ACMS 20550: Applied Math. Method I Exam II, Version Gold October 14, 2021

Name:	
Instructor:	

- The Honor Code is in effect for this examination. All work is to be your own.
- You may use a BASIC calculator. (Cell phone calculator -YES. Graphic calculators NO).
- The exam lasts for 75 minutes.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 8 pages of the test.

It is a violation of the honor code to give or to receive unauthorized aid on this Exam.

Good Luck!							
PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!							
1.	a	b	С	d	е		
2.	a	b	С	d	е		
3.	a	b	с	d	е		
4.	a	b	С	d	е		
5.	a	b	с	d	е		
6.	a	b	С	d	е		
7.	a	b	С	d	е		
8.	a	b	С	d	е		
9.	a	b	С	d	е		
10.	a	b	С	d	е		

Please do NOT	write in this box.
Multiple Choice	
11.	
12.	
Total	

Multiple Choice

1.(6 pts.)The series
$$\sum_{1}^{\infty} \left(\frac{2-i}{2+i}\right)^n$$
 is

- (a) absolutely convergent by ratio test
- (b) absolutely convergent by comparison test
- (c) divergent by preliminary test
- (d) absolutely convergent by integral test
- (e) convergent but not absolutely convergent

2.(6 pts.) Compute all complex roots $i^{1/5}$

(a)
$$\frac{1}{5}, -\frac{1}{5}, \frac{i}{5}, \frac{-i}{5}, \frac{1+i}{\sqrt{10}}$$

(b) $e^{i(\pi/5)}, e^{i(3\pi/5)}, e^{i(5\pi/5)}, e^{i(7\pi/5)}, e^{i(9\pi/5)}$

(c)
$$e^{i(2\pi/5)}, e^{i(4\pi/5)}, e^{i(6\pi/5)}, e^{i(8\pi/5)}, e^{i(10\pi/5)}$$

(d)
$$e^{i(\pi/10)}, e^{i(5\pi/10)}, e^{i(9\pi/10)}, e^{i(13\pi/10)}, e^{i(17\pi/10)},$$

(e)
$$1, -1, i, -i, \frac{1+i}{\sqrt{2}}$$

3.(6 pts.) Compute the value of $2\cos(i \ln 7)$. (For this problem, here $\ln 7 \approx 1.946$ represents the principle branch, please do not include $2k\pi i$)

(a) $7 + \frac{1}{7}$ (b) $7 + \frac{i}{7}$ (c) $7 - \frac{i}{7}$ (d) $7i - \frac{1}{7}$ (e) 0

4.(6 pts.) The disc of convergence of the series $\sum_{1}^{\infty} \frac{(1-i)n^3}{(n+1)^2} \left(\frac{z}{3}\right)^n$ is

- (a) $|z| < \frac{1}{2}$, by ratio test
- (b) |z| < 2, by ratio test
- (c) $|z| < \frac{1}{3}$, by ratio test
- (d) |z| < 3, by ratio test
- (e) $|z| < \frac{3}{2}$, by ratio test

5.(6 pts.) If $z = e^{xy}$, then dz =

- (a) $xe^{xy}dx + ye^{xy}dy$
- (b) $ye^{xy}dx + xe^{xy}dy$
- (c) $e^{xy}dx e^{xy}dy$
- (d) $e^{xy}dx + e^{xy}dy$
- (e) $xye^{xy}dx + xye^{xy}dy$

6.(6 pts.) If $z = 2x^3 + y^2$ and $x = r \cos \theta$, $y = r \sin \theta$, find $\left(\frac{\partial z}{\partial x}\right)_r$. (a) $6x^2$ (b) $6x^2 - 2r$ (c) $6x^2 + 2x$

(d) $6x^2 + 2r$ (e) $6x^2 - 2x$

7.(6 pts.) If
$$z = x^3 + e^{5y}$$
 and $x = \sin 2t$, $y = \cos 3t$, then $\frac{dz}{dt} =$

- (a) $2(\sin 2t)^2 \cos 2t + 3e^{5\cos 3t} \sin 3t$
- (b) $3(\sin 2t)^2 \cos 2t 5e^{5\cos 3t} \sin 3t$
- (c) $6(\sin 2t)^2 \cos 2t 15e^{5\cos 3t} \sin 3t$
- (d) $2(\sin 2t)^2 \cos 2t 3e^{5\cos 3t} \sin 3t$
- (e) $3(\sin 2t)^2 \cos 2t + 5e^{5\cos 3t} \sin 3t$

8.(6 pts.) A particle moving in the complex plane is described by the equation $z = \frac{2t+i}{t-2i}$. Find the speed (i.e., magnitude of the velocity).

- (a) 0 (b) $\frac{5}{t^2+4}$ (c) $\frac{5}{t^2+4t+4}$
- (d) $\frac{2}{t^2+4}$ (e) $\frac{2}{t^2+4t+4}$

9.(6 pts.) Find the tangent line of $x \cos y + \sin 2y = 0$ at (0, 0).

(a) $y = -\frac{1}{2}x$ (b) y = 0 (c) y = -2x(d) y = 2x (e) $y = \frac{1}{2}x$

10.(6 pts.) For *n* very large, the expression $(n + 1)^{1/3} - n^{1/3}$ can be approximated by

(a)
$$\frac{1}{n^{2/3}}$$
 (b) $-\frac{1}{3n^{2/3}}$ (c) $\frac{1}{3n^{2/3}}$

(d) $-\frac{1}{n^{2/3}}$ (e) $-\frac{2}{3n^{2/3}}$

Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(20 pts.) (a) The Taylor series for $\sin x$ is given by $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$. Estimate the error for $\sin 1$ using only 2 terms, namely, estimate $\left| \sin 1 - \left(1 - \frac{1}{3!} \right) \right|$. No need to simply your answer – You may leave your answer as a fraction containing factorials. Hint: Is this series alternating and absolutely decreasing?

(b) Compute $\int_0^{2\pi} \sin 3x \cdot \cos 5x \, dx$. Show all your work. Hint: $\cos z = \frac{1}{2}(e^{iz} + e^{-iz}), \quad \sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$ **12.**(20 pts.) (a) Compute $\frac{d}{dx} \int_0^{x^3} \frac{\sin(xt)}{t} dt$ using Leibniz rules, no credit will be given for using a series. Show all your work.

(b) Find the point on the plane x + 2y - 3z = 6 for which $f(x, y, z) = \frac{1}{2}x^2 + y^2 + \frac{3}{2}z^2$ is minimum. Show all your work.