CHEM 539 Molecular Metabolism: Pathways and Regulation Spring 2015

PPT Set 2a Glucose transport; glycolysis; degradation of other monosaccharides; alternatives to glycolysis

Plasma membrane-bound glucose transporters

TABLE 12-1 Properties of Selected Members of HumanGlucose Transporters (GLUT)

Transporters	Major Tissue Distribution	Properties
GLUT 1	Brain, microvessels, red blood cells, placenta, kidney, and many other cells	Low K _m (about 1 mM), ubiquitous basal transporter
GLUT 2	Liver, pancreatic β -cell, small intestine	High K _m (15–20 mM)
GLUT 3	Brain, placenta, fetal muscle	Low K _m , provide glucose for tissue cells metabolically dependent on glucose
GLUT 4	Skeletal and heart muscle, fat tissue (adipocytes)	K _m (5 mM), insulin responsive transporter
GLUT 5	Small intestine, testes	Exhibits high affinity for fructose
SGLT 1	Small intestine and renal tubules	Low K _m (0.1–1.0 mM)
SGLT 2	Renal tubules	Low K _m (1.6 mM)

GLUT: concentration gradient-dependent facilitated transport with specific carrier; either insulin dependent or insulin independent

SGLT: active transport

Active transport of glucose driven by an ion gradient

Overview of the ten reactions of glycolysis

Table 15-1	$\Delta {f G}^{\circ\prime}$ and $\Delta {f G}$ for the Reactions of Glycolysis in Heart Muscle ^{<i>a</i>}		
Reaction	Enzyme	∆G°′ (kJ · mol ^{−1})	∆G (kJ · mol ^{−1})
1	Hexokinase	-20.9	-27.2
2	PGI	+2.2	-1.4
3	PFK	-17.2	-25.9
4	Aldolase	+22.8	-5.9
5	ТІМ	+7.9	~0
6 + 7	GAPDH + PGK	-16.7	-1.1
8	PGM	+4.7	-0.6
9	Enolase	-3.2	-2.4
10	РК	-23.0	-13.9

^aCalculated from data in Newsholme, E.A. and Start, C., *Regulation in Metabolism,* p. 97, Wiley (1973).

© 2008 John Wiley & Sons, Inc. All rights reserved.

Free energy changes in glycolysis

Hexokinase (muscle)

Conformational change in hexokinase upon substrate binding

(b)

Phosphoglucoisomerase (PGI)

Aldose - 2-ketose isomerization in solution: A base-catalyzed reaction (Lobry deBruyn- Alberta van Ekenstein reaction)

A chemical pathway for the interconversion of an aldose with its 2-ketose

PGI mechanism

Phosphofructokinase (PFK)

Aldolase

General mechanism of base-catalyzed aldol cleavage

Proposed aldolase mechanism

Triose-phosphate isomerase (TPI)

Transition-state analogs of TPI

TPI complexed with 2-phosphoglycolate

Proposed enzymatic mechanism of the TPI reaction

The spontaneous decomposition of the enediol intermediate in the TIM reaction to form methylglyoxal through the elimination of a phosphate group

The spontaneous decomposition of the enediol intermediate in the TIM reaction to form methylglyoxal through the elimination of a phosphate group

First half of glycolysis: ATP investment phase

Glyceraldehyde 3-P dehydrogenase

Characterizing the G3P dehydrogenase reaction

Proposed mechanism of G3P dehydrogenase

3-Phosphoglycerate kinase

First substrate-level phosphorylation reaction of glycolysis