UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi

AME-60612
113 Hessert Center
Mathematical Methods II
Tel: 631-5736
Email:atassi@nd.edu

Homework 2

I. We have shown in class that for any two differentiable functions φ_{1} and φ_{1} defined in a region \mathcal{V} bounded by a surface Σ, the Green's theorem states that

$$
\begin{equation*}
\int_{\mathcal{V}}\left(\varphi_{1} \nabla^{2} \varphi_{2}-\varphi_{2} \nabla^{2} \varphi_{1}\right) d V=\int_{\Sigma}\left(\varphi_{1} \nabla \varphi_{2}-\varphi_{2} \nabla \varphi_{1}\right) \cdot \vec{n} d \Sigma \tag{1}
\end{equation*}
$$

1. Taking $\varphi_{2}=\frac{1}{r}$, where $r=|\vec{x}-\vec{y}|$ and using $\nabla^{2}\left(\frac{1}{r}\right)=-4 \pi \delta(\vec{x}-\vec{y})$, show that

$$
\begin{equation*}
\varphi_{1}(\vec{y})=-\frac{1}{4 \pi} \int_{\mathcal{V}} \frac{\nabla^{2} \varphi_{1}}{r} d V-\frac{1}{4 \pi} \int_{\Sigma}\left(\varphi_{1} \frac{\partial}{\partial n}\left(\frac{1}{r}\right)-\frac{1}{r} \frac{\partial \varphi_{1}}{\partial n}\right) d \Sigma \tag{2}
\end{equation*}
$$

2. Show that if φ_{1} is harmonic, i.e., $\nabla^{2} \varphi_{1}=0$, and Σ is a sphere of radius a and centered at \vec{y}, equation (2) reduces to

$$
\begin{equation*}
\varphi_{1}(\vec{y})=\frac{1}{4 \pi a^{2}} \int_{\Sigma} \varphi_{1} d \Sigma \tag{3}
\end{equation*}
$$

Hint:Use the divergence theorem to evaluate $\int_{\Sigma} \frac{\partial \varphi_{1}}{\partial n} d \Sigma$.
Give the physical interpretation for (3).
3. The temperature field T in a sphere of radius unity and centered at the origin is governed by Laplace equation, i.e., $\nabla^{2} T=0$. The distribution of temperature on the surface of the sphere is given in terms of the polar angle θ and azimuthal angle ϕ,

$$
T=\cos 2 \theta \sin \phi
$$

Use (3) to obtain the temperature at the center of the sphere.
4. Use the Green's theorem to obtain a particular solution to the inhomogeneous Laplace equation known as Poisson equation

$$
\begin{equation*}
\nabla^{2} u=f(\vec{x}) \tag{4}
\end{equation*}
$$

5. We define the free-space Green's function of the Helmholtz equation as the solution of

$$
\begin{equation*}
\nabla^{2} g+k^{2} g=-4 \pi \delta(\vec{x}-\vec{y}) . \tag{5}
\end{equation*}
$$

Following the same method used to derive the Green's function for the Laplace equation, show that

$$
\begin{equation*}
g(\vec{x}, \vec{y})=\frac{e^{ \pm i k r}}{r} \tag{6}
\end{equation*}
$$

and determine a particular solution to

$$
\begin{equation*}
\nabla^{2} u+k^{2} u=f(\vec{x}) . \tag{7}
\end{equation*}
$$

II. Problems 103, 104; page 337.
III. Problems 110, 111; page 338.

