UNIVERSITY OF NOTRE DAME DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

Professor H.M. Atassi 113 Hessert Center Tel: 631-5736 Email:atassi@nd.edu AME-60633 Introduction to Acoustics and Noise

Homework 2

- I. Consider a perfect gas for which $p = \rho RT$ and the specific heat coefficients c_p and c_v , are temperature-independent and where $\gamma = c_p/c_v$ and $c_p c_v = R$.
 - 1. Show that the specific entropy s (entropy per unit mass) can be written as

$$s - s_0 = c_v \ln \frac{e}{e_0} - R \ln \frac{\rho}{\rho_0}, \tag{1}$$

where s_0 is the specific entropy when the specific internal energy e and the density ρ have the values e_0 and ρ_0 , respectively; e is defined so that for a perfect gas $e = c_v T$.

- 2. Derive an expression for the pressure p in terms of the specific entropy s and the density ρ . Compare the result to the isentropic relation $p = k\rho^{\gamma}$.
- 3. Acoustic disturbances are usually regarded as small amplitude perturbations to an ambient state (p_0, ρ_0, v_0) . The flow quantities can be expanded as

$$p(\mathbf{x},t) = p_0(\mathbf{x}) + p'(\mathbf{x},t) \tag{2}$$

$$\rho(\mathbf{x},t) = \rho_0(\mathbf{x}) + \rho'(\mathbf{x},t) \tag{3}$$

$$s(\mathbf{x},t) = s_0(\mathbf{x}) + s'(\mathbf{x},t) \tag{4}$$

$$v(\mathbf{x},t) = v_0(\mathbf{x}) + v'(\mathbf{x},t). \tag{5}$$

For a homogeneous quiescent medium the ambient quantities are independent of position, i.e., p_0 , ρ_0 and s_0 are constant and v_0 is zero. Use expansions (2-5) and (1) to give to first order the expression for p' in terms of ρ' and s'.

- II. The density of water in ocean varies with the water salinity and depth and as a result $\rho_0 = f(\mathbf{x})$. Derive the linear acoustic equations for ocean water waves. How does the speed of sound vary with position?
- III. Two superimposed plane waves are propagating in the +x and -x directions such that the pressure is given by

$$p' = \mathbf{A}e^{i\omega(t-x/c)} + \mathbf{B}e^{i\omega(t+x/c)},\tag{6}$$

where **A** and **B** are complex amplitudes defined by $\mathbf{A} = A \exp(i\varphi)$ and $\mathbf{B} = B \exp(i\psi)$. Calculate the average intensity I_x in the +x direction. How does I_x vary with x?

Hint: Before tracting the general case, consider the various cases where (1) $\mathbf{A} = \mathbf{B}$, (2) A = B but $\varphi \neq \psi$, (3) $A \neq B$ but $\varphi = \psi$ and finally (4) $A \neq B$ and $\varphi \neq \psi$.

IV. The speed of sound c in distilled water depends on temperature and pressure. From measurements, it was found that

$$c(p,t) = 1402.7 + 488t - 482t^2 + 135t^3 + 10^{-7}(p - p_{atm})(15.9 + 2.8t + 2.4t^2),$$
 (7)

where p is the pressure in Pascals (Pa) and t = T/100, with T in degree Celsius. This equation is accurate to within 0.05 percent for $0 \le T \le 100^{\circ}$ C and $0 \le p \le 2 \times 10^7$ Pa. Plot the variation of the speed of sound c(p,t) in water versus T as the temperature varies from 0° C to 100° C for $p = p_{atm}$ and $p = 10p_{atm}$. $p_{atm} = 1.013 \times 10^5$ Pa.

- V. Find the intensity level in dB $re 10^{-12}W/m^2$ of a plane wave propagating in air and having an effective acoustic pressure of $1\mu \, bar$.
- VI. Find the intensity level in W/m^2 produced by an acoustic plane wave in water of sound pressure level (SPL) (re $1\mu bar$) = 120 dB.
- VII. What is the ratio of the acoustic pressure in water for a plane wave to that of a similar wave in air of equal intensity?
- VIII. Two harmonic plane waves with the same pressure amplitude but with different frequencies are traveling in the x direction:

$$p'_{1} = \hat{p}e^{i\omega_{1}(t-x/c)},$$
 (8)
 $p'_{2} = \hat{p}e^{i\omega_{2}(t-x/c)}.$ (9)

$$p_2' = \hat{p}e^{i\omega_2(t-x/c)}. \tag{9}$$

1. Show that the resultant acoustic wave can be written as

$$p' = p_1' + p_2' = 2\hat{p}cos[\Delta\omega(t - x/c)]e^{i\bar{\omega}(t - x/c)}, \qquad (10)$$

where $\bar{\omega} = (\omega_1 + \omega_2)/2$ and $\Delta \omega = (\omega_1 - \omega_2)/2$. Equation (10) shows that the resulting plane wave has a modulated wave-like amplitude

$$A = 2\hat{p}\cos[\Delta\omega(t - x/c)]. \tag{11}$$

In what follows we assume $\Delta \omega \ll \bar{\omega}$.

- 2. What are the period T_A and wave length λ_A associated with the modulated amplitude A. If $\Delta \omega = 0.2\bar{\omega}$, plot A at t=0 over two wavelengths $2\lambda_A$. Noting that A is the envelope for (10), plot p' at t=0 over two wavelengths $2\lambda_A$. How many full waves the acoustic wave (10) has per wavelength λ_A ?
- 3. Calculate the instantaneous energy density E_i and the average density defined by

$$E = \frac{1}{\overline{T}} \int_0^{\overline{T}} E_i dt, \tag{12}$$

where $\bar{T} = 2\pi/\bar{\omega}$ is the period associated with the phase of the resultant acoustic wave (10).

Hint: if $\Delta \omega \ll \bar{\omega}$, A is almost constant over a period \bar{T} .