Covalent and Non-Covalent Bonds: Chemistry of Aqueous Solutions:
 Ionization of Weak Acids (Buffers): Functional Groups

CHEM 420 - Principles of Biochemistry Instructor - Anthony S. Serianni

Chapter 2

Voet/Voet, Biochemistry, 2011
Fall 2015

August 26, 28, 31

Myoglobin: An O_{2} binding protein (153 amino acid polypeptide)

1958 - Kendrew X-ray crystallography

TABLE 1-1 Strengths of Bonds Common in Biomolecules

	Bond dissociation		Bond dissociation
Type	energy*	Type	energy
of bond	($\mathrm{kJ} / \mathrm{mol}$)	of bond	($\mathrm{kJ} / \mathrm{mol}$)
Single bonds		Double bonds	
$\mathrm{O}-\mathrm{H}$	470	$\mathrm{C}=0$	712
$\mathrm{H}-\mathrm{H}$	435	$\mathrm{C}=\mathrm{N}$	615
$\mathrm{P}-0$	419	$\mathrm{C}=\mathrm{C}$	611
$\mathrm{C}-\mathrm{H}$	414	$\mathrm{P}=0$	502
$\mathrm{N}-\mathrm{H}$	389		
C-0	352	Trip	bonds
C-C	348	$\mathrm{C} \equiv \mathrm{C}$	816
$\mathrm{S}-\mathrm{H}$	339	$\mathrm{N} \equiv \mathrm{N}$	930
$\mathrm{C}-\mathrm{N}$	293		
C-S	260		
$\mathrm{N}-\mathrm{O}$	222		
S-S	214		

*The greater the energy required for bond dissociation (breakage), the stronger the bond.

Weak electrostatic interactions between two macromolecules with complementary surfaces: non-covalent interactions

(a) Repulsion

FIGURE 2.20
Electrostatic interactions between
macroions. (a) Repulsion. DNA molecules, with many negative charges, strongly repel one another in solution. (b) Attraction. If DNA is mixed with a positively charged protein, these molecules have a strong tendency to associate.

TABLE 3.15 Strength of Bonds Found in Protein Structures

Bond Type	Bond Strength $\left(\mathbf{k c a l}\right.$ mol $^{-1}$)
Covalent	>50
Noncovalent	$0.6-7$
Hydrophobic (i.e., two benzyl side	$2-3$
\quad chain groups of Phe)	$1-7$
Hydrogen	$1-6$
Ionic (low dielectric environment)	<1
\quad van der Waals	0.6
Average energy of kinetic motion $\left(37^{\circ} \mathrm{C}\right)$	

Types of non-covalent (reversible) bonds in biological systems

Type of Interaction
(a) Charge-charge
Longest-range force; nondirectional
(b) Charge-dipole
Depends on orientation of dipole
(c) Dipole-dipole
Depends on mutual orientation
of dipoles
(d) Charge-induced dipole
Depends on polarizability of molecule
in which dipole is induced
(e) Dipole-induced dipole
Depends on polarizability of molecule
in which dipole is induced
(f) Dispersion
Involves mutual synchronization of
fluctuating charges
(g) van der Waals repulsion
Occurs when outer electron
orbitals overlap
(h) Hydrogen bond
Charge attraction + partial covalent bond

[^0]$$
E_{\mathrm{el}} \approx \frac{Z_{\mathrm{A}} \cdot Z_{\mathrm{B}} \cdot \varepsilon^{2}}{D \cdot r_{\mathrm{ab}}}
$$

Figure 3.49. Strength of electrostatic interactions.
Textbook of Biochemistry With Clinical Correlations, Sixth Edition, Edited by Thomas M. Devlin. Copyright © 2006 John Wiley \& Sons, Inc.

$$
E_{\mathrm{VDW}}=-\frac{A}{r_{\mathrm{ab}}}+\frac{B}{r_{\mathrm{ab}}^{12}}
$$

Figure 3.50. Strength of van der Waals interactions.

Textbook of Biochemistry With Clinical Correlations, Sixth Edition, Edited by Thomas M. Devlin. Copyright © 2006 John Wiley \& Sons, Inc.

(a) Carbon monoxide

FIGURE 2.4

Dipolar molecules. (a) Carbon monoxide: the excess negative charge (q^{-}) on the oxygen together with corresponding positive charge $\left(\mathrm{q}^{+}\right)$on the carbon produces a dipole moment directed along the $\mathrm{C}-\mathrm{O}$ axis.
(b) Water: the excess negative charge on O together with the excess positive charge on each H produces two moments, μ_{1} and μ_{2}, directed along the $\mathrm{H}-\mathrm{O}$ bonds. Their vector sum (μ) represents the dipole moment of the molecule.

(a) Induction of a dipole in benzene

(b) Dispersion forces between benzene molecules

(c) Space-filling model of molecules in (b) FIGURE 2.5
Induced dipoles and dispersion forces. (a) Benzene has neither a net charge nor a permanent dipole moment, but a nearby charge can induce a redistribution of electrons within the benzene ring, producing an induced mome tt (μ). (b) Planar molecules like benzene have' a strong tendency to stack, because fluctuations in the electron clouds of the stacked rings interact with one another, producing a d sjersion force. (c) Although the molecules approach closely, they do not interpenetrate.
(c) 0 Irving Geis.

Figure 3.51. van der Waals-London dispersion interaction energies between two hydrogen atoms and two (tetrahedral) carbon atoms. Redrawn from Fersht, A. Enzyme Structure and Mechanism. San Francisco: Freeman, 1977, p. 228.

$$
E_{\mathrm{VDW}}=-\frac{A}{r_{\mathrm{ab}}^{6}}+\frac{B}{r_{\mathrm{ab}}^{12}}
$$

Figure 3.50. Strength of van der Waals interactions.

TABLE 2.2 van der Waals radif of some atoms and groups of atoms

Atoms

H	0.12
O	0.14
N	0.15
C	0.17
S	0.18
P	0.19

Groups

$\begin{array}{ll}-\mathrm{OH} & 0.14 \\ -\mathrm{NH}_{2} & 0.15 \\ -\mathrm{CH}_{2}- & 0.20 \\ -\mathrm{CH}_{3} & 0.20 \\ \text { Half-thickness of aromatic } & 0.17\end{array}$
Half-thickness of aromatic 0.17 ring

(a) Induction of a dipole in benzene

(b) Dispersion forces between benzene molecules

(c) Space-filling model of molecules in (b) FIGURE 2.5
Induced dipoles and dispersion forces.
(a) Benzene has neither a net charge nor
a permanent dipole moment, but a nearby charge can induce a redistribution of electrons within the benzene ring, producing an induced mome tt (μ). (b) Planar molecules like benzene have a strong tendency to stack, because fluctuations in the electron clouds of the stacked ring(Is interact with one another, producing a d sjersion force. (c) Although the molecules approach closely, they do not interpenetrate.
(c) O Ining Geis.

Table 2-1 Covalent and Noncovalent Chemical Bonds

BOND TYPE	LENGTH (nm)	STRENGTH (kcal/mole)	
		IN VACUUM	IN WATER
Covalent	0.15	90	90
Noncovalent: ionic*	0.25	80	3
hydrogen	0.30	4	1
van der Waals attraction (per atom)	0.35	0.1	0.1
*An ionic bond is an electrostatic attraction betw Table 2-1 Molecular Biology of the Cell 5/e (© Garland Science 2008)	two fully charge		

$$
E_{\mathrm{el}} \approx \frac{Z_{\mathrm{A}} \cdot Z_{\mathrm{B}} \cdot \varepsilon^{2}}{D \cdot r_{\mathrm{ab}}}
$$

Figure 3.49. Strength of electrostatic interactions.

Substance	Dielectric Constant	Dipole Moment (debye)
Formamide	110.0	3.37
Water	78.5	1.85
Dimethyl sulfoxide	48.9	3.96
Methanol	32.6	1.66
Ethanol	24.3	1.68
Acetone	20.7	2.72
Ammonia	16.9	1.47
Chloroform	4.8	1.15
Diethyl ether	4.3	1.15
Benzene	2.3	0.00
Carbon tetrachloride	2.2	0.00
Hexane	1.9	0.00
Source: Brey, W.S., Physical Chemistry and Its Biological Applications,		
p. 26, Academic Press (1978).		

Dielectric constants and permanent molecular dipole moments of some common solvents

Structure of the water molecule

The polar water molecule red $=\delta^{-}$region blue $=\delta^{+}$region

View: HOH atoms in viewing plane; both oxygen lone-pairs eclipsed and perpendicular to the viewing plane.

FIGURE 2.7
The hydrogen bond. The figure shows an idealized H bond that might exist, for example, in $-\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=$. Although the H bond is between H and the acceptor, the H -bond length is defined as the distance between donor and acceptor.

Hydrogen bonding between two water molecules

Structure of ice: 4 H -bonds per water molecule
(†wo as donor, two as acceptor)

General characteristics of H -bonds

Hydrogen covalently attached to an electronegative atom
\square Partial positive (+) charge of hydrogen on donor
\square Partial negative (-) charge on the electronegative donor atom
\square At least one lone-pair of electrons on the acceptor atom
\square The partial positive hydrogen is strongly attracted to the lone-pair electrons on the acceptor

Interaction much stronger than dipole-dipole interaction

- ethanol (bp = 78.5 ${ }^{\circ} \mathrm{C}$)
- methoxymethane ($\mathrm{bp}=-24.8^{\circ} \mathrm{C}$) $\sim 100^{\circ}$ elevation of bp

(B)

Figure 2-15 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Figure 1.4. Representative hydrogen bonds of importance in biological systems.

Different types of H -bonds

- Common elements that form H-bonds: S, O, N, F
- H-bonds involving C-H donors (proteins)

Summary of H -bond properties

	Strong	Moderate	Weak
interaction type	strongly covalent	mostly electrostatic	electrostat./ dispers.
bond lengths $[\AA]$			
$\mathrm{H} \cdots \mathrm{A}$	$1.2-1.5$	$1.5-2.2$	>2.2
lengthening of $\mathrm{X}-\mathrm{H}[\AA]$	$0.08-0.25$	$0.02-0.08$	<0.02
$\mathrm{X}-\mathrm{H}$ versus $\mathrm{H} \cdots \mathrm{A}$	$\mathrm{X}-\mathrm{H} \approx \mathrm{H} \cdots \mathrm{A}$	$\mathrm{X}-\mathrm{H}<\mathrm{H} \cdots \mathrm{A}$	$\mathrm{X}-\mathrm{H}<\mathrm{H} \cdots \mathrm{A}$
$\mathrm{X} \cdots \mathrm{A}[\AA]$	$2.2-2.5$	$2.5-3.2$	>3.2
directionality	strong	moderate	weak
bond angles [$\left.{ }^{\circ}\right]$	$170-180$	>130	>90
bond energy $\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$	$15-40$	$4-15$	<4
relat. IR shift $\Delta \tilde{\nu}_{\mathrm{XH}}\left[\mathrm{cm}^{-1}\right]$	25%	$10-25 \%$	$<10 \%$
${ }^{1} \mathrm{H}$ downfield shift	$14-22$	<14	

For an X-H….A H-bond

Low-barrier hydrogen bonds (LBHB)

- H-bond strength depends on its length, linearity, microenvironment and $\mathrm{p} \mathrm{K}_{\mathrm{a}}$ values of the H -sharing components.
- H -bonds in water are relatively weak because of the $\mathrm{p} K_{\mathrm{a}}$ mismatch between $\mathrm{H}_{3} \mathrm{O}^{+}(-1.7)$ and $\mathrm{H}_{2} \mathrm{O}(15.7)$.
- The proton in the structure is tightly associated with OH^{-}as a water molecule.
- In the gas phase, the dielectric constant is low.
- Hydrogen bonds between heteroatoms with matched $p K_{\mathrm{a}}$ values can be \cong $2.5 \AA$ and very strong ($25-30 \mathrm{kcal} / \mathrm{mol}$)

H -bonds in proteins

I. H-bonds contribute to structure and folding. II. H-bonds contribute to catalysis.

Structure/folding $=$ Protein $\beta=$ sheets

Anti-parallel β-sheets

- 10-14 atoms in a ring
- H -bonds linear
-Stability?

Parallel β-sheets

- 12 atoms in a ring
- H-bonds not 180°
- Stability?

Enzyme Catalysis: Catalytic mechanism of a Serine protease

Solvation of ions (salts) by oriented solvent water molecules

Ordering of water molecules around hydrophobic residues on the surface of a protein (clathrate) plays a key role in the hydrophobic effect

Examples of amphipathic (amphiphilic) compounds

Surface of liquid

Bilayer vesicle

Spontaneous self-assembly of amphipathic compounds in aqueous solution

Spontaneous self-association of amphipathic molecules in aqueous solutions

Hydronium ion migration in aqueous solution via proton jumps

Relative concentrations of acetic acid and acetate ion in aqueous solution as a function of solution pH

TABLE 2.6 Some weak acids and their conjugate bases
$\left.\begin{array}{lllllll}\text { Acid (Proton Donor) } & & \text { Conjugate Base (Proton Acceptor) }\end{array}\right)$

Acid dissociation constants and $p K_{\alpha} s$ for some weak acids commonly used as biochemical buffers

Acid-base titration curves of 1 liter solutions of 1 M acetic acid, $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, and NH_{4}^{+}by a strong base

Titration curve of a 1 liter aqueous solution of $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ (phosphoric acid; a triprotic weak acid with three buffering ranges)

10. Citric acid, a tricarboxylic acid important in intermediary metabolism, can be symbolized as $H_{3} A$. Its dissociation reactions are

| $H_{3} A \underset{+}{\rightleftarrows}+H_{2} A-$ | $p K_{1}=3.13$ |
| :--- | :--- | :--- |
| $H_{2} A-\underset{+}{\rightleftarrows} H^{+}+H A^{2-}$ | $p K_{2}=4.76$ |
| $H A^{2-} \rightleftarrows H^{+}+A^{3-}$ | $p K_{3}=6.40$ |

If the total concentration of the acid and its anion forms is 0.12 M , what are the individual concentrations of $\mathrm{H}_{3} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~A}^{-}, \mathrm{HA}^{2-}$, and A^{3-} at pH 5.2 ?

Answer: For citric acid

$$
\mathrm{H}_{3} \mathrm{~A} \underset{3.13}{\underset{~}{\rightleftarrows}} \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{~A}^{-} \underset{4.76}{\underset{~}{\rightleftarrows}} \mathrm{H}^{+}+\mathrm{HA}^{2-} \underset{6.40}{\underset{~}{\rightleftarrows}} \mathrm{H}^{+}+\mathrm{A}^{3-}
$$

At $\mathrm{pH}=5.2$ the predominant equilibrium will involve

$$
\mathrm{H}_{2} \mathrm{~A}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{HA}^{2-}
$$

The ratio of their concentrations is:

$$
\begin{equation*}
\frac{\left[\mathrm{HA}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]}=2.754 \text { (from Henderson-Hasselbach equation) } \tag{1}
\end{equation*}
$$

Likewise for the other two equilibria we can write:

$$
\begin{equation*}
\frac{\left[\mathrm{H}_{2} \mathrm{~A}\right]}{\left[\mathrm{H}_{3} \mathrm{~A}\right]}=117.5 \tag{2}
\end{equation*}
$$

and,

$$
\begin{equation*}
\frac{\left[\mathrm{A}^{3-}\right]}{\left[\mathrm{HA}^{2-}\right]}=0.063 \tag{3}
\end{equation*}
$$

Each of the terms are related as follows

$$
\begin{equation*}
\left[\mathrm{A}^{3-}\right]+\left[\mathrm{HA}^{2-}\right]+\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]+\left[\mathrm{H}_{3} \mathrm{~A}\right]=0.2 \tag{4}
\end{equation*}
$$

Using equations (1), (2) and (3) we can relate the concentration of any one species to any other.
For example,

$$
\begin{aligned}
& {\left[\mathrm{A}^{3-}\right]=0.063\left[\mathrm{HA}^{2-}\right] \quad(\text { from } 3)} \\
& {\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]=\frac{\left[\mathrm{HA}^{2-}\right]}{2.754}(\text { from } 1)}
\end{aligned}
$$

and,

$$
\left[\mathrm{H}_{3} \mathrm{~A}\right]=\frac{\left[\mathrm{H}_{2}{ }^{-}\right]}{117.5}=\frac{\left[\mathrm{HA}^{2-}\right]}{2.754 \times 117.5}(\text { from } 1 \text { and } 2)
$$

Substituting these expressions into (4), we find:

$$
\left[\mathrm{HA}^{2-}\right]=0.140
$$

From (1)

$$
\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]=\left[\mathrm{HA}^{2-}\right] / 2.754=0.140 / 2.754=0.051
$$

From (2)

$$
\left[\mathrm{H}_{3} \mathrm{~A}\right]=\left[\mathrm{HA}^{2-}\right] / 117.5=0.001
$$

$$
\left[\mathrm{A}^{3}\right]=0.063 \times 0.140=0.009
$$

We could have anticipated these results because the pH is far from two of the $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$. Only the equilibrium between $\mathrm{H}_{2} \mathrm{~A}^{-}$and HA^{2-} with a $\mathrm{pK}_{\mathrm{a}}=4.76$ will be significant at $\mathrm{pH}=5.2$.

> An example of a buffer problem involving
> a tricarboxylic acid with three $\mathrm{p} K_{\mathrm{a}}$ values that are very similar in magnitude (unlike inorganic phosphate, $\mathrm{H}_{3} \mathrm{PO}_{4}$).

Figure 1.10. Major chemical constituents of blood plasma and cell fluid. Adapted from Gregersen, M. I. In: P. Bard (Ed.), Medical Physiology, 11th ed . St. Louis: Mosby, 1961, p. 307.

The Bicarbonate Buffer System of Blood Plasma

The important buffer system of blood plasma is the bicarbonate/ carbonic acid couple

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

The relevant $\mathrm{p} K_{\mathrm{a}}, \mathrm{p} K_{1}$ for carbonic acid, has a value far removed from the normal pH of blood plasma (pH 7.4). (The $\mathrm{p} K_{1}$ fo $\mathrm{H}_{2} \mathrm{CO}_{\mathrm{s}}$ at $25^{\circ} \mathrm{C}$ is 3.77 [Table 2.4], but at $37^{\circ} \mathrm{C}$, $\mathrm{p} K_{1}$ is 3.57 .) At pH 7.4, the concentration of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is a minuscule fraction of the CO_{3} concentration; thus the plasma appears to be poorly protected against an influx of OH^{-}ions.

$$
\begin{aligned}
\mathrm{pH} & =7.4=3.57+\log _{10} \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
\frac{\left[\mathrm{HCO}_{3}-\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} & =6761
\end{aligned}
$$

For example, if $\left[\mathrm{HCO}_{3}{ }^{-}\right]=24 \mathrm{mM}$, then $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ is only $3.55 \mu M$ $\left(3.55 \times 10^{-6} \mathrm{M}\right.$), and an equivalent amount of OH^{-}(its usual concentration in plasma) would swamp the buffer system, causing a dangerous rise in the plasma pH . How, then, can this bicarbon ate system function effectively? The bicarbonate buffer system works well because the critical concentration of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is maintained relatively constant through equilibrium with dissolved CO_{2} produced in the tissues and available as a gaseous CO_{2} reservoir n the lungs.*

Gaseous CO_{2} from the lungs and tissues is dissolved in the blood plasma, symbolized as $\mathrm{CO}_{2}(\mathrm{~d})$, and hydrated to form $\mathrm{H}_{2} \mathrm{CO}_{3}$:

$$
\begin{gathered}
\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~d}) \\
\mathrm{CO}_{2}(\mathrm{~d})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3} \\
\mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
\end{gathered}
$$

Thus, the concentration of $\mathrm{H}_{2} \mathrm{CO}_{3}$ is itself buffered by the avail able pools of CO_{2}. The hydration of CO_{2} is actually mediated by an enzyme, carbonic anhydrase, which facilitates the equilibrium by rapidly catalyzing the reaction

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~d}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}
$$

Under the conditions of temperature and ionic strength prevailing in mammalian body fluids, the equilibrium for this reaction lies far to the left, such that more than $300 \mathrm{CO}_{2}$ molecules are present in solution for every molecule of $\mathrm{H}_{2} \mathrm{CO}_{3}$. Because dissolved CO_{2} and $\mathrm{H}_{2} \mathrm{CO}_{3}$ are in equilibrium, the proper expression for $\mathrm{H}_{2} \mathrm{CO}_{3}$ availability is $\left[\mathrm{CO}_{2}(\mathrm{~d})\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$, the so-called total carbonic acid pool, consisting primarily of $\mathrm{CO}_{2}(\mathrm{~d})$. The overall equilibrium for the bicarbonate buffer system then is

$$
\begin{aligned}
\mathrm{CO}_{2}(\mathrm{~d})+\mathrm{H}_{2} \mathrm{O} \stackrel{K_{\mathrm{h}}}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{CO}_{3} \\
\mathrm{H}_{2} \mathrm{CO}_{3} \stackrel{K_{4}}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
\end{aligned}
$$

An expression for the ionization of $\mathrm{H}_{2} \mathrm{CO}_{2}$ under such conditions (that is, in the presence of dissolved CO_{2}) can be obtained from
*Well-fed humans exhale about 1 kg of CO_{2}, daily, Imagine the excretory problem if CO_{2} were not a volatlle gas.
K_{h}, the equilibrium constant for the hydration of CO_{2}, and from K_{a}, the first acid dissociation constant for $\mathrm{H}_{2} \mathrm{CO}_{3}$

$$
K_{\mathrm{h}}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{CO}_{2}(\mathrm{~d})\right]}
$$

Thus,

$$
\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]=K_{\mathrm{h}}\left[\mathrm{CO}_{2}(\mathrm{~d})\right]
$$

Putting this value for $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ into the expression for the first dissociation of $\mathrm{H}_{2} \mathrm{CO}_{3}$ gives

$$
\begin{aligned}
K_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]} \\
& =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{K_{\mathrm{h}}\left[\mathrm{CO}_{2}(\mathrm{~d})\right]}
\end{aligned}
$$

Therefore, the overall equilibrium constant for the ionization of $\mathrm{H}_{2} \mathrm{CO}_{3}$ in equilibrium with $\mathrm{CO}_{2}(\mathrm{~d})$ is given by

$$
K_{\mathrm{a}} K_{\mathrm{h}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}(\mathrm{~d})\right]}
$$

and $K_{\mathrm{a}} K_{\mathrm{h}}$, the product of two constants, can be defined as a new equilibrium constant, $\boldsymbol{K}_{\text {overall }}$. The value of K_{h} is 0.003 at $37^{\circ} \mathrm{C}$ and K_{a}, the ionization constant for $\mathrm{H}_{2} \mathrm{CO}_{3}$, is $10^{-3.57}=0.000269$. Therefore,

$$
\begin{aligned}
K_{\text {overail }} & =(0.000269)(0.003) \\
& =8.07 \times 10^{-7} \\
\mathrm{p} K_{\text {overal }} & =6.1
\end{aligned}
$$

which yields the following Henderson-Hasselbalch relationship:

$$
\mathrm{pH}=\mathrm{p} K_{\text {overall }}+\log _{10} \frac{\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{CO}_{2}(\mathrm{~d})\right]}
$$

Although the prevailing blood pH of 7.4 is more than 1 pH unit away from $\mathrm{p} K_{\text {overall }}$, the bicarbonate system is still an effective buffer. Note that, at blood pH , the concentration of the acid component of the buffer will be less than 10% of the conjugate base component. One might imagine that this buffer component could be overwhelmed by relatively small amounts of alkali, with consequent disastrous rises in blood pH . However, the acid component is the total carbonic acid pool, that is, $\left[\mathrm{CO}_{2}(\mathrm{~d})\right]+$ $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$, which is stabilized by its equilibrium with $\mathrm{CO}_{2}(\mathrm{~g})$ Gaseous CO_{2} serves to buffer any losses from the total carbonic acid pool by entering solution as $\mathrm{CO}_{2}(\mathrm{~d})$, and blood pH is effec tively maintained. Thus, the bicarbonate buffer system is an open system. The natural presence of CO_{2} gas at a partial pressure of 40 mm Hg in the alveoli of the lungs and the equilibrium

$$
\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~d})
$$

keep the concentration of $\mathrm{CO}_{2}(\mathrm{~d})$ (the principal component of the total carbonic acid pool in blood plasma) in the neighborhood of 1.2 mM . Plasma $\left[\mathrm{HCO}_{3}^{-}\right]$is about 24 mM under such conditions.

Definitions of Buffer Capacity

Figure 1-3 Titration of a weak monoprotic base (e.g., Tricine) with a strong acid (e.g., HCl$). \mathrm{p} K_{a}$ of Tricine $=8.15$.

The number of moles of H^{+}that must be added to one liter of buffer in order to decrease the pH by 1 unit = the buffer capacity in the acid direction

and

The number of moles of OH^{-}that must be added to one liter of buffer in order to increase the pH by one unit $=$ the buffer capacity in the alkaline direction.

Characteristics important to buffers used in biochemical experiments

- $\mathrm{p} K_{\mathrm{a}}$ value
- Variation of $\mathrm{p} K_{\mathrm{a}}$ with temperature and ionic strength
- Anionic, cationic, or multiple charges on buffer species
- Interaction with other components (e.g., metal ions)
- Solubility
- Expense
- UV absorption

FIGURE 2.21

Dependence of protein solubility on $\mathbf{~ P H}$.

(a) Most proteins are very soluble at high pH , where all of their molecules are negatively charged. (b) At the isoelectric point, where a protein has no net charge, its molecules retain regions of positive and negative charge on their surfaces, resulting in aggregation and precipitation. (c) At low pH the proteins are soluble because of their positive charge.
(d) The solubility of β-lactoglobulin with varying pH ; the lowest solubility occurs at the isoelectric point.

(a) High pH : protein soluble (deprotonated)

(c) Low pH: protein soluble (protonated)

(b) Isoelectric point: protein aggregates

(d) Solubility of β-lactoglobulin

Some ionizable amino acid sidechains found in proteins

One or more of these groups can be found in the active site of an enzyme.

Figure 10.52. The $\mathbf{p H}$ dependence of (a) acid and (b) alkaline phosphatase reactions.

Effect of pH on enzyme catalytic activity

Schematic representation of the effect of pH on the velocity of an enzyme-catalyzed reaction if only the protonated form of a single ionizing group is catalytically active. The solid curve represents the experimental data.

The $p K_{a}$ of this group can be estimated by extrapolating the linear portions of the curve as shown.

Ionization properties of some amino acid side chains

Group $\quad \mathrm{p} K_{\mathrm{a}}(298 \mathrm{~K}) \quad \Delta H_{\mathrm{i}}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$

$\left.\begin{array}{lc}\beta \text {-Carboxyl (Asp) } \\ \gamma \text {-Carboxyl (Glu) }\end{array}\right\}$	~ 4	$\sim \pm 4$
Imidazole (His)	~ 6	~ 29
ε-Amino (Lys)	~ 10	~ 46
Phenolic OH (Tyr)	~ 10	~ 25

The assignment of $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ to specific amino acid sidechains is not straightforward since these $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ are affected by local protein structure. For example, in pepsin, an Asp residue involved in the mechanism (pepsin is an aspartic protease) has a $\mathrm{p} K_{\mathrm{a}}$ of 1.1, whereas this sidechain has a $\mathrm{p} K_{\mathrm{a}}$ of ~ 4 in the free amino acid.

If the rate dependence on pH is known as a function of temperature, then enthalpies of ionization $\left(\Delta H_{i}\right)$ can sometimes help to make the correlation between the measured $\mathrm{p} K_{\mathrm{a}}$ and the functional group.

Two functionally important ionizable groups in the active site of an enzyme

The effect of pH on the velocity of an enzyme-catalyzed reaction when two ionizing groups are involved. The solid line is the experimental da \ddagger.

Extrapolation of the appropriate linear portions of the plot yield values of $\mathrm{p} K_{a 1}$ and $\mathrm{p} K_{\mathrm{a} 2}$ as shown.

Review of key functional groups in biochemistry: Structure and properties

alcohol
aldehyde
carboxyl
amine
ketone
amide
oxyester
thioester
thiol
disulfide
imine
phosphoanhydride mixed anhydride

[^0]: From Mathews and van Holde, Biochemistry, Third Edition. Copyright © Addison Wesley Longman, Inc

