$\newcommand{\dis}{\displaystyle} \newcommand{\m}{\hspace{1em}} \newcommand{\mm}{\hspace{2em}} \newcommand{\x}{\vspace*{1ex}} \newcommand{\xx}{\vspace*{2ex}} \let\limm\lim \renewcommand{\lim}{\dis\limm} \let\fracc\frac \renewcommand{\frac}{\dis\fracc} \let\summ\sum \renewcommand{\sum}{\dis\summ} \let\intt\int \renewcommand{\int}{\dis\intt} \newcommand{\sech}{\text{sech}} \newcommand{\csch}{\text{csch}} \newcommand{\Ln}{\text{Ln}} \newcommand{\p}{\partial} \newcommand{\intd}[1]{\int\hspace{-0.7em}\int\limits_{\hspace{-0.7em}{#1}}} $

Lecture 20, 10/7/2022. This page is for Section 1 only.
ACMS 20550: Applied Mathematics Method I
Instructor: Bei Hu, b1hu@nd.edu, Hurley 174A

  1. Examples of choosing directions.
    Ex: $\intd A \frac{\sin x}{x} dxdy$, where $A$ is the area bounded by $y=x$, $x$-axis, and $x=\pi$.
    Sol. Try horizontal small rectangles:
    $\int_{y=0}^\pi \Big(\int_{x=y}^\pi \frac{\sin x}{x} dx \Big) dy$ - does not work.

    Now, try vertical small rectangles:
    $\int_{x=0}^\pi \Big(\int_{y=0}^{x} \frac{\sin x}{x} dy \Big) dx$
    $= \int_{x=0}^\pi \Big(\frac{\sin x}{x} y\Big)\Big|_{y=0}^{y=x} dx$
    $ = \int_{x=0}^\pi \sin x dx $
    $ = - \cos x\Big|_{x=0}^{x=\pi} = -\Big[(-1) - 1\Big] = 2 $

    Summary: if one direction does not work, try the other;



  2. Applications.
    The area $A$ is bounded by
    $x$-axis, $x=1$ and $y=x^2$.
    1. The area as a double integral:
      $A = \intd{A} dxdy, \m dA = dxdy$
      ;
      $A = \intd{A} dxdy$
      $=\int_{x=0}^{1}\Big(\int_{y=0}^{x^2} 1 dy\Big)dx $
      $= \int_{x=0}^{1} y\Big|_{y=0}^{y=x^2} dx$
      $= \int_{x=0}^{1} x^2 dx$
      $ = \frac13 x^3\Big|_{x=0}^1 = \frac13$


    2. Mass: If the density $\rho(x,y) $ or $\rho(x,y,z)$ is given, then the mass is given by
      2D:
      $M = \intd{A} \rho(x,y) dxdy , \m dM =\rho(x,y) dxdy$
      ;

      Suppose in the above example for area under $y=x^2$
      between $x=0$ and $x=1$, $\rho(x,y) = xy$, then
      $M = \intd{A} xy dxdy$
      $=\int_{x=0}^{1}\Big(\int_{y=0}^{x^2} xy dy\Big)dx $
      $= \int_{x=0}^{1} \frac12 xy^2\Big|_{y=0}^{y=x^2} dx$ $= \int_{x=0}^{1} \frac12 x^5 dx$ $ = \frac1{12} x^6\Big|_{x=0}^1 = \frac1{12}$

      3D:
      $M = \int\hspace{-0.7em}\intd{V} \rho(x,y,z) dxdydz , \m dM =\rho(x,y,z) dxdydz$
      ;







    3. Arc Length:
      If $y = f(x)$, then
      $ ds = \sqrt{ dx^2 + dy^2 } = \sqrt{1+ \Big(\frac{dy}{dx}\Big)^2} dx $
      ;

      Suppose in the above example, we like to compute
      the arc length of $y=x^2$ between $x=0$ and $x=1$, then
      $S =\int_{x=0}^{1} \sqrt{1+ \Big(\frac{df}{dx}\Big)^2 } dx $
      $= \int_{x=0}^{1} \sqrt{1+(2x)^2} dx$ $= 4\int_{x=0}^{1} \sqrt{\Big(\frac12\Big)^2 + x^2} dx$
      $ = \frac14\Big\{2\sqrt5 +\ln(2+\sqrt5)\Big\}$
      $ \fcolorbox{white}{yellow}{$\int \sqrt{a^2+u^2} du = \frac{u}2 \sqrt{a^2+u^2} + \frac{a^2}2 \ln( u+\sqrt{a^2+u^2})$} $





    4. Center of mass $(\bar x, \bar y, \bar z)$: Writing $\int$ for either $\intd{}$ or $\intd{}\hspace{-0.7em}\int$,
      $ \int \bar x dM = \int x dM, \m \int \bar y dM = \int y dM, \m \int \bar z dM = \int z dM, \m dM = \rho(x,y,z)dxdydz $
      ;
      Suppose in the above example, $\rho(x,y)=1$,
      then
      $\intd A \bar x dM = \intd A x dM$, $dM = \rho(x,y) dxdy = dxdy$,
      $\intd A \bar x dM = \bar x \int_{x=0}^{1}\Big(\int_{y=0}^{x^2} dy\Big)dx = \bar x \frac13$

      $\intd A x dM = \int_{x=0}^{1}\Big(\int_{y=0}^{x^2} x dy\Big)dx = \int_{x=0}^{1} x^3 dx = \frac1{4}$
      $ \bar x \frac13 = \frac14, \mm \bar x = \frac34$.
      Similarly $ \bar y = \frac3{10}$.