ACMS 20550: Applied Math. Method I
Exam III, Version pink
November 11, 2021

Name: \qquad
Instructor: \qquad

- The Honor Code is in effect for this examination. All work is to be your own.
- You may use a BASIC calculator. (Cell phone calculator -YES. Graphic calculators - NO).
- The exam lasts for 75 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

It is a violation of the honor code to give or to receive unauthorized aid on this Exam.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. a	b	c	d	e
2. a	b	c	d	e
3. a	b	c	d	e
4. a	b	c	d	e
5. a	b	c	d	e
6. a	b	c	d	e
7. a	b	c	d	e
8. a	b	c	d	e
9. a	b	c	d	e
10. a	b	c	d	e

Please do NOT write in this box.	
Multiple Choice	\square
11.	
12.	
Total	\square

Multiple Choice

1. $(6$ pts. $)$ For the vectors $\mathbf{A}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ and $\mathbf{B}=2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$, the work done by the force \mathbf{B} on the displacement \mathbf{A} is
(a) 0
(b) 3
(c) 4
(d) $\quad-2$
(e) 10
2. (6 pts.) Find the speed (magnitude of the velocity) of a moving particle whose position is given by $\mathbf{r}=\mathbf{r}(t)=2 t^{2} \mathbf{i}-3 t \mathbf{j}+(t-1)^{2} \mathbf{k}$ at time $t=1$.
(a) 3 .
(b) 2 .
(c) 0 .
(d) 5 .
(e) 4 .
3. $(6$ pts.) The volume between the planes $z=2 x+3 y+5$ and $z=2 x+7 y+7$ over the triangle with vertices $(0,0),(2,0)$ and $(2,1)$.
(a) $\frac{2}{3}$
(b) $\frac{9}{2}$
(c) $\frac{5}{2}$
(d) $\frac{10}{3}$
(e) $\frac{7}{3}$
4. $(6 \mathrm{pts}$.$) For which value of c$ is the vector field $\mathbf{F}=\left(c x^{3} y^{4}+x\right) \mathbf{i}+\left(2 x^{4} y^{3}+y\right) \mathbf{j}$ conservative?
(a) 2
(b) -3
(c) -2
(d) -1
(e) 3
5. (6 pts.) Consider the surface area S formed by revolving the curve $y=1+\sin x$ around the x-axis from $x=0$ to $x=2 \pi$. The surface area of S is given by the integral
(a) $2 \pi \int_{x=0}^{2 \pi} \sin x \sqrt{1+\cos ^{2} x} \mathrm{~d} x$
(b) $2 \pi \int_{x=0}^{2 \pi} \sqrt{1+\cos ^{2} x} \mathrm{~d} x$
(c) $\quad 2 \pi \int_{x=0}^{2 \pi}(1+\sin x)^{2} \sqrt{1+\cos ^{2} x} \mathrm{~d} x$
(d) $2 \pi \int_{x=0}^{2 \pi} \sin ^{2} x \sqrt{1-\cos ^{2} x} \mathrm{~d} x$
(e) $\quad 2 \pi \int_{x=0}^{2 \pi}(1+\sin x) \sqrt{1+\cos ^{2} x} \mathrm{~d} x$
6. (6 pts.) Using Green's Theorem or otherwise, calculate the integral $\oint_{C} 2 y \mathrm{~d} x-3 x \mathrm{~d} y$, where C is the square bounded by $x=3, x=5, y=1$ and $y=3$.
(a) 10 .
(b) 5 .
(c) -20 .
(d) 4 .
(e) -5 .
7. (6 pts.) For the shaded area A in the picture below, which of the following represents the integral $\iint_{A} f(x, y) d x d y$.

(a) $\int_{y=0}^{1}\left(\int_{x=y^{2}}^{y} f(x, y) d x\right) d y$.
(b) $\int_{x=0}^{1}\left(\int_{y=x^{3}}^{\sqrt{x}} f(x, y) d y\right) d x$.
(c) $\int_{x=0}^{1}\left(\int_{y=0}^{1} f(x, y) d y\right) d x$.
(d) $\int_{y=0}^{1}\left(\int_{x=0}^{1} f(x, y) d x\right) d y$.
(e) $\int_{y=0}^{1}\left(\int_{x=\sqrt{y}}^{y^{3}} f(x, y) d x\right) d y$.
8. (6 pts .) Find the directional derivative of $x y^{2}+z^{5}$ at the point $(1,1,1)$ in the direction of $\mathbf{u}=(1,-1,1)$. Hint: remember to normalize the direction \mathbf{u} !
(a) $\frac{1}{\sqrt{3}}$
(b) $\frac{5}{\sqrt{3}}$
(c) $\frac{2}{\sqrt{3}}$
(d) $\frac{4}{\sqrt{3}}$
(e) $\frac{8}{\sqrt{3}}$
9. (6 pts .) Find the area of the plane $2 x-3 y-4 z=9$ cut out by the cylinder $x^{2}+y^{2}=4$.
(a) $\sqrt{29} \pi$
(b) 2π
(c) 4π
(d) $\frac{\sqrt{29}}{3} \pi$
(e) $\frac{\sqrt{13}}{2} \pi$
10. (6 pts.) Consider a scalar field $\phi(x, y)$ and vector field $\mathbf{F}=F_{1}(x, y) \mathbf{i}+F_{2}(x, y) \mathbf{j}$. The quantities
(i) $\nabla \cdot(\nabla \phi)$
(ii) $\mathbf{F} \times \nabla \phi$
(iii) $\nabla \cdot(\phi \mathbf{F})$
are best described by which statement? (Recall: $\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}$)
(a) (i) is a scalar and (ii), (iii) are vectors.
(b) (i),(iii) are scalars and (ii) is a vector.
(c) (i), (ii) and (iii) are scalars.
(d) (i), (ii) are scalars, (iii) is a vector.
(e) (i), (ii) and (iii) are vectors

Partial Credit
You must show your work on the partial credit problems to receive credit!
11. (20 pts.)
(a) [10pts] By changing to polar coordinates, evaluate the integral

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\sqrt{x^{2}+y^{2}}} d x d y
$$

(b) $[10 \mathrm{pts}]$ Evaluate $\iint_{A} 3 x y \mathrm{~d} x \mathrm{~d} y$ where A is the triangle with vertices $(0,0),(3,0),(1,2)$.

Partial Credit
You must show your work on the partial credit problems to receive credit!

12.(20 pts.)

(a) [10pts] By changing the order of integration, evaluate the double integral

$$
\int_{y=0}^{1} \int_{x=y^{2}}^{1} \frac{e^{x}}{\sqrt{x}} d x d y
$$

(b) $[10 \mathrm{pts}]$ Find the area of the surface $2 z=x^{2}+y^{2}$ over the unit disc $x^{2}+y^{2}<1$.

Formula Sheet

1. Surface integral on D represented by $\phi(x, y, z)=0$

$$
\iint_{D} d A=\iint \sec \gamma d x d y, \quad \sec \gamma=\frac{\sqrt{\left(\frac{\partial \phi}{\partial x}\right)^{2}+\left(\frac{\partial \phi}{\partial y}\right)^{2}+\left(\frac{\partial \phi}{\partial z}\right)^{2}}}{\left|\frac{\partial \phi}{\partial z}\right|}
$$

Surface integral on D represented by $z=f(x, y)$

$$
\iint_{D} d A=\iint \sec \gamma d x d y, \quad \sec \gamma=\sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

2. Green's Theorem: For bounded region A and continuous $P(x, y), Q(x, y)$

$$
\iint_{A}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{\partial A}(P d x+Q d y) .
$$

3. Volume generated by the vectors $\vec{A}, \vec{B}, \vec{C}$.

If $\vec{A}=\left(A_{1}, A_{2}, A_{3}\right), \vec{B}=\left(B_{1}, B_{2}, b_{3}\right), \vec{C}=\left(C_{1}, C_{2}, C_{3}\right)$, then

$$
\vec{A} \cdot(\vec{B} \times \vec{C})=\left|\begin{array}{lll}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3} \\
C_{1} & C_{2} & C_{3}
\end{array}\right|
$$

4. Polar coordinate system $(r \geq 0,0 \leq \theta \leq 2 \pi)$

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}, \quad d x d y=r d r d \theta\right.
$$

5. Cylindrical coordinate system $(r \geq 0,0 \leq \theta \leq 2 \pi)$

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta \quad, \quad d x d y d z=r d r d \theta d z \\
z=z
\end{array}\right.
$$

6. Spherical coordinate system $(r \geq 0,0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi)$

$$
\left\{\begin{array}{l}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \quad, \quad d x d y d z=r^{2} \sin \theta d r d \theta d \phi \\
z=r \cos \theta
\end{array}\right.
$$

