Test 1, Problem 11

Find the Taylor series of the following functions. Write your answer in the format of a summation. For example, $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$.
(a) $\frac{1}{1+x^{2}}$.

Sol. Substituting x with $\left(-x^{2}\right)$ in the above formula, we get

$$
\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

(b) $\arctan x$ (use the result from (a))

Sol. $\arctan x=\int_{0}^{x} \frac{1}{1+u^{2}} d u=\sum_{n=0}^{\infty} \int_{0}^{x}(-1)^{n} u^{2 n} d u=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$.

Problem 12,
The formula $e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ is valid for all x.
(a) For $|x| \leq 1$, write the formula for the error estimates covered in lecture using n-terms

$$
\sum_{k=0}^{n} \frac{x^{k}}{k!}
$$

as the approximation for e^{x}.

Sol.

$$
\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}=\frac{e^{c}}{(n+1)!} x^{n+1}, \quad|x| \leq 1, \quad-1 \leq c \leq 1
$$

(b) Using (a), for $|x| \leq 1$, find out the minimum number n needed in order to have an error less than 0.001. Justify your answer. For those without a calculator, we list the first few factorial numbers and the approximation of the number e here $(2!=2,3!=6,4!=24,5!=120,6!=720,7!=5040,8!=40320$ and $e \approx 2.718)$

Sol. Want

$$
\left|\frac{e^{c}}{(n+1)!} x^{n+1}\right| \leq \frac{e^{1}}{(n+1)!} \leq \frac{2.718}{(n+1)!}<0.001 . \text { Thus }(n+1)!>2718, \text { so that } n+1 \geq 7
$$

Answer: $n=6$

Probelm 13,
Use Taylor series to find

$$
\frac{d^{8}}{d x^{8}}\left(x^{4}\left[1-\cos \left(x^{2}\right)\right]\right) \text { at } x=0 .
$$

Show all your work.

Sol. The only term that matters is the term involving x^{8}. The terms with order less than x^{8} are all gone after differentiation. The terms with order greater than x^{8} are all 0 after plug in $x=0$. Using the Taylor expansion for cos we find that the x^{8} order term is $\frac{x^{8}}{2}$. Thus the answer is

$$
\frac{8!}{2}
$$

