engineering.

• Back-end Modules: In the back-end, we seek to develop
a larger number of interfaces to execution platforms. In
particular, we are interested in interfacing with platforms
which will take advantage of the parallelism which is
necessary for many CFD tasks. Also, we intend to con-
sider a better mechanism for deciding which execution
environment will run a particular task.

• Currently, data for this system is locally stored on the
server. We were content with this naive approach since
disk storage was not the focus of this project. However,
going forward in this project we can improve by, first,
exploiting some sort of large distributed file system and,
second, incorporating mechanisms to enforce disk quotas
upon users.

• Real-Time Visualization: In CFD, there is a great interest
in being able to visualize a task as it is being run. It
is also useful, absent a full visual, for some part of a
task’s data to be available for viewing as the task is being
run. This data is helpful for estimating task completion
time or for checking a partially completed simulation for
correctness. (And canceling it if something goes wrong
without having to wait for completion.) All these parts
require the ability to ‘query’ a task in progress. We
are considering the possibility of configuring batch job
systems to allow such a query.

• Executable Dependancies: We find that insuring that
the needed files, libraries, executables and environment
variables are present in a distant environment is not
always trivial across all execution platforms. Since no
complex program runs in isolation, typically there are
many dependancies. We would like to create an explicit
mechanism for specifically defining the files and libraries
that a task needs, and researching ways to insure that the
same are always available.



TABLE I
FUNCTIONS TO IMPLEMENT FOR AN EXECUTION ENVIRONMENT IN THE BACK-END

When function is called Responsibility of function
Initialize Once for each execution environment when

the back-end process is started.
First, if the server failed in an inconsistent state, such as a power failure, tasks may be marked
as being in the Running state when they are not running. The Initialize function must correct
these and other inconsistencies for any tasks marked in the database as belonging to it.
Second, the Initialize function must start any processes or obtain any resources needed to
start jobs. Third, one input to this function is all the parameters for the execution environment
which were set in the configuration file. This function must confirm that whatever values are
required are both set and make sense. It must then record information from those configuration
parameters.

Cleanup Whenever the back-end server is shutting
down

Attempt to cancel all running tasks that belong to this environment and gracefully free all
resources which it has acquired.

IsFull? Periodically, the back-end core will ask each
back-end environment if it can take more
tasks by calling the IsFull? function.

If the particular environment cannot take more tasks, (i.e. it is full) this function should return
1. Otherwise, it should return 0.

IsDone? Periodically, the back-end core will ask each
back-end environment if any of its tasks are
completed.

This function should check if there are any running tasks which are now done or canceling
tasks which are now canceled and, if so, return information about one of them. Also, it
should retrieve files and the terminal output from remote locations to the correct place on
the server.

Cancel If a task is marked in the database for
cancellation, this function will be called for
the environment of that task and supply that
task’s information.

The task should be made to stop as soon as possible. If the task cannot be canceled
immediately, then the IsDone? function should be able to recognize when the cancel is
complete.

Start When a task is ready to begin, this function
is called, with the task data supplied.

Attempt to start a task. Insure that files are moved to the right remote location, if necessary.

X. CONCLUSION

The goal for this system was to devise ways to manage
Computational Fluid Dynamics tasks so that we have a plat-
form upon which we can prepare for users in civil engineering
useful analysis tools. In order to do this, we developed a
set of interlocking components for interfacing between users
and back-end computation systems. Our system is designed
to be as extensible as possible, while still being focused on
CFD. This is with respect to both user interfaces for various
types of CFD tasks in the front-end and flexibility regarding
what kinds of systems can launch tasks in the back-end. In
addition to these main components, we have created numerous
supporting components for attending to various aspects of
CFD workflows.

Our initial experiences have shown the core of our system
to be stable and able to dispatch and control CFD tasks in a
user-friendly way. From this, we hope to extend our system to
incorporate a greater variety of components useful for analysis
in civil engineering and attach to more powerful computational
back-ends in order to run these tasks.

ACKNOWLEDGMENTS

We would like to thank John Quinn and Taylor Seale, who
worked with us to test/break our code, and improve the overall
appearance of our front-end.

This work was supported in part by National Science Foun-
dation Grants OCI-1148330, CBET-0941565, CNS-0855047,
and CNS-0643229. Their support is gratefully acknowledged.

REFERENCES

[1] C. M. Institute, “Navier-stokes equation,” 2012. [Online]. Available:
http://www.claymath.org/millennium/Navier-Stokes Equations/

[2] P. Moin and J. Kim, “Tackling turbulence with supercomputer,” Scientific
American, vol. 276, no. 1, pp. 62–68, 1997.

[3] H. G. Weller, H. Jasak, and G. Tabor, “A tensorial approach to
computational continuum mechanics using object-oriented techniques,”
Computers in Physics, vol. 12, no. 6, pp. 620–631, 1998.

[4] M. Russell and all, “The astrophysics simulation collaboratory: A
science portal enabling community software development,” in 10th IEEE
International Symposium, High Performance Distributed Computing,
2001, pp. 207–215.

[5] M. McLennan and R. Kennell, “Hubzero: A platform for dissemination
and collaboration in computational science and engineering,” Computing
in Science and Engineering, vol. 12, no. 2, pp. 48–52, March/April 2010.

[6] M. Lundstrom and G. Klimeck, “The ncn: Science, simulation, and cyber
services,” in IEEE Conference on Emerging Technologies - Nanoelec-
tronics, January 2006, pp. 496–500.

[7] Novotny and all, “Gridsphere: a portal framework for building collabora-
tions,” Concurrency And Computation: Practice And Experience, no. 16,
pp. 503–513, 2004.

[8] S. Pota and Z. Juhasz, Lecture Notes In Computer Science Computa-
tional Science – ICCS 2006, 2006, no. 3991, ch. Supporting Interactive
Computational Science Applications Within the JGrid Infrastructure, pp.
830–833.

[9] A. Kačeniauskas and R. Pacevič, “Vizlitg: Grid visualization e-service
enabling partial dataset transfer from storage elements of glite-based
grid infrastructure,” Journal Of Grid Computing, pp. 573–589, 2011.

[10] “Cfd online.” [Online]. Available: http://www.cfd-online.com/
[11] Php: Hypertext preprocessor. [Online]. Available: http://www.php.net/
[12] Apache http server project. [Online]. Available: http://httpd.apache.org/
[13] Mysql.com. [Online]. Available: http://www.mysql.com/
[14] A. Thrasher, Z. Musgrave, D. Thain, and S. Emrich, “Shifting the

Bioinformatics Computing Paradigm: A Case Study in Parallelizing
Genome Annotation Using Maker and Work Queue,” in IEEE Inter-
national Conference on Computational Advances in Bio and Medical
Sciences, 2012.

[15] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A Portable
Abstraction for Data Intensive Computing on Clusters, Clouds, and
Grids,” in Workshop on Scalable Workflow Enactment Engines and
Technologies (SWEET) at ACM SIGMOD, 2012.

[16] R. Carmichael, P. Braga-Henebry, D. Thain, and S. Emrich, “Biocom-
pute 2.0: An Improved Collaborative Workspace for Data Intensive
Bio-Science.” Concurrency and Computation: Practice and Experience,
vol. 23, no. 17, pp. 2305–2314, 2011.

[17] Z. Zhai, P. Sempolinski, D. Thain, G. Madey, D. Wei, and A. Kareem,
“Expert-citizen engineering: ”crowdsourcing” skilled citizens,” Depend-
able, Autonomic and Secure Computing, IEEE International Symposium
on, pp. 879–886, 2011.


