Aeroacoustic and Aerodynamics of Swirling Flows*

Hafiz M. Atassi University of Notre Dame

* supported by ONR grant and OAIAC

OVERVIEW OF PRESENTATION

- Disturbances in Swirling Flows
- Normal Mode Analysis
- Application to Computational Aeroacoustics
- Vortical Disturbances
- Aerodynamic and Acoustic Blade Response
- Conclusions

Swirling Flow in a Fan

Issues For Consideration

- Effect of swirl on aeroacoustics and aerodynamics?
- Can we consider separately acoustic, vortical and entropic disturbances?
- How does swirl affect sound propagation (trapped modes)?
- How do vortical disturbances propagate?
- How strong is the coupling between pressure, vortical and entropic modes?
- What are the conditions for flow instability?
- What are the boundary conditions to be specified?

Scaling Analysis

***** Acoustic phenomena:

Acoustic frequency: nB Ω

• Rossby number =
$$\frac{nB \Omega r_t}{c_0} >> 1$$

Convected Disturbances:

Convection Frequency ~ Shaft Frequency Ω

• Rossby number =
$$\frac{\Omega r_t}{U_x} \approx O(1)$$

 Wakes are distorted as they convect at different velocity. Centrifugal and Coriolis accelerations create force imbalance which modifies amplitude and phase and may cause hydrodynamic instability.

Mathematical Formulation

- Linearized Euler equations
- Axisymmetric swirling mean flow

 $\vec{U}(\vec{x}) = U_x(x,r)\vec{e}_x + U_s(x,r)\vec{e}_\theta$

- Mean flow is obtained from data or computation
- For analysis the swirl velocity is taken

$$U_s = \Omega r + \frac{\Gamma}{r}$$

The stagnation enthalpy, entropy, velocity and vorticity are related by Crocco's equation

$$\nabla \mathbf{H} = \mathbf{T} \nabla \mathbf{S} + \mathbf{U} \times \boldsymbol{\zeta}$$

Normal Mode Analysis

Normal Mode Analysis

- * A normal mode analysis of linearized Euler equations is carried out assuming solutions of the form $f(r)e^{i(-\omega t+m_v\theta+k_{mn}x)}$
- Eigenvalue problem is not a Sturm-Liouville type
- A combination of spectral and shooting methods is used in solving this problem
 - Spectral method produces spurious acoustic modes
 - Shooting method is used to eliminate the spurious modes and to increase the accuracy of the acoustic modes

Comparison Between the Spectral and Shooting Methods

 $M_x=0.55, M_{\Gamma}=0.24, M_{\Omega}=0.21, \omega=16, \text{ and } m=-1$

Effect of Swirl on Eigenmode Distribution

AND STORES

Pressure Content of Acoustic and Vortical Modes

 $M_x=0.5, M_{\Gamma}=0.2, M_{\Omega}=0.2, \omega=2\pi$, and m=-1

Summary of Normal Mode Analysis

Nonreflecting Boundary Conditions

Accurate nonreflecting boundary conditions are necessary for computational aeroacoustics

Quieting the skies: engine noise reduction for subsonic aircraft Advanced subsonic technology program. NASA Lewis research center, Cleveland, Ohio

Formulation

Pressure at the boundaries is expanded in terms of the acoustic eigenmodes.

$$p(\vec{x},t) = \int_{\omega} \sum_{v=-\infty}^{\infty} \sum_{n=0}^{\infty} c_{mn} p_{mn}(\omega,r) e^{i(-\omega t + m_v \theta + k_{mn} x)} d\omega$$

- Only outgoing modes are used in the expansion.
- Group velocity is used to determine outgoing modes.

Causality

Nonreflecting Boundary Conditions (Cont.)

Application to Computational Aeroacoustics

Test Problems for Acoustic Waves

Acoustic waves and/or a combination of acoustic and vortical waves are imposed upstream of an annular duct with swirling mean flow and nonreflecting boundary condition applied downstream

Quieting the skies: engine noise reduction for subsonic aircraft Advanced subsonic technology program. NASA Lewis research center, Cleveland, Ohio

Nonreflecting Boundary conditions

Acoustic Normal Mode Spectrum

 $M_x=0.5, M_{\Gamma}=0.2, M_{\Omega}=0.2, \omega=2\pi$, and m=-1

Density and Velocity Distribution in Uniform Flow

Density and Velocity Distribution in Swirling Flow

Density and Velocity Distribution in Swirling Flow

1.05

1.1

1.15

1.25

1.2

-0.5

0.75

0.8

0.85

0.9

0.95

r

Density and Velocity Distribution in Swirling Flow

Sensitivity of Numerical Solutions to Accuracy of Eigenvalue

 $M_x=0.5, M_{\Gamma}=0.2, M_{\Omega}=0.2, \omega=2\pi$, and m=-1

Vortical Disturbances

Initial Value Solution

$$u(x, r, \theta, t) = \int_{-\infty}^{+\infty} \sum_{m=-\infty}^{m=+\infty} A_m(x, r) e^{i(\alpha x + m \theta - \omega t)} d\omega$$

$$\frac{D_o}{Dt} (\alpha x + m \theta - \omega t) = 0$$
Hub Wake Trajectory
Hub Wake Trajectory
Try Wake Trajectory

Wake Distortion by Swirl

Accelerating axial flow U(x, r) = 85 $\left(1 + \gamma \frac{x}{L}\right) e_x + \frac{50}{r} e_\theta, m = 10, \omega = 5000$

Effect of viscosity

Small scales are most affected by viscosity.

- For large modal number *m* (equivalent to wavenumber), viscous effects are large.
- Rapid-distortion theory assumes viscosity as a source term modifying the evolution process.
 - Slip/Non-slip boundary conditions were tested.

Effect of Reynolds number on the modes U(x,r) = 85 e_x + $\frac{50}{r}$ e_{θ}, m = 10 and m = 20, ω = 5000

*****Re=10,000

Damping
$$\equiv \chi \approx O\left(\exp\left(-\frac{\beta m^2}{r^2}x\right)\right)$$

 $\beta = \frac{1}{\operatorname{Re}_t \rho_0 U_0}$

Aerodynamic and Acoustic Blade Response

Aerodynamic and Acoustic Blade Response

Linearized Euler Model

Two schemes are developed:

- Primitive variable approach
 - **D** Pseudo Time Formulation.
 - Lax-Wendroff Scheme.
- Splitting velocity field approach
 - □ Help understand physics.
 - □ Computational time requirements reduced.
 - □ No singularity at leading edge.
 - Implicit scheme leads to large number of equations which must be solved using an iterative method.
 - □ Parallelization significantly reduces computational time.

Benchmark Test Problem

$$v_{\theta}(r,\theta,x) = \alpha U_{x} e^{i(\omega x + B\theta + h(r))}$$
$$h(r) = \frac{-2\pi q}{B} \left(\frac{r - r_{hub}}{r_{tip} - r_{hub}}\right)$$

Parameters for Benchmark Test Problem

Narrow Annulus		Full Annulus		Data	
r _{tip} ∕r _{hub}	1.0/0.98	r _{tip} /r _{hub}	1.0/0.5	M_x (mach number)	0.5
ω	6.17	ω	5.64	α (disturbance)	0.1
	6.86		6.26 6.89 9.40	B (rotor blades)	16
	1.55			V (stator blades)	24
	10.29			C (chord)	2 π/V
				L (length)	3c

Primitive Variable Approach

Linearized Euler EquationsPseudo Time Formulation

$$\left(\left[I\left(\frac{\partial}{\partial t} - i\omega\right) + \left[A_{x}\right]\frac{\partial}{\partial x} + \left[B_{\theta}\right]\frac{1}{r}\frac{\partial}{\partial \theta} + \left[C_{r}\right]\frac{\partial}{\partial r} + \left[D\right]\right]Y = 0\right)$$

$$\mathbf{Y} = \begin{bmatrix} \boldsymbol{\rho}' & \boldsymbol{u}_{x} & \boldsymbol{u}_{\theta} & \boldsymbol{u}_{r} & \boldsymbol{p}' \end{bmatrix}^{\mathrm{T}}$$

Lax-Wendroff Scheme

Unsteady Pressure Jump Across the Blade for q=1 at Different Spanwise Locations

Primitive Variable Approach

ND: real part -, imaginary part --; Schulten: real part -.-, imaginary part ...

Unsteady Pressure Jump Across the Blade for q=3 at Different Chordwise Locations

Primitive Variable Approach

Acoustic Coefficients for Mode (1,0) at **Different Gust Spanwise Wavenumbers**

Primitive Variable Approach

Downstream

Acoustic Coefficients for Mode (1,1) at **Different Gust Spanwise Wavenumbers**

Primitive Variable Approach

Upstream 0.02 0.015 Namba 0 Namba 0.01 0.005 0 0.005 0.005 -0.010 -0.015 0.015 D Schulten D Schulten 10 Re(C₁₁) Upstream O ND ND 0.01 0.005 B B 0 -0.005 P -0.01 -0.015 -0.02 0 0.5 1.5 Z 2.5 1 3 0 0.5 1 1.5 2.5 3 2 0.015 0.03 B Im(C₁₁) Downstream 10.01 10.002 0.01 Im(C₁₁) Upstream B Ò 8 È -0.015 6 b -0.02 0 0.5 2.5 0 1 1.5 2 3 0 0.5 1.5 2 2.5 3 1 q q

Downstream

Magnitude of the Downstream Acoustic Coefficients

Primitive Variable Approach

q	k	μ	Namba	Schulten	ND
0	1	0	1.7144E-02	1.4972E-02	1.8328E-02
0	1	1	1.8946E-02	1.7850E-02	1.8413E-02
1	1	0	1.0155E-02	9.9075E-03	1.0863E-02
1	1	1	2.7500E-02	2.4696E-02	2.5465E-02
2	1	0	3.3653E-03	3.0988E-03	3.6577E-03
2	1	1	6.0722E-03	6.6977E-03	6.1183E-03
3	1	0	2.0496E-03	1.9710E-03	2.3436E-03
3	1	1	3.7287E-03	4.2455E-03	3.9937E-03

Magnitude of the Upstream Acoustic Coefficients

Primitive Variable Approach

q	k	μ	Namba	Schulten	ND
0	1	0	1.1780E-02	1.1745E-02	1.3332E-02
0	1	1	1.9301E-02	1.9064E-02	1.8358E-02
1	1	0	1.6870E-03	4.1793E-03	3.9596E-03
1	1	1	1.3088E-02	2.2913E-02	2.0612E-02
2	1	0	8.9005E-04	9.4530E-04	1.0867E-03
2	1	1	4.8305E-03	3.8368E-03	4.4787E-03
3	1	0	5.8400E-04	6.5845E-04	7.1097E-04
3	1	1	3.0332E-03	2.6001E-03	2.9529E-03

Splitting Velocity Approach

$$\mathbf{u} = \mathbf{u}^{\mathrm{R}} + \nabla \phi$$

$$p' = -\rho_{o} \frac{D_{o} \phi}{Dt} \quad \text{where} \quad \frac{D_{o}}{Dt} = \frac{\partial}{\partial t} + \boldsymbol{U}_{o} \cdot \nabla$$

$$\frac{D_{o}}{Dt}\frac{1}{c_{o}^{2}}\frac{D_{o}\phi}{Dt} - \frac{1}{\rho_{o}}\nabla \cdot (\rho_{o}\nabla\phi) = \frac{1}{\rho_{o}}\nabla \cdot (\rho_{o}\vec{u}^{R}) - \frac{\partial s'/\partial t}{2c_{p}}$$
$$\frac{D_{o}\vec{u}^{R}}{Dt} + (\vec{u}^{R}\cdot\nabla)\vec{U} = -(\nabla\times\vec{U})\times\nabla\phi - \frac{D_{o}\phi}{Dt}\frac{\nabla s_{o}}{c_{p}}$$
$$\frac{D_{o}S'}{Dt} + (\vec{u}'\cdot\nabla)s_{o} = 0$$

Narrow Annulus

- ⇔ա_{rm}=7.55
- Grid sensitivity study
- Pressure difference compared to LINC.

Upstream			
m=-8	Namba	7.58x10 ⁻³ -1.81x10 ⁻³ i	
	Schulten	7.36x10 ⁻³ -2.453x10 ⁻³ i	
	ND	7.03x10 ⁻³ -3.86x10 ⁻³ i	
Downstream			
m=-8	Namba	-1.12x10 ⁻² +5.68x10 ⁻³ i	
	Schulten	-9.95x10 ⁻³ +5.87x10 ⁻³ i	
	ND	-9.67x10 ⁻³ +6.58x10 ⁻³ i	

OIS+

Full Annulus Case: Pressure jump for q=0, ω_{rm}=9.396. Comparison with Schulten

Spanwise Pressure Jump for q=3, ω_{rm}=9.396. Comparison with Schulten

Upstream & Downstream Acoustic Coefficients.

Lift Coefficient for q=0, 3 versus ω and radius

Full Annulus Lift Distribution Comparison with Strip Theory

Meridian Plane Approximation for Mean Flow (2D Cascade)

Unsteady Lift Comparison Actual and Meridianal Meanflows

Conclusions

- For swirling flows, two families of normal modes exist: pressure-dominated nearly-sonic, and vorticitydominated nearly-convected modes.
- Nonreflecting boundary conditions were derived, implemented, and tested for a combination of acoustic and vorticity waves.
- An initial-Value formulation is used to calculate incident gusts.
- Two schemes (primitive variable and splitting) have been developed for the high frequency aerodynamic and acoustic blade response. Results are in good agreement with boundary element codes.
- A meridian approximation of the mean flow gives "surprising" good unsteady results for 2D cascades.

Future Work

- The numerical code will be used to study unloaded annular cascades in swirling flows.
- Method is under development for loaded annular cascades in swirling flows using a meridian approach.
- Parallelization will significantly reduce computational time making it possible to treat broadband noise.
- ***** Express results in term of the acoustic power radiated.

