ACMS 20550: Applied Math. Method I Exam III, Version pink November 11, 2021

Name:	
Instructor:	

- The Honor Code is in effect for this examination. All work is to be your own.
- You may use a BASIC calculator. (Cell phone calculator -YES. Graphic calculators NO).
- The exam lasts for 75 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 10 pages of the test.

It is a violation of the honor code to give or to receive unauthorized aid on this Exam.

		C	Good Luck!		
PLEA	ASE MARK	YOUR	ANSWERS WITH	AN X, not	t a circle!
1.	a	b	С	d	e
2.	a	b	С	d	е
3.	a	b	С	d	е
4.	a	b	С	d	е
5.	a	b	С	d	е
6.	a	b	С	d	е
7.	a	b	С	d	е
8.	a	b	С	d	е
9.	a	b	С	d	е
10.	a	b	С	d	е

Please do NOT	write in this box.
Multiple Choice	
11.	
12.	
Total	

Multiple Choice

1.(6 pts.)For the vectors $\mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + \mathbf{k}$ and $\mathbf{B} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$, the work done by the force \mathbf{B} on the displacement \mathbf{A} is

- (a) 0 (b) 3 (c) 4
- (d) -2 (e) 10

2.(6 pts.) Find the speed (magnitude of the velocity) of a moving particle whose position is given by $\mathbf{r} = \mathbf{r}(t) = 2t^2 \mathbf{i} - 3t \mathbf{j} + (t-1)^2 \mathbf{k}$ at time t = 1.

- (a) 3. (b) 2. (c) 0.
- (d) 5. (e) 4.

3.(6 pts.) The volume between the planes z = 2x + 3y + 5 and z = 2x + 7y + 7 over the triangle with vertices (0,0), (2,0) and (2,1).

- (a) $\frac{2}{3}$ (b) $\frac{9}{2}$ (c) $\frac{5}{2}$
- (d) $\frac{10}{3}$ (e) $\frac{7}{3}$

4.(6 pts.) For which value of c is the vector field $\mathbf{F} = (cx^3y^4 + x)\mathbf{i} + (2x^4y^3 + y)\mathbf{j}$ conservative?

- (a) 2 (b) -3 (c) -2
- (d) -1 (e) 3

5.(6 pts.) Consider the surface area S formed by revolving the curve $y = 1 + \sin x$ around the x-axis from x = 0 to $x = 2\pi$. The surface area of S is given by the integral

(a)
$$2\pi \int_{x=0}^{2\pi} \sin x \sqrt{1 + \cos^2 x} \, \mathrm{d}x$$

(b)
$$2\pi \int_{x=0}^{2\pi} \sqrt{1 + \cos^2 x} \, \mathrm{d}x$$

(c)
$$2\pi \int_{x=0}^{2\pi} (1+\sin x)^2 \sqrt{1+\cos^2 x} \, \mathrm{d}x$$

(d)
$$2\pi \int_{x=0}^{2\pi} \sin^2 x \sqrt{1 - \cos^2 x} \, \mathrm{d}x$$

(e)
$$2\pi \int_{x=0}^{2\pi} (1+\sin x)\sqrt{1+\cos^2 x} \, \mathrm{d}x$$

6.(6 pts.) Using Green's Theorem or otherwise, calculate the integral $\oint_C 2y dx - 3x dy$, where C is the square bounded by x = 3, x = 5, y = 1 and y = 3.

- (a) 10. (b) 5. (c) -20.
- (d) 4. (e) -5.

7.(6 pts.) For the shaded area A in the picture below, which of the following represents the integral $\iint_A f(x, y) dx dy$.

8.(6 pts.) Find the directional derivative of $xy^2 + z^5$ at the point (1, 1, 1) in the direction of $\mathbf{u} = (1, -1, 1)$. Hint: remember to normalize the direction \mathbf{u} !

(a)
$$\frac{1}{\sqrt{3}}$$
 (b) $\frac{5}{\sqrt{3}}$ (c) $\frac{2}{\sqrt{3}}$

(d) $\frac{4}{\sqrt{3}}$ (e) $\frac{8}{\sqrt{3}}$

9.(6 pts.) Find the area of the plane 2x - 3y - 4z = 9 cut out by the cylinder $x^2 + y^2 = 4$.

- (a) $\sqrt{29}\pi$ (b) 2π (c) 4π
- (d) $\frac{\sqrt{29}}{3}\pi$ (e) $\frac{\sqrt{13}}{2}\pi$

10.(6 pts.) Consider a scalar field $\phi(x, y)$ and vector field $\mathbf{F} = F_1(x, y)\mathbf{i} + F_2(x, y)\mathbf{j}$. The quantities

- (i) $\nabla \cdot (\nabla \phi)$
- (ii) $\mathbf{F} \times \nabla \phi$
- (iii) $\nabla \cdot (\phi \mathbf{F})$

are best described by which statement? (Recall: $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j}$)

- (a) (i) is a scalar and (ii), (iii) are vectors.
- (b) (i),(iii) are scalars and (ii) is a vector.
- (c) (i), (ii) and (iii) are scalars.
- (d) (i), (ii) are scalars, (iii) is a vector.
- (e) (i), (ii) and (iii) are vectors

Partial Credit You must show your work on the partial credit problems to receive credit!

11.(20 pts.)

(a) [10pts] By changing to polar coordinates, evaluate the integral

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\sqrt{x^2 + y^2}} dx dy.$$

(b) [10pts] Evaluate $\iint_A 3xy \, dx dy$ where A is the triangle with vertices (0,0), (3,0), (1,2).

Partial Credit

You must show your work on the partial credit problems to receive credit!

12.(20 pts.)

(a) [10pts] By changing the order of integration, evaluate the double integral

$$\int_{y=0}^{1} \int_{x=y^2}^{1} \frac{e^x}{\sqrt{x}} dx dy.$$

(b) [10pts] Find the area of the surface $2z = x^2 + y^2$ over the unit disc $x^2 + y^2 < 1$.

Formula Sheet

1. Surface integral on D represented by $\phi(x, y, z) = 0$

$$\iint_{D} dA = \iint \sec \gamma dx dy, \quad \sec \gamma = \frac{\sqrt{\left(\frac{\partial \phi}{\partial x}\right)^{2} + \left(\frac{\partial \phi}{\partial y}\right)^{2} + \left(\frac{\partial \phi}{\partial z}\right)^{2}}}{\left|\frac{\partial \phi}{\partial z}\right|}.$$

Surface integral on D represented by z = f(x, y)

$$\iint_D dA = \iint \sec \gamma dx dy, \quad \sec \gamma = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}.$$

2. Green's Theorem: For bounded region A and continuous P(x, y), Q(x, y)

$$\iint_{A} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial A} (P dx + Q dy).$$

- 3. Volume generated by the vectors $\vec{A}, \vec{B}, \vec{C}$.
- If $\vec{A} = (A_1, A_2, A_3), \ \vec{B} = (B_1, B_2, b_3), \ \vec{C} = (C_1, C_2, C_3), \text{ then}$ $\vec{A} \cdot (\vec{B} \times \vec{C}) = \begin{vmatrix} A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \\ C_1 & C_2 & C_3 \end{vmatrix}$
- 4. Polar coordinate system $(r \ge 0, \ 0 \le \theta \le 2\pi)$

$$\begin{cases} x = r\cos\theta\\ y = r\sin\theta \end{cases}, \quad dxdy = rdrd\theta$$

5. Cylindrical coordinate system $(r \ge 0, 0 \le \theta \le 2\pi)$

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}, \quad dx dy dz = r dr d\theta dz$$

6. Spherical coordinate system $(r \ge 0, \ 0 \le \theta \le \pi, \ 0 \le \phi \le 2\pi)$

$$\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{cases}, \quad dx dy dz = r^2 \sin \theta dr d\theta d\phi$$