FINITE WING THEORY

Consider a wing in a uniform upstream flow, V" and let the yg-axis be the axis along the
span centered at the wing root. and let ¢(yo) be the chord length. We define the lift per
unit span, L/(yo), as that of an infinite span wing whose geometry and angle of attack
to the mean flow are those of the wing at yo. The corresponding lift coefficient is
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where ¢(yp) is the wing chord length at y,. Using the theorem of Kutta-Joukowski,
L'(yo) = pVT(yo), we rewrite (1) as
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The expression for ¢, can also be written in terms of the effective angle of attack a.ff =
o — Qy,
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where the induced angle of attack «; is calculated using the Biot-Savart law,
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ap is a constant. For a thin airfoil, ag = 27.
At every positition o along the span, we can then write
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Note that @(yo) = a(yo) — ar=o0(yo) is determined by the wing geometry and angle of
attack. Substituting the expression (4) for a; in (5) gives the fundamental equation of
the finite wing theory,
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The integral in (6) should be understood as a Cauchy principal value.
We note that wings are symmetric, i.e., .
We introduce the transformation
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Equation(6) can then be rewritten as
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We note that I'(y) vanishes at both ends of the wing. Moreover, we assume the wing
to be symmetric, i.e., I'(—yo) = ['(yo). This suggests the following expansion for I' :
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Ay, Ay, ..., Ay are constants to be determined. The condition of wing symmetry,
I'(m —0) =T(0), implies A,, = 0 for even n.

We note that ,
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Substituting (10) into (4 and 9) and using (11), we obtain the following expressions for
the induced angle of attack

cosf — cosb sinb,
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and the fundamental equation (9) for the finite wing becomes
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Equation (5) must be satisfied at N locations of the span. This gives N equations for
determining Aq, As, ..., Ay. The expressions for the wing lift, L, and induced drag, D;,
are readily obtained in terms of T,

L = ,OV/_Q ['(yo)dyo, (14)
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We define the wing lift and induced drag coefficients as follows
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This gives :
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which is commonly cast as (20)
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For a wing with no geometric twist
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For a thin airfoil, ay = 27.

ELLIPTIC WING

For a wing of uniform cross-section and no geometric twist, @(f) is constant. We further
assume the wing to have an elliptic planform, i.e.,

c=co\/l— (25)2 or c(0) = cosinb

Substituting (11) into (5), we find the following solution
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All aerodynamic quantities can now be calculated :
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