UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi 113 Hessert Center Tel: 631-5736 Email:atassi@nd.edu AME-60663 Introduction to Acoustics and Noise

Homework 3

I. Spectral Density in White and Pink Noise

For sound in a frequency band Δf , the spectral density is defined as

$$I_f(f) = \lim_{(\Delta f) \to 0} \frac{I_b}{(\Delta f)},\tag{1}$$

where I_b is the average sound intensity in a frequency band Δf centered at f. This definition allows us to define the average sound intensity in a finite frequency band $\{f_1, f_2\}$ by

$$I_b = \int_{f_1}^{f_2} I_f df. \tag{2}$$

- 1. For a one-octave band centered at 1000Hz, find the lower and upper limits f_1 and f_2 , respectively.
- 2. A white noise is an idealized model for sound with constant spectral density. The intensity of a one-octave band of sound centered at 1000Hz is equal to 85dB. How does this intensity vary with the band center frequency f_c ? What is the sound level of a one-octave band centered at $f_c = 250$.
- 3. A pink noise is an idealized model for sound with a spectral density $\propto 1/f$. If again the intensity of a one-octave band of sound centered at 1000Hz is equal to 85dB, how does this intensity vary with the band center frequency f_c ? What is the sound level of a one-octave band centered at $f_c = 250$.

II. Sound Transmission Through a Wall

The intensity transmission coefficient for sound at a frequency ω through a wall of thickness L = o.1m separating air and water is given by

$$T_{I} = \frac{4}{2 + (r_{3}/r_{1} + r_{1}/r_{3})cos^{2}k_{2}L + (r_{2}^{2}/r_{1}r_{3} + r_{1}r_{3}/r_{2}^{2})sin^{2}k_{2}L},$$
 (3)

ere $k_2 = \omega/c_2$.

- 1. Plot T_I versus the frequency f in Hz and particularly show what happened when $k_2L \approx n\pi$ and $k_2L \approx (n-\frac{1}{2})\pi$.
- 2. Estimate the narrow band of frequencies when $k_2L\approx n\pi$ and $k_2L\approx (n-\frac{1}{2})\pi$.