
1 Fundamental Solutions to the Wave Equation

Physical insight in the sound generation mechanism can be gained by considering simple
analytical solutions to the wave equation. One example is to consider acoustic radiation
with spherical symmetry about a point ~y = {yi}, which without loss of generality can be
taken as the origin of coordinates. If t stands for time and ~x = {xi} represent the observation
point, such solutions of the wave equation,

(
∂2

∂t2
− c2

o∇2)φ = 0, (1)

will depend only on the r = |~x− ~y|. It is readily shown that in this case (1) can be cast in
the form of a one-dimensional wave equation

(
∂2

∂t2
− c2

o

∂2

∂r2
)(rφ) = 0. (2)

The general solution to (2) can be written as

φ =
f(t− r

co
)

r
+

g(t + r
co

)

r
. (3)

The functions f and g are arbitrary functions of the single variables τ± = t± r
co

, respectively.
They determine the pattern or the phase variation of the wave, while the factor 1/r affects
only the wave magnitude and represents the spreading of the wave energy over larger surface
as it propagates away from the source. The function f(t − r

co
) represents an outwardly

going wave propagating with the speed co. The function g(t + r
co

) represents an inwardly
propagating wave propagating with the speed co.

1.1 Acoustic Energy

Consider a fluid blob at rest of volume V0 with pressure p0 and density ρ0. As a sound wave
reaches the blob of fluid, it acquires a velocity v and its volume, pressure and density change
to V , p and ρ, respectively. If we write

V = V0 + V ′ (4)

p = po + p′ (5)

ρ = ρo + ρ′, (6)

the incremental changes V ′/V0, p′/p0 and ρ′/ρ are very small. The blob has the same mass,
so ρoVo = ρV = m.

The kinetic energy of the blob is given by

1

2
ρv2V =

1

2
ρov

2Vo

and the acoustic kinetic energy density is

1

2
ρv2.
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The blob is compressed against the background pressure p0. The compression energy is given
by

∆W = −
V∫

Vo

p′dV ≈ −V0

ρ0

V∫

Vo

p′dρ′ (7)

If the process is assumed to be isentropic, then dp′/dρ′ = c2
0. Using this relationship and

substituting for dρ′ in (7) gives

∆W =
V0

ρ0c2
0

V∫

Vo

p′dp′ =
p′2

2ρ0c2
0

V0 (8)

or, expressed in terms of the acoustic potential energy density,

p′2

2ρoco
2

.
The total energy density is

E =
1

2
ρov

2 +
p′2

2ρoco
2
. (9)

The acoustic energy flux or acoustic intensity is

~I = p′~v. (10)

Note that the conservation of energy implies

∫

V

∂E

∂t
dV +

∫

S

~I · ~n dS = 0,

which using the divergence theorem gives

∂E

∂t
+∇ · ~I = 0. (11)

Equation (11) can be verified by substituting the expressions for ~I and E into the mass and
momentum equations, namely

∂ρ′

∂t
+ ρo∇ · ~v = 0

ρo
∂~v

∂t
= −∇p′
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2 Plane Waves

Plane waves are solutions to the wave equation (1) of the form

p′ = p̄ei(~k·~x−ωt), (12)

where the wave number k = |~k| = ω/c0. Note that if we define the unit vector ~u = ~k/k, the
wave propagates in the direction ~u and

~v =
p′

ρ0c0

~u. (13)

Thus for plane waves the relationship between pressure and velocity is given by

p′ = ρ0c0v. (14)

Note also that the energy of a plane wave is equally divided between kinetic and potential
energy and we have

E = ρ0v
2 =

p′2

ρ0c2
0

(15)

3 The Pulsating Sphere

Consider a sphere centered at the origin and having a small pulsating motion so that the
equation of its surface is

r = a(t) = a0 + a1(t), (16)

where |a1(t)| << a0. The fluid velocity at the sphere surface is

ur =
dr

dt
= ȧ(t). (17)

At the surface of the sphere

(
∂φ

∂r
)a = ȧ(t). (18)

A Taylor expansion of (18) gives

(
∂φ

∂r
)a = (

∂φ

∂r
)a0 + (a− a0)(

∂2φ

∂r2
)a0 + · · · (19)

We assume |(a−a0)(
∂2φ
∂r2 )a0| << |ȧ|. This allows us to linearize the boundary condition along

the sphere by transferring it to the mean position at a0,

(
∂φ

∂r
)a0 = ȧ(t). (20)

The velocity potential can be expressed as in (3). Moreover since the sphere pulsating motion
is the source of acoustic waves, the principle of causality suggests that g ≡ 0. Thus

φ =
f(t− r

co
)

r
. (21)
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Applying the condition (20) at the sphere mean location,

∂φ

∂r
= −f(t− a0

co
)

a2
0

− ḟ(t− a0

co
)

a0co

= ȧ(t) (22)

Integration of (22) gives

f(t) = −a0co

∫ t

−∞
ȧ(t′ +

a0

c0

)e
− co

a0
(t−t′)

dt′. (23)

Note that if T is a representative period of the sphere pulsation, coT/a0 = λ/a0, where λ is
a representative of the sound wave length. If λ/a0 >> 1, then most of the contribution to
the integral (23) is when t′ ≈ t. Neglecting terms of O(a0/λ), we get

f(t) = −a2
0ȧ(t), (24)

and the acoustic field potential function is given by

φ = −a2
0ȧ(t− r

co
)

r
. (25)

The expression for the acoustic pressure is

p′ = ρ0a
2
0

ä(t− r
co

)

r
(26)

It is convenient to cast (25, 26) in terms of the mass flow rate crossing the sphere of radius
a0, m(t) = 4πa2

0ȧρ0. f(t) = − m
4πρ0

and

φ = −m(t− r
co

)

4πρ0r
, (27)

p′ =
ṁ(t− r

co
)

4πr
. (28)

3.1 Harmonic Motion

If we have a harmonic motion
ȧ = v̄eiωt, (29)

where v̄ is the amplitude of the pulsation velocity and ω its frequency. Substituting (29)
into (23) and carrying out the integration, we get

f(t) = −a0c0v̄
e

iω(t+
a0
c0

)

c0
a0

+ iω
. (30)

The expressions for the potential function and the pressure can be readily obtained by
substituting (30) into (21),
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φ = − m̄

4πρ0r
√

1 + ω̃2
ei(ωt−k(r−a0)+ϕ), (31)

p′ =
iωm̄

4πr
√

1 + ω̃2
ei(ωt−k(r−a0)+ϕ. (32)

where we have introduced ω̃ = ωa0/c0, ϕ = −tan−1ω̃, k = ω/c0, and m̄ = 4πa2
0v̄ρ0.

The average acoustic intensity and power can be calculated and we have,

Ī =
1

8π
m̄c0v̄

ω̃2

1 + ω̃2

1

r
, (33)

P =
1

2
m̄c0v̄

ω̃2

1 + ω̃2
. (34)

4 The Simple Source

The limit of the pulsating sphere solution as the sphere radius vanishes represents the simple
source or monopole solution. In this case, the source is characterized by the source mass flow
rate

m(t) = lim
Ra0→0

4πa2
0ur = 4πa2

0ȧ(t),

and the exact solution is the same as for the low frequency case (27). If the source is located
at the point |~y|, then

φ = −m(t− r
co

)

4πρ0r
, (35)

where r = |~x−~y|. Equation (35) states that at the observation point ~x and time t the sound
signal received was emitted from the source point ~y at the retarded time τ = t− r

co
.

The velocity and pressure are given by

ur =
∂φ

∂r
=

1

4πρ0

[
ṁ(t− r

c0
)

rc0

+
m(t− r

c0
)

r2

]
(36)

p′ = −ρ0
∂φ

∂t
=

ṁ(t− r
c0

)

4πr
(37)

Harmonic sources:

In this case

m = m̄eiωt (38)

φ = − m̄

4πρ0r
e

iω(t− r
c0

)
(39)
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ur =
m̄

4πρ0

[
iω

rc0

+
1

r2

]
e

iω(t− r
c0

)
(40)

Noting that ω
c0

= 2π
λ

,

ur =
m̄

4πρ0

[
i2π

rλ
+

1

r2

]
e

iω(t− r
c0

)
(41)

p′ =
iωm̄

4πr
e

i(t− r
c0

)
(42)

At large distance, r À λ, the acoustic intensity is given by

I = p′ur =
m̄2ω2

16π2r2c0ρo

sin2(ωt− r

c0

) (43)

and

Ī = p′ur =
m̄2ω2

32π2r2c0ρo

(44)

P̄ =
m̄2ω2

8πc0ρo

(45)

Simple source distribution:

Suppose we have N sources located at ~yi with strength mi, then the principle of superposition
states that:

φ =
N∑

i=1

φi = − 1

4π

N∑

i=1

mi(t− ri

c0
)

ri

(46)

where ri = |~x− ~yi|.

The Dipole:

Consider two sources of equal and opposite strength ±mi located at ±~l.

φ± = ±m(t− r±
c0

)/(4πρor±) (47)

We further assume |~l| ¿ |~x|, then

r± = r∓
~l~x

r
+ . . . = r∓l cos θ + . . . (48)

φ = φ+ + φ− =
−1

4πρ0

[
m(t− r+

c0
)

r+

− m(t− r−
c0

)

r−

]
(49)

m(t− r±
c0

)

r±
=

m(t− r
c0

)

r
± l cos θ

[
ṁ(t− r

c0
)

rc0

+
m(t− r

c0
)

r2

]
(50)

6



φ =
2l cos θ

4πρ0

[
ṁ(t− r

c0
)

rc0

+
m(t− r

c0
)

r2

]
(51)

If we assume l to be small and consider the field at a distance r >> λ, then

φ =
2lṁ

(
t− r

c0

)

4πρ0rc0

cos θ (52)

let µ = −2lṁ,

p′ =
1

4πrc0

µ̇
(
t− r

c0

)
cos θ (53)

µ is called the strength of the dipole. The dipole strength has the dimension of a force.
We define the pressure directivity by:

(p′r) =
1

4πc0

µ̇
(
t− r

c0

)
cos θ (54)
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