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Abstract
This study reports the first geochemical and Pb isotopic data for mantle xenoliths from beneath the Neoproterozoic Ribeira 
Belt, southeastern Brazil. The cm-sized spinel peridotite xenoliths are hosted by a Cretaceous lamprophyre dike that intruded 
high-grade metamorphic rocks. Major- and trace-element compositions of the main minerals indicate that the xenoliths derive 
from a shallow fertile mantle that has undergone a low degree of melt extraction (2–9% partial melting). On the basis of mod-
eled isochemical phase diagrams for lherzolites, pressure and temperature conditions are inferred to vary from 1300–1350 
°C and 17–19 kbar (fertile composition) to 1330–1430 °C and 17–23 kbar (relatively depleted composition), which cor-
respond to high geothermal gradients of 65–80 mW/m2. Temperatures of last equilibration calculated based on the average 
REE content of pyroxenes for the same lherzolite samples vary from 1233 ± 56 °C to 1085 ± 42 °C, while conventional 
thermometry (TBKN) yields average values of 807 and 755 °C, indicating re-equilibration at lower temperatures. Pb isotope 
ratios of clinopyroxene define a mixing line that intercepts the Stacey-Kramers two-stage terrestrial Pb evolution curve at 
ca. 200 Ma. Linear regressions yield two errorchrons of 56 ± 75 Ma and 571 ± 99 Ma (95% confidence level). These results 
combined with the ages and tectonic settings of host rocks are suggestive of an overprint of a younger tectono-thermal event, 
most likely related to the opening of the South Atlantic Ocean, over a mantle previously equilibrated during the Precambrian 
development of the Ribeira Belt.

Keywords Spinel peridotite · Mantle xenoliths · Melt extraction · Isochemical diagrams · Ribeira Belt

Introduction

Investigations that focus on the composition and physical 
properties of the subcontinental lithospheric mantle (SCLM) 
have an impact on the geological models put forward for the 
evolution of cratons and orogenic belts, and on the nature 
of magmas associated with igneous provinces (e.g., Griffin 

et al. 2009; Vauchez et al. 2012; Pearson et al. 2014). The 
SCLM plays an active role in major tectonic events that 
affect the whole tectonic plates, and these can be recorded 
in mantle samples hosted in mantle-derived alkaline magmas 
(e.g., Tommasi and Vauchez 2015; Liu et al. 2019).

The properties of the SCLM beneath Brazil have been 
mainly constrained by previous geophysical and geochemi-
cal studies (e.g., Rocha et al. 2011; Assumpção et al. 2011; 
Bastow et al. 2015; Chmyz et al. 2019), and in lesser degree 
via the examination of the composition of mantle xenoliths 
from various tectonic settings. Most of these mantle xeno-
liths are hosted in either Cenozoic (52–7 Ma) alkali basalts 
(e.g., in the Borborema Province, NE Brazil, related to the 
Macau and Pico do Cabuji volcanic fields; Rivalenti et al. 
2000; Liu et al. 2019; Ngonge et al. 2016, 2019), or in Per-
mian–Triassic (270–240 Ma) to Cretaceous (120–80 Ma) 
kimberlite-like rocks (e.g., from north and central regions 
of Brazil that are located in the Amazonian and São Fran-
cisco cratons and adjacent orogenic belts; Heaman et al. 
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1998; Carlson et al. 2007; Costa et al. 2008; Kaminsky et al. 
2010; Almeida et al. 2014; Felgate 2014). Old Re deple-
tion model ages (average 2400 Ma) of these mantle xeno-
liths have provided evidence for multi-stage melt extraction 
from the mantle beneath the São Francisco Craton since 
Archean-Proterozoic times (e.g., Carlson et al. 2007), while 
initial 187Os/188Os of mantle xenoliths from the Borborema 
Province are similar to those of modern abyssal perido-
tites (Ngonge et al. 2019). Os model ages range from ~ 0 to 
1700 Ma suggesting partial replacement of old lithospheric 
mantle by juvenile material, which was triggered by the 
opening of the Equatorial Atlantic Ocean (Ngonge et al. 
2019; Liu et al. 2019). These combined evidence attest 
for a complex evolution of the subcontinental lithosphere 
throughout the Brazilian territory as a result of the multiple 
tectono-thermal events through geologic time.

The Ribeira Belt (Fig. 1a), located in southeast Brazil, is 
a Neoproterozoic orogen developed during the assembly of 
West Gondwana as part of the Mantiqueira Province (Brito 
Neves et al. 1999; Faleiros et al. 2011). The orogen consists 
of several distinct tectonic terranes with Proterozoic suprac-
rustal rocks (Statherian-to-Cambrian; 1760–540 Ma) and 
local exposures of gneiss–migmatite basement of Paleopro-
terozoic age (2200–1750 Ma) (Siga Junior 1995; Cury et al. 
2002; Heilbron et al. 2004, 2017; Campanha et al. 2008, 
2015, 2016, 2019; Henrique-Pinto et al. 2015; Ricardo et al. 
2020). These rocks are intruded by voluminous Late Neo-
proterozoic to Cambrian granitic magmatism (620–540 Ma; 

e.g., Janasi et al. 2001; Meira et al. 2015; Heilbron et al. 
2020) and sectioned by a large-scale transcurrent shear zone 
system.

The evolution of the orogen starts with a precollisional 
stage (860–620 Ma) followed by three tectono metamorphic 
episodes that are related to the accretion of the inner conti-
nental magmatic arc (620–595 Ma), accretion of intraoce-
anic magmatic arcs (595–565 Ma), and collision of the Cabo 
Frio Terrane (535–510 Ma) (Heilbron and Valeriano 2020). 
Lower Cretaceous (~ 134–130 Ma) magmatism of the Paraná 
Magmatic Province, related to the breakup of Gondwana and 
opening of the South Atlantic Ocean, occurs as massive dike 
swarms of tholeiitic affinity and alkaline–carbonatite com-
plexes (e.g., Raposo 2017; Almeida et al. 2018). A second 
main episode of alkaline magmatism occurred at ~ 85 Ma, 
with late manifestations as young as ~ 55 Ma. The relation-
ship of the Mesozoic magmatism with mantle plumes is still 
contentious (e.g., Heron 2018; Cheng et al. 2020; Beccaluva 
et al. 2019) as there are other processes that can lead to 
mantle melting (e.g., thermal insulation in supercontinents; 
Coltice et al. 2009).

The age(s) of the SCLM and its role in subsequent mag-
matism is a key piece to understand the geological evolution 
of the whole Mantiqueira Province, helping to reconstruct 
robust geological and geophysical models. In particular, 
given that it has experienced major tectonic events that 
include collision of terranes (Faleiros et al. 2011) and rifting 
(e.g., Lamotte et al. 2015), direct study of this SCLM and its 

Fig. 1  Regional geological context of southeastern Brazil. a Simplified geological map of the Ribeira Belt. Modified from Faleiros et al. (2016). 
b Simplified map of the plutonic complexes from the Serra do Mar region with the location of Ubatuba. Adapted from Azzone et al. (2016)
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space–time evolution would benefit enormously from direct 
sampling. However, occurrences of mantle xenoliths within 
the Ribeira Belt area are scarce, and in essence restricted to 
those described in this work.

In this context, the present work aims to investigate the 
nature of the upper mantle beneath the Ribeira Belt through 
the description and analyses of spinel-facies peridotite xeno-
liths hosted by a lamprophyre dike that outcrops at Vermelha 
Beach, Ubatuba City, São Paulo State. We present composi-
tional data for the main minerals (major and trace elements) 
obtained via electron microprobe and LA-ICP-MS analy-
ses, and in situ Pb isotope measurements in clinopyroxene. 
These data allow us to constrain the age of the events that 
affected the SCLM, and perform isochemical phase diagram 
modeling and quantification of pressure and temperature 
conditions of last equilibration and thus contribute to the 
understanding of mantle evolution during Precambrian oro-
genic events, and Cretaceous magmatic events related with 
breakup of Pangea and opening and evolution of the South 
Atlantic Ocean.

Geological setting

The Mesozoic magmatism in south-southeast of Brazil com-
prises the Lower Cretaceous (~ 134 Ma) tholeiitic occur-
rences of the Paraná-Etendeka Magmatic Province (PEMP), 
including voluminous flood basalts, sills, and dike swarms 
(Ponta Grossa, Serra do Mar and Florianópolis). In addition, 
there are Lower and Upper Cretaceous alkaline intrusions 
that include plutonic complexes and dikes, both generated 
during two main magmatic episodes: the first contempo-
raneous with the tholeiitic magmatism (~ 130  Ma) and 
the second peaking at ~ 85 Ma, with some occurrences as 
young as ~ 55 Ma (e.g., Gomes et al. 2011; Janasi et al. 2011; 
Almeida et al. 2018).

The lamprophyre dikes from Vermelha Beach, Ubatuba, 
are part of the Cretaceous ENE-trending Serra do Mar dike 
swarm (SMDS) that outcrop along the coastline of São Paulo 
state. Several alkaline complexes (e.g., Ponte Nova, Ilha de 
São Sebastião, Fig. 1b) dominated by syenites and nepheline 
syenites, with lesser amounts of gabbros, carbonatites, and 
ultramafic rocks intrude Precambrian metamorphic terranes 
of the Ribeira Belt in this region (Brotzu et al. 2005). The 
intrusions are structurally related to ENE–EW faults zones 
generated in the Neoproterozoic Brasiliano-Pan African 
Cycle (e.g., Faleiros et al. 2011). The latter were reactivated 
in the Cretaceous due to extensional movements related to 
the opening of the South Atlantic Ocean; the second episode 
is possibly associated with a regional uplifting caused by 
the Trindade plume (Thompson et al. 1998); however, these 
hypotheses lack an overall consensus.

Garda (1995), Garda et al. (1995), Brotzu et al. (2005), 
and Raposo (2017) presented detailed description of the 
dikes from the region. These are concentrated between the 
cities of São Sebastião and Ubatuba and crosscut Proterozoic 
poly-metamorphic rocks of the Costeiro Complex (Garda 
1995; Raposo 2017). The tholeiitic dikes vary from basalt 
to dacite, while the alkaline rocks include a suite of silica 
undersaturated rocks (foidite, basanite, and phonolite) and 
lamprophyres (Brotzu et al. 2005; Vicentini et al. 2015; 
Raposo 2017). The age of the dike swarm is still conten-
tious, as lamprophyres from the area seem related to the 
Upper Cretaceous magmatism responsible for the forma-
tion of the major alkaline intrusions of the area (Bellieni 
et al. 1990; Raposo 2017). A 40Ar/39Ar age of 85.4 ± 0.4 Ma 
was recently obtained for biotite from a tephriphonolite dike 
(Azzone et al. 2018). The tholeiitic occurrences are related 
to the Lower Cretaceous magmatism of the PEMP, as con-
strained by 40Ar/39Ar ages (130 Ma; Deckart et al. 1998; 
Regelous 1993).

The host lamprophyre dike

The spinel peridotite mantle xenoliths are located at the 
core of a subvertical 1.5 m-thick dike of a dark-gray kaersu-
tite lamprophyre (Fig. 2a–c) that shows significant zoning 
between the core and an aphanitic rim. In some places, the 
core presents ellipsoidal contours that locally form a breccia 
(Fig. 2d) and are interpreted as a volcanic conduit (Garda 
et al. 1995). These portions bear xenoliths of the country 
rock (a foliated charnockite) and mantle xenoliths in a fine-
grained spherulitic vitreous matrix. In thin section, the lam-
prophyre shows olivine phenocrysts/xenocrysts immersed in 
a matrix composed of brownish clinopyroxene (Ti-augite), 
kaersutite, olivine, biotite, feldspathoids, and Fe–Ti oxides. 
The whole-rock composition classifies the rock as a basanite 
with 40 wt% of  SiO2, 3 wt% of  TiO2, 12 wt% MgO, 1.8 wt% 
of  Na2O, and 1.7 wt%  K2O.

Analytical techniques

Major elements in minerals were analyzed in a JEOL JXA-
8600 electron microprobe at the NAP-Geoanalitica, Insti-
tute of Geosciences, University of São Paulo. Analyses were 
performed at 15 kV acceleration voltage and 20 nA beam 
current; beam diameter was normally 5 μm. Standards were 
natural and synthetic minerals; standards used in pyroxene 
analyses include wollastonite (Si, Ca), rutile (Ti), anorthite 
(Al),  Cr2O3 (Cr), diopside (Mg), olivine (Mn, Fe), natural 
Ba silicate (Ba), albite (Na), and asbesto (K). Corrections 
were performed using the PROZA procedure (Bastin et al. 
1984). Trace-element analyses in clinopyroxene, orthopy-
roxene, and olivine were performed by LA-Q-ICP-MS at 
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NAP-Geoanalitica, using a Parkin-Elmer ELAN-600 quad-
rupole ICP-MS with a 216 nm Nd-YAG New-Wave laser 
ablation system, with a spatial resolution of 20–40 μm. 
The average detection limits of the LA-Q-ICP-MS and the 
average compositions obtained for the calibration stand-
ards (NIST 610 and NIST 612 glasses) and quality controls 
(BCR and BHVO) are in the supplementary material. The 
concentration of Ca from the electron microprobe analyses 
was used as internal standard for clinopyroxene analyses. 
The concentration of Mg was used as internal standard for 
orthopyroxene and olivine analyses. The data reduction was 
performed using the Glitter software (Griffin et al. 2008). 
Detailed information about the analytical procedure at the 
LA-Q-ICP-MS laboratory can be found in Andrade et al. 
(2014).

P–T isochemical phase diagrams were constructed for 
bulk compositions representative of spinel lherzolite sam-
ples XM-3 and XM-1 using the Perple_X software (Con-
nolly 2005), version 6.8.7, and the internally consistent 

thermodynamic database of Holland and Powell (2011) 
(tc-ds622, hp622ver.dat in Perple_X). The modeled bulk 
compositions are indicated in Table  1 and were deter-
mined by combining quantitative modal and chemical 
mineral data. Uncertainties about the positions of assem-
blage field boundaries associated with point-counted 
mineral proportions that propagate in an individual 
phase diagram are quantified to be ± 50 °C and ± 1 kbar 

Fig. 2  a Kaesurtite lamprophyre dike that hosts the mantle xenoliths. b Mantle xenoliths (yellowish green) enclosed in the lamprophyre. c Con-
centration of mantle xenoliths (yellowish green) in the dike. d Ellipsoidal contours at the center of the dike

Table 1  Bulk compositions 
used in phase diagram modeling

Sample XM-3 XM-1

SiO2 44.07 42.18
Al2O3 5.78 1.19
Cr2O3 0.60 0.30
FeO 8.25 8.41
MgO 37.55 44.50
CaO 2.79 2.50
Na2O 0.24 0.14
O2 0.08 0.02
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(2σ) for a 20% degree of modal proportion uncertainty 
(Palin et al. 2016). The diagrams were calculated in the 
 Na2O–CaO–FeO–MgO–Al2O3–SiO2–O2–Cr2O3 (NCF-
MASOCr) model system. The  Fe2O3 contents in the modeled 
bulk compositions, expressed by the appropriate  O2 contents 
to correct to FeO, were estimated based on charge balance 
in the chemical formulas of the minerals. Estimated  Fe2O3 
contents vary from 0.3 to 0.16 wt%, which agree with  Fe2O3 
contents in the range of 0.1–0.4 wt% measured in perido-
tite xenoliths by 57Fe Mössbauer spectroscopy (Canil et al. 
1994). The solution models for clinopyroxene, orthopyrox-
ene, olivine, spinel, garnet, plagioclase, and silicate melt are 
from Jennings and Holland (2015).

The temperature estimates are based on the REE con-
tent of the pyroxenes and the Fe–Mg exchange between the 
pyroxenes (Brey and Koehler 1990), and these were calcu-
lated using the excel spreadsheet available in Liang et al. 
(2013). The temperature estimates based on the composi-
tion of clinopyroxene of Mercier (1980) were obtained using 
software PTQuick (Simakov and Dolivo-Dobrovolsky 2009).

The Pb isotope compositions of individual clinopyrox-
ene grains were obtained using petrographic thin sections at 
the MITERAC ICP-MS Facility, University of Notre Dame 
(USA). In situ Pb isotope ratios were obtained using an 
NWR193 nm laser ablation system coupled to a Nu Plasma 
II MC-ICP-MS instrument. Individual clinopyroxene grains 
were analyzed in raster mode using a 150 μm spot size, rep-
etition rate of between 7 and 12 Hz, and an energy density 
of 10–12 J/cm3. Prior to lasering of clinopyroxene grains, 
a 45 s on peak blank measurement was conducted and fol-
lowed by a 60 s laser ablation interval. The raw Pb isotope 
data were measured and calculated using the Nu Instruments 
TRA (Time-Resolved-Analysis) software. Unknown analy-
ses from each of the samples were bracketed by analysis 
(n = 4 measurements) of the NIST SRM 614 glass standard 
to correct for instrumental drift and mass bias. As described 
in Chen and Simonetti (2015) and Smart et al. (2017), the 
instrumental mass bias was corrected by adopting the expo-
nential law and the Pb isotope values for NIST SRM 614 
(Baker et al. 2004). On the basis of repeated measurements 

(n = 10) of the NIST SRM 614 standard, the average external 
reproducibility (2σ level) for the 208Pb/204Pb, 207Pb/204Pb, 
206Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb ratios are ± 0.14, 
0.059, 0.066, 0.0015, and 0.003, respectively.

Spinel‑facies mantle xenoliths

The spinel peridotite samples are subrounded, medium- 
to coarse-grained xenoliths and are up to 2 cm in diam-
eter. The larger samples were classified based on min-
eral counting and visual estimates and all correspond to 
peridotites (lherzolite and wehrlite, Table 2) with 0.6 to 
8 vol% of spinel. The sample XM-3 presents high pro-
portion of orthopyroxene (> 30 vol%). The detailed study 
was performed in five representative xenoliths and some 
xenocrysts.

The spinel lherzolite samples show protogranular tex-
ture, with minerals showing both linear and embayed 
contacts (Fig. 3a–c). The samples display up to 4 mm-
sized, anhedral, partially altered olivine grains with slight 
undulose extinction. Brownish orthopyroxene is ~ 1.5 mm 
size and shows microfractures and fine exsolution lamellae 
concentrated in the core of the grains. Light green clinopy-
roxene is ~ 2 mm size and contains fluid inclusions trails. 
Brownish and olive-green spinel is included in orthopyrox-
ene or involves partially clinopyroxene grains. Tiny sulfide 
crystals are present as accessory phases.

A wehrlite xenolith contains partially serpentinized 
olivine, clinopyroxene, and minor orthopyroxene with 
straight and curved contacts forming a protogranular tex-
ture. A reaction rim is present at the contact with the host 
rock, composed of euhedral clinopyroxene, opaque min-
erals, and small olivine grains. The sample also shows a 
region with a symplectic intergrowth of clinopyroxene and 
olivine (Fig. 3d).

Small xenoliths (< 1 cm) and xenocrysts of olivine and 
orthopyroxene were also studied and typically show reac-
tion rims with the host lamprophyre (Fig. 3e). Orthopy-
roxene xenocrysts may have exsolution lamellae similar to 
those shown by grains from the bigger xenoliths (Fig. 3f).

Table 2  Classification of the 
bigger mantle xenoliths

* Point counting

Sample Texture Ol Opx Cpx Sp Opc Classification

XM-1* Protogranular 81.8 6.7 10.7 0.6 0.2 Spinel lherzolite
XM-2 Protogranular with 

symplectite
72 3 25 – – Wehrlite

XM-3* Protogranular 49.4 34.7 11.8 3.5 0.6 Spinel lherzolite
XM-9 h Protogranular 66 10 15 8 1 Spinel lherzolite
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Mineral chemistry

Major elements

Representative major-element analyses of olivine, pyroxene, 
and spinel are listed in Tables 3 and 4 and as supplementary 
material.

Olivine has high Mg# (100*Mg/(Mg + Fe)), which 
is typical of mantle xenoliths (88–91), with slight differ-
ences among the three xenolith samples; olivine from 
sample  XM-1 has the highest Mg# (90.5–90.8), XM-2 
the lowest (88.2–89.4), while XM-3 has intermediate val-
ues (89.4–89.6). Olivine from two smaller fragments was 
also analyzed, and those from XM-9h overlap XM-3, while 

Fig. 3  Photomicrographs of the mantle xenoliths. a Texture of sample 
XM-3 showing minerals with straight and curved contacts with spi-
nel (Sp) and olivine (Ol). b Detailed view of the sample XM-3, with 
clinopyroxene (Cpx), orthopyroxene (Opx), and olivine. c Texture of 

sample XM-1 showing clinopyroxene, olivine, and orthopyroxene. d 
Wehrlite showing a symplectic intergrowth between clinopyroxene 
and olivine. e Reaction rim between mantle xenolith and the host 
lamprophyre. f Orthopyroxene xenocryst with exsolution lamellae
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olivines from XM-9g encompass the whole spectrum of 
Mg#. Apart from  SiO2, abundances for other major oxides 
are very low; NiO varies from 0.25 to 0.4 wt%; typically, the 
lower contents (< 0.32 wt%) are present in the xenolith with 
lower Mg# (XM-2). The rims of the grains located adjacent 
to the contact between the xenolith and the host rock show 
slightly lower Mg# (86).

Orthopyroxene from all samples shows a very small range 
of Mg# (89.5–91). The difference between xenoliths XM-1 
and XM-3 parallels the variation shown by coexisting oli-
vine, with orthopyroxene from XM-1 showing systemati-
cally higher Mg# (90.4–90.6) and no overlap (XM-3 Opx 
Mg# = 89.5–90.0). Orthopyroxene from xenolith XM-2 has 
Mg# in the same range for those from XM-3, but Al contents 
are much lower. A positive correlation between Al total and 
 TiO2 abundances is noted among the xenoliths, with XM-3 
showing the highest contents and XM-2 (in which  TiO2 is 
close to zero) the lowest (Fig. 4a).

Clinopyroxene Mg# varies from 90.0 to 91.7, except 
in reaction rims at the contact with the host lamprophyre 
(Mg# = 83). The CaO content of clinopyroxene varies from 

19.2 to 23.0 wt%, while  Na2O varies from 0.6 to 2.3 wt%. 
Figure 4b compares Mg# and Al total of coexisting clino-
pyroxene and orthopyroxene. The Mg# of clinopyroxene is 
always slightly higher than the Mg# of orthopyroxene, and 
Al total are similar in pyroxenes from XM-1 and XM-2 with 
the latter showing the lowest contents (Fig. 4c). The com-
positions for clinopyroxene from both sample XM-3 and 
XM-9h again overlap in Fig. 4c and have the highest Al total 
contents. Al content of pyroxene from mantle peridotite is 
indicative of the degree of fertility, and this confirms that 
samples XM-3 and 9h are the most fertile from the sample 
set.

Most Al in clinopyroxene corresponds to the jadeite 
component and is corroborated by the positive correlation 
between Al (IV) and Na contents (Fig. 4d). Clinopyroxene 
from host lamprophyre is optically distinct with brownish 
tint typical of Ti-augite and has higher Ti and  Fe3+ con-
tents (Table 4). Clinopyroxene from the spinel lherzolites 
XM-3 and XM-9h shows cores with higher concentrations 
of  Al2O3 (6.2–7.6 wt%),  TiO2 (0.5–0.8 wt%), and  Na2O 
(1.8–2.3 wt%).

Table 3  Representative major-element compositions of olivine (Ol) and spinel (Sp) of the mantle xenoliths

* Fe2+/Fe3+ ratios estimated using Carmichael (1967) procedure for spinel

Sample XM-9 g XM-9 h XM-1 XM-2 XM-3 Sample XM-9 h XM-9 h XM-3 XM-3 XM-3 XM-1
Mineral Ol Ol Ol Ol Ol Mineral Sp Sp Sp Sp Sp Sp

Position Rim Core Core Core Core Position Core Core Core Core Rim Rim

SiO2 39.92 39.96 40.20 40.55 40.08 TiO2 0.13 0.08 0.06 0.08 0.05 0.10
TiO2 0.00 0.03 0.00 0.02 0.00 Al2O3 58.00 57.70 58.75 59.37 60.62 49.56
Al2O3 0.00 0.00 0.00 0.01 0.00 Cr2O3 9.33 9.69 7.52 6.53 6.16 14.94
FeO 9.25 10.15 9.31 11.16 10.32 FeO 10.57 10.96 9.95 9.85 10.81 9.49
MnO 0.18 0.14 0.14 0.21 0.18 Fe2O3

* 2.02 1.60 2.71 2.61 1.38 5.43
MgO 50.88 49.91 49.65 48.15 48.86 MnO 0.09 0.09 0.08 0.10 0.05 0.14
CaO 0.02 0.02 0.02 0.03 0.01 MgO 20.01 19.61 20.24 20.23 19.88 19.51
Na2O 0.01 0.00 0.02 0.00 0.00 ZnO 0.22 0.18 0.25 0.23 0.18 0.13
K2O 0.01 0.00 0.00 0.00 0.00
Cr2O3 0.00 0.03 0.03 0.04 0.00
NiO 0.40 0.36 0.39 0.31 0.40
Total 100.65 100.58 99.76 100.48 99.86 Total 100.38 99.91 99.56 98.99 99.14 99.32
Si 0.974 0.979 0.988 0.996 0.989 FeOI 12.39 12.397 12.388 12.194 12.056 14.375
Al 0.000 0.000 0.000 0.000 0.000 Al 1.763 1.764 1.789 1.811 1.842 1.568
Ti 0.000 0.001 0.000 0.000 0.000 Ti 0.003 0.002 0.001 0.001 0.001 0.002
Fe2+ 0.189 0.208 0.191 0.229 0.213 Cr 0.190 0.199 0.154 0.134 0.126 0.317
Mn 0.004 0.003 0.003 0.004 0.004 Fe2 0.228 0.238 0.215 0.213 0.233 0.213
Mg 1.851 1.822 1.820 1.764 1.797 Fe3 0.039 0.031 0.053 0.051 0.027 0.110
Ca 0.000 0.001 0.001 0.001 0.000 Mn 0.002 0.002 0.002 0.002 0.001 0.003
Na 0.001 0.000 0.001 0.000 0.000 Mg 0.770 0.759 0.780 0.781 0.765 0.781
K 0.000 0.000 0.000 0.000 0.000 Zn 0.000 0.000 0.000 0.000 0.000 0.000
Ni 0.008 0.007 0.008 0.006 0.008
Total 3.027 3.021 3.012 3.000 3.011 Total 2.995 2.995 2.994 2.993 2.995 2.994
Mg# 91.0 90.0 91.0 89.0 89.0 Cr# 9.7 9.7 7.9 6.9 6.4 16.8
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Spinel is present in the more fertile samples XM-3 and 
9h and is characterized by Cr# = 6–10 and Mg# = 74–75. 
Spinel from xenolith XM-1 has higher Cr# and lower Mg# 
(Fig. 5a).

Trace elements

Results of trace-element analyses by LA-ICP-MS of olivine 
and pyroxene are presented in Table 5. Olivine has neg-
ligible contents of incompatible elements. Ni is the most 
abundant trace element at 3200–3300 ppm in both samples 
XM-1 and XM-3; Ni concentrations drop to ~ 2500 ppm 
in XM-2. In contrast, olivine from XM-2 contains higher 
Zn (120 ppm) and Mn (1900 ppm) contents relative to the 

other two samples. Olivine from XM-3 is distinguished by 
higher Ti (~ 30 vs. 4–5 ppm in XM-1 and XM-2) and lower 
Cr (< 8 vs. 22–25 ppm) contents. Significant contents of P 
(56–74 ppm) are present in all analyzed crystals.

Orthopyroxene has low REE contents with sample 
XM-3 showing higher Y compared to XM-1 (0.7–0.9 vs. 
0.3 ppm), which is paralleled by the HREE. Similarly to 
olivine, orthopyroxene from XM-3 is distinct from that 
of XM-1 by its higher Ti (1000–1100 vs. ~ 400 ppm) and 
lower Cr (2100–2400 vs. ~ 3000 ppm) abundances. Over-
all, clinopyroxene is host to most of the incompatible ele-
ments for the xenolith samples. Chondrite-normalized 
REE patterns for three xenolith samples are markedly con-
trasted. Clinopyroxene from XM-3 has a flat pattern with 

Table 4  Representative major-element compositions of orthopyroxene (Opx) and clinopyroxene (Cpx) of the mantle xenoliths

Lamp—lamprophyre

Sample XM-9 g XM-9 h XM-2 XM-1 XM-3 XM-9 h XM-9 h XM-1 XM-2 XM-2 XM-3 XM-3 Lamp
Mineral Opx Opx Opx Opx Opx Cpx Cpx Cpx Cpx Cpx Cpx Cpx Cpx

Position Core Core Rim Core Core Core Rim Core Core rim Core rim Core

SiO2 54.86 55.82 57.37 55.50 55.12 52.06 51.72 52.09 53.67 53.18 51.59 51.72 40.11
TiO2 0.03 0.19 0.00 0.09 0.16 0.60 0.68 0.22 0.04 0.16 0.60 0.59 5.54
Al2O3 3.59 4.15 1.65 3.98 4.52 7.48 7.46 4.39 1.49 1.75 7.36 6.68 9.91
FeO 5.88 6.49 7.02 6.18 6.83 2.55 2.60 2.49 2.96 3.07 2.58 2.50 8.14
MnO 0.14 0.16 0.22 0.19 0.15 0.10 0.10 0.04 0.08 0.13 0.05 0.07 0.09
MgO 34.08 33.72 33.39 33.03 33.01 13.99 13.85 15.39 17.68 17.41 13.56 14.18 10.80
CaO 1.01 0.33 0.60 0.38 0.24 19.74 20.36 22.05 22.10 22.31 21.76 21.86 23.43
Na2O 0.06 0.07 0.35 0.04 0.01 2.29 2.17 1.23 0.58 0.59 1.86 1.67 0.45
K2O 0.00 0.00 0.14 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01
Cr2O3 0.70 0.28 0.16 0.44 0.29 1.40 0.82 0.79 0.41 0.53 0.70 0.54 0.07
Total 100.33 101.21 100.90 99.83 100.33 100.21 99.75 98.68 99.01 99.12 100.05 99.82 98.56
TSi 1.881 1.902 1.965 1.920 1.899 1.875 1.871 1.910 1.961 1.944 1.866 1.874 1.528
TAl 0.119 0.098 0.035 0.080 0.101 0.125 0.129 0.090 0.039 0.056 0.134 0.126 0.445
TFe3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.027
M1Al 0.025 0.069 0.031 0.082 0.082 0.192 0.189 0.099 0.025 0.019 0.180 0.159 0.000
M1Ti 0.001 0.005 0.000 0.002 0.004 0.016 0.018 0.006 0.001 0.004 0.016 0.016 0.159
M1Fe3 0.077 0.016 0.028 0.000 0.003 0.021 0.032 0.044 0.042 0.055 0.032 0.037 0.185
M1Fe2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.022 0.007 0.041
M1Cr 0.019 0.008 0.004 0.012 0.008 0.040 0.023 0.023 0.012 0.015 0.020 0.015 0.002
M1Mg 0.878 0.903 0.936 0.904 0.903 0.732 0.738 0.829 0.921 0.907 0.731 0.766 0.613
M1Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
M2Mg 0.864 0.810 0.769 0.799 0.792 0.019 0.009 0.013 0.042 0.042 0.000 0.000 0.000
M2Fe2 0.092 0.169 0.173 0.179 0.194 0.056 0.047 0.033 0.049 0.039 0.025 0.032 0.007
M2Mn 0.004 0.005 0.006 0.006 0.004 0.003 0.003 0.001 0.002 0.004 0.001 0.002 0.003
M2Ca 0.037 0.012 0.022 0.014 0.009 0.762 0.789 0.866 0.865 0.874 0.843 0.849 0.957
M2Na 0.004 0.004 0.024 0.002 0.001 0.160 0.152 0.087 0.041 0.042 0.131 0.117 0.033
M2K 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
Wo 1.90 0.63 1.15 0.75 0.47 47.83 48.79 48.52 45.03 45.51 50.98 50.14 52.205
En 89.26 89.48 88.13 89.56 88.97 47.16 46.18 47.13 50.14 49.40 44.20 45.26 33.479
Fs 8.84 9.90 10.72 9.69 10.56 5.01 5.04 4.35 4.83 5.10 4.82 4.60 14.316
Mg# 91.16 90.25 89.45 90.49 89.59 90.7 90.44 91.62 91.37 90.99 90.25 90.97 70.22
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(La/Yb)N = 0.6–1 and concentrations at ten times chondrite 
(Fig. 6a). Clinopyroxene from XM-1 exhibits a flat pat-
tern for the REEs heavier than Gd ((Gd/Lu)N = 0.8—1.4) 

at low concentrations (average 6 × chondrite), and a pro-
nounced enrichment of the LREEs, attaining ~ 100 × chon-
drite for La (Fig. 6a). Clinopyroxene from sample XM-2 
shows an overall enrichment of all REEs with a maximum 
at Nd that results in a concave-up shape for the LREEs 
((La/Nd)N < 1). The distribution coefficients of the REE 
between clinopyroxene and orthopyroxene (Dcpx/opx), 
calculated with the average compositions, and a diagram 
showing the Dcpx/opx for two xenoliths (XM-1 and 
XM-3) in comparison with the Dcpx/opx of Hellebrand 
et al. (2005) are in the supplementary material. The two 
samples (XM-1 and XM-3) show similar Dcpx/opx for 
most of the REE.

Primitive mantle-normalized multi-element plots illus-
trate important contrasts in the behavior of incompatible ele-
ments in clinopyroxene from the studied xenoliths. Clinopy-
roxene from sample XM-3 shows slightly negative Zr + Hf 
anomalies ((Sm/Zr)N from 1.8 to 3.2) and depletion of LILE 
and Nb (Fig. 6b). LILE/HFS ratios for the clinopyroxene 
from sample XM-1 are systematically higher as observed 
in Figs. 5b and 6b. It also exhibits well-defined negative 
anomalies of HFSEs (Ti, Zr, Hf, and Nb), which are espe-
cially highlighted by the relatively high contents of LREEs, 
Th, U, and Ba. Clinopyroxene from XM-2 contrast with 
that of XM-1 by overall higher contents of incompatible 
elements (except U, Th, and Pb), but especially by higher 
abundances of Nb and Ta and a pronounced negative Ti 
anomaly (Fig. 6b).

Fig. 4  a  Altotal vs.  TiO2 (wt%) of orthopyroxene (Opx) of the xenolith 
samples. b Mg# vs.  Altotal with a comparison between orthopyroxene 
and clinopyroxene (Cpx) compositions. c  Altotal vs. Ti of clinopyrox-

ene. d Positive correlation between  Al(IV) and Na of clinopyroxene of 
the xenolith samples

Fig. 5  a Mg# vs. Cr# diagram with the composition of spinel in the 
xenolith samples. b LILE/HFS (La/Nb, La/Zr) ratios of clinopyrox-
enes of the samples XM-1, XM-2 and XM-3
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Pb isotopes

The Pb isotope compositions for minerals characterized by 
very low U/Pb ratios reflect those predominantly inherited 
initially from the medium they last equilibrated with, and 
may therefore provide important age information (e.g., Hunt 
et al. 2012). In mantle samples, clinopyroxene has been the 
most feasible mineral for this kind of study due to its low 
U/Pb ratios and high closure temperatures for Pb diffusion 

during thermal events (e.g., Cherniak 1998; Jacob and Foley 
1999; Schmidberger et al. 2007; Tappe et al. 2011; Hunt 
et al. 2012; Smart et al. 2014, 2017). This combination 
yields reliable age information and insights into the chemi-
cal nature of the SCLM. There are several previous works in 
which Pb isotope compositions of clinopyroxene proved to 
be fundamental in constraining the role of the mantle rela-
tive to major tectono-thermal events (e.g., collision of ter-
ranes, subduction, regional magmatism) of a given area (e.g., 

Table 5  Representative trace element compositions of olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) of the mantle xenoliths. Con-
centrations are in ppm

 < dl—below detection limit

Sample XM-1 XM-2 XM-3 XM-3 XM-1 XM-1 XM-1 XM-1 XM-2 XM-3 XM-3 XM-3
Mineral Ol Ol Ol Opx Opx Opx Cpx Cpx Cpx Cpx Cpx Cpx

P 67.62 57.15 66.79 55.76 30.40 50.66 44.38 84.70  < dl 86.22 76.88 45.45
Sc 1.45 1.57 2.54 15.97 13.50 14.67 68.04 65.46 43.25 58.76 53.50 60.23
Ti 3.89 4.99 35.41 975.67 364.80 422.58 1242.17 962.90 1007.49 6065.27 4842.49 5259.36
Cr 24.59 21.78  < dl 2272.02 2923.96 3016.29 8261.51 7502.41 3940.09 5614.71 5027.44 5206.18
Mn 1110.18 1886.87 1094.72 1173.95 1139.93 1121.64 588.40 588.31 1245.55 745.24 684.60 687.88
Co 160.95 148.28 159.89 57.76 57.06 55.76 25.89 20.45 31.79 18.76 18.46 19.29
Ni 3335.45 2483.52 3283.64 649.85 632.18 642.36 383.09 338.22 475.64 307.16 268.31 281.20
Cu 0.68 0.45  < dl  < dl 0.32 0.76 0.50 0.54 4.28 1.01 0.48 0.99
Zn 42.79 120.45 32.57 23.38 31.55 26.52 29.55 10.38 34.08 6.54 5.12 7.01
Ga  < dl  < dl 0.15 3.74 3.19 3.18 3.85 2.62 12.69 5.50 4.25 4.75
Rb  < dl  < dl  < dl  < dl  < dl  < dl 0.21 0.12 19.39 0.16  < dl  < dl
Sr  < dl  < dl  < dl  < dl 1.19 0.26 265.39 189.23 634.33 93.85 78.39 81.29
Y 0.02 0.10  < dl 0.68 0.27 0.35 8.53 8.29 50.71 18.24 17.28 18.02
Zr 0.01  < dl  < dl 0.66 0.61 0.65 19.01 16.53 74.95 21.27 17.89 19.09
Nb 0.02  < dl  < dl  < dl  < dl 0.00 0.26 0.16 17.61 0.85 0.60 0.81
Sn 1.15  < dl 1.77  < dl 0.66 0.69 0.90 1.13 2.03  < dl  < dl 1.55
Ba 0.03 0.06  < dl 0.22 0.70 0.06 81.24 43.41 25.36  < dl 0.20  < dl
La  < dl  < dl  < dl 0.01 0.10 0.03 22.46 17.38 17.62 2.84 2.34 2.52
Ce  < dl 0.02 0.01  < dl 0.20 0.03 32.63 28.41 80.30 9.28 7.60 7.50
Pr  < dl  < dl  < dl  < dl  < dl  < dl 2.54 2.37 14.33 1.53 1.12 0.98
Nd  < dl  < dl 0.07  < dl 0.09  < dl 7.00 8.57 79.23 7.49 6.18 5.50
Sm  < dl  < dl 0.05  < dl  < dl 0.02 1.12 1.30 18.70 2.51 1.27 1.73
Eu  < dl  < dl 0.08  < dl  < dl  < dl 0.46 0.50 6.09 0.90 0.73 0.65
Gd  < dl  < dl 0.07  < dl  < dl 0.02 1.46 1.15 14.76 2.73 2.64 2.99
Tb  < dl  < dl 0.02 0.01 0.01  < dl 0.22 0.25 2.41 0.42 0.40 0.59
Dy  < dl 0.02  < dl 0.12 0.05 0.05 1.34 1.29 12.73 4.43 2.61 3.14
Ho  < dl  < dl 0.03 0.05 0.02 0.02 0.40 0.33 1.92 0.84 0.58 0.77
Er  < dl  < dl  < dl 0.07 0.06 0.04 0.98 0.87 4.23 2.19 1.75 1.71
Tm  < dl  < dl  < dl  < dl 0.01 0.01 0.20 0.16 0.55 0.37 0.30 0.25
Yb  < dl  < dl 0.06 0.19 0.21 0.11 1.03 1.27 3.90 2.82 2.25 1.47
Lu 0.00 0.01  < dl 0.09 0.01 0.03 0.13 0.11 0.35 0.27 0.29 0.37
Hf  < dl 0.04 0.06  < dl 0.02  < dl 0.39 0.45 0.87 0.43 0.62 0.38
Ta 0.00  < dl  < dl  < dl 0.00  < dl  < dl 0.01 0.33 0.16 0.11 0.03
Pb  < dl  < dl  < dl  < dl  < dl  < dl 2.90 2.46 0.82 0.49 0.19 0.17
Th  < dl 0.04  < dl  < dl 0.12 0.08 3.44 2.42 0.35 0.14 0.09 0.05
U 0.06  < dl  < dl 0.03 0.11 0.06 0.91 0.78  < dl  < dl 0.02  < dl
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Slave Craton; Smart et al. 2014, 2017). Pb isotope compo-
sitions of clinopyroxene also help to identify open-system 
or mixing behavior, such as mantle metasomatism and host 
magma–mantle xenolith interaction (e.g., Smart et al. 2017).

Clinopyroxene from spinel lherzolite XM-1 has the high-
est Pb, U, and Th concentrations (2.4–3 ppm, 0.8–1.2 ppm, 
and 2.4–3.4 ppm, respectively) among the peridotite sam-
ples investigated here, and was therefore selected for in situ 
Pb isotope investigation by LA-MC-ICP-MS. Pb isotope 
ratios are presented in Table 6 and shown in Fig. 7. The Pb 
isotope compositions display considerable variation with 
206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios that define 
the following ranges: 18.4–20.1, 15.6–17, and 38.7–41.8, 
respectively. The 206Pb/204Pb and 207Pb/204Pb ratios form a 
linear array (Fig. 7a) and intercept the Stacey-Kramers two-
stage terrestrial evolution curve at ca. 200 Ma. The data 
reported here plot close to the isotopic field of Group I kim-
berlites (Smith 1983), and to the Pb isotopic composition of 
the host lamprophyre alkaline dike (Garda 1995) and alka-
line dikes from the Serra do Mar region (Ponte Nova massif; 

Azzone et al. 2020). In a 238U/204Pb vs. 206Pb/204Pb isochron 
diagram (Fig. 7b), the results define two linear regressions 
that yield errorchron ages of 56 ± 75 Ma and 571 ± 99 Ma 
(95% confidence level). Given the large uncertainty associ-
ated with the former, it represents a younger event with no 
geological meaning.

Pressure and temperature calculations

Temperature calculations

The average composition of pyroxene from samples XM-1 
and XM-3 was used for obtaining temperature calculations 
based on the REE geothermometer of Liang et al. (2013). 
The regression lines yield temperatures of last equilibration 
of 1031 ± 47 °C (XM-1) and 1136 ± 37 °C (XM-3) based on 
all of the REE data (Fig. 8a, b). However, the temperatures 
are 1085 ± 42 °C (XM-1) and 1233 ± 56 °C (XM-3) when 
excluding outlier elements from the linear regressions (Y, 

Fig. 6  a Chondrite-normalized (McDonough and Sun 1995) REE patterns. b Primitive mantle-normalized (Sun and McDonough 1989) incom-
patible elements patterns of clinopyroxene of the mantle xenoliths

Table 6  Pb isotope analyses of clinopyroxene from sample XM-1

Point 206Pb/204Pb 2σ 207Pb/204Pb 2σ 208Pb/204Pb 2σ 207Pb/206Pb 2σ 208Pb/206Pb 2σ

1 18.40 0.19 15.62 0.16 38.66 0.42 0.8487 0.0009 2.1015 0.0023
2 18.64 0.14 15.83 0.12 39.22 0.31 0.8494 0.0009 2.1036 0.0011
3 18.77 0.22 15.99 0.18 39.62 0.43 0.8519 0.0013 2.1049 0.0022
4 18.76 0.16 15.94 0.13 39.56 0.33 0.8474 0.0012 2.1022 0.0021
5 18.50 0.24 15.68 0.20 38.88 0.51 0.8475 0.0010 2.1008 0.0010
6 18.52 0.19 15.76 0.16 38.95 0.40 0.8506 0.0011 2.1037 0.0018
7 18.47 0.17 15.69 0.15 38.99 0.38 0.8495 0.0011 2.1109 0.0019
8 18.49 0.13 15.66 0.10 39.08 0.31 0.8469 0.0016 2.1086 0.0021
9 19.49 0.12 16.55 0.11 41.07 0.23 0.8503 0.0009 2.1090 0.0019
10 19.27 0.13 16.41 0.11 40.68 0.29 0.8516 0.0011 2.1124 0.0025
11 19.31 0.13 16.36 0.11 40.59 0.25 0.8478 0.0009 2.1036 0.0027
12 20.11 0.25 17.09 0.22 42.17 0.54 0.8476 0.0010 2.0979 0.0021
13 19.89 0.21 16.88 0.18 41.83 0.45 0.8486 0.0007 2.1029 0.0021
14 18.91 0.19 16.10 0.16 39.91 0.38 0.8515 0.0010 2.1111 0.0020
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Fig. 7  a Pb isotope compositions of clinopyroxene for sample XM-1. 
All ellipses represent a single analysis with the 2σ error. Two-stage 
terrestrial Pb growth curve from Stacey and Kramers (1975) (model 
ages are in Ma). Given the recent and young age of the metasomatic 
activity responsible for the addition of U, and the relatively low 
238U/204Pb ratios of the pyroxenes, the initial Pb ratios would plot 
within the associated 2σ level uncertainties. The Pb isotopic composi-
tion of the host lamprophyre dike is from Garda (1995) (206Pb/204Pbi 

and 207Pb/204Pbi are 18.476 and 15.530, respectively, calculated to 
89 Ma), while the Pb isotopic composition of the alkaline dikes from 
the Serra do Mar region (Ponte Nova massif) is from Azzone et  al. 
(2020) (the range of 206Pb/204Pbi and 207Pb/204Pbi ratios are 18.106–
18.150 and 15.505–15.544, respectively, calculated to 87.6  Ma). 
b 238U/204Pb vs. 206Pb/204Pb isochron diagram showing the two 
errorchron ages for the clinopyroxene from sample XM-1

Fig. 8  Linear regressions and temperatures derived from the REE-in-
two-pyroxene thermometer  (TREE; Liang et  al., 2013) for XM-1 (a) 
and XM-3 (b) samples. A, B are coefficients that represent functions 

of pyroxene composition and ionic radius of an element and D is the 
orthopyroxene–clinopyroxene partition coefficient for a trace element 
(Liang et al., 2013)
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Er, Tm for XM-1 and Y, Yb, Er, Dy, Ho for XM-3; Fig. 8a, 
b). The latter values were considered the best calculations 
for the temperatures of last equilibration for both samples.

The average composition for the cores of the pyroxenes 
provided temperatures of last equilibration of 755 °C (XM-
1) and 807 °C (XM-3) using the  TBKN geothermometer of 
Brey and Koehler (1990), assuming a pressure of 20 and 
18 kbar, respectively, based on the average results of the 
isochemical diagrams. The single clinopyroxene geother-
mometer of Mercier (1980) provided higher temperatures 
of 895 °C (XM-1) and 850 °C (XM-3) using the average 
composition of clinopyroxene. The average temperature 
of last equilibration of 928 ± 159 °C, 1055 ± 178 °C, and 
759 ± 246 °C was also obtained, respectively, for samples 
XM-1, XM-3, and XM-9h by multiequilibria thermometry 
using THERMOCALC v. 326 (Powell and Holland 1994). 
THERMOCALC produced temperature conditions with 
large uncertainties, related with the version used, as the 
activity-composition models for mantle rocks were devel-
oped after v. 326 and were not implemented for newer ver-
sions in the average P–T mode.

Isochemical phase diagrams

In the P–T phase diagram calculated for sample XM-3 (more 
fertile composition), the observed mineral assemblage con-
taining clinopyroxene, orthopyroxene, olivine, and spinel is 
stable at 8–23 kbar and up to 1180–1440 °C when clinopy-
roxene is consumed in a partial melting reaction (Fig. 9a). 
The phase diagram was countered with compositional iso-
pleths of Cr# and Fe (apfu) contents in spinel, Mg# con-
tents in olivine and clinopyroxene and Al (apfu) contents 
in orthopyroxene (Fig. 9b, c). The measured compositions 
(Mg# in olivine = 90, Fe (apfu) in spinel = 0.25–0.26, Cr# in 
spinel = 0.80–0.90, Al (apfu) in orthopyroxene = 0.18) rea-
sonably intersect at 1300–1350 °C and 17–19 kbar that cor-
responds to a geothermal gradient between 70 and 80 mW/
m2 using the geotherms of Hasterok and Chapman (2011) 
(Fig. 9d). Calculated modal isopleths indicate that 0.023–5 
vol% of melt could be in equilibrium with the solid phases 
at these conditions (Fig. 9d).

In the P–T phase diagram modeled for sample XM-1 
(relatively depleted composition), the equilibria fields for 
spinel lherzolites are for the most part similar to those cal-
culated for the most fertile composition (Fig. 10a). Sig-
nificant differences are restriction of stability fields for the 
assemblages Cpx–Opx–Ol–Grt and Opx–Ol–Spl–Liq, and 
a large expansion of the stability field for the assemblage 
Cpx–Ol–Grt–Spl (Fig. 10a; mineral abbreviations from 
Whitney and Means 2010), although with very low contents 
of spinel (0.1–0.3 vol.%) for pressures above 18 kbar. The 
phase diagram was countered with compositional isopleths 
of Mg# in olivine, Cr# in clinopyroxene and Fe (apfu) in 

spinel (Fig. 10b) and contents of Al (apfu) in orthopyroxene 
and Cr# in spinel (Fig. 10c). The measured compositions of 
Mg# in olivine, Al in orthopyroxene (0.16–0.17 apfu) and 
Cr# in clinopyroxene (0.11–0.12) intersect at 1300–1500 °C 
and 22–28 kbar (Fig. 10d) that corresponds to an approxi-
mate geothermal gradient between 65 and 75 mW/m2 using 
the geotherms of Hasterok and Chapman (2011). Calculated 
modal isopleths indicate that up to 3 vol.% of melt could be 
in equilibrium with the solid phases at these conditions. The 
measured compositions of spinel were not reproduced in the 
modeled phase diagram.

Discussion

Heterogeneous partial melting and melt extraction: 
evidence from trace elements

The major- and trace-element compositions for olivine and 
pyroxene in textural equilibrium show considerable varia-
tion that can be related to different degrees of depletion of 
basaltic components (e.g., Ca, Al, Na, and Fe) due to partial 
melting and melt extraction (e.g., Norman et al. 1998). The 
higher  Al2O3 content and nearly flat REE pattern of clino-
pyroxene and lower Cr# of spinel from spinel lherzolites 
XM-3 and XM-9h indicate that they represent fertile mantle. 
In contrast, clinopyroxene from spinel lherzolite XM-1 has 
lower  Al2O3 and HREE contents with LREE enrichment 
that can be attributed to refertilization by fluids/melts (e.g., 
Zhang et al. 2017). Enrichment of LREE and other LILE in 
clinopyroxene of sample XM-2 seems related with the reac-
tions that formed the disequilibrium textures observed in this 
sample (Fig. 3d); this clinopyroxene could have been formed 
by reaction of a dunite with a melt with carbonatitic compo-
sition (e.g., Green and Wallace 1988). A high abundance of 
orthopyroxene, similar to sample XM-3, is often related to 
metasomatism by hydrous fluids and/or melts derived from 
a subducting slab, as interpreted in the subcratonic Kaapvaal 
mantle by several authors (e.g., Kesson and Ringwood 1989; 
Simon et al. 2007).

Calculated model melting curves based on the equations 
of Norman (1998) for the spinel stability field (Fig. 11) 
focused on the Y and Yb concentrations, since these two 
elements are less affected by metasomatic processes (e.g., 
Norman 1998; Zhang et al. 2017). Clinopyroxene is the main 
host of incompatible elements for these spinel lherzolites, 
and the composition of clinopyroxene from lherzolite XM-3 
indicates up to 3% of melt extraction. The lower  Al2O3 and 
HREE contents in the clinopyroxene from the spinel lherzo-
lite XM-1 are indicative of a higher degree of melt extrac-
tion; this is also corroborated by the model curves (15% of 
batch or ~ 9% of fractional melting; Fig. 11).
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Figure 12 shows the chemical composition predicted for 
the primitive mantle after 1 and 12% of batch and 1, 3, and 
5% of fractional melting. The HREE patterns of the spinel 
lherzolite samples overlap those produced by the Norman 
(1998) model calculations (Fig. 12). The negative HFSE 

anomalies (Nb, Ti, Zr and Hf) coupled with an enrich-
ment of LILE (e.g., Sr), LREE, and Th (sample XM-1) 
are not observed in the model calculations. Sample XM-3 
does not show a high LILE/HFS signature, as indicated, 
for instance, by a lower La/Nb (Fig.  5b). In contrast, 

Fig. 9  P–T isochemical phase diagrams calculated in the NCF-
MASOCr model system for fertile spinel lherzolite XM-3 (a), and 
compositional isopleths of Fe (apfu) and Mg# in olivine and clino-
pyroxene (b) and Cr# in spinel and Al (apfu) in orthopyroxene (c). 
Modeled compositions are indicated in Table  1. Also shown are 
modal isopleths of melt fraction. Dark-blue and gray fields in (d) rep-
resent thermometric results from REE-in-two-pyroxene thermometer 
 (TREE, Liang et  al. 2013) and from average temperature (avT) Ther-

mocalc calculations (Powell and Holland 1994), respectively. The 
yellow field corresponds to the best-fit peak P–T conditions estimated 
using intersections of compositional isopleths of Cr# and Fe in spi-
nel and Al in orthopyroxene within the stability fields for mineral 
assemblages recognized in thin section. Geothermal gradients after 
Hasterok and Chapman (2011). Abbreviations for minerals are after 
Whitney and Evans (2010)
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clinopyroxene of sample XM-1 shows higher LILE/HFS 
(Fig. 5b) potentially linked with the nature of the metaso-
matic overprint constrained from this sample. Clinopyrox-
ene from sample XM-2 was not considered in the model 
calculations as it displays textural disequilibrium.

Thermal evolution of the SCLM: evidence 
from isochemical diagrams and conventional 
thermometry

Modeled isochemical phase diagrams indicate equilibria 

Fig. 10  P–T isochemical phase diagrams calculated in the NCF-
MASOCr model system for the relatively depleted spinel lherzolite 
XM-1 (a), and compositional isopleths of Fe (apfu), Mg# in oli-
vine and Cr# in clinopyroxene (b) and Cr# in spinel and Al (apfu) 
in orthopyroxene (c). Modeled compositions are indicated in Table 1. 
Also shown are modal isopleths of melt fraction (d). Dark-blue field 
in (d) represent thermometric results from REE-in-two-pyroxene 

thermometer (Liang et  al. 2013).). The yellow field corresponds to 
the best-fit peak P–T conditions estimated using intersections of com-
positional isopleths of Cr# in clinopyroxene and Al in orthopyroxene 
within the stability field for mineral assemblage recognized in thin 
section. Geothermal gradients after Hasterok and Chapman (2011). 
Abbreviations for minerals after Whitney and Evans (2010)
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conditions of 1300–1350 °C and 17–19 kbar (sample XM-3; 
Fig. 9d) and 1300–1500 °C and 22–28 kbar (sample XM-1; 
Fig. 10d). Measured compositions for all minerals were well 
reproduced in the modeled diagram for sample XM-3, given 
robust peak P–T estimation from intersection of isopleths 
(Fig. 9d). In contrast, the spinel compositions were not 
reproduced in the modeled phase diagram for sample XM-1. 

A comparison between the phase diagrams for samples 
XM-3 (more fertile, 2–3 vol% of melt extracted) and XM-1 
(relatively depleted, 9–15 vol% of melt extracted) indicates 
that melt extraction has a great influence on the stability 
fields for the following assemblages: Cpx–Opx–Ol–Grt, 
Cpx–Opx–Ol–Grt–Spl, Opx–Ol–Spl–Liq, Cpx–Ol–Grt, 
Ol–Spl–Liq, and Ol–Liq, but a minor influence on the sta-
bility fields for spinel lherzolites (Fig. 9).

Temperature and pressure conditions estimated using the 
modeled isochemical phase diagrams are significantly higher 
than those commonly reported for spinel peridotite equilib-
ria based on conventional thermobarometry (850–900 °C 
and 5–15 kbar; e.g., Wells 1977; Brey and Köehler 1990). 
Temperatures calculated with the thermometer of Brey and 
Köhler (1990) using average compositions of clinopyroxenes 
and orthopyroxenes are 807 °C for XM-3 and 755 °C for 
XM-1, assuming the pressure of 18 kbar (XM-3) and 20 kbar 
(XM-1) that correspond to the average pressure estimated in 
the isochemical diagrams. The application of the REE-in-
two-pyroxene thermometer of Liang et al. (2013) gave val-
ues of 1233 ± 56 °C (XM-3) and 1085 ± 42 °C (XM-1). One 
possible explanation for these discrepant values is the differ-
ence in diffusion rates for divalent Mg and Fe in pyroxenes 
that are one to two order of magnitudes faster than diffusion 
rates for trivalent REE in pyroxenes (Liang et al. 2013). The 
average temperature of 1055 ± 178 °C obtained for sample 
XM-3 by multiequilibria thermometry is in agreement with 
the temperature interval obtained using the REE content.

The high temperatures (1300–1430 °C) estimated with 
calculated isochemical phase diagrams agree with data from 
thermodynamic models in the recent literature (Ziberna et al. 

Fig. 11  Modeling of batch (a) and fractional (b) melting using clino-
pyroxene compositions normalized to the primitive mantle (Sun and 
McDonough, 1989). The curves were constructed based on the equa-
tions presented in Norman (1998). The numbers referred to the pro-
portion of partial melting

Fig. 12  Multielement plots with the clinopyroxene compositions 
normalized to the primitive mantle of Sun and McDonough (1989). 
These are compared to the expected composition of the primitive 

mantle after 1% to 12% of batch melting (gray area) and 1, 3, and 5% 
of fractional melting (dashed points) based on the equations of Nor-
man (1998)
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2013; Jennings and Holland 2015; Jennings et al. 2016; 
Holland et al. 2018; Ziberna and Klemme 2016). Ther-
modynamic models applicable to melting of mantle rocks 
indicate that partial melting of plagioclase-free spinel peri-
dotites occurs above 1150–1200 °C at 8–22 kbar (Green and 
Ringwood 1967; Jennings and Holland 2015; Jennings et al. 
2016; Holland et al. 2018). The calculated phase diagrams 
reproduce very well the measured mineral compositions 
within the stability field of observed mineral assemblages 
(Fig. 9), and the predicted melt fraction modeled based on 
trace-element data in clinopyroxene (Fig. 11).

Implications for the mantle evolution 
beneath the Ribeira Belt

The multiple methods used to constrain the P–T conditions 
(isochemical diagrams, TREE) indicate that the lherzolites 
attained high temperatures (> 1200 °C), with high geother-
mal gradients of 65–80 mW/m2, and experienced later re-
equilibration (~ 800 °C). The observed difference between 
TREE and TBKN (˃100 °C) is expected for unstable thermal 
environments, such as those impacted by upwelling, hot 
asthenospheric mantle that interacted with cold, ancient, 
lithospheric mantle (Wang et al. 2015; Guo et al. 2017). 
The geothermal gradients are warmer than those constrained 
from mantle xenoliths enclosed in kimberlites located at 
the Brasília Belt, near the southwestern margin of the São 
Francisco Craton (e.g., Leonardos et al. 1993; Costa et al. 
2008; Nannini 2016; Coldebella et al. 2020; Fernandes et al. 
2021). The garnet peridotites of that region are equilibrated 
in a colder geotherm relative to spinel peridotites (35–40 
vs. 40–50 mW/m2) (e.g., Cabral Neto et al. 2017; Fernandes 
et al. 2021). The geothermal gradients calculated from man-
tle xenoliths of the Amazonian Craton are in the same range 
(38–45 mW/m2) (Hunt et al. 2009; Costa 2016).

The Pb isotope ratios for clinopyroxene of sample XM-1 
define an array that intercepts the Stacey-Kramers two-stage 
terrestrial Pb evolution curve at ca. 200 Ma. The array is 
most likely the result of mixing between subcontinental 
mantle and a younger metasomatic agent, which may be 
related to the host alkaline magma with Pb isotopic composi-
tion similar to the host lamprophyre dike (Garda 1995), alka-
line dikes of the Serra do Mar region (Azzone et al. 2020), 
and Group I kimberlites (Smith 1983). The composition of 
the clinopyroxene for this sample (REE patterns, Pb iso-
topes) shows evidence that the mineral may have had a pri-
mary mantle origin overprinted by metasomatism from the 
Mesozoic alkaline melts. The P–T conditions with elevated 
temperatures and the time of reaction with the metasomatic 
agents possibly caused fast Pb diffusion in clinopyroxene 
(Cherniak 2001; Smart et al. 2017). The 238U/206Pb isoch-
ron ages are also suggestive of an overprint of the younger 
tectono-thermal event, most likely related to the opening and 

evolution of the South Atlantic Ocean, over a mantle previ-
ously equilibrated during the Precambrian development of 
the Ribeira Belt (571 ± 99 Ma).

Conclusions

The spinel-facies peridotite samples examined here are 
hosted by a Cretaceous lamprophyre dike and represent frag-
ments of the SCLM beneath the Ribeira Belt in southeast-
ern Brazil. The olivine, pyroxene, and spinel compositions 
support the presence of a fertile mantle, and are consist-
ent with low proportion of melt extraction and depletion of 
basaltic components (2–9% of fractional melting). Pressure 
and temperature estimates based on modeled isochemical 
phase diagrams of lherzolite samples vary from 1300–1350 
°C and 17–19 kbar (fertile composition) to 1330–1430 °C 
and 17–23 kbar (relatively depleted composition); these 
correspond to high geothermal gradients of 65–80 mW/m2. 
The temperature estimates based on the average REE con-
tents of clinopyroxene vary from 1233 ± 56 °C to 1085 ± 42 
°C, while conventional thermometry, based on the Fe–Mg 
exchange, suggests heterogeneous, lower re-equilibration 
temperatures (807 and 755 °C). The geothermal gradients 
are warmer than those constrained from mantle xenoliths 
located at the Brasília Belt, near the southwestern margin 
of the São Francisco Craton, and from the Amazonian cra-
tonic root.

The Pb isotope ratios of clinopyroxene most likely rep-
resent a mixing line that intercepts the Stacey-Kramers 
two-stage terrestrial Pb evolution curve at ca. 200 Ma. 
The 238U/206Pb isochron yield ages of 56 ± 75  Ma and 
571 ± 99 Ma. The older date suggests the presence of Pre-
cambrian mantle beneath the Ribeira Belt. The younger cal-
culated Pb–Pb isotope errorchron age for spinel peridotite 
XM-1 most likely represents the influence of the Mesozoic 
magmatic event in the SCLM related with the opening and 
development of South Atlantic Ocean.
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