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Most lipids contain at least one
fatty acid constituent, Fatty
acids can be saturated (no C-C
double bonds) or can
contain one or more C-C

double bonds (unsaturated).



into the fatty acid chain

causes the molecule to
assume a bent
conformation.
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Table 12-1 The Common Biological Fatty Acids

Symbol® Common Name Systematic Name Structure mp (°C)
Saturated fatty acids

12:0 Lauric acid Dodecanoic acid CH;(CH,),,COOH 44.2
14:0 Myristic acid Tetradecanoic acid CH,(CH,),,COOH 52
16:0 Palmitic acid Hexadecanoic acid CH,(CH,), ,COOH 63.1
18:0 Stearic acid Octadecanoic acid CH,(CH,),,COOH 69.6
20:0 Arachidic acid Eicosanoic acid CH,(CH,),,COOH 75.4
22:0 Behenic acid Docosanoic acid CH,(CH,),,COOH 81
24:0 Lignoceric acid Tetracosanoic acid CH;,(CH,),,COOH 84.2
Unsaturated fatty acids (all double bonds are cis)

16:1n-7 Palmitoleic acid 9-Hexadecenoic acid CH,(CH,) ,CH=CH(CH,),COOH —0.5
18:1n-9 Oleic acid 9-Octadecenoic acid CH,(CH,),CH=CH(CH,),COOH 134
18:2n-6  Linoleic acid 9,12-Octadecadienoic acid CH,(CH,) ,(CH=CHCH,),(CH,) COOH =9
18:3n-3  a-Linolenic acid 9,12,15-Octadecatrienoic acid CH,CH,(CH=—CHCH,),(CH,) .COOH =17
18:3n-6 v-Linolenic acid 6,9,12-Octadecatrienoic acid CH,(CH,) ,(CH=CHCH,),(CH,),COOH

20:4n-4 Arachidonic acid 5,8,11,14-Eicosatetraenoic acid CH,(CH,) ,(CH=CHCH,),(CH,),COOH —49.5
20:5n-3 EPA 5,8,11,14,17-Eicosapentaenoic acid CH,CH,(CH=CHCH,).(CH,),COOH —54
22:6n-3 DHA 4,7,10,13,16,19-Docosahexenoicacid CH,CH,(CH=CHCH),CH,COOH

24:1n-9 Nervonic acid 15-Tetracosenoic acid CH,(CH,),CH=CH(CH,),,COOH 39

“Number of carbon atoms: number of double bonds. For unsaturated fatty acids, n is the number of carbon atoms, n — x is the double-bonded carbon
atom, and x is the number of that carbon atom counting from the methyl terminal (») end of the chain.

Source: Dawson, R.M.C,, Elliott, D.C,, Elliott, W.H., and Jones, K.M., Data for Biochemical Research (3rd ed.), Chapter 8, Clarendon Press (1986).
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1-Palmitoleoyl-2-linoleoyl-
3-stearoyl-glycerol

acids can be esterified to the
glycerol core. Triglycerides
are mainly located in the

adipocytes (fat cells)
in The human body.
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Table 12-2 The Common Classes of Glycerophospholipids

Name of X—OH Formula of —X

Name of Phospholipid

Water =

Ethanolamine —CH,CH,NH
Choline —CH,CH,N(CH,);
Serine —CH,CH(NH;)COO0~

HO

OH

myo-Inositol

H
—CH,CH(OH)CH,OH

Glycerol

I
Phosphatidylglycerol — CH,CH(OH)CH,—O0—P—0—CH, o
(cardiolipin) (I)_ I
5 CH—O0—C—R,
P
Ra_c —O—CHz
Table 12-2
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Phosphatidic acid
Phosphatidylethanolamine
Phosphatidylcholine (lecithin)

Phosphatidylserine

Phosphatidylinositol

Phosphatidylglycerol

Diphosphatidylglycerol
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a fatty acyl ester at C2 of glycerol,
and an ether linkage at C1 of glycerol. The
double bond in the long-chain

substituent at C1 is always cis.

A plasmalogen

Unnumbered 12 p390a
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Fatty acid
residue

A ceramide
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common sphingosine or
dihydrosphingosine core. A
ceramide is composed of
sphingosine to which is
attached a fatty acid via
amide linkage.
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Phosphocholine<
head group

Figure 12-6a
© John Wiley & Sons, Inc. All rights reserved.

residue

) E‘IH ﬁH
0=C HC
Palmitate ) | |

(ICH2)14 ((I:Hz)u
CH;  CH,

~

A sphingomyelin

Figure 12-6b
© John Wiley & Sons, Inc. All rights reserved.




§M3

N-Acetyl- !
p-Galactose p-galactosamine p-Galactose D-Glucose

CH,OH CH,OH CH,OH CH,OH

N-Acetylneuraminidate CH; CH,
(sialic acid) Stearic Sphingo-
acid sine
Figure 12-7a Figure 12-7b

© John Wiley & Sons, Inc. All rights reserved. © John Wiley & Sons, Inc. All rights reserved.




27n,

membranes,
often in the form of a
fatty acyl ester.
Cholesterol is the
metabolic precursor in
the biosynthesis of
steroid hormones in
humans.
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van der Waals
envelope

Figure 12-11a
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Figure 12-10
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A spheroidal micelle Unfavorable micelle
with a water center
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(a) Above transition temperature

Figure 12-17
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The transition temperature increases with the chain length
and degree of saturation of the bilayer’s component fatty
acid residues.



interferes with the motions of the fatty acid tails, causing them
to become more ordered.

Cholesterol acts as a spacer that facilitates increased mobility
of the fatty acid tails near their methyl ends.

Cholesterol broadens the temperature range of the order-
disorder transition, and abolishes it at high concentrations
by inhibiting the “crystallization” of fatty acid tails.



Table 12-3 Lipid Compositions of Some Biological Membranes”

Human Beef Heart

Lipid Erythrocyte Human Myelin Mitochondria E. coli
Phosphatidic acid 1.5 0.5 0 0
Phosphatidylcholine 19 10 39 0
Phosphatidylethanolamine 18 20 27 65
Phosphatidylglycerol 0 0 0 18
Phosphatidylinositol 1 1 7 0
Phosphatidylserine 8.5 8.5 0.5 0
Cardiolipin 0 0 225 12
Sphingomyelin 17.5 8.5 0 0
Glycolipids 10 26 0 0
Cholesterol 25 26 3 0

“The values given are weight percent of total lipid.

Source: Tanford, C., The Hydrophobic Effect, p. 109, Wiley (1980).

Table 12-3
© John Wiley & Sons, Inc. All rights reserved.




Membrane

Protein (%)

Table 12-4 Compositions of Some Biological Membranes

Lipid (%)

Carbohydrate Proteinto
Lipid Ratio

(%)

Plasma membranes:

Mouse liver cells

Human erythrocyte
Amoeba
Rat liver nuclear membrane

Mitochondrial outer membrane

Mitochondrial inner membrane

Myelin
Gram-positive bacteria
Halobacterium purple membrane

“Deduced from the analyses.

Table 12-4
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Integral membrane
protein

Figure 12-18
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Glycolipid Oligosaccharide Integral protein Hydrophobic
a helix

Phospholipid  Cholesterol

Figure 12-20
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to become permeable to small
polar molecules and ions.
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Splitting the membrane
exposes the interior of
the lipid bilayer and its
embedded proteins.

Embedded
proteins

Split lipid bilayer

Figure 12-32
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Table 12-5 Structures of the A, B, and H Antigenic

Determinants in Erythrocytes

Type Antigen

H GalB(1 — 4)GIcNAc---
T12

L-Fuca

GalNAca(1 — 3)Galp(1 — 4)GIcNAc---
T 1,2

L-Fuca

B Gala(1 — B)Cfam“ — 4)GIcNAC:---
1,2

L-Fuca

Abbreviations: Gal = galactose, GalNAc = N-acetylgalactosamine,
GIcNAc = N-acetylglucosamine, L-Fuc = L-fucose.

Table 12-5
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Table 12-6 Characteristics of the Major Classes of Lipoproteins in Human Plasma

Chylomicrons VLDL IDL LDL HDL
Density (g - cm™3) <0.95 <1.006 1.006-1.019 1.019-1.063 1.063-1.210
Particle diameter (A) 750-12,000 300-800 250-350 180-250 50-120
Particle mass (kD) 400,000 10,000-80,000 5000-10,000 2300 175-360
% Protein* 1.5-2.5 5-10 15-20 20-25 40-55
% Phospholipids® 7-9 15-20 22 15-20 20-35
% Free cholesterol” 1-3 5-10 8 7-10 3-4
% Triacylglycerols® 84-89 50-65 22 7-10 3-5
% Cholesteryl esters® 3-5 10-15 30 35-40 12
Major
apolipoproteins A-l, A-ll, B-48, C-l, B-100, C-I, C-II, B-100, C-l, C-lI, B-100 A-l, A-ll, C-l,
C-lI, C-lILE C-llLE C-lIL E C-lI, C-lil, D, E
aSurface components.
bCore lipids.
Table 12-6
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In lipoproteins, the lipid and the protein associate non-covalently.
Lipoproteins serve in the blood plasma as transport vehicles
for triacylglycerols and cholesterol.
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Table 12-7 Properties of the Major Species of Human Apolipoproteins

Number of Molecular Mass®

Apolipoprotein Residues (kD) Function

A-l 243 29 Activates LCAT®

A-ll 77 17 Inhibits LCAT, activates hepatic lipase
B-48 2152 241 Cholesterol clearance

B-100 4536 513 Cholesterol clearance

C-l 56 6.6 Activates LCAT?

c- 79 8.9 Activates LPL¢

C-li 79 8.8 Inhibits LPL, activates LCAT?

D 169 19 Unknown

E 299 34 Cholesterol clearance

9All apolipoproteins are monomers but apoA-Il, which is a disulfide-linked dimer.
®LCAT = lecithin-cholesterol acyltransferase.
‘LPL = lipoprotein lipase.

Table 12-7
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Summary of biosynthetic routes to the major
prostaglandins and thromboxane A,

membrane
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Probable mechanism for the cyclooxygenation of
arachidonic acid by PGH synthase
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