Name: \qquad

This sample test does not cover all materials in our test Multiple Choice

1. (6 pts.) Let \mathbf{A} and \mathbf{B} be two non-zero vectors in 3 -dimensional spaces. If their scalar product (dot product) satisfies $\mathbf{A} \cdot \mathbf{B}=\mathbf{0}$, then
(a) The angle between \mathbf{A} and \mathbf{B} is $\pi / 8$
(b) The angle between \mathbf{A} and \mathbf{B} is $\pi / 4$
(c) $\mathbf{A} \times \mathbf{B}$ must be a zero vector
(d) A and B are parallel to each other
(e) A and \mathbf{B} are perpendicular to each other
2. (6 pts.) Let the position vector (with its tail at the origin) of a moving particle be $\mathbf{r}=\mathbf{r}(t)=\sin \frac{\pi}{2} t \mathbf{i}-\cos \frac{\pi}{2} t \mathbf{j}+3 t \mathbf{k}$. Find the velocity vector and the speed at $t=1$.
(a) velocity vector $\frac{\pi}{2} \mathbf{i}+3 \mathbf{k}$ and speed $\sqrt{\frac{\pi^{2}}{4}+9}$
(b) velocity vector $\frac{\pi}{2} \mathbf{j}+3 \mathbf{k}$ and speed $\sqrt{\frac{\pi^{2}}{4}+9}$
(c) velocity vector $\mathbf{j}+3 \mathbf{k}$ and speed $\sqrt{10}$
(d) velocity vector $\mathbf{i}+3 \mathbf{k}$ and speed $\sqrt{10}$
(e) velocity vector $\frac{\pi}{2} \mathbf{i}-\frac{\pi}{2} \mathbf{j}+3 \mathbf{k}$ and speed $\sqrt{\frac{\pi^{2}}{2}+9}$

Name:
3. (6 pts .) If $\phi=z \sin x+y^{2}$, find the gradient of ϕ at $(0,1,2)$. The gradient is
(a) $(2,2,0)$
(b) $(0,2,1)$
(c) $(1,2,0)$
(d) $(1,2,1)$
(e) $(2,2,1)$
4. (6 pts.) If a sound wave is represented by $p(t)=\sum_{n=1}^{\infty} \frac{\sin 101 n t}{90(n-5)^{2}+1}$, what is the apparent frequency (the frequency you can hear)?
(a) $\frac{303}{2 \pi}$
(b) $\frac{101}{2 \pi}$
(c) $\frac{707}{2 \pi}$
(d) $\frac{505}{2 \pi}$
(e) $\frac{404}{2 \pi}$

Name:
5. (6 pts.$)$ Find the tangent plane of the surface $x^{2}+y^{2}+z^{4}=3$ at the point $(1,1,1)$. The tangent plane is
(a) $2(x-1)+2(y-1)+(z-1)=0$
(b) $(x-1)+(y-1)+2(z-1)=0$
(c) $(x-1)+(y-1)+(z-1)=0$
(d) $(x-1)+(y-1)+4(z-1)=0$
(e) $(x-1)+(y-1)+\frac{1}{2}(z-1)=0$
6. (6 pts.) If $f(x)$ is an even function and $g(x)$ is an odd function, then
(a) $\quad f(x)+g(x)$ is always an odd function
(b) $f(x) \cdot g(x)$ is always an even function
(c) $\frac{f(x)}{g(x)}$ is always an even function
(d) $f(x)+g(x)$ is always an even function
(e) $\quad f(x) \cdot g(x)$ is always an odd function

Name: \qquad
Instructor: Sample Test 3, ACMS 20550
7. (6 pts.) Find the directional derivative of $x y^{2}+z^{5}$ at the point $(1,1,1)$ in the direction of $(1,-1,1)$
(a) $\frac{4}{\sqrt{3}}$
(b) $\frac{8}{\sqrt{3}}$
(c) $\frac{5}{\sqrt{3}}$
(d) $\frac{2}{\sqrt{3}}$
(e) $\frac{1}{\sqrt{3}}$
8. (6 pts.) For the area D in the picture below, which of the following represents the integral $\iint_{D} f(x, y) d x d y$?

(a) $\int_{x=-1}^{2}\left(\int_{y=x^{2}}^{y-2} f(x, y) d y\right) d x$
(b) $\int_{y=1}^{4}\left(\int_{x=y-2}^{\sqrt{y}} f(x, y) d x\right) d y$
(c) $\int_{x=-1}^{2}\left(\int_{y=x^{2}}^{x+2} f(x, y) d y\right) d x$
(d) $\int_{y=0}^{4}\left(\int_{x=y-2}^{\sqrt{y}} f(x, y) d x\right) d y$
(e) $\int_{x=-1}^{2}\left(\int_{y=x+2}^{x^{2}} f(x, y) d y\right) d x$

Name:
9.(6 pts.) Which of the following represents the line integral $\int_{C} g(x) d y+f(y) d x$, where C is the unit circle $x^{2}+y^{2}=1$, oriented counterclockwise.
(a) $\int_{0}^{2 \pi}(-g(\cos \theta) \cos \theta+f(\sin \theta) \sin \theta) d \theta$
(b) $\int_{0}^{2 \pi}(g(\cos \theta) \sin \theta-f(\sin \theta) \cos \theta) d \theta$
(c) $\int_{0}^{2 \pi}(g(\cos \theta) \sin \theta+f(\sin \theta) \cos \theta) d \theta$
(d) $\int_{0}^{2 \pi}(g(\cos \theta) \cos \theta-f(\sin \theta) \sin \theta) d \theta$
(e) $\int_{0}^{2 \pi}(g(\cos \theta) \cos \theta+f(\sin \theta) \sin \theta) d \theta$
10. (6 pts .) Find the area of the surface $2 z=x^{2}+y^{2}$ over the unit disc $x^{2}+y^{2}<1$.
(a) $(2 \pi / 3)^{*}(-1+\sqrt{ } 8)$
(b) 0
(c) $4 \pi / 3$
(d) $8 \pi / 3$
(e) $2 \pi / 3$

Name:
Instructor: Sample Test 3, ACMS 20550

Partial Credit
You must show your work on the partial credit problems to receive credit!
11. (14 pts.)
(a) State the divergence theorem.
(b) Compute $\iint_{D} \mathbf{V} \cdot \mathbf{n} d \sigma$, where D is the ellipsoid surface $\frac{x^{2}}{1}+\frac{y^{2}}{4}+\frac{z^{2}}{9}=1$, the vector \mathbf{n} is the exterior normal vector, and $\mathbf{V}=y^{2} \mathbf{i}+y \mathbf{j}-z \mathbf{k}$.

Name:
Instructor: Sample Test 3, ACMS 20550

Partial Credit

You must show your work on the partial credit problems to receive credit!

12.(13 pts.)

(a) If $f(x)$ is represented by a Fourier Sine Series

$$
f(x)=\sum_{n=1}^{\infty} a_{n} \sin (n \pi x), \quad-\pi<x<\pi
$$

what is the formula for a_{n} ?
(b) Compute the Fourier Sine series for the function

$$
f(x)= \begin{cases}2 & 0<x<\pi \\ -2 & -\pi<x<0\end{cases}
$$

Name:
Instructor: Sample Test 3, ACMS 20550
13.(13 pts.)

Using appropriate coordinate system, evaluate the integral

$$
\iint_{D} e^{-x^{2}-y^{2}} d x d y
$$

where D is the unit solid disk. Show all your work.

Formula Sheet

1. Surface integral on D represented by $\phi(x, y, z)=0$

$$
\iint_{D} d A=\iint \sec \gamma d x d y, \quad \sec \gamma=\frac{\sqrt{\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}+\left(\frac{\partial \phi}{\partial z}\right)^{2}}}{\left|\frac{\partial \phi}{\partial z}\right|}
$$

Surface integral on D represented by $z=f(x, y)$

$$
\iint_{D} d A=\iint \sec \gamma d x d y, \quad \sec \gamma=\sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

2. Cross product

$$
\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C}
$$

3. Volume generated by the vectors $\vec{A}, \vec{B}, \vec{C}$.

If $\vec{A}=\left(A_{1}, A_{2}, A_{3}\right), \vec{B}=\left(B_{1}, B_{2}, b_{3}\right), \vec{C}=\left(C_{1}, C_{2}, C_{3}\right)$, then

$$
\vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right|
$$

4. Polar coordinate system $(r \geq 0,0 \leq \theta \leq 2 \pi)$

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}, \quad d x d y=r d r d \theta\right.
$$

5. Cylindrical coordinate system ($r \geq 0,0 \leq \theta \leq 2 \pi$)

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \quad, \quad d x d y d z=r d r d \theta d z \\
z=z
\end{array}\right.
$$

6. Spherical coordinate system ($r \geq 0,0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi)$

$$
\left\{\begin{array}{l}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \quad, \quad d x d y d z=r^{2} \sin \theta d r d \theta d \phi \\
z=r \cos \theta
\end{array}\right.
$$

