\qquad Instructor: \qquad

Math 10350, Calculus A
 Fall Semester 2006
 Exam 2

This Examination contains $\mathbf{1 6}$ problems, worth a total of $\mathbf{1 0 0}$ points, on $\mathbf{8}$ sheets of paper including the front cover. The first 12 problems (section A) are multiple choice with no partial credit, and each is worth 5 points. Record your answers to these problems by placing an \times through one letter for each problem below:

The last 4 problems (section B) are partial credit problems worth 10 points each. For these problems, show your computations and clearly mark your answers on the page. Books and notes are not allowed. You may not use your calculator.

Sign the pledge: "On my honor, I have neither given nor received unauthorized aid on this Exam":
\qquad Instructor: \qquad

Math 10350, Calculus A
 Fall Semester 2006
 Exam 2

This Examination contains $\mathbf{1 6}$ problems, worth a total of $\mathbf{1 0 0}$ points, on $\mathbf{8}$ sheets of paper including the front cover. The first 12 problems (section A) are multiple choice with no partial credit, and each is worth 5 points. Record your answers to these problems by placing an \times through one letter for each problem below:

The last 4 problems (section B) are partial credit problems worth 10 points each. For these problems, show your computations and clearly mark your answers on the page. Books and notes are not allowed. You may not use your calculator.

Sign the pledge: "On my honor, I have neither given nor received unauthorized aid on this Exam":

Part A: Multiple Choice Problems

1. (5 points) Find $\frac{d y}{d x}$ by implicit differentiation of $y^{2}+(\sin x) y=10$.
a) $\frac{d y}{d x}=-\frac{y \sin x}{2 y+\sin x}$
b) $\frac{d y}{d x}=-\frac{y \cos x}{2 y+\cos x}$
c) $\frac{d y}{d x}=-\frac{y \cos x}{2 y+\sin x}$
d) $\frac{d y}{d x}=\frac{y \cos x}{2 y+\cos x}$
e) $\frac{d y}{d x}=\frac{y \cos x}{2 y+\sin x}$
2. (5 points) The maximum value of $f(x)=x^{3}-3 x$ on $[-3,3]$ is:
a) 18
b) 2
c) 1
d) 36
e) 21
3. (5 points.) The critical numbers of $f(x)=x^{\frac{1}{3}}+\frac{x}{3}$ are:
a) $0,-1$
b) 0
c) There are none.
d) $\sqrt{27}, 0$
e) -1
4. (5 points) If $f(x)$ is continuous and differentiable everywhere and $f(a)=f(b)$, then
a) There exists c in (a, b) with $f^{\prime}(c)>0$.
b) There exists c in (a, b) with $f(c)=0$.
c) There exists c in (a, b) with $f^{\prime}(c)=0$.
d) There exists c in (a, b) with $f^{\prime}(c)<0$.
e) There exists c in (a, b) with $f^{\prime \prime}(c)=0$.
5. (5 points.) The function $f(x)=x^{3}-\frac{9}{2} x^{2}+107$ is decreasing on:
a) $(-\infty, 0) \cup(0, \infty)$
b) $(-\infty, 0)$
c) $(3, \infty)$
d) $(-\infty, 0) \cup(3, \infty) \quad$ e) $(0,3)$
6. (5 points.) The graph of the function $f(x)=x^{3}-\frac{9}{2} x^{2}$
a) is concave downward on $\left(-\infty, \frac{3}{2}\right)$ and concave upward on $\left(\frac{3}{2}, \infty\right)$.
b) is concave upward for all x.
c) is concave downward for all x.
d) has two inflection points.
e) is concave upward on $\left(-\infty, \frac{3}{2}\right)$ and concave downward on $\left(\frac{3}{2}, \infty\right)$.
7. (5 points.) According to the Second Derivative Test, the function $f(x)=$ $\sin (3 x)$ has
a) an inflection point at $x=\frac{\pi}{6}$.
b) a relative minimum at at $x=\frac{\pi}{6}$.
c) a relative maximum at $x=\frac{\pi}{6}$.
d) neither a relative maximum nor a relative minimum at $x=\frac{\pi}{6}$.
e) a point of discontinuity at $x=\frac{\pi}{6}$.
8. (5 points.)

$$
\lim _{x \rightarrow-\infty} \frac{3 x^{7}+18 x^{3}+9 x^{2}+1}{27 x^{7}+7 x^{5}-54 x+8}=
$$

a) $\frac{1}{9}$
b) $-\frac{1}{9}$
c) ∞
d) 0
e) $-\infty$
9. (5 points.)

$$
\lim _{x \rightarrow \infty} \frac{\cos x}{x}=
$$

a) 1
b) 0
c) -1
d) it does not exist
e) π
10. (5 points.) What is the derivative of $\sin ^{2}(4 x)$?
a) $2 \sin (4 x) \cos (4 x)$
b) $8 \sin (4 x)$
c) $2 \sin (4 x)$
d) $8 \sin (4 x) \cos (4 x)$
e) $16 \sin (4 x) \cos (4 x)$
11. (5 points) A car leaves place A at 8am and travels along a straight road, arriving at place B at 10am. The distance between A and B is 120 miles. According to the Mean Value Theorem, what is the instantaneous velocity of the car at some time during the drive?
a) $50 \mathrm{miles} / \mathrm{hour}$
b) $60 \mathrm{miles} /$ hour
c) $\frac{1}{60}$ miles $/$ hour
d) 0 miles/hour
e) 1 mile/hour
12. (5 points) The graph $y=x+\cos x, 0 \leq x \leq \pi$, has a horizontal tangent at the point
a) $\left(\frac{\pi}{2}, \frac{\pi}{2}+1\right)$
b) $(0,1)$
c) $\left(\frac{\pi}{4}, \frac{\pi}{4}+\frac{\sqrt{2}}{2}\right)$
d) $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$
e) $\left(\frac{\pi}{4}, \frac{\pi}{4}-\frac{\sqrt{2}}{2}\right)$

Part B: Partial Credit Problems

13. (10 points.) Ice in the shape of a cube is melting so that its volume is decreasing at the rate of 3 cubic inches per minute. How fast is its height decreasing when the ice cube is 6 inches high?

Answer:
14. (10 points.) Let $f(x)=\frac{x+1}{x-1}$.
a) What are the vertical asymptotes of the graph of f ?

Answer:

b) What are the horizontal asymptotes of the graph of f ?

Answer:

c) Determine the intervals where f is increasing or decreasing.
15. (10 points.) a) An object moves along the circle $x^{2}+y^{2}=9$ so that $\frac{d y}{d t}=\sqrt{2}$.

Find $\frac{d x}{d t}$ when the object is at the point $(1,2 \sqrt{2})$.
b) Find $\frac{d y}{d x}$ for the curve $x^{2}+y^{2}=9$.
c) Determine the equation of the tangent line to the curve $x^{2}+y^{2}=9$ at the point $(1,2 \sqrt{2})$.
16. (10 points.) Find all local extrema of $f(x)=4 x^{5}-5 x^{4}$.

