\qquad
\qquad

Math 10350, Calculus A
Fall Semester 2006
Final Exam
Monday, December 11, 2006

This Examination contains 25 problems, worth a total of 150 points, on 7 sheets of paper including the front cover. All problems are multiple choice with no partial credit, and each is worth 6 points. Record your answers to these problems by placing an \times through one letter for each problem below:

Books and notes are not allowed. You may not use your calculator.

Sign the pledge: "On my honor, I have neither given nor received unauthorized aid on this Exam":

Part A: Multiple Choice Problems

1. (6 pts.$)$ 1. Find the point on the parabola $y=x^{2}$ at which the tangent line is parallel to the line $2 x+y=0$.
a) $(1,1)$
b) $(0,0)$
c) $(-1,1)$
d) $(2,4)$
e) $(-2,4)$
2. (6 pts.) Which of the following is the value of the limit

$$
\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x^{2}-2 x-3} ?
$$

a) 4
b) 2
c) $\frac{1}{3}$
d) $\frac{1}{2}$
e) The limit does not exist.
3. (6 pts.) Which of the following is the value of the limit

$$
\lim _{x \rightarrow 1} \frac{x-1}{\sqrt{x}-1} ?
$$

a) 2
(b) ∞
(c) 0
(d) -1
(e) 1 .
4. (6 pts.) Let

$$
f(x)= \begin{cases}c x-4, & \text { if } x<2 \\ x^{2}-c x, & \text { if } x \geq 2\end{cases}
$$

where c is a constant. What value of c makes $f(x)$ continuous?
a) $c=-1$
b) $c=0$
c) $c=2$
d) $c=1$
e) No value of c makes $f(x)$ continuous.
5. (6 pts.) A particle moves so that its position at time t is given by

$$
s(t)=3 t^{2}-\frac{32}{\sqrt{t}}
$$

What is the instantaneous velocity of the particle at time $t=4$?
a) 64
b) 22
c) 32
d) 16
e) 26 .
6. (6 pts.) Which of the following is equal to the derivative of the function

$$
f(x)=\frac{x^{2}-1}{x^{2}+1} ?
$$

a) $\frac{4 x^{3}}{\left(x^{2}+1\right)^{2}}$
b) $\frac{-4 x^{3}}{\left(x^{2}+1\right)^{2}}$
c) $\frac{-4 x}{\left(x^{2}+1\right)^{2}}$
d) $\frac{4 x}{\left(x^{2}+1\right)^{2}}$
e) $\frac{2 x}{\left(x^{2}+1\right)^{2}}$
7. (6 pts.) Which of the following is the value of the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{3}-x^{3}}{\Delta x} ?
$$

a) x^{3}
b) $3 x^{2}$
c) x^{2}
d) $3 x^{3}$
e) $2 x^{3}$
8. (6 pts.) Find the derivative of $\frac{1}{\sin (x)}$.
a) $\frac{-\cos x}{\sin x}$
b) $\frac{-1}{\sin ^{2} x}$
c) $\frac{-1}{\sin x}$
d) $\frac{\cos x}{\sin ^{2} x}$
e) $\frac{-\cos x}{\sin ^{2} x}$
9. (6 pts.) Find $\frac{d y}{d x}$ by implicit differentiation of $x y+\sin ^{2} y=10350$.
a) $\frac{-y}{x+2 \sin y \cos y}$
b) $\frac{-(x+y)}{2 \sin y \cos y}$
c) $\frac{-(2 \sin y \cos y+y)}{x}$
d) $\frac{-y}{2 \cos y+x}$
e) $\frac{-y}{2 \sin y+x}$
10. (6 pts.) The minimum value of $f(x)=\frac{x^{3}}{3}-x^{2}-3 x$ on $[-2,2]$ is:
a) $\frac{5}{3}$
b) $-\frac{22}{3}$
c) $-\frac{2}{3}$
d) 0
e) -9
11. (6 pts .) Determine the largest interval(s) on which the function $f(x)=-2 x^{3}+15 x^{2}-24 x$ is increasing.
a) $(-\infty,-4) \cup(-1, \infty)$
b) $(-\infty, 1) \cup(4, \infty)$
c) $(1,4)$
d) $(2,3)$
e) $(-\infty, \infty)$
12. (6 pts.) Determine the largest interval(s) on which the function
$f(x)=-\frac{4}{x-3}$ is concave up.
a) $(-\infty,-3)$
b) $(3, \infty)$
c) $(-\infty, 3)$
d) $(0,3)$
e) $(-\infty, 3) \cup(3, \infty)$
13. (6 pts.) $\lim _{x \rightarrow-\infty} \frac{4 x^{4}+2 x^{3}+7 x-5}{16 x^{5}+3 x^{4}+10350}=$
a) 1
b) $\frac{1}{4}$
c) $-\frac{1}{4}$
d) $-\infty$
e) 0
14. (6 pts.) A duck is 6 feet north and 8 feet east of a buoy. He is swimming due east at a rate of $3 \mathrm{ft} / \mathrm{sec}$. How quickly is his distance from the buoy changing, in $\mathrm{ft} / \mathrm{sec}$?
a) .8
b) 2.4
c) 4.8
d) 0.5
e) $\frac{8 \sqrt{4} 5}{45}$
15. (6 pts.) If a differentiable function $f(x)$ satisfies $f(0)=f(5)$, then which of the following must be true?
a) There exists c in $(0,5)$ with $f^{\prime}(c)<0$.
b) There exists c in $(0,5)$ with $f(c)=0$.
c) There exists c in $(0,5)$ with $f^{\prime}(c)>0$.
d) There exists c in $(0,5)$ with $f^{\prime}(c)=0$.
e) There exists c in $(0,5)$ with $f^{\prime \prime}(c)=0$.
16. (6 pts.) Find the Riemann sum for $f(x)=-x,-2 \leq x \leq 2$, using two subintervals of equal length, and left endpoints.
a) 2
b) 4
c) -2
d) 3
e) 0 .
17. (6 pts.) Use differentials to approximate $\sin (0.1)$ recognizing that $\sin (0)=0$.
a) 0.1
b) 0
c) -0.1
d) 0.2
e) 0.3 .
18. (6 pts.) Compute the definite integral $\int_{0}^{3} \sqrt{9-x^{2}} d x$. (Hint: interpret as an area.)
a) 9π
b) 18
c) $\frac{9}{4} \pi$
d) $\frac{9}{2} \pi$
e) $\frac{1}{3}$.
19. (6 pts.) An object is moving with velocity $v(t)=6 t+6 \mathrm{~m} / \mathrm{sec}$. Find the distance traveled by the object between time $t=0$ and $t=5$.
a) -30 m
b) 36 m
c) 45 m
d) 180 m
e) 105 m
20. (6 pts.) An open box (that is, a box with no top) is to have a square base, and a volume of 16 cubic meters. The material for the base costs $\$ 1$ per square meter, and the material for the sides costs $\$ 2$ per square meter. Find the cost of the cheapest such box.
a) $\$ 16$
b) $\$ 48$
c) $\$ 32$
d) $\$ 64$
e) $\$ 24$
21. (6 pts.) Determine the largest interval(s) on which the function $F(x)=\int_{0}^{x} \frac{1}{3+t^{2}} d t$ is concave up.
a) $(-\infty,-\sqrt{3})$
b) There is no interval on which $F(x)$ is concave up.
c) $(0, \infty)$
d) $(-\infty, 0)$
e) $(-\infty, 0) \cup(0, \infty)$
22. (6 pts.) Compute the indefinite integral $\int t^{2}\left(t-\frac{2}{t}\right) d t$:
a) $3 t^{2}-2+C$
b) $\frac{t^{3}}{3}\left(\frac{t^{2}}{2}-2\right)+C$
c) $t^{3}-2 t+C$
d) $\frac{1}{4} t^{4}-t^{2}+C$
e) $\frac{2}{3} t^{3}+C$.
23. (6 pts.) Suppose that $\int_{0}^{6} f(x) d x=8$ and $\int_{0}^{4} f(x) d x=2$. Compute $\int_{6}^{4} f(x) d x$:
a) -10
b) 6
c) -6
d) 10
e) 12 .
24. (6 pts.) Find the area of the region bounded by the graph of $f(x)=\sin (3 x)$, the x-axis, and the lines $x=0$ and $x=\pi / 6$.
a) 1
b) $\frac{1}{3}$
c) -3
d) 0
e) $-\frac{1}{3}$.
25. (6 pts.) Evaluate the integral $\int x \sqrt{x+1} d x$.
a) $\frac{2}{5}(x+1)^{5 / 2}+\frac{2}{3}(x+1)^{3 / 2}+C$
b) $\frac{2}{3}\left(x^{3}+x^{2}\right)^{3 / 2}+C$
c) $\frac{2}{3}(x+1)^{3 / 2}-2(x+1)^{1 / 2}+C$
d) $\frac{2}{3}(x+1)^{3 / 2}+C$
e) $\frac{2}{5}(x+1)^{5 / 2}-\frac{2}{3}(x+1)^{3 / 2}+C$

