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Green’s Function

[. Let r = |Z — y], where the position vector ¥ = {x1,x9, 23} is called the
observation point, and ¥ = {yi,y2,y3} is a constant vector we call the
source point. The gradient of 1/r is defined in Cartesian coordinates as

V1/r ={01/r/0x1,01/r/0xq,01/r/0x3}.

It is easy to show that V2(%) = 0, except at » = 0 since the function is
singular at this point. It is interesting to examine the behavior of VQ(%) at
the singular point ¥ = ¢. Let us consider the integral
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where V is volume inside the sphere ¥ centered at the point ¢ and of radius
R. Using the divergence theorem, we get
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where 7 is the unit outward normal to ¥. We note that V(1/r) = —i/r?
and that the elementary surface do, = r’sinpdpdf. Carrying out the surface
integral of the right-hand-side of (2), we get

/ v2(1yaz = —an. (3)
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The function g(r) = 1/r is known as the free-space Green function for the
Laplace equation in a three-dimensional space.

The function 1
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vanishes everywhere except at ¥ = ¢, and is such that its integral in any
sphere is equal to unity. The function §(Z—7%) is known as the Dirac function.
Of course, it should be pointed out that we are stretching the definition of
functions by calling § a function. However, § has some very interesting
properties. For example,

[,8@ = ) £(@di = £3). (5)
We also note that 0 is an even function, i.e., §(Z — ) = d(y — T)

This result will help obtain a particular solution to the inhomogeneous equa-
tion

Vu = (7). (6)
If we express f(Z) using (5), (6) becomes
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where we have exchanged the variables  and . Since only ¢ in the right-
hand-side of (7) depends on Z, we deduce immediately,
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The Green’s function g(r) = 1/r can be thought of as the inverse of the
Laplace operator.



