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Summary of
the nine TCA

cycle reactions

Five reactions
produce reducing
equivalents (NADH
and FADH,);
there is one
substrate-level
phosphorylation
reaction,

The C, acetyl
fragment of
acetyl CoA is
converted to
2 molecules of CO,.



Table 17-2 Standard Free Energy Changes (AG"’') and Physiological
Free Energy Changes (AG) of Citric Acid Cycle Reactions

AG” AG
Reaction Enzyme (kd -mol~1) (kJ-mol1)

1 Citrate synthase -31.5 Negative
2 Aconitase ~5 ~0
3 Isocitrate dehydrogenase —21 Negative
4 a-Ketoglutarate dehydrogenase 2 Negative
5 Succinyl-CoA synthetase -2.1 ~0
6 Succinate dehydrogenase +6 ~0
7 Fumarase -3.4 ~0

8 Malate dehydrogenase +29.7 ~0
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Table 17-1 The Coenzymes and Prosthetic Groups of Pyruvate
Dehydrogenase

Cofactor

Thiamine
pyrophosphate
(TPP)

Lipoic acid

Coenzyme A (CoA)

Flavin adenine
dinucleotide (FAD)

Nicotinamide adenine
dinucleotide(NAD™)
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Location

Bound to E,

Covalently linked
toalLysonkE,
(lipoamide)

Substrate for E,

Bound to E;

Substrate for E;

Function

Decarboxylates pyruvate
yielding a hydroxyethyl-
TPP carbanion

Accepts the hydroxyethyl
carbanion from TPP
as an acetyl group

Accepts the acetyl group
from lipoamide

Reduced by lipoamide

Reduced by FADH,
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Molecular basis of arsenic poisoning
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The pyruvate and o-ketoglutarate dehydrogenase complexes
are susceptible to inactivation by arsenic.



Major conformational change occurs when citrate synthase
binds its substrate (CS is a homodimer)

(a) (b)
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Mechanism of the citrate synthase reaction
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Isocitrate dehydrogenase (NAD'-linked dehydrogenase):
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Involves oxidative decarboxylation of a }-ketoacid intermediate



a-Ketoglutarate dehydrogenase (NAD*-linked dehydrogenase):
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(mechanism is similar to that of pyruvate dehydrogenase;
oxidative decarboxylation of an a-ketoacid)
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Summary of
the nine TCA

cycle reactions

Five reactions
produce reducing
equivalents (NADH
and FADH,);
there is one
substrate-level
phosphorylation
reaction,

The C, acetyl
fragment of
acetyl CoA is
converted to
2 molecules of CO,.



Succinyl CoA synthetase mechanism
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Succinyl CoA synthetase:
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Evidence for the involvement of a phosphoryl-
enzyme intermediate; the only substrate-level
phosphorylation reaction of the TCA cycle



Succinate dehydrogenase (a flavin-linked dehydrogenase):
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Malate dehydrogenase (NAD*-linked dehydrogenase):
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Acetyl-CoA
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Summary of ATP
production from
glycolysis, TCA
and electron
transport/oxidative
phosphoryation

2.5 ATP per NADH and 1.5
ATP per FADH, entering
ET/OP

32 molecules of ATP are produced
per glucose under aerobic
conditions.



Regulation of the TCA cycle

Pyruvate dehydrogenase is regulated by product inhibition
(NADH and acetyl CoA) and by covalent modification
(phosphorylation of Ser).

E,-OH (active) ATP
pyruvate pyruvate
dehydrogenase dehydrogenase
phosphatase kinase
E,-~OPO2-(inactive) ADP

PDK is activated by NADH and acetyl CoA and inhibited by
pyruvate, Ca?* and ADP; insulin and Ca?+ activate PDP.

PDK and PDP are part of the PD complex.
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b) Covalent modification
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A summary of the
amphibolic functions
of the TCA cycle,
showing cataplerotic
(red) and anaplerotic
(green) reaction
paths

Malate to glucose: gluconeogenesis
(transport problem)

Citrate to fatty acids: fatty acid
biosynthesis (transport problem)

OAA and o KG to amino acids:
amino acid biosynthesis



Conversion of aKG to the amino acid, L-glutamate,
by glutamate dehydrogenase (reductive amination)
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Transamination of OAA with alanine (requires PLP)
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X

Alanine

Ways to replenish
TCA intermediates

Pyruvate carboxylase connects
glycolysis with TCA directly;
PC requires biotin for activity.
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Glyoxalate pathway:
microorganisms and
plants

Allows net conversion
of 2 molecules of acetyl CoA
to OAA instead of 4
molecules of CO,: valuable
for gluconeogenesis

Organisms that lack the
glyoxalate cycle cannot
undertake the net
synthesis of glucose
from acetyl CoA; i.e.,
they cannot convert fats
to carbohydrates.



