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Glycobiology: Definitions and terminology

Glycobiology: studies of the structures and functions of sugars attached
to proteins and lipids.

Glycoconjugates: formed when mono-, oligo- or polysaccharides
are attached to proteins or lipids.

Glycoproteins and glycolipids: proteins and lipids to which carbohydrate
is covalently attached; the mechanism of attachment is enzyme-
catalyzed in vivo.

Glycan: the carbohydrate component of glycoproteins and glycolipids.



Glycosylation and glycation

Glycosylation: enzyme-catalyzed covalent modification of proteins and
lipids; involves specific sugar donors such as nucleotide and dolichol
sugars, and glycosyltransferases; glycosylated products have specific
structures and biological functions.

Glycation: chemical modification of proteins that occurs in vivo;
spontaneous, non-enzyme-catalyzed; products are heterogeneous in

structure and are often deleterious to the organism.



Protein glycation is not enzyme-catalyzed.
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Mechanism of formation of the Amadori intermediate during
protein glycation
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Effect of glycation on protein structural integrity and function
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INSIDE OF CELL

Glycoconjugates associated
with plasma membranes
(glycoproteins and
glycolipids): asymmetric
distribution of glycan on the
extracellular side of the
membrane.

The extracellular location
allows specific glycan
interactions with
biomolecules, cells, viruses.



Glycoproteins

Glycosylation of proteins affects:
O thermodynamic stability
O biological half-life
a cellular localization
O biological activity

Protein glycosylation is under enzymatic control:

0 glycosylation of a particular protein can differ by cell type, growth stage,
metabolic activity, and substrate availability; resulting in different
isoforms that differ by glycosylation only.

0 glycosylation differences produce glycoforms characterized by their

microheterogeneity (a conserved protein component but different glycan

components)

Nearly all eukaryotic secreted and membrane-associated proteins are heavily glycosylated;
glycosylation is the most common post-translational modification of proteins.

Two major forms of protein glycosylation: N-linked glycans and O-linked glycans

As a general rule, prokaryotes do not glycosylate proteins.



Some functions of protein glycosylation

Structural: O-glycosylation of mucins results in an open, extended structure.

Recognition: N- and O-glycosylation of membrane proteins promote cell identity
and adhesion (leukocyte rolling, immune system recognition).

Protein degradation: Slow cleavage of N-linked glycans can serve as a timing
device for initiating protein proteolysis.

Protein stability: N-linked glycans can increase protein stability by enhancing
water activity around the protein, “magnifying” the influence of the hydrophobic

effect.

Orientation in assemblies: protein glycosylation can affect their interactions to
form larger assemblies (e.g., membrane signaling complexes)

Glycoproteins and glycolipids on plasma membranes mediate cell identity,
communication, adhesion and/or growth.

Most polysaccharides attached to proteins extend away from the protein’s
surface and probably do not affect protein structure significantly (we think).



Courtesy of Raymond Dwek, Oxford University

Model of oligosaccharide dynamics in
bovine pancreatic RNase B. Note the
extensive conformational space occupied by
the carbohydrate component.

Digestive ribonuclease (RNase)
is secreted from the pancreas
into the intestine in
unglycosylated (RNase A) and
glycosylated (RNAse B) forms.

RNase B is an N-linked glycoprotein.
It carries a single
high-mannose oligosaccharide
covalently attached to Asn 34.
Glycoforms (microheterogeneity)
vary in the number of attached Man
residues (4-9).

The protein components
of RNase A and RNase B have
conserved structures.



Asn34
) S Exchange rates of backbone
amide protons of RNase B (sites shown
in red) are reduced in the glycosylated
form of the protein, suggesting
increased thermodynamic stability
(rates of folding/unfolding

differentially affected).

Crystal structure of RNase B not available (microheterogeneity problems), but
glycosidase digestion studies suggest that the GIcNAc, portion of the
oligosaccharide core closest to the attachment point interacts with the protein on
either side of Asn 34, presumably causing the increased stability.



Fucose

Insertion of a single fucose
residue at Thr 9 (O-glycosylation)
stabilizes PMP-C protease
inhibitor, a 36-residue
oligopeptide from locust.

The unfucosylated form of
PMP-C exhibits a t, value
~20° lower than fucosylated PMP-
C. Rates of proton exchange
with solvent in the three-stranded
anti-parallel B-sheet core structure
of PMP-C in the vicinity of the
glycosylation site are reduced in
the fucosylated form. The folded
form is favored by fucosylated

B e PMP-C,
whereas random coil is favored by
unfucosylated PMP-C.



Experimental methods to modify protein
glycosylation patterns
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Peptide N-glycanase (PNGase):
Cleaves at the GIcNAc-Asn
attachment point, liberating the
full N-glycan in vitro.

Tunicamycin: a small
molecule inhibitor of the
initial step of protein N-
glycosylation (dolichol-P
stage); prevents N-
glycosylation in vivo.
Mutagenesis can achieve
the same effect, although
the protein is modified.

Endo- and exo-glycosidases trim
existing oligosaccharides in vitro.

Protein expression in
different organisms/cells
can modify glycosylation

patterns in vivo.
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Tunicamycins are natural products
isolated from Streptomyces. They vary in

the structure of the fatty acid hydrophobic tail.

In eukaryotes, tunicamycin
inhibits the GPT translocase
involved in the biosynthesis of
GIlcNAc-linked dolichol
pyrophosphate (an early
event in protein N-glycosylation).
Tunicamycin is thus widely used
to inhibit glycoprotein
translocation and processing.

Xu et al. Biochemistry 2004, 43, 13248-13255



Hydrazine (NH,NH,)

A Use of hydrazine or
rotein
N-glycosidase PNGase to release an
EI - intact N-glycan from a
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2-Amino glycoprotein, and
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HPLC.
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Mechanism of hydrazine-mediated cleavage of an
N-glycan from a glycoprotein

The precise mechanism by which hydrazine cleaves the N-glycoside linkage of N-
glycans is not completely understood.

A proposed reaction scheme: _ _
Step 1: hydrazinolysis

Step 2: re-N-acetylation

O
I Step 3: acetohydrazone cleavage
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Hydrolysis of the N-glycoside bond of N-glycans by peptide N-glycanase
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Permethylation (linkage) analysis of
an oligo- or polysaccharide by
chemical derivatization: formation of
methyl ethers, followed by
hydrolysis, reduction, and
peracetylation. The resulting
monomeric products are volatile,
allowing analysis by gas-liquid
chromatography (GLC) using
appropriate alditol standards.

Reduction to alditols simplifies the
analysis by eliminating anomeric
mixtures, but information on linkage
stereochemistry is lost.



N-Linked Glycoproteins and N-Glycans

N-Glycosylation involves a consensus sequence:
GIcNAc is B-linked to the amide nitrogen of an Asn sidechain

consensus tripeptide sequence = Asn-X-Ser or Thr (X = Pro / Asp)

CH,OH 0 NH

C—CH,—CH  Asn

H  NHCOCH,

QHM‘ or 'HH'}

(NAG)

Mana (1 —> 6)
>Man B (1—> 4)NAG B (1—> 4) NAG
Mana (1—> 3)

Vs, v-e-o- N-linked glycans contain a common
v pentasaccharide core: (Man),
(GIcNAc),

= NAG, V¥ =Mannose, A = Galactose,
= N-Acetylneuraminic acid, @ - Fucose
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Major classes of N-glycans of human glycoproteins
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Three main classes of N-glycans
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Figure 3.7 Some of the common complex N-linked glycans
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Occurrence

Human
immunoglobulin M (IgM),
Bovine rhodopsin

Chicken ovalbumin,
Sindbis virus

Human and rabbit
transferrin,

Rat liver plasma
membrane

Vesicular
stomatitis
virus

Human immunoglobulin
G (IgG)

Bovine immunoglobulin
G (IgG)

® =NAG, V¥ =Mannose, A = Galactose,
= N-Acetylneuraminic acid, @ - Fucose

Some examples of N-
linked glycans on
glycoproteins

N-Linked glycans tend to
be very heterogeneous structurally.



Figure 3.8 Variations on N-linked glycan structures
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Figure 3.9 One possible form of an N-linked glycan with a polylactosamine extension

N-Acetyllactosamine (i) GlcNAc-
GlcNAc-transferase transferase V
NeuAca2-6(GaIB1—4GIcNAcB1-)n-3GaIB1-4G|cNAcB1l Type |l polylactosamine extension
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e
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Taylor and Drickamer
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O-Linked Glycoproteins and O-Glycans

O-Glycosylation
B-D-Galactopyranosyl-(1,3)-N-acetyl-D-galactosamine a-linked to the
side-chain OH group of either Ser or Thr.

R =Hor CH,4
CH,OH CH,0H
HO o HO O H
H 0 H R C=0
OH H H
H H H O—CH—CH
H OH H NHCOCH; NH

B-Galactosyl-(1—- 3)-a-N-acetylgalactosaminyl-Ser/Thr

®) CH,OH R=Hor CHsy
H O H \
H R C=0
OH HO i
O—CH—CH
!

H H NH

o-Mannosyl-Ser/Thr

O-Linked glycosylation is often structural (e.g.,in the proteoglycans and the
mucins). Heavy O-glycosylation forces the protein to adopt an extended
conformation.



Mucins are large, heavily O-glycosylated proteins.

The primary purpose of many mucins is to retain water at
surfaces that are exposed to the environment but are not
sealed by moisture-impermeable layers (e.g., digestive
tract, genital tract, respiratory system). They serve as
lubricants and protect from invasion by microorganisms.

The polypeptide component: up to 10,000 aa; membrane-bound or
secreted; contain tandem repeats of simple aa sequences rich in Ser
and Thr; tandem repeats differ in sequence between mucin types; O-
and N-glycosylation can occur outside the region of tandem repeats.



muct B } B
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von Willebrand von Willebrand
factor D +domains factor C domains
muce I ——— oo,
? Tandem repeat Tandem repeat
) region 1 region 2
Signal
sequence l

(ProThrThrThrProIleThrThrThrThrThrvalThrProThrProThrProThrGlyThrGInThr)y

Taylor and Drickamer
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Organization of
two mucins MUC1
and MUC2 showing

examples of
tandem repeat
sequences
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Taylor and Drickamer Core 2 with polylactosamine extension
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Mucin O-glycosylation
patterns

Core 1 and Core 2
structures attached
to Ser and Thr side-
chains through
a-GalNAc residues.
This mucin-type O-linked
glycosylation is observed
in mucins and in other
glycoproteins.



Some cell surface proteins have mucin-like domains.

Comparison of
secretory mucin MUC2,
membrane mucins
MUC1 and ASGP, and

other membrane
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Many soluble and cell-surface glycoproteins contain
small clusters of O-linked sugars.

Figure 4.4 Small clusters of O-linked glycans in the hinge region of IgA

The presence of
oligosaccharide in IgA
may determine the
conformation of the hinge
region and may be
responsible for its
resistance to proteolysis.

Taylor el
—_— Introduction to Glycobiology



Biosynthetic machinery for protein O-glycosylation
Comparisons to protein N-glycosylation

o Protein O-glycosylation involves glycosyltransferases analogous to those
involved in protein N-glycosylation.

0 Saccharide residues are added one at a time, starting from the initial GalNAc
attached to Ser or Thr (there is no preformed core or en bloc transfer). There
are numerous GalNAc transferases that attach the initial GalNAc to protein,
each apparently displaying a unique specificity.

0 There are no simple target (consensus) sequences for O-glycosylation.

0 O-Glycosylation occurs post-translationally in the Golgi.



Proteoglycans

H OH O H

NHCOCH;4 H OH (0) H NHCOCH;4

D-Glucuronate N-Acetyl-D-glucosamine L-Iduronate
4-sulfate

Dermatan sulfate

Hyaluronate

CH,OH CH,OH CH,0805

H OH O H NHCOCH;4 H OH H

NHCOCH,

D-Glucuronate N-Acetyl-D-galactosamine- D-Galactose N-Acetyl-D-glucosamine-
4-sulfate 6-sulfate

Chondroitin-4-sulfate Keratan sulfate

OO~ CH,08053

CH,0S03

H OH (0] H

NHCOCH, H 0SO0; H  NHOSO3

D-Glucuronate N-Acetyl-D-galactosamine- L-Iduronate-2-sulfate  N-Sulfo-D-glucosamine-

6-sulfate 6-sulfate
Chondroitin-6-sulfate Heparin

Disaccharide repeating units of the common
glycosaminoglycans found in proteoglycans of
connective tissue, cartilage, cornea, etc.

N-Acetyl-p-galactosamine-

The second major class of
heavily O-glycosylated
proteins are
proteoglycans that give
strength to the
extracellular matrix.

In comparison to the O-glycans
of mucins, the O-glycans of
proteoglycans may have up to
100 residues; these are largely
linear chains of alternating
residues (termed
glycosaminoglycans)



Caplan, A.l., Sci. Am. 251(4); 87 (1984). Copyright © 1984 Scientific American, Inc. Used with permission
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Figure 4.6 Organization of the aggrecan polypeptide
and assembly of the polypeptide into larger aggregates
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Figure 4.5 Glycosaminoglycan structures and typical sites of expression
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Biosynthetic pathway for the synthesis of

chondroitin sulfate proteoglycan

UDP-Xyl
UDP
[Protein core]-Ser
5551y UDP-Gal
-Ser—XyI-GaI-GaI-GIcUA-FaINAc-GIcUA ubpP
[
S04~ n
(UDP, PAP),
-Ser-Xyl-Gal
(UDP-GalNAc,
UDP-GICUA, PAPS), UDP-Gal
-Ser-Xyl-Gal-Gal-GlcUA-GalNAc-GIcUA
éO & UDP
4
PAP
-Ser-Xyl-Gal-Gal
PAPS
UDP-GICUA
=Ser-Xyl-Gal-Gal-GlcUA-GalNAc-GlcUA
UDP

-Ser-Xyl-Gal-Gal-GlcUA

UDP&
-Ser-Xyl-Gal-Gal-GlcUA-GalNAc
UDP-GICUA
UDP-GalNAc

UDP

Biosynthetic
route for the
construction
of a protein-bound
chrondroitin sulfate
polysaccharide
chain, showing
sequential multiple
additions of
saccharide units



Enzyme-catalyzed hydroxylation of collagen lysine residues in vivo
(a post-translational modification)

i i
NH-CH-C-NHwy ot NH-CH-GrNHmaranr prten
C|>H2 %HQ
CH, L-lysine hydroxylase QHZ
I - I
(|3H2 H(l)sOH
|CH2 lysyl residue C|:H2 5-h¥g£?é<géysyl
NH3* NH3*

Hydroxylysine (Hyl) residues of collagen are involved in
(a) crosslinking of collagen fibrils and (b) glycosylation of collagen.

o)
I

MMNVNH-ClH-C-NH-N\NV‘N

CH,
p-Gal C|:H2
" oH e
0 /| Collagen glycosylation at Hyl residue by
HO&/O E: the disaccharide, a-Glc-(1—> 2)--Gal.
0] 3t



Figure 4.8 Alternative modifications of lysine residues in collagen
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Glycosylation of
hydroxylysine residues in
collagen regulates
crosslinking.



N-linked glycan
Galp1-4GIcNAcB 14 O-linked glycan
Glycolipid

GDP-Fuc + H transferase
(a1,2-fucosyltransferase)

Galp1-4GIcNACH1-

UDP-GalNAc + A transferase = L UDP-Gal + B transferase
uca.

(a1,3-GIcNAc-transferase) (ou1,3-galactosyltransferase)
/ H Antigen \

GalNAca1 -3gaIB1-4GICNACB1 - Gala1 -3(23aIB1-4GICNACB1 -

I |
A Antigen Fuca Fuca B Antigen

Taylor and Drickamer
Introduction to Glycobiology

Transfused cells must not express glycans to
which the recipient has antibodies.

Note: Arare blood type (Bombay): Have h antigen
(H-antigen without the fucose)

The ABO blood-group
substances found on
the outer surface of
erythrocyte plasma
membranes.

A-individuals: develop
antibodies against the B structure.

B-individuals: develop antibodies
against the A structure.

O-individuals: develop antibodies
against both A and B structures
(universal RBC donor; have H-antigen)

AB-individuals: develop antibodies
against neither A nor B structures
(universal RBC recipient)



Summary

o Individuals with type A RBC: have type A antigens; carry anti-B antibodies in
their serum (can accept RBC from A- and O-type donors)

o Individuals with type B RBC: have type B antigens; carry anti-A antibodies in
their serum (can accept RBC from B- and O-type donors)

o Individuals with type AB RBC: have type A and type B antigens; carry neither
anti-A nor anti-B antibodies in their serum (universal recipient)
(can accept RBC from AB, A, B and O donors)

0 Individuals with type O RBC: have neither type A nor type B antigens; carry
both anti-A and anti-B antibodies in their serum (have type H antigen)
(universal donor)(can accept RBC only from O donors)

[treatment ignores
@ @ RhD +/- antigens]
\ Y / \@ /

RBC compatibility chart (in
addition to donation
to the same blood group)

Plasma compatibility chart (in
addition to donation
to the same blood group)



Tropomyosin

Band 4.1

Glycophorin A

Anion channel

Model of the human erythrocyte cytoskeleton
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Figure 6.18. Topology of proteins at membranes of endoplasmic reticulum.

Textbook of Biochemistry With Clinical Correlations, Sixth Edition, Edited by Thomas M. Devlin. Copyright © 2006 John Wiley & Sons, Inc.



Biosynthesis of N-linked glycoproteins: Three stages

1.  Formation of a lipid-linked precursor (parent)
oligosaccharide (Glc;MangGIcNAC,)

2. En bloc transfer of the parent oligosaccharide to the
polypeptide

3. Processing of the parent oligosaccharide; involves
removal of some of the original saccharide residues
(trimming by exoglycosidases) followed by addition of new
saccharides (by glycosyltransferases) to the non-reducing
termini of the glycan

4. The overall process occurs intracellularly in spacially
differentiated steps.



The spacially-differentiated steps in N-linked
glycoprotein biosynthesis

0 Rough ER: lipid-linked precursor biosynthesis; en bloc transfer to
protein; initial trimming reactions

0 Golgi apparatus (cis, medial, trans): subsequent processing steps



inner nuclear membrane

outer nuclear
nucleus membrane ER membrane

Figure 12-34a Molecular Biology of the Cell 5/e (© Garland Science 2008)

Figure 12-36a Molecular Biology of the Cell 5/e (© Garland Science 2008)

Part of the ER network in

a mammalian cell, stained with An electron micrograph of rough ER in a
an antibody that binds to a protein pancreatic cell that makes and secretes
retained in the ER; the ER large amounts of digestive enzymes each
extends throughout the cytosol. day. The outer nuclear membrane is

continuous with the ER and is also studded
with ribosomes.



rough ER smooth ER

ER lumen

Figure 12-36c Molecular Biology of the Cell 5/e (© Garland Science 2008)

The RER forms oriented
stacks of flattened cisternae,
each having a lumenal space

20-30 nm wide. The SER is
connected to these cisternae
and forms a fine network of
tubules 30-60 nm in diameter.
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Figure 12-37b Molecular Biology of the Cell 5/e (© Garland Science 2008)

Isolation of purified rough and smooth microsomes from the ER

When sedimented to equilibrium through a sucrose gradient, the two types of
microsomes (closed vesicles 100-200 nm in diameter) separate from each other
on the basis of their different densities.

Microsomes represent small authentic versions of the ER, still capable of protein
translocation, protein glycosylation, Ca?* uptake and release, and lipid synthesis.
Ribosomes are always found on the outside surface of microsomes, so the interior

of microsomes is biochemically equivalent to the ER lumenal space.



cis FACE

Golgi vesicle

cis

Golgi
network
(CGN)

cis cisterna
medial cisterna
trans cisterna

trans
Golgi
network
(TGN)

secretory vesicle trans FACE

Figure 13-25a Molecular Biology of the Cell 5/e (© Garland Science 2008)

3D reconstruction from EMs of the Golgi apparatus in a secretory
animal cell
The cis face is closest to the ER.



Proteins destined for
secretion, insertion into
plasma membrane, or
transport to lysosomes

Cis
Golgi
network

Synthesized by RER-associated ribosomes

During synthesis, proteins are either
injected into the lumen or inserted into its
membrane

Trans
Golgi
network

4 P After initial processing in the ER, proteins are
N\ encapsulated into vesicles that bud from the
7/ ER and fuse with the cis Golgi network.
@ ‘ somes

‘ : "-ﬁg;c,eﬁo,,' i Progressive processing occurs in the cis,
e medial and trans cisternae of the Golgi.

membrane

In the frans Golgi, completed glycoproteins

Posttranslational processing are sorted for delivery to plasma membrane,
of pr oteins secretory vesicles or lysosomes; transported

by other vesicles.



Exterior surface

Plasma membrane

Cytosol

Carbohydrate

The fusion of a vesicle with the
plasma membrane preserves the
orientation of the integral
proteins embedded in the vesicle
bilayer.



SORTING cis Golgi
o phosphorylation of network
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plasma secretory
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membrane vesicle

Figure 13-28 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Oligosaccharide processing in Golgi
compartments

Processing enzymes are not spacially
restricted to a particular cisternae; instead,
their distribution is graded across the stack,
such that early-acting enzymes are present

mostly in the cis Golgi cisternae and later-
acting enzymes are mostly present in the
trans Golgi cisternae.



secretion of mucus from
apical surface

vecides” A goblet cell of the small intestine
containing
Secretes mucus, which is a mixture of
Golgi glycoproteins and proteoglycans synthesized
apparstus in the ER and Golgi. A highly polarized cell:
its apical domain faces the lumen of the gut
e and its basolateral domain faces the basal

lamina. The Golgi apparatus is polarized to
facilitate the discharge of mucus by
exocytosis at the apical domain of the plasma
membrane.

Figure 13-29 Molecular Biology of the Cell 5/e (© Garland Science 2008)



Initial attachment of an N-glycan to a protein is
a co-translational event that occurs in the ER.

v 3 Processing
Initial trimming of Addition of terminal

lgarr es H i i
sugar residues sugar residues Secretion or delivery

to plasma membrane
Trimming and
/' modification
1 of branch structure

2 En bloc
transfer

to protein /T

1 Synthesis of
lipid-linked
precursor

oligosaccharide

Protein
synthesis

Plasma
Membrane

Endoplasmic reticulum Golgi apparatus

An overview of the pathway for glycoprotein biosynthesis and its intracellular location.
Early stages involve glycan assembly on a glycolipid and subsequent transfer to
nascent protein in the ER. Subsequent processing by glycosidases and
glycosyltransferases occurs in the ER and Golgi apparatus.



The secretory pathway: signal peptide recognition

Docking
protein

Cytoplasm STEPD Signal

peptidase

STEP A

Ribosome

Signal peptide
mRNA

Step A: A hydrophobic
signal peptide emerges from a
free ribosome in the cytosol.

Step B: Signal recognition
particle (SRP) binds the signal
peptide and elongation is
temporarily halted.

Step C: The ribosome moves to
the ER membrane where a
docking protein binds the SRP.

Step D: The ribosome is
transferred to a translocon,
elongation is resumed, and newly
synthesized protein

is extruded through the
membrane into the ER lumen.



Dolichol derivatives serve as donors and carriers in the co-translational
attachment of the parent N-glycan to nascent polypeptide on the luminal
side of the ER membrane. Two kinds of glycosylated dolichols are involved:
dolichol monophosphosugars and dolichol bisphosphosugars.

OH Dolichol

o Isoprene unit

HO

HO ﬁ)
Glucose HO O—FID-O = =

CH,

H—CH;—C—CH—CH,
n

Taylor and Drickamer
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CH,

CH,— CH—CH,— CH,—O0—P—0—P—0

Isoprene unit

o 3

Saturated
a-isoprene
unit

The long poly-isoprene talil,
although far longer than the fatty
acid tails of membrane
phospholipids, is capable of lipid
bilayer insertion, possibly in a
helical or folded conformation.

0

‘ | carbohydrate
(O (O

~

Dolichol



Generation of the dolichol-linked oligosaccharide donor (14-mer)
for protein N-glycosylation: ER reactions
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Figure 12-52 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Another representation
of the biosynthesis of
dolichol-(14-mer) donor
oligosaccharide in the ER



En bloc transfer of the precursor oligosaccharide
(14-mer:6lcNAc,ManyGlc;) is catalyzed by
oligosaccharyl transferase (OST).

Consensus sequence: Asn-Xaa-Ser or Asn-Xaa-Thr,
where Xaa can be any amino acid except Pro or Asp
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OST is associated with the channel through which the polypeptide is translocated to the ER
lumen, so glycosylation occurs while the polypeptide is still unfolded.

N-Linked glycans are found at the surfaces of glycoproteins (not buried). Since transfer
is co-translational involving presumably unfolded or partially folded protein, the
mechanism for discrimination between consensus sites is unclear (i.e., some
consensus sequences are buried and unglycosylated).



Mechanism of the oligosaccharyl transferase (OST) reaction
Chemical rationale for the Asn-X-Ser/Thr consensus sequence

07 INH HN H 0~ “NH HN I
e /13 \ YRS J» A \ N v
Dol-PP—0—S b S g W
C 70 Z \O—( ‘
g 0 .. O
H CH, + CH,
B “ Thr /H ‘
| B
Enzyme | N-linked
Enzyme glycoprotein

The Asn-X-Thr component of a hexapeptide model substrate forms a ring that is closed

by an H-bond between the Asn side-chain amide hydrogens and the Thr hydroxyl group

A basic residue in the OST active site facilitates nucleophilic displacement of dolichol-

PP from the oligosaccharide (Sac) by the Asn amide nitrogen, forming the N-glycosidic
linkage.



Irreversible inactivation of OST by a hexapeptide
containing Asn-Gly-epoxyethylGly

NH NH
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. 1 0 0
B- ____"H " Epoxyethyl-Gly /CH2
’ ]|3 Inactive, doubly
Enzyme labeled, enzyme
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Pathway of dolichol-PP-oligosaccharide synthesis
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Processing: High-mannose glycan to complex glycan

Trans Golgi

Medial Golgi

Cis Golgi

Endoplasmic reticulum

Ty

Oligosaccharyl- ER Golgi GlcNAc- Galgi GlcNAc- Galactosyl- Sialyl-
transferase glucosidases mannosjdases transferase mannosidase transferase transferase transferases
land Il IA, 1B, IC | (I)L I
ER
mannosidase
@ Glucose @ Mannose M GicNAc Dolichol
i g : : phosphate
O Galactose . SialicAcid “~—"~— Protein Backbone Taylor and Drickamer
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The GIcNAc transferases of the medial Golgi

0 GlcNAc transferase I: adds a GIcNAc residue
to the 1,3-arm of the trimmed N-glycan core

0 GIcNAc transferase II: adds a GIcNAc residue
to the 1,6-arm of the maturing N-glycan



Mechanism of GIcNAc transferase I
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Diseases caused by aberrant glycosylation

Fructose-6-P
Phosphomannose isomerase (CDG-Ib)

Mannose ————» Mannose-6-P
Hexokinase
l Phosphomannomutase (CDG-la)

Congenital disorders of
glycosylation (CDGs): Rare

Mannose-1-P

l , Results in hypoglycosylation:
GDP-Mannose —¥® Dolichol-P-Mannose
W v Leads to developmental

defects, loss of muscle tone;

Dolichol-oligosaccharide defects in ceII surface and

l matrix glycoproteins

Taylor and Drickamer Protein g chosylation
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END



Diseases associated with aberrant glycosylation



Diseases facilitated by glycosylation



Glycomics



The calnexin/calreticulin cycle for glycoprotein folding in
the endoplasmic reticulum

@ - Glucose

WV = Mannose S—g

= N-Acetylglucosamine

Y
Transfer via vesicles
to the cis Golgi network



X-Ray structure of the luminal portion of canine calnexin
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Figure 6.17. Targeting of enzymes to lysosomes. Adapted from Kornfeld, R. and Kornfeld, S. Annu. Rev.
Biochem. 54:631, 1985.

Textbook of Biochemistry With Clinical Correlations, Sixth Edition, Edited by Thomas M. Devlin. Copyright © 2006 John Wiley & Sons, Inc.



Some modes of saccharide recognition by proteins and nucleic acids
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Figure 10.8 Overall structure of bacterial pilus showing subunit arrangement
and the structure of the receptor-binding domain of the PapG subunit
bound to a glycolipid head group oligosaccharide
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Figure 8.18 GalB1,4GIcNAc binding site in galectin 1
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Figure 8.15 Overall fold and monosaccharide-binding site of the CRD from sialoadhesin
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