
FINITE WING THEORY

Consider a wing in a uniform upstream flow, V and let the y0-axis be the axis along the
span centered at the wing root. and let c(y0) be the chord length. We define the lift per
unit span, L′(y0), as that of an infinite span wing whose geometry and angle of attack
to the mean flow are those of the wing at y0. The corresponding lift coefficient is

c` =
L′(y0)

1
2
ρV 2c(y0)

, (1)

where c(y0) is the wing chord length at y0. Using the theorem of Kutta-Joukowski,
L′(y0) = ρV Γ(y0), we rewrite (1) as

c` =
2Γ(y0)

V c(y0)
. (2)

The expression for c` can also be written in terms of the effective angle of attack αeff =
α− αi,

c` = a0(α− αL=0 − αi), (3)

where the induced angle of attack αi is calculated using the Biot-Savart law,

αi =
1

4πV∞

∫ b
2

− b
2

dΓ
dy

y0 − y
dy. (4)

a0 is a constant. For a thin airfoil, a0 = 2π.
At every positition y0 along the span, we can then write

α(y0)− αL=0(y0)− αi(y0) =
2Γ(y0)

a0V c(y0)
. (5)

Note that α(y0) = α(y0) − αL=0(y0) is determined by the wing geometry and angle of
attack. Substituting the expression (4) for αi in (5) gives the fundamental equation of
the finite wing theory,

α(y0) =
2Γ(y0)

a0V c(y0)
+

1

4πV

∫ b
2

− b
2

dΓ
dy

y0 − y
dy. (6)

The integral in (6) should be understood as a Cauchy principal value.
We note that wings are symmetric, i.e., .
We introduce the transformation

y0 = − b
2
cosθ0 (7)

y = − b
2
cosθ. (8)
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Equation(6) can then be rewritten as

α(θ0) =
2Γ(θ0)

a0V∞c(θ0)
+

1

2πV∞b

∫ π

0

dΓ
dθ

cosθ − cosθ0

dθ. (9)

We note that Γ(y0) vanishes at both ends of the wing. Moreover, we assume the wing
to be symmetric, i.e., Γ(−y0) = Γ(y0). This suggests the following expansion for Γ :

Γ(θ) = 2bV
N∑
1

Ansinnθ (10)

A1, A2, . . ., AN are constants to be determined. The condition of wing symmetry,
Γ(π − θ) = Γ(θ), implies An = 0 for even n.

We note that ∫ π

0

cosnθ

cosθ − cosθ0

dθ = π
sinnθ0

sinθ0

(11)

Substituting (10) into (4 and 9) and using (11), we obtain the following expressions for
the induced angle of attack

αi(θ0) =
N∑
1

nAn
sinnθ0

sinθ0

, (12)

and the fundamental equation (9) for the finite wing becomes

α(θ0) =
4b

a0c(θ0)

N∑
1

Ansinnθ0 +
N∑
1

nAn
sinnθ0

sinθ0

(13)

Equation (5) must be satisfied at N locations of the span. This gives N equations for
determining A1, A3, . . ., AN . The expressions for the wing lift, L, and induced drag, Di,
are readily obtained in terms of Γ,

L = ρV
∫ b

2

− b
2

Γ(y0)dy0, (14)

Di = ρV
∫ b

2

− b
2

αiΓ(y0)dy0. (15)

We define the wing lift and induced drag coefficients as follows

CL =
L

1
2
ρV 2S

, (16)

CD,i =
Di

1
2
ρV 2S

. (17)
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This gives :

CL = πARA1, (18)

CD,i = πARA2
1[1 +

N∑
2

n(
An
A1

)2], (19)

which is commonly cast as (20)

CD,i =
C2
L

πAR
(1 + δ). (21)

For a wing with no geometric twist

CL = a(α− αL=0)

a =
a0

1 + ( a0
πAR)(1 + τ)

For a thin airfoil, a0 = 2π.

ELLIPTIC WING

For a wing of uniform cross-section and no geometric twist, α(θ) is constant. We further
assume the wing to have an elliptic planform, i.e.,

c = c0

√
1− (

2y

b
)2 or c(θ) = c0sinθ

Substituting (11) into (5), we find the following solution

A1 =
α

1 + 4b
a0c0

=
α

1 + πAR
a0

A2 = A3, . . . ,= AN = 0.

All aerodynamic quantities can now be calculated :

Γ(θ) = 2bV∞
α

1 + πAR
a0

sinθ

αi = A1 =
α

1 + πAR
a0
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CL = πARαi =
a0α

1 + a0
πAR

CD,i =
C2
L

πAR

a =
a0

1 + a0
πAR
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