UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

AME-60663
113 Hessert Center
Introduction to Acoustics and Noise
Tel: 631-5736
Email:atassi@nd.edu

Homework 4

Consider two spheres of radius a_{0}. In a frame of reference where the $\left\{x_{1}, x_{2}\right\}$ axes are horizontal and the x_{3} axis is vertical, the two spheres are centered at $\{0,0, h\}$ and $\{0,0,-h\}$. The two spheres have a pulsating harmonic motion with a circular frequency ω and a magnitude $a_{1} \ll a_{0}$ and $a_{1} \ll \lambda$, where λ is the wavelength.

1. Write the expressions for the average pressure \bar{p}, intensity \bar{I}, and power \bar{P} radiated from the two spheres in terms of the distance r from the origin and the azimuthal angle $\theta=\sin ^{-1}\left[\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2} / r\right]$.
2. The two spheres are pulsating with equal but opposite strength $\pm m$). Consider the cases $a_{1}=a_{0} / 50, h=2 a_{0}, r=2 h, 4 h, 10 h, 50 h, 100 h$ and the frequencies $\{100 \mathrm{~Hz}, 1000 \mathrm{~Hz}, 10,000 \mathrm{~Hz}\}$. Plot the directivity of the pressure and intensity defined as

$$
\begin{align*}
D_{p} & =\frac{p^{\prime}}{[|\dot{m}| /(4 \pi r)]}, \tag{1}\\
D_{I} & =\frac{\bar{I}}{\left[|\dot{m}|^{2} /\left(32 \pi^{2} \rho_{0} c_{0} r^{2}\right)\right]} . \tag{2}
\end{align*}
$$

Compare the results with those of a dipole at the origin. At what distance r the two spheres acoustic radiation is almost dipole-like. What is the effect of frequency?
3. If the radiation is dipole-like, it is more appropriate to use a dipole definition for the directivity

$$
\begin{align*}
D_{p} & =\frac{p^{\prime}}{\left[|\ddot{m}| \ell /\left(4 \pi c_{0} r\right)\right]}, \tag{3}\\
D_{I} & =\frac{\bar{I}}{\left[|\ddot{m} \ell|^{2} /\left(32 \pi^{2} \rho_{0} c_{0}^{3} r^{2}\right)\right]}, \tag{4}
\end{align*}
$$

where $\ell=2 h$.
4. The two spheres are pulsating with equal strength m. Examine their directivity as in $\S 2$.
5. Replace each sphere by a source of equal strength and examine the same issues as in the previous section.
6. Assess the source and dipole approximations.

