$\newcommand{\dis}{\displaystyle} \newcommand{\m}{\hspace{1em}} \newcommand{\mm}{\hspace{2em}} \newcommand{\x}{\vspace*{1ex}} \newcommand{\xx}{\vspace*{2ex}} \let\limm\lim \renewcommand{\lim}{\dis\limm} \let\fracc\frac \renewcommand{\frac}{\dis\fracc} \let\summ\sum \renewcommand{\sum}{\dis\summ} \let\intt\int \renewcommand{\int}{\dis\intt} \newcommand{\sech}{\text{sech}} \newcommand{\csch}{\text{csch}} \newcommand{\Ln}{\text{Ln}} \newcommand{\p}{\partial} \newcommand{\intd}[1]{\int\hspace{-0.7em}\int\limits_{\hspace{-0.7em}{#1}}} $

Lecture 30, 11/7/2022. This page is for Section 1 only.
ACMS 20550: Applied Mathematics Method I
Instructor: Bei Hu, b1hu@nd.edu, Hurley 174A

Chapter 6: Vector Analysis

  1. Green's Formula.
    1. Green's Formula (in a plane): $\m\intd{A} \Big(\frac{\p Q}{\p x} -\frac{\p P}{\p y} \Big) dxdy = \oint_{\p A} (P dx + Q dy)$.
    2. Divergence Theorem (in 2D): $\m \intd{A} \text{div }\vec V dxdy = \oint_{\p A } \vec V\cdot \vec n ds$.
  2. Divergence Theorem (in 3D): $\m \int\hspace{-0.7em}\intd{\tau} \text{div }\vec V d\tau = \intd{\p\tau} \vec V\cdot \vec n d\sigma$.