The Green’s Function

1 Laplace Equation

Consider the equation

ViG = —4( - 9), (1)
where Z is the observation point and ¥ is the source point. Let us integrate (1) over a sphere
Y. centered on i and of radius r = |7 — ¥]
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Using the divergence theorem,
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This gives the free-space Green’s function as
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2 The Wave Equation

We look for a spherically symmetric solution to the equation
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Such a solution is of the form
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where f is an arbitrary function. For r # 0, G satisfies
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Hence f(t) = §(t). The Green’s function then becomes
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3 The Helmholtz Equation

For harmonic waves of angular frequency w, we seek solutions of the form g(r)exp(—iwt). The
Green’s function ¢(r) satisfies the constant frequency wave equation known as the Helmholtz
equation,
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For r # 0, g = Kexp(Likr)/r, where k = w/cy and K is a constant, satisfies
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Hence K = 1/47 and
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Note this result can be obtained directly using the general expression for the Green’s function
in (5)

4 Application to Acoustics

Begin by assuming isentropic flow, no viscosity. The governing equations can be written
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where F'is a force per unit volume and () is a mass flow rate per unit volume.
Combining the two equations gives
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For harmonic oscillations, the equation can be written as
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Now, use Green’s function to define waves propagating away from a source:
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4.1 Single Source at 7 : Q = ¢6(Z — )
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4.2 Dipole at i in the 7-Direction

Equation of a dipole can be written:
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The solution (in terms of pressure) can be written:
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4.3 Single Force at j: F = f6(Z — §)
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The solutions for pressure are of the form:
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Note that a force f is equivalent to a dipole of strength (lg) and whose direction is the same

as f':
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