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Chapter I

Definitions and Basic
Examples

We assume the reader is familiar with basic definitions, notations, and results
from model theory.

Definition I.1. The basic definitions of pseudofiniteness are as follows:

• An L-structure M is pseudofinite if for all L-sentences σ, M |= σ implies
that there is a finite M0 such that M0 |= σ. M is strictly pseudofinite if
M is pseudofinite and not finite.

• A consistent L-theory T is weakly pseudofinite if whenever T |= σ, then σ
is true in some finite structure (not necessarily a model of T ).

• T is strongly pseudofinite if whenever σ is consistent with T , there exists
a finite model M0 such that M0 |= σ.

For example, the empty theory is weakly pseudofinite but not strongly pseud-
ofinite.

Definition I.2. Fixing a language L, Tf is the common theory of all finite
L-structures. That is, σ ∈ Tf if and only if σ is true of every finite L-structure.

There are other, equivalent definitions of pseudofiniteness, as the following
result describes:

Proposition I.3. Fix a language L and an L-structure M . Then the following
are equivalent:

1. An L-structure M is pseudofinite.

2. M |= Tf

3. M is elementarily equivalent to an ultraproduct of finite L-structures.
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Proof. (1⇔ 2) M is fails to be pseudofinite iff there is σ such that M |= σ,
with σ not true in any finite structure. That is, M |= σ with ¬σ ∈ Tf .
That is, M 6|= Tf .

(3⇒ 2) It is sufficient to show that any ultraproduct of finite structures models
Tf .  Los’ Theorem provides this result, since each of the finite structures
in such an ultraproduct model Tf .

(2⇒ 3) Let T be a complete theory extending Tf . It is sufficient to build a
model of T as an ultraproduct of finite structures. The following argument
is essentially the ultraproduct proof of the compactness theorem, modified
to use only finite structures. This modification is possible exactly because
T extends Tf .

Consider the boolean algebra B of L-sentences under equvalence modulo
Tf . Since T extends Tf , we can interpret T as an ultrafilter of B. Addi-
tionally, let S be the set of finite L-structures, and P(S) be the boolean
algebra of subsets of S.

Define g : B → P(S) to be the map sending a sentence to the set of
structures in S modeling it. The map g is well defined and injective
because two formulas are equivalent module Tf iff they are true on the
same set of finite structures. The map g is trivially a boolean algebra
homomorphism.

By general facts about boolean algebra, since T is a proper filter of B and
g is an injective homomorphism, g(T ) is a proper filter of P(S). Take U
an ultrafilter extending g(T ), and let M be the ultraproduct of S along
U . We obtain M |= T , as desired, by  Los’ Theorem.

Exercise I.4. Recall that an L-theory T is weakly pseudofinite if every sentence
σ in T is true in some finite model. Prove the following:

1. Show that T is weakly pseudofinite iff T ∪Tf has some pseudofinite model.

2. Show T is strongly pseudofinite iff T |= Tf , which is true if and only if
every model of T is pseudofinite.

3. Show that, if T is complete, then T is weakly pseudofinite iff T is strongly
pseudofinite.

In light of the previous exercise, whenever T is a complete theory, we say T
is pseudofinite to mean either weakly or strongly pseudofinite.

Example I.5. 1. For a language L, the common theory of all L-structures
is weakly pseudofinite.

2. Let T0 be any L-theory. Let T0,f be the common first-order theory of all
finite models of T0. Then T0,f is strongly pseudofinite. Note that T0,f

may not be the weakest strongly pseudofinite theory extending T0.
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3. Fix a finite field F , and let T be the theory of F -vector spaces in the
language of additive groups. Then T is strongly pseudofinite.

Proof. Let T ′ be the theory of infinite models of T . It is sufficient to show
that T ′ is strongly pseudofinite. It is clear that T ′ is weakly pseudofinite,
since every finite conjunction of the natural axiomatization of T ′ has a
finite model. Furthermore, by an easy application of Vaught’s test, T ′ is
complete, and so consequently T ′ is strongly pseudofinite.

4. The theory T of Q-vector spaces in the language of groups with a function
symbol for scalar multiplication by each rational is complete and pseud-
ofinite.

Proof. Axiomatize T with the axioms for Abelian groups, together with a
sentence σ r

s
for each r

s ∈ Q, where σ r
s

asserts

(∀x)

s∑
i=1

(r
s

)
· x =

r∑
i=r

x.

As in the previous example, this is a complete axiomatization for T by
an easy application of Vaught’s test (this time for some uncountable car-
dinality). Likewise, T is weakly pseudofinite because we can satisfy any
finite conjunction of axioms by a finite model.

5. The theory of dense linear orders is not pseudofinite.

6. The theory ACF of algebraically closed fields is not weakly pseudofinite.

Proof. Consider that, in an algebraically closed field of characteristic other
than 2, the map sending x to x2 is surjective but not injective. If the
characteristic is 2, then the map sending x to x3 has this property. Let σ
be the sentence asserting “I am a field, and either the square map or the
cube map is surjective but not injective.” We have seen that ACF |= σ.
However, σ has no finite model, since a function from a finite set to itself
is injective iff it is surjective.

Next, we describe the key construction used in the study of pseudofinite
theories. The general idea is that, in finite theories, it is possible to measure the
size of sets as natural numbers. These counting measures transfer to arbitrary
pseudofinite models via the following constructions.

Definition I.6. Let R be the real numbers, together with both their usual
algebraic structure and a predicate for the natural numbers. Take R∗ to be
a sufficiently saturated elementary extension of R. Let N and N ∗ denote the
(definable) set of natural numbers in R and R∗, respectively. We call elements
of R∗ \ R nonstandard numbers.
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Note that, while N ∗ is not necessarily well-ordered, every definable subset
(with parameters) has a least element. More generally, any fact about the
natural numbers (or real numbers) that we can state in a first order way holds
of N ∗ and R∗ as well. We will call this ad hoc principle the transfer principle
and use it frequently.

Definition I.7. Let Fin(R∗) be the set of finite nonstandard reals, that is,
those x ∈ R∗ such that |x| < n for some standard natural number n. Note that
Fin(R∗) is not definable, or even type definable, even with parameters.

For finite reals, we have the following fact:

Fact I.8. There is a standard part map st : Fin(R∗) → R where st(a) is the
unique standard real such that | st(a)− a| < 1

n for all standard n ∈ N .
The standard part map behaves nicely with respect to orderings, algebra, etc.

We leave the details of its behavior as an exercise for the reader.

We now describe the details of how to measure sizes of sets in pseudofi-
nite structures. What follows are two equivalent constructions. The first uses
ultraproducts, and the second uses compactness directly.

Construction I.9. Let L be a language with home sort M . Let T be a complete
pseudofinite L-theory. Let L′ be L expanded with the following:

• an additional sortR∗ for real numbers, together with their algebraic struc-
ture and predicate for the natural numbers;

• for each n ∈ ω, an additional “powerset” sort P∗(Mn), together with
appropriate “∈” symbols; and

• for each n ∈ ω, a “cardinality” function symbol from P∗(Mn) to R∗.

Since T is pseudofinite, take an L-structure M |= T , with

M =
∏
U
Mi,

where the Mi are finite L-structures. It is clear that each of the finite Mi

expands canonically to an L′-structure M ′i : the new sorts are the standard reals
and standard powersets, and the cardinality symbols measure standard finite
cardinalities.

Define
M ′ =

∏
U
M ′i

an expansion of M to an L′-structure.
Note that the theory of M ′ does not depend only on T . In general, the theory

of M ′ might depend on which collecion of Mi and which ultrafilter we choose.
Let T ′ be the (possibly incomplete) L′-theory consisting of the L′-sentences true
in every possible M ′.
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Note that, while T ′ in Construction I.9 is possibly incomplete, it contains
enough information (by  Los’ theorem) to argue via the transfer principle about
how counting and subsets work in finite structures. The following, equivalent
construction makes this fact explicit.

Construction I.10. L, and L′ be as in Construction I.9. As in Construc-
tion I.9, observe that every finite L-structure expands canonically to an L′-
structure. Recalling that Tf is the common L-theory of finite L-structures,
define T ′f to be the common L′-theory of all such canonically expanded finite
L-structures. It is immediate that this expansion is conservative in that, for
every L-sentence σ, T ′f |= σ iff Tf |= σ.

Let T be a strongly pseudofinite (possibly incomplete) L-theory. Take T ′ to
be the L′-consequences of T ∪ T ′f .

We show that that T ′ is consistent. If otherwise, compactness yields σ ∈ T
inconsistent with T ′f , i.e. T ′f |= ¬σ. However, ¬σ is an L-sentence, so Tf |= ¬σ.
This conclusion contradicts even the weak psueofiniteness of T , which asserts
that T (and therefore σ) is consistent with Tf .

Furthermore, we show that the expansion from T to T ′ is conservative in the
same sense as the expansion from Tf to T ′f . It is sufficient to show that every
L-sentence in T ′ is additionally in T . Let σ be such an L-sentence. Since σ ∈ T ′,
compactness yields that σ is a consequence of some τ ∈ T together with T ′f .
Rephrasing, T ′f |= τ → σ. Since τ → σ is an L-sentence, we know Tf |= τ → σ.
Recall that strong psueofiniteness of T asserts that T |= Tf . Therefore, since
τ ∈ T , σ ∈ T .

We conceptualize Tf as containing all the first order principles that come
from a structure’s finiteness (e.g., all definable surjections from a set to itself are
bijective). In Construction I.10, T ′f expands these principles to those involving
counting and subsets. Naturally, for infinite models, this counting takes place
in R∗ rather than R.

Exercise I.11. Use Construction I.10 to show that any saturated L-structure
expands (not necessarily canonically) to an L′-structure.

From now on, whenever we have a pseudofinite structure or strongly pseud-
ofinite theory, we will implicitly use symbols from L′ and reason using the
transfer principle (i.e., using sentences in T ′f ). If our conclusion is a sentence in
L, then that sentence holds via Construction I.10. We will use L to denote the
original language, and L′ to denote the expanded language.

Exercise I.12. Let M be a pseudofinite structure. Then a subset of Mn is
definable in L′ with parameters iff it corresponds to some set in P∗(Mn). Call
these the internal subsets.

In addition to assigning nonstandard natural cardinalities to definable sets,
we can define a real-valued measures on these sets.

Definition I.13. Let X ⊆ Mn be definable without parameters. For any
internal Y ⊆ X, define µX(Y ) by

µX(Y ) = st

(
|Y |
|X|

)
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Exercise I.14. Let M be a saturated, pseudofinite model, and let X ⊆ Mn be
L-definable without parameters. Show that µX is a finitely additive probability
measure on the boolean algebra of internal subsets of X.

Exercise I.15. Let G be a definable group in a strongly pseudofinite theory.
Show that µG(−) is both left and right invariant (i.e., for all definable Y ⊆ G,
g ∈ G, we have µG(Y ) = µG(g · Y ) = µG(Y · g)).

Hint: make an argument for finite groups and use the transfer principle.

The following lemma asserts that the measure of a definable set depends
only on the L′-type of the parameter used in its definition.

Lemma I.16. Let M be a saturated pseudofinite structure, let X ⊆ Mn be
L-definable without parameters, let b̄0 and b̄1 have the same L′-type p over ∅,
and let Y0 and Y1 be subsets of X defined by ϕ(ȳ, b̄0) and ϕ(ȳ, b̄1), respectively.
Then |Y0| = |Y1|.

Proof. Note that, for any rational r in the unit interval, |Y0|
|X| > r iff |Y1|

|X| > r, as

decided by p. Take s to be the supremum of all the r such that those claims
hold. It is clear that µX(Y0) = µX(Y1) = s.

Remark I.17. More generally, for any ϕ and any closed I ⊆ [0, 1],

{b̄ ∈Mm | µX(ϕ(x̄, b̄)) ∈ I}

is type-definabe by L′-sentences over ∅.
Recall the following basic definition from stability theory.

Definition I.18. Let M be any saturated structure, A ⊆ M be small, and
ϕ(x̄, b̄) be a formula of L with parameters b̄. We say that ϕ(x̄, b̄) does not divide
over A if, for any infinite sequence b̄ = b̄0, b̄1, b̄2, ... that is indiscernible over
A, {ϕ(x̄, b̄i)|i = 0, 1, ...} is consistent with Th(M,a)a∈A, i.e., for all k ∈ ω,

M |= ∃x̄(
∧k
i=1 ϕ(x̄, b̄i)).

Recall that a sequence of k-tuples b̄0, b̄1, b̄2, ... is indiscernible over A iff, for
all i0 < i1, ... < in < ω and for all j1 < j2 < ... < jk < ω, tp(b̄i0 , ..., b̄in/A) =
tp(b̄j0 , ..., b̄jn/A). E.g.: suppose that ā1, ā2, ..., ān is a sequence of n-tuples in
M and that there is a set Σ(x̄1, ..., x̄k) of formulas of L such that, for all i1 <
... < ik, M |= Σk(ā1, ..., āk). So, by Ramsey’s theorem and Compactness,
for all k, there is an indiscernible sequence b̄1, ..., b̄k of tuples of M such that
M |= Σk(b̄1, ..., b̄k). [For a proof of this statement see Pillay, Lecture notes .
Model Theory, Proposition 5.11, pp. 52-53.]

Lemma I.19. Let M be a pseudofinite and saturated structure. Let X ⊆ Mn

be ∅-definable. For some b̄ ∈Mm, let ϕ(x̄, b̄) define in L a subset of X. Suppose
µX(ϕ(x̄, b̄)(M)) > 0. Then ϕ(x̄, b̄) does not divide over ∅ in the sense of L′.

Proof. Let b̄ = b̄0 and let the sequence {b̄i}i∈ω be indiscernible over ∅ in the
sense of L′. We have to show that∧

i∈ω
ϕ(x̄, b̄i
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is nonempty as a subset of M . It is sufficient to show that, for all n,

µX

(∧
i<n

ϕ(x̄, b̄i)

)
> 0.

Suppose otherwise, and take n least such that

µX

(∧
i<n

ϕ(x̄, b̄i)

)
= 0.

By assumption, since µX(ϕ(x̄, b̄ > 0, n > 1. We therefore have

µX

( ∧
i<n−1

ϕ(x̄, b̄i

)
= a > 0.

Define
Yk =

∧
(n−1)k≤i<(n−1)(k+1)

ϕ(x̄, b̄i),

and observe that, by indiscernibility and Lemma I.16, the various Yk each have
measure a > 0 and are measure disjoint. This observation contradicts the finite
additivity of µX .

We finish this chapter with a few more examples of pseudofinite structures.

Example I.20. let L be a language with two sorts P and Q and one binary
relation ∈ between P and Q. Let K be the class of L-structures of the form
(X,P(X),∈) where X is a finite set. Let TK = Th(K) and let M be a saturated
model of TK. M is pseudofinite. Furthermore, note that if Y ⊆ P is definable
with parameters in M , then there is some a ∈ Q such that Y = {y ∈ P : M |=
y ∈ a}.

Exercise I.21. Show that the theory of the random graph is pseudofinite. Hint:
axiomatize the theory of random graph and use a probabilistic argument to
show that, for any finite collection of axioms, there is a sufficiently large finite
graph realizing those axioms (without explicitly constructing such a graph).
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Chapter II

Graph Regularity Lemmas

In this section, we give some background on the classical Szemeredi Regular-
ity Lemma, and prove a non-standard version by pseudofinite methods which
implies the classical version.

Definition II.1. Let G = (V,E) be a finite graph. The density of G is

d(G) =
|E|
|V |2

.

For A,B ⊆ V , we say that

d(A,B) =
|(A×B) ∩ E|
|A||B|

.

We are going to study regularity of a graph G = (V,E). Roughly speaking,
regularity of (V,E) means: for all A,B ⊆ V , d(G) ∼ d(A,B)(where ∼ means:
approximately equal).

Definition II.2. Let ε > 0. A graph (V,E) ε-regular if, for all A,B ⊆ V such
that |A|, |B| ≥ ε|V |, |d(A,B)− d(G)| < ε.

Proposition II.3 (Szemeredi Regularity Lemma). Fix ε > 0. There is N(ε) ∈
N such that, for all finite graphs G = (V,E), for some N ≤ N(ε), there is a
partition of the vertex set V = V1 t ...t VN such that, for all (i, j) ∈ {1, ..., N}2
(except at most εN2 such pairs) and, for all A ⊆ Vi, B ⊆ Vj such that |A| ≥
ε|Vi|, |B| ≥ ε|Vj |, |d(A,B)− d(Vi, Vj)| ≤ ε. Moreover, we can take our partition
such that, for all i, j, ||Vi| − |Vj || ≤ 1

For A,B ⊆ V , we define E(A,B) := |{(a, b) ∈ A×B : E(a, b)}|.

Proposition II.4 (Weak variant of II.3). For all ε, there is an N(ε) such that,
for all finite G = (V,E), for some N ≤ N(ε), there is a partition V = V1t...tVM
and there is S ⊂ {(i, j) : 1 ≤ i, j ≤ N} such that, for all (i, j) 6∈ S, for some
dij ∈ R≥0, |E(A,B)− dij |A||B|| ≤ ε|Vi||Vj | where

∑
(i,j)∈S |Vi||Vj | ≤ ε|V 2|.
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Exercise II.5. Prove Proposition II.4 from Proposition II.3.

Proposition II.6 (Non-Standard Version of II.4). For any pseudofinite graph G
and any standard ε > 0, there is a partition of the vertex set V into finitely many
internal sets V = V1t . . .tVN . Furthermore, there is S ⊆ {(i, j) : 1 ≤ i, j ≤ N}
with

∑
(i,j)∈S |Vi||Vj | < ε|V |2 and, for all (i, j) 6∈ S, there is a standard dij ≥ 0

such that, for all internal A ⊆ Vi and B ⊆ Vj,

|E(A,B)− dij |A||B|| ≤ ε |Vi| |Vj | .

We prove Proposition II.6 later in these notes (II).

Lemma II.7. Proposition II.6 implies Proposition II.4.

Proof. Suppose that II.4 fails. So, there is a standard rational ε > 0 such that
no N works. Take such an ε, and, for each number N , take GN witnessing the
failure N , and note that this failure is expressible as an L′- sentence. Take G
to be a nonprinciple ultraproduct of the GN graphs, and observe that G and ε
witness the failure of Proposition II.6.

The goal now is to give a proof of II.6. The proof will go via integration
and measure theory. We will extend the finitely additive measures µX described
above to actual σ-additive probability measures:

Proposition II.8. Let M be a κ-saturated model, for κ a sufficiently large
cardinal. Let B0 be the boolean algebra of definable (with parameters) subsets of
M , and let B be the sigma algebra generated by B0. Let µ be a Kiesler measure
on M , i.e. a finitely additive probability measure defined on B0. Then µ extends
uniquely to a σ-additive probability measure defined on B.

We will give two proofs of this statement. The first, which follows now,
is a straightforward application of the Carathéodory Extension Theorem. The
second relies on type spaces and gives a bit more information.

Proof 1 of Proposition II.8. The Carathéodory Extension Theorem says that,
whenever µ is a σ-additive measure defined on a boolean algebra B0, µ extends
to the σ-algebra generated by B0. Furthermore, if µ is σ-finite, this extension
is unique. We therefore need only check that µ is already σ-additive. (As a
probability measure, µ is automatically σ-finite.)

Let X be defined by ϕ(x), with parameters, and let

X =
⊔
i<ω

Xi,

where each Xi is defined with parameters by ϕi(x). We want to show that

µ(X) =
∑
i<ω

µ(Xi).
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First, observe that

ϕ(x)→
∨
i<ω

ϕi(x);

if it were otherwise, saturation of M would yield a point in X \
⋃
Xi. Next,

compactness yields an n < ω such that

ϕ(x)→
∨
i<n

ϕi(x),

so in particular

X =
⋃
i<n

Xi

and, for i ≥ n, Xi is empty. The desired conclusion then follows from the finite
additivity of µ.

Here are some unrelated exercises for you, dear reader.

Exercise II.9. Let L be a countable language and let M be a countable and
ℵ0-categorical L-structure. M (or Th(M) is said to be smoothly approximable
if there is an ascending chain of finite substructures A0 ⊆ A1 ⊆ . . .M such that:

1.
⋃
i∈ω Ai =M and,

2. for every i, and for every ā, b̄ ∈ Ai if tpM(ā) = tpM(b̄), then there is an
automorphism σ of M such that σ(ā) = b̄ and σ(Ai) = Ai.

Show that if M is smoothly approximable, then M is pseudofinite.

Exercise II.10. In Exercise I.21, you showed that the random graph is pseud-
ofinite. Show that the random graph is not smoothly approximable.

Our aim here is to give a second proof of II.8 which provides more information
than the first. For a more detailed exposition see Simon’s notes on NIP theories
[8]. We begin with some background on type spaces.

Let M be a saturated model (i.e., M is κ-saturated where κ = |M |), and
let M0 ≺ M be an elementary substructure of M0 of size less than κ. The
subsets of M definable with parameters from M0 form a Boolean algebra which
we call BM0 . It is easy to see that BM0 is isomorphic to the Boolean algebra of
formulas ϕ(x) with parameters in M0 up to equivalence modulo Th(M,a)a∈M0 ,
so we may identify these two freely in the discussion that follows.

Suppose we are given a Keisler measure µ on BM0
. Instead of working with

subsets of M , it will be useful at first to reinterpret µ as a finitely additive
probability measure on the collection of clopen subsets of the topological space
S1(M0) of complete 1-types over M0, and extend this reinterpretation of µ to a
full Borel probability measure on S1(M0). These ideas are justified below.
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We define the topology on S1(M0) by declaring that X ⊆ S1(M0) is closed
if there is a set Σ(x) of LM0 formulas such that X = {p(x)|Σ(x) ⊆ p(x)}. Given
a set Σ(x) of LM0

formulas, by [Σ(x)] we mean the set

{p(x) ∈ S1(M0)|Σ ⊆ p}.

Note. O ⊆ S1(M0) is open iff there is some collection Σ of LM0-formulas with
O =

⋃
ϕ∈Σ

[ϕ]

Proof. Clear from the definition of the topology on S1(M0).

Exercise II.11. S1(M0) is a compact, Hausdorff, totally disconnected space.

Proposition II.12. BM0 is isomorphic to the Boolean algebra B of clopen sub-
sets of S1(M0).

Proof. We claim that the map ϕ(M) 7→ [ϕ(x)] is the desired isomorphism. Given
subsets ϕ1(M) and ϕ2(M) of M defined by LM0

-formulas ϕ1, ϕ2, respectively, to
show that the map is well-defined and preserves the Boolean algebra structure, it
suffices to prove that ϕ1(M) ⊆ ϕ2(M)⇔ [ϕ1(x)] ⊆ [ϕ2(x)]. Suppose ϕ1(M) ⊆
ϕ2(M). If p(x) ∈ [ϕ1(x)], then (by saturation) p(x) = tpM (a/M0) for some
a ∈ M , and M |= ϕ1(a) ⇒ a ∈ ϕ1(M) ⊆ ϕ2(M) ⇒ M |= ϕ2(a) ⇒ p =
tpM (a/M0) ∈ [ϕ2(x)]. To prove that the map is injective, note that if [ϕ1(x)] =
[ϕ2(x)], then a ∈ ϕ1(M) ⇔ ϕ1(x) ∈ tpM (a/M0) ⇔ ϕ2(x) ∈ tpM (a/M0) ⇔ a ∈
ϕ2(M). Finally, surjectivity is clear.

Proposition II.12 is what allows us to work for the moment with S1(M0)
instead of with M , reinterpreting the given Keisler measure µ on BM0

as a
finitely additive probability measure defined on the Boolean algebra B of clopen
subsets of S1(M0). So for example, we interpret µ([x = x]) = µ(M0) = 1, and
in general, µ([ϕ(x̄)]) = µ(ϕ(M0)).

Proposition II.13. µ entends to a regular Borel probability measure on S1(M0).

Recall that a Borel probability measure µ on a compact space X is regular
if for any Borel set B ⊆ X and ε > 0 there is a closed set C ⊂ B and an open
set U ⊃ B with µ(U)− µ(C) < ε.

Remark II.14. A regular Borel probability measure µ on S1(M0) is uniquely
determined by its restriction to the clopen subsets of S1(M0). To see why,
suppose C ⊆ S1(M0) is closed. By regularity, µ(C) = inf{µ(O)|O ⊃ C open}.
But given any open set O ⊃ C, since O is a union

⋃
Di of clopen sets, and

C is compact, there is a clopen set D such that C ⊂ D ⊂ O. Thus µ(C) =
inf{µ(D)|D ⊃ C is clopen} is determined by the measures of clopens. Now
suppose X is any Borel subset of S1(M0). Again, by regularity of µ, we have
µ(X) = sup{µ(C)|C ⊂ X is closed}. Thus µ(X) is determined by the measures
of the closed subsets of X, which in turn are determined by measures of clopens.
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This type of uniqueness is not exactly what we will need in the end. Note
that the σ-algebra σB generated by the clopens in S1(M0) may be a proper sub

σ-algebra of the Borel σ-algebra σB̃ (there could be open sets in S1(M0) not
given by any countable collection of formulas). Further, while the probability

measure we will define on σB̃ is the unique regular extension of µ to the Borels,
it need not be unique among all (possibly non regular) probability measures

extending µ to σB̃. However, none of these concerns is a problem when we
restrict our attention to σB.

Corollary II.15. There is a unique extension of µ to a (σ-additive) probability
measure on the σ-algebra σB generated by the clopen subsets of S1(M0).

Proof. II.13 gives the existence of an extension µ : σB → [0, 1]. For uniqueness,
it is enough to show that this (and every other extension) coincides with the
outer measure generated by µ. But this is a standard argument that can be
found in any elementary real analysis textbook.

Definition II.16. For any subset X of S1(M0), we say X satisfies the regularity
property with respect to µ if

sup{µ(F )|F ⊂ X closed} = inf{µ(O)|X ⊂ O open}

and we define µ(X) to be sup{µ(F )|F ⊂ X closed}.

Note that, since S1(M0) is compact (and hence, every closed subset is com-
pact), saying that µ extends to a measure satisfying the regularity property
for every Borel subset is equivalent to saying that µ extends to a regular Borel
measure on S1(M0).

Proof of II.13. The goal is to extend the measure µ so that the regularity prop-
erty with respect to µ holds for all Borel subsets of S1(M0) i.e. to extend µ to
a regular Borel measure on S1(M0).

For O ⊂ S1(M0) open, define

µ(O) := sup{µ(D)|D ⊂ O clopen},

and for C ⊂ S1(M0) closed, let

µ(C) := inf{µ(D)|D ⊃ C clopen}.

We claim that for any closed (and similarly, open) X ⊂ S1(M0), X satisfies
the regularity property with respect to µ. Suppose X is closed. Then

inf{µ(O)|X ⊂ O open} = inf{µ(D)|X ⊂ D clopen} (Since X is compact)

= µ(X)

= sup{µ(F )|F ⊂ X closed}

and similarly for X open.
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For arbitrary subsets X ⊆ S1(M0), if X satisfies regularity with respect to
µ, we define

µ(X) := sup{µ(F )|F ⊂ X closed} = inf{µ(O)|X ⊂ O open}.

Since µ is regular on open and closed subsets of S1(M0), to see that µ
extends to a regular measure on the Borel subsets, it suffices to show that the
collection of sets satisfying the regularity property is a σ-algebra and that µ
is countably additive of this σ-algebra. By definition, clopen sets satisfy the
regularity property with respect to µ, so we have µ(∅) = 0 and µ([x = x]) = 1.
Clearly if A ⊆ B are sets satisfying the regularity property with respect to µ,
then µ(A) ≤ µ(B), since any open O ⊂ A is also an open subset of B.

To see that the collection of sets satisfying regularity is closed under com-
plementation, suppose X satisfies the regularity property, then

inf{µ(O)|XC ⊂ O open} = inf{1− µ(F )|F ⊂ X closed}
= 1− sup{µ(F )|F ⊂ X closed}
= 1− inf{µ(O)|X ⊂ O open}
= sup{1− µ(O)|X ⊂ O open}
= sup{µ(F )|F ⊂ XC closed}.

and hence Xc satisfies the regularity property.
For countable union, we first prove a small claim: suppose that if X1, . . . , Xn

are pairwise disjoint sets satisfying the regularity property with respect to µ,
then X := X1 t . . . t Xn also satisfies the regularity property and µ(X) =∑
i µ(Xi). Clearly it suffices to prove the claim for n = 2 and proceed by induc-

tion. To show this, we first show two special cases:

1. If Xi = Fi are closed and X = F = F1 t F2, then F is closed (and
hence satisfies regularity) and it is clear from the definition that µ(F ) ≤
µ(F1) + µ(F2). For the reverse inequality, fix ε > 0 and let D ⊇ F be
a clopen set such that µ(D) − µ(F ) < ε. Further, choose D1 ⊇ F1, and
D2 ⊇ F2 such that µ(Di)−µ(Fi) < ε for i = 1, 2. Let D′i := Di∩D. Then

µ(F1) + µ(F2) ≤ µ(D′1) + µ(D′2)

= µ(D ∩ (D1 tD2)) (since µ is finitely additive for clopen sets)

≤ µ(D)

< µ(F ) + ε.

2. If Xi = Oi are open and X = O = O1 tO2, then, again, O is open and so
satisfies regularity, and the inequality µ(O) ≥ µ(O1) +µ(O2) is clear from
the definition of µ on open sets. For the reverse, fix ε > 0 and a clopen
set D ⊆ O satisfying µ(O)− µ(D) < ε. Then

D ⊆ O1 tO2 =

(⋃
i∈I

[ϕi]

)
t

⋃
j∈J

[ψj ]


15



for some collections {ϕi}i∈I and {ψj}j∈J of formulas. Since D is compact,
we can find clopen sets

D1 =

 ∨
1≤k≤n

ϕik

 ⊂ O1 and D2 =

 ∨
1≤k≤m

ψjk

 ⊂ O2

where D ⊆ D1 tD2. Then

µ(O) < µ(D) + ε

≤ µ(D1 tD2) + ε

= µ(D1) + µ(D2) + ε

≤ µ(O1) + µ(O2) + ε.

Now for general X1, X2 satisfying the regularity property, fix ε > 0, and
for i = 1, 2, choose closed sets Fi and open sets Oi with Fi ⊂ Xi ⊂ Oi so that
µ(Oi) − µ(Fi) < ε. Then F := F1 t F2 and O := O1 ∪ O2 satisfy F ⊂ X ⊂ O,
and

µ(O)− µ(F ) ≤ µ(O1) + µ(O2)− (µ(F1) + µ(F2)

= µ(O1)− µ(F1) + µ(O2)− µ(F2)

< 2ε

and hence X satisfies regularity. The inequality µ(X) ≥ µ(X1) + µ(X2) follows
in a straightforward manner from the definition of µ.
For the reverse inequality, fix ε > 0. Let Oi ⊃ Xi with µ(Oi)−µ(Xi) < ε. Then

µ(X) ≤ µ(O1 ∪O2)

≤ µ(O1) + µ(O2)

≤ µ(X1) + µ(X2) + 2ε.

This proves the claim. Observe that the claim gives us finite subadditivity (an
easy exercise in measure theory).

Now suppose X = ∪i∈ωXi and the regularity property holds for all Xi. Fix
ε > 0. Since each Xi satisfies the regularity property we may choose, for each i,
sets Fi ⊂ Xi ⊂ Oi, with Fi closed and Oi open, such that µ(Oi) − µ(Fi) <

ε
2i .

Let O :=
⋃
i∈ω

Oi. Since O is open,

µ(O) = sup

{
µ(K) : K clopen, (∃n ∈ ω)K ⊆

n⋃
i=0

Oi

}

and so there is some N ∈ ω such that for Õ := ∪i≤NOi we have

µ(O)− µ(Õ) ≤ µ(O)− µ(D) < ε.
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Let F := ∪i≤NFi. Then F ⊂ X ⊂ O, and

µ(O)− µ(F ) = µ(O)− µ(Õ) + µ(Õ)− µ(F )

< ε+ µ(Õ \ F ).

Observe now that, by the previous claim,

µ(Õ) = µ(Õ \ F t F )

= µ(Õ \ F ) + µ(F )

since Õ \ F is open and so satisfies regularity and similarly for F since F is
closed. Therefore µ(Õ \ F ) = µ(Õ)− µ(F ). Now, we have

µ(O)− µ(F ) < ε+ µ(Õ \ F )

= ε+ µ(Õ)− µ(F )

= ε+ µ(
⋃
i≤N

Oi)− µ(
⋃
i≤N

Fi).

By finite subadditivity for sets satisfying regularity,

µ(O)− µ(F ) ≤ ε+
∑
i≤N

µ(Oi)−
∑
i≤N

µ(Fi)

= ε+
∑
i≤N

µ(Oi)− µ(F )

< ε+
∑
i≤N

ε

2i

< 3ε.

Since ε was arbitrary, sup{µ(F ) : F ⊂ X closed} = inf{µ(O) : X ⊂ O open}
and hence X satisfies regularity with respect to µ, as required. Thus, we have
showed that the sets satisfying the regularity property form a σ-algebra contains
the σ-algebra of Borel sets.

Finally, we show that µ is indeed additive on sets satisfying the regularity
property, and so is a regular Borel probability measure on S1(M0). Let X =⊔
i∈ω

Xi with each Xi satisfying the regularity property. Given n ∈ ω, let X̃n =⋃
i≤n

Xi. Then µ(X̃n) =
∑
i≤n

µ(Xi), and µ(X̃n) ≤ µ(X) since X̃n ⊆ X. Since the

sequence {µ(X̃n)}n∈ω is increasing and bounded above by µ(X), it follows that
the series

∑
i≤n

µ(Xi) converges to a value at most µ(X). To see that µ(X) ≤∑
i<ω

µ(Xi), fix ε > 0 and choose N ∈ ω large enough so that
∑
i>N

µ(Xi) < ε.

Then X = X̃N t (
⋃
i>N

Xi), so

µ(X) = µ(X̃N ) + µ(
⋃
i>N

Xi) < µ(X̃N ) + ε ≤
∑
i∈ω

µ(Xi) + ε.
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We have focused our attention on the type space S1(M0). We now need to
prove that the unique extension of µ to the σ-algebra σB generated by the clopen
subsets of S1(M0) can be interpreted as a well-defined (and unique) extension
of the original Keisler measure µ on BM0

to σBM0
. To achieve this, it is enough

to show that the σ-algebras σBM0
and σB are isomorphic, or that there is a

bijection between them preserving countable unions and complements.

Proposition II.17. Fix collections B, C of subsets of M and S1(M0), re-
spectively, such that for every x, y ∈ M , and every X ∈ B, if tpM (x/M0) =
tpM (y/M0), then x ∈ X ⇔ y ∈ X.
Suppose further that the map f : B → C given by f(x) = {tpM (a/M0)|a ∈ X}
is a well-defined bijection.
Then the map

f̃ : σB → σC
X 7→ {tpM (a/M0)|a ∈ X}

is an isomorphism of σ-algebras.

Proof. Let B =: B0, C =: C0, and f =: f0. Given Bα, Cα, and fα, first let

B(0)
α+1 =

{⋃
i<ω

Xi

∣∣∣∣{Xi}i∈ω ⊂ Bα

}
,

and

C(0)
α+1 =

{⋃
i<ω

Xi

∣∣∣∣{Xi}i∈ω ⊂ Cα

}
.

Then take

Bα+1 = B(0)
α+1 ∪ {Xc|X ∈ B(0)

α+1}, and

Cα+1 = C(0)
α+1 ∪ {Xc|X ∈ C(0)

α+1}.

Finally, define

fα+1 : Bα+1 → Cα+1 by

: X 7→ {tpM (a/M0)|a ∈ X}.

If α is a limit ordinal, then let

Bα =
⋃
γ<α

Bγ ,

Cα =
⋃
γ<α

Cγ , and

18



fα =
⋃
γ<α

fγ .

It is not difficult to show by induction on ordinals that for every α, we have the
following properties:

(I) Bα ⊆ σB, and Cα ⊆ σC;

(II) Given X ∈ Bα, and x, y ∈ M , with tpM (x/M0) = tpM (y/M0), then
x ∈ X iff y ∈ X;

(III) fα is a well-defined bijection;

(IV) Given Xi ∈ Bγi , with i ∈ ω, and γi < α for every i, we have

fα

(⋃
i<ω

Xi

)
=
⋃
i<ω

f(Xi);

(V) Given X ∈ Bγ with γ < α, we have fα(Xc) = (fα(X))
c
.

Certainly by stage α = ω1 we have an isomorphism of σ-algebras. For instance,
given

{Xi}i<ω ⊂ Bω1
,

fix for each i some γi < ω1 with Xi ∈ Bγi . Then α :=
⋃
i<ω γi is countable, so

α < ω1, and thus
⋃
i∈ω

Xi ∈ Bα+1 ⊂ Bω1
.

Finally, by property (I) from above, Bω1
⊂ σB and Cω1

⊂ σC. This concludes
the proof.

Corollary II.18. Let B be the collection of subsets of M defined over M0, and
C the collection of clopen subsets of S1(M0). Then σB and σC are isomorphic as
σ-algebras. In particular, the unique extension of µ : C → [0, 1] to a probability
measure on σC corresponds to a unique extension of µ : B → [0, 1] to a probability
measure on σB.

We now give a second proof of II.8, in which the Boolean algebra of definable
sets consists of sets definable with parameters from all of M , not just with
parameters from some small elementary substructure M0 ≺ M . First, we need
a lemma.

Lemma II.19. Given a Boolean algebra B of sets, any element of the σ-algebra
σB generated by B is contained in the σ-algebra generated by some countable
subalgebra B′ ⊂ B.

Proof. Construct σB in stages in the same way as in the previous proposition,
so that σB = Bω1

. Prove, by induction on α, that given X ∈ Bα, there exists a
countable sequence {Xi}i∈ω ⊂ B such that X is in the σ-algebra generated by
{Xi}i∈ω.
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Theorem II.8. Let M be a large saturated model, and µ a Keisler measure on
the Boolean algebra B of subsets of M definable with parameters from M . Then
µ extends uniquely to a σ-additive probability measure µ′ on the σ-algebra σB
generated by B.

Proof 2 of II.8. Fix X ∈ σB. Let M0 ≺M be a small elementary substructure
of M such that X ∈ σB0, where B0 is the Boolean algebra of subsets of M
definable with parameters from M0. (The previous lemma guarantees that such
an elementary substructure exists.) Let µ0 be the unique probability measure
extending µ|B0 to all of σB0. Define µ′(X) := µ0(X). We claim that µ′(X) does
not depend on the choice of M0: Fix small substructures M0 ≺M and M1 ≺M
with X ∈ σB0 ∩ σB1, where Bi is the Boolean algebra of sets definable over Mi.
Let M2 ≺ M be a small elementary substructure containing both M0 and M1,
and let B2 be the Boolean algebra of sets definable over M2. For i = 0, . . . , 2,
denote by µi : σBi → [0, 1] the unique extension of µ|Bi to all of σBi. Since
σBi ⊂ σB2 for i = 0, 1, we have µ0(X) = µ2(X) = µ1(X), and hence µ′ does
not depend on the choice of M0, as claimed.

Finally, to see that µ′ is indeed a probability measure on σB, note that
given any countable sequence {Xi}i∈ω ⊂ σB, there is some small elementary
substructure M0 ≺ M such that for every i, Xi ∈ σB0. This concludes the
proof of II.8.

Recall now the context in which we originally planned to use II.8. We had a
saturated pseudofinite graph M = (V,E) with all the additional properties de-
fined in Construction I.13 (I.9,I.10), and a Keisler measure µV on the definable
subsets of V . We use the extension given by II.8 and some measure theoretic
techniques to prove II.6 (the nonstandard version of Weak Szemeredi’s Theo-
rem). First, we present a brief review of integration on measure spaces.

Definition II.20. We consider a probability measure space {Ω,B, µ}, where
Ω is a set, B is a σ-algebra of subsets of Ω, and µ : B → [0, 1] is a probability
measure. Fix a function f : Ω→ R≥0.

1. f is µ-measurable if the pre image f−1(B) of every Borel set B ⊂ R≥0 is
an element of B.

2. f is simple if it is µ-measurable and its range is finite, i.e Range(f) =
{a1, . . . , an}.

3. If f satisfies (II), then we define
∫
Ω

f dµ :=
n∑
i=1

ai µ(Ei), where Ei =

f−1({ai}).

4. For f as in (II), if E ∈ B, we define
∫
E

f dµ :=
n∑
i=1

ai µ(Ei ∩ E).

In general, we can show that for every measurable, nonnegative function f ,
there is a sequence {fi}i∈ω of simple functions such that f = sup

n
fn. We then

define
∫
Ω

f dµ := sup
n

∫
Ω

fn dµ, and
∫
E

f dµ := sup
n

∫
E

fn dµ, for any E ∈ B.
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Fact II.21 (Conditional Expectation). Consider a measure space {Ω,B, µ},
with µ σ-finite, and let A be a σ-subalgebra of B. Given a B-measurable function
f : Ω → R≥0, there is a unique (up to differences on sets of measure zero) A-
measurable function g : Ω → R≥0 with the property that

∫
E

g dµ =
∫
E

f dµ for

every E ∈ A. g is denoted by E(f |A).

Proof. This is an application of the Radon-Nikodym theorem.

Exercise II.22. Let {Ω,B, µ} be a measure space, and fix A, B ∈ B where
µ(B) 6= 0, 1. Then A = {∅, B,Bc,Ω} is a σ-subalgebra of B. Compute E(A|A),
where E(A|A) := E(χA|A).

We now restate and prove Proposition II.6:

Theorem II.6. Let G = (V,E) be a saturated pseudofinite graph (in the sense
of Example I.21). Fix ε > 0. Then there exists a standard natural number m,
and a partition V = V1 ∪ · · · ∪ Vm of V into m disjoint definable sets such that
for every pair (i, j) not in an exceptional set S of pairs satisfying∑

(i,j)∈S

|Vi||Vj | ≤ ε|V |2,

there exists a constant dij ∈ R≥0 such that for all definable subsets A ⊂ Vi and
B ⊂ Vj,

|E(A,B)− dij |A||B|| ≤ ε|Vi||Vj |.

Proof of II.6. Let BV be the σ-algebra generated by the definable subsets of V ,

and µV the unique extension of the Keisler measure given by X 7→ st
(
|X|
|V |

)
to

BV . Let BV×V denote the σ-algebra generated by definable subsets of V × V ,

and µV×V the unique extension of the Keisler measure given by X 7→ st
(
|X|
|V |2

)
to BV×V . Finally, let BV × BV be the σ-algebra generated by products A× B
where A ∈ BV and B ∈ BV , and µV × µV the measure µV×V |BV ×BV .
Note that in general, BV ×BV is a proper σ-subalgebra of BV×V , and in partic-
ular the edge relation E need not belong to BV × BV . Thus the function χE is
BV×V -measurable, (since E is a definable subset of V × V ), but not necessarily
BV × BV -measurable.
Let f := E(χE |BV × BV ). Then f is BV × BV -measurable, and by Fact II.21,
for A,B ⊂ V definable,∫
A×B

f dµV×V =

∫
A×B

χE dµV×V = µV×V (E ∩ (A×B)) = st

(
|E ∩ (A×B)|

|V |2

)
.

In fact, f has values in [0, 1], so ||f || =
∫
f . We work for the moment in BV ×BV .

Fix ε > 0. Recall that f can be approximated by a sequence of simple functions
{gi} and

∫
f can be approximated by the integrals of those functions {

∫
gi}.

Recall also the fact that sets in BV ×BV are approximated in µV ×µV -measure

21



from below by products A × B of definable subsets A,B of V , and so we can
partition V into definable sets V1∪ · · ·∪Vn and find constants dij ≥ 0 such that∑

ij

dijχVi×Vj
≤ f

and ∫
V×V

f −∑
ij

dijχVi×Vj

 dµV ×µV
< ε2.

Now f ≥ dij on Vi × Vj , hence

∑
ij

 ∫
Vi×Vj

(f − dij)

 < ε2. (∗)

We claim that ∫
Vi×Vj

(f − dij) dµV×V < ε · µV (Vi) · µV (Vj)

for all (i, j) outside of some exceptional set S such that∑
(i,j)∈S

µV (Vi)µV (Vj) < ε.

Indeed, let S =

{
(i, j)|

∫
Vi×Vj

(f − dij) ≥ εµ(Vi)µ(Vj)

}
. Suppose for a contra-

diction that ∑
(i,j)∈S

µV (Vi)µV (Vj) ≥ ε.

Then ∑
(i,j)∈S

∫
Vi×Vj

f − dij ≥ ε
∑

(i,j)∈S

µV (Vi)µV (Vj)

≥ ε · ε = ε2.

This contradicts (∗) from above. We now fix (i, j) /∈ S, and A ⊂ Vi, B ⊂ Vj
definable subsets of V . Then∫
A×B

f dµ
V×V
−
∫

A×B

dij dµV×V
=

∫
A×B

(f − dij) dµV×V
< ε µV (Vi) · µV (Vj),
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where

•
∫

A×B

f dµV×V =

∫
A×B

χE dµ
V×V

= µ
V×V

(E ∩ (A×B) = st

(
|E(A,B)|
|V |2

)
,

•
∫

A×B

dij dµV×V = dij · µV×V (A×B) = dij st

(
|A| · |B|
|V |2

)
,

• µV (Vi) = st

(
|Vi||
|V |

)
,

and

• µV (Vj) = st

(
|Vj |
|V |

)
.

Putting these together and applying the properties of the standard part map
yields:

st

(
|E(A,B)|
|V |2

)
− dij st

(
|A| · |B|
|V |2

)
< ε

(
st

(
|Vi|
|V |

)
st

(
|Vj |
|V |

))
and so

st

(∣∣∣∣ |E(A,B)|
|V |2

− dij
|A||B|
|V |2

∣∣∣∣) < st

(
ε · |Vi||Vj |

|V |2

)
,

which gives ∣∣∣∣ |E(A,B)|
|V |2

− dij
|A||B|
|V |2

∣∣∣∣ < ε · |Vi||Vj |
|V |2

⇔ |E(A,B)− dij |A||B|| < ε|Vi||Vj |.

as required.
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Chapter III

Algebraically Closed Fields

This chapter will serve as a preliminary for our study of pseudofinite fields. For
the most part, we will leave algebraic facts without proof, and refer the reader to
any standard text on algebra for the details. We will consider fields as structures
in the language of unitary rings Lring = {+, x,−, 0, 1}. A field K is said to be
algebraically closed if every non-constant polynomial P (x) ∈ K[x] has a solution
in K. We denote the theory of algebraically closed fields of characteristice p by
ACFp. By Kalg we mean the algebraic closure of an arbitrary field K. If F is
a subfield of K, we write F < K. It is convenient to recall the following facts
about algebraically closed fields and algebraic varieties:

Fact III.1. Let ACFp denote the theory of algebraically closed fields of char-
acteristic p. Then:

1. ACF has quantifier elimination;

2. the completions of ACF are precisely ACF0 and ACFp for p prime.

Note that, since the language of rings with unity has constant symbols, any
sentence σ of ACF is equivalent to a quantifer-free sentence τ where τ is Boolean
combination of sentences of the form t1 = t2, where ti are terms of the language
(i.e. polynomial combinations definable elements).

Corollary III.2. Any algebraically closed field K is strongly minimal. That is,
any definable (with parameters in K) subset of K is finite or cofinite and the
same holds for any elementary extension K1 of K.

Proof. Since ACF eliminates quantifiers, Th(K, a)a∈K does as well. Thus, any
quantifier-free formula ϕ(x) (in one variable) is logically equivalent to a Boolean
combination of terms of the form ‘P (x) = 0’, where P (x) is a polynomial over
K. Either P (x) is trivial, i.e the zero polynomial, or it is not. If P (x) is not
trivial, then P (x) is polynomial of non-zero finite degree, and thus, has finitely
many solutions. Therefore, the solution set for P (x) = 0 is either finite or is
everything in the field (and, clearly, the solution set of P (x) 6= 0 is either empty
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or cofinite). The class of finite or cofinite subsets of K is closed under finite
Boolean combinations, and so any definable subset of K is finite or cofinite.

Next, we give two different definitions of what it means for a field element to
be algebraic over a field. In one instance, we will mean algebraic in the sense of
classical field theory. In the other, we will mean algebraic in a model theoretic
sense. We will see later on that, under certain field theoretic assumptions, these
two notions agree. From here on, if it is not indicated which definition we
mean, the reader may assume that we are in a situation in which the definitions
coincide.

Definition III.3. 1. Let K < F be fields and let a ∈ K. Then a is field-
theoretically algebraic over K, denoted a ∈ Kalg, if there exists a non-
constant polynomial P (x) ∈ K[x] such that P (a) = 0.

2. Let M be a structure, A ⊂ M , ā a tuple from M . Then ā is model
theoretically algebraic over A in M , denoted ā ∈ aclM (A), if there is
ϕ(x̄) ∈ LA such that M |= ϕ(ā) ∧ ∃≤kx̄ ϕ(x̄) for some non-zero k ∈ ω.

Proposition III.4. Let K be an algebraically closed field. Let A ⊂ K. Let 〈A〉
be the subfield of K generated by A. That is, take B to be the ring generated
by A, then let 〈A〉 be Frac(B), the field of fractions of B. Then we have the
following:

1. Let b ∈ K. Then b ∈ aclK(A) if and only if b ∈ 〈A〉alg.

2. There is a unique complete type over A or 〈A〉 of an element b ∈ K or in
some elementary extension of K such that b 6∈ 〈A〉alg.

Proof. Without loss of generality, we will assume that A is a subring of K.

1. If b ∈ 〈A〉alg, then there is a polynomial P (x) ∈ K[x] such that P (b) = 0.
By clearing the denominators, P (x) becomes a polynomial with coefficients
in A, which can be viewed as a formula ϕ(x) ∈ LA. Since P (x) has finitely
solutions, ϕ(x) has finitely many solutions or realizations in K, and thus,
b ∈ aclK(A).

For the other direction, first note that {P (x) 6= 0 : P (x) ∈ A[x]} axioma-
tizes a complete type over A by quantifier elimination. Let b 6∈ 〈A〉alg, and
consider the complete type of b over A denoted by tpK(b/A). Then since
b 6∈ 〈A〉alg we have that ‘f(x) = 0’ is not in tpK(b/A) for any f(x) ∈ A[x].
Thus, by the above, {P (x) 6= 0 : P (x) ∈ A[x]} axiomatizes tpK(b/A).
By compactness, for ϕ(x) ∈ p(x) such that ϕ(x) is an LA formula, there
exists P1, . . . , Pr ∈ A[x] such that K |= ∀x(

∧r
i=1 Pi(x) 6= 0 → ϕ(x)). But∧r

i=1 Pi(x) 6= 0 has infinitely many solutions in K, which means ϕ(x) also
has infinitely many solutions, and so b 6∈ aclK(A).

2. If b ∈ K1 � K and b 6∈ 〈A〉alg < K then as we noted in 1., tpK(b/〈A〉) is
axiomatized by {P (x) 6= 0 : P (x) ∈ 〈A〉[x]}. We have that {P (x) 6= 0 :
P (x) ∈ A[x]} is consistent by compactness.
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Definition III.5. A field K is called perfect if either char(K) = 0 or, if
char(K) = p, then for all a ∈ K there is b ∈ K such that a = bp.

Remark III.6. Let K be a field of characteristic p. Then the map Fr : K → K
such that Fr(a) = ap is called the Frobenius map. We know that Fr is an
injective field endomorphism since the kernel of Fr is not the whole field (recall
that the only ideals of a field F are {0} and F ). To be perfect means that Fr is
also surjective.

Exercise III.7. Let K be a field.

1. If K is finite, then it is perfect.

2. Kalg is perfect.

3. Let K be algebraically closed, and let A ⊂ K. Then 〈A〉alg is the perfect
closure of the field generated by A, where the perfect closure is closed
under pth roots.

Fix an algebraically closed field K. We shall näıvely say that a subset
V ⊆ Kn is an algebraic variety (sometimes shortened to just variety) if there is
a finite set S ⊂ K[x1, . . . , xn] of polynomials such that for all x̄ ∈ V , f(x̄) = 0
for all f ∈ S. More specifically, this is the definition of the set of K-rational
points of an affine, possibly reducible, variety. An algebraic variety is also called
a Zariski closed or an algebraic subset of Kn.

Note that a variety is a special case of a definable set, i.e., a set definable
in (K,+, ·, 0, 1) possibly with parameters, since we have that ϕ(x̄) = P1(x̄) =
0 ∧ . . . ∧ Pr(x̄) = 0. Also, by quantifier elimination, any definable subset with
parameters in Kn is a finite Boolean combination of varieties.

Proposition III.8. 1. Any ideal I ⊂ K[x1, . . . , xn] is finitely generated.

2. Let K be algebraically closed. Then there exists a 1 − 1 correspondence
between algebraic varieties V ⊂ Kn and radical ideals I of K[x1, . . . , xn].

3. We have the descending chain condition (DCC) on algebraic varieties:
every descending chain of varieties is eventually constant.

Proof. 1. This is also known as the Hilbert Basis Theorem. See any algebra
textbook for a proof.

2. We give a 1 − 1 correspondence: let V ⊂ Kn and let I(V ) be the ideal
{f ∈ K[x] : f(v̄) = 0,∀v̄ ∈ V }. Given an ideal I ⊂ K[x], let V (I) =
{ā ∈ Kn : f(ā) = 0 ∀f ∈ I}. Since I is finitely generated, I is of the form
(f1, . . . , fr). Thus, V (I) = {ā ∈ K[x] : f1(ā) = 0, . . . , fn(ā) = 0}, and so
V (I) is a variety. Note that ∀V ⊆ Kn, I(V ) is actually a radical ideal,
since for fn(ā) = f(ā)n = 0 ⇒ f(ā) = 0. This gives the required 1 − 1
correspondence, and so for each V ⊂ Kn a variety, V (I(V )) = V and for
each radical ideal I we have I(V (I)) = I.
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3. The DCC means that there is no infinite chain of subvarieties of the form
V1 ) V2 ) . . .. Equivalently, the DCC means that if {Vj : j ∈ β} for
β an ordinal, is a collection of algebraic varieties in Kn, then

⋂
j Vj =

Vj1 ∩ . . .∩ Vjr for some j1 . . . , jr ∈ β, since the collection {∩i<jVi : j ∈ β}
forms a descending chain. Let {Vj : j ∈ β} be a collection of varieties,
and let Ij = I(Vj). Then

⋃
j∈β Ij is an ideal in K[x̄] so it is finitely

generated by some f1, . . . , fr. Therefore, we have that
⋂
j∈J Vj is defined

by f1, . . . , fr. That is,
⋂
j∈J Vj = {ā ∈ Kn : f1(ā) = . . . = fr(ā) = 0}.

The result follows.

Example III.9. The algebraic subvarieties of a field K are K, any finite subset
of K, and ∅. K is a subvariety because it is defined by the vanishing points of the
zero polynomial. Similarly, ∅ is a subvariety defined by any non-zero constant
polynomial. Otherwise, if I(V ) contains some polynomial p(x) of degree p ≥ 1,
then the solution set is finite and thus, V is finite. On the other hand, let
a1, . . . , an ∈ K. Then it is the solution set for p(x) = (x− a1) . . . (x− an).

Definition III.10. For n ∈ ω, we define the Zariski topology on Kn to be the
topology generated by taking algebraic varieties as closed sets.

Exercise III.11. The Zariski topology on Kn is Noetherian (i.e. satisfies the
descending chain condition on closed sets) and compact, but not Hausdorff.

Definition III.12. Let V ⊆ Kn. V is called irreducible if we cannot write
V = V1 ∪ V2, where V1, V2 are non-empty varieties properly contained in V .

Exercise III.13. Let V ⊆ Kn be a variety. Then:

1. V is irreducible if and only if I(V ) is prime.

2. Kn is irreducible for all n.

Proposition III.14. Any variety V ⊆ Kn can be written as a unique non-
redundant decomposition V = V1 ∪ . . . ∪ Vr where each Vi is an irreducible
variety and where Vi 6⊂ Vj (however, Vi ∩ Vj may be non-empty) for all i, j.

Proof. To show existence, if V is irreducible, then we are done. If not, then
V = V1 ∪ V2 with V1, V2 subvarieties of V . If V1 or V2 are reducible we can
decompose further. Without loss of generality suppose V1 is reducible, and this
process never stops. Then we have a an infinite descending chain of subvarieties
V ) W1 ) . . ., violating the descending chain condition. Thus, the process
must stop at some finite level.

To show uniqueness, suppose V admits of two non-redundant decompositions
V = V1 ∪ . . . Vn and V = W1 ∪ . . .∪Wm. Then Vi = (Vi ∩W1)∪ . . .∪ (Vi ∩Wm).
Since Vi is irreducible, Vi = Wj for some j. Thus, n ≤ m. We can repeat the
argument showing that m ≤ n. Thus, n = m. Since each Vi = Wj for some j,
we have that the two decompositions are identical (modulo order).
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Example III.15. 1. The variety in K2 defined by xy = 0 is reducible with
components x = 0 and y = 0, i.e. the y, x axes, respectively.

2. Suppose P (x, y) is a polynomial in two variables. Then the variety defined
by P (x, y) = 0 is irreducible if and only if P (x, y) is irreducible as a
polynomial.

Proposition III.16. Let V ⊆ Kn be irreducible. Then Σ(x̄) = {x ∈ V }∪ {x 6∈
W : W ( V where W is a variety} axiomatizes a complete type pV (x̄) over K,
which we call the generic type of V . Note: “x ∈ V ” just means ϕ(x) where ϕ
defines V .

Proof. We need to show two things:

1. ΣV (x̄) is consistent with Th(K, a)a∈K and

2. for any ϕ(x̄) over K, either Σv(x̄) |= ϕ(x̄) or ΣV (x̄) |= ¬ϕ(x̄) (complete-
ness).

To show 1., note that for all W1, . . . ,Wr ( V , the set defined by “x ∈ V ∧ x 6∈
W1 ∧ . . .∧x 6∈Wr” is realized in K. Otherwise, V = ∪ri=1Wi, which contradicts
the irreducibility of V . Thus, by compactness, ΣV (x̄) is consistent.

To show completeness, we know by quantifier elimination that any complete
type q(x̄) ∈ Sn(K) is determined by the open (closed) sets in q. We claim
that ΣV (x̄) already contains or implies all this information. Let V1 ⊆ Kn be
a variety. Case (i): V ⊆ V1. Then ΣV (x̄) ` x̄ ∈ V1. Case (ii): Otherwise
V ∩V1 ( V . Thus, ΣV (x̄) ` x̄ 6∈ V ∩V1. Since the formula “x ∈ V ” is in ΣV (x̄),
we have that ΣV (x̄) ` x 6∈ V1, as desired.

Remark III.17. The notion of generic type should remind the reader of the
notion of generic point in algebraic geometry. For an algebraic variety V , the
scheme associated to V is the collection of prime ideals of K[V ], denoted by
Spec(K[V ]) where K[V ] = K[x̄]/I(V ) is called the coordinate ring of V . Here,
the maximal ideals of K[V ] are called the closed points of Spec(K[V ]) and
correspond precisely to the points of V . We have a correspondence between the
prime ideals of K[V ], irreducible subvarities of V , and the types q(x̄) ∈ Sn(K)
extending x̄ ∈ V . Thus, what is called the generic point of Spec(K[x̄]) is what
we previously called pV (x̄).

Definition III.18. Let K be an algebraically closed field. Let F be subfield of
K. Let {ai : i ∈ I} ⊆ K. We call {ai : i ∈ I} algebraically independent over F
if ai 6∈ acl(F ∪ {aj : j 6= i}) for all i ∈ I.

Fact III.19. 1. Suppose {aα : α < κ} ⊆ K and αβ 6∈ acl(F ∪ {aα : α < β})
for all β < κ. Then {aα : α < κ} is algebraically independent over F .
This essentially follows from strong minimality.
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2. Let ā = (aα : α < λ) ⊆ K. By a basis of ā over F , we mean a maximal
algebraically independent subtuple of ā over F . If a0 is such a basis, then
a ⊆ acl(K, a0). Any two bases of a over F have the same cardinality. This
cardinality is called the transcendence degree, denoted by tr.deg(a/F ) or
tr.deg(F (a)/F ).

Definition III.20. Let K be an algebraically closed field.

1. V ⊆ Kn an irreducible variety. Let ā realize pV (x̄) in K1 � K. Then
dim(V ), the dimension of V , is defined to be tr.deg(ā/F ).

2. If V ⊆ Kn is an arbitrary variety, then dim(V ) is defined as the maximum
of the dimensions of the irreducible subvarieties of V .

Here, we recall the definition of Morley Rank. Let M be a saturated model.
Let X be a definable set in M . The Morley Rank of X, denoted RM(X) is a
way of measuring the complexity of X. Morley rank is ordinal valued and is
meant to generalize the notion of dimension. Indeed, in the case of varieties,
the two notions agree .We define RM(X) inductively:

1. RM(X) ≥ 0 if X 6= ∅.

2. RM(X) ≥ α + 1 if there exists definable Xi ⊆ X, for i = 1, 2, 3, . . . such
that Xi ∩Xj = ∅ for all i 6= j and RM(Xi) ≥ α.

3. RM(X) = α if RM(X) ≥ α but 6≥ α+ 1.

4. RM(X) ≥ δ if RM(X) ≥ α for all α < δ.

5. If RM(X) > α for every α, we say RM(X) =∞.

Exercise III.21. In DLO, RM(x = x) is ∞. In ACF, RM(x = x) = 1.

Fact III.22. 1. Let V ⊆ Kn be an irreducible variety. Then dim(V ) equals
“Krull dimension” of V , i.e. the maximum length n of a chain ∅ 6= V1 (
. . . ( Vn = V of irreducible varieties. Note that included in this is the
following: Suppose V ⊆ Kn is irreducible. Let K1 � K, ā1 ∈ Kn

1 , ā1 ∈
V (K1) such that dim(V ) = tr.deg(ā1/K). Then ā1 realizes pv(x̄).

2. For a variety V ⊆ Kn, dim(V ) = RM(V ).

Finally, we address definability issues. Let K be algebraically closed and F
a subfield of K. Let V ⊆ K be a variety. There are at least three distinct ways
in which V is said to be defined over K:

1. V is defined by some formula ϕ(x̄) with parameters from F in K;

2. V is defined by some P1 = P2 = . . . = Pr = 0 where each Pi(x̄) ∈ F [x̄];

3. I(V ) is generated by polynomials over F . That is, there exists an ideal
I ⊂ K[x̄] such that I(V ) = I ⊗F [x̄] K[x̄].
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Fact III.23. When F is perfect, 1., 2., and 3. coincide.

Proof. Exercise.

Note that in general, the three do not coincide if F is not perfect. Consider
the following counterexample: Let char(K) = p, and let F be a subfield of K.
Let a ∈ K \ F and b = ap ∈ F . Then {a} is defined over F in sense of 1. and
2. by the formula xp = b, but it is not in the sense of 3..

Let K be algebraically closed. We can consider the notion of F -irreducibility
for a variety V defined over F for F a perfect subfield of K. That is, V (over F )
is F -irreducible if we cannot write V properly as V1 ∪ V2 where V1, V2 are also
defined over F . We have that any variety over K is uniquely V = V1 ∪ . . . ∪ Vr
with Vi F -irreducible. Ultimately, F -irreducible varieties over F correspond to
complete types over F .

Proposition III.24. Let F < K be algebraically closed and V a variety over
F . Then V is irreducible if and only if V is F -irreducible.

Proof. We know immediately that V irreducible implies V is F -irreducible.
Thus, suppose V were not irreducible. Then V = V1 ∪ V2 with V1, V2 de-
fined by equations over K. We can find the right coefficients in F such that V1

and V2 are also defined over F since V is a variety over F and F < K, showing
that V is F -reducible.

This motivates the followng definition:

Definition III.25. A variety V defined over a field F is said to be absolutely
irreducible if it is irreducible over K > F for K algebraically closed.

30



Chapter IV

Pseudofinite Fields

In this chapter, we summarize some of the model theory of pseudofinite fields.
In particular, we study the theory Tf of finite fields, including the structure of
infinite models, axiomatization, possibility or impossibility of quantifier elimi-
nation, and (non-standard) cardinalities of definable sets.

Our first goal will be to isolate the first-ordered properties shared by all finite
fields. In particular we will see that infinite pseudofinite fields are precisely those
fields K such that

1. K is perfect,

2. For every n ∈ ω, there is a unique degree n extension of K (in some fixed
algebraic closure of K),

3. K is pseudo-algebraically closed: every variety V defined over K has a
K-rational point.

and, in fact, these properties are expressable in a first-order way. Note that prop-
erty 2. is equivalent to asserting that the absolute Galois group Gal(Kalg/K)

is the profinite completion of the integers, Ẑ. Recall that Ẑ is defined to be
lim←−Z/nZ, where the connecting maps are just the natural “ mod m” maps
Z/nZ→ Z/mZ when m divides n.

Exercise IV.1. Consider (an)n∈ω ∈
∏
n∈ω Z/nZ. Then (an)n∈ω ∈ Ẑ if and only

if whenever m divides n, am ≡ an mod n.

Perfect fields satisfying property 2. are sometimes called quasi-finite fields. The
requirement that K above be infinite is just because finite fields, while not
pseudo-algebraically closed, are so in an asymptotic sense, which we will see.
We begin with some background information.

Proposition IV.2. 1. Any finite field of characteristic p > 0 has cardinality
pn for some n ≥ 1.

2. For each q = pn, the multiplicative group of Fq is cyclic.
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3. For each n ∈ ω, there is a unique finite field of cardinality q = pn which
we shall denote by Fq.

Proof. 1. Let F be a finite field of characteristic p. Then Fp ≤ F and so
F is a finite dimensional Fp-vector space, say of dimension n. Therefore
|F | = pn.

2. Let Gq be the multiplicative subgroup of Fq. Gq is a commutative group
of order q − 1. For every a ∈ Gq, there is ma ∈ ω such that ama = 1. Let
m = lcm{ma : a ∈ Gq}. Then for every a ∈ Gq, am = 1. Since Fq is a
field, there are at most m solutions to xm = 1 in Fq and so m ≥ (q − 1)
(since clearly 0 is not a solution). By Lagrange’s theorem, m | (q− 1) and
hence m = (q − 1). Thus, every element of Gq satisfies xq−1 = 1. Since
q = pn is a power of a prime, Gq is cyclic by the classification theorem for
finite commutative groups.

3. Let K be some algebraically closed field containing Fp (e.g. the algebraic
closure of Fp) and let q = pn for some n ≥ 1. Let

P (x) = xq − x = x(xq−1 − 1).

Recall that, since the formal defivative P ′(x) = −1 is non-zero, P (x) = 0
has no multiple roots. Therefore, it has exactly q distinct roots in K. Let
S be the set of roots of P (x) = 0. It is an easy exercise to show that
S is closed under multiplication, addition, and inverses, so S is a field of
characteristic cardinality q. To show uniqueness, suppose F is some other
field of cardinality q and so Fp < F < K. Note that every a ∈ F satisfies
xq = x as in part 2.. Therefore xq − x vanishes on F , so F equals the set
of solutions of xq − x in K.

Corollary IV.3. If F is a finite field, then, for all n, F has exactly one exten-
sion L of degree n. In fact, given an algebraically closed K > F , there exists
unique F < L < K such that [L : F ] = n (if F is of cardinality pm then L
has to be the unique subfield of K of cardinality pmn). In particular, Fpn is a
subfield of Fpm if and only if n divides m.

The algebraic closure of any F is the unique (up to isomorphism over F )
field L ≥ F such that L is algebraically closed and L is algebraic over F , i.e. for
all a ∈ L, P (a) = 0 for some polynomial P over F . If K is a given algebraically
closed field containing F , then

{a ∈ K : a algebraic over F}

is an algebraically closed field and is the algebraic closure of F .

Corollary IV.4. Fix Fp ≤ K, K algebraically closed.

1. The algebraic closure of Fp inside K is Falgp =
⋃
n∈ω Fpn .
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2. The absolute Galois group of Fp, denoted Gal(Falgp /Fp), is Ẑ.

Proof. 1. Clear from above. Note that this is not the union of an ascend-
ing chain of fields. However, it is clear that we may also write Falgp =⋃
n∈ω Fpn! , which is the union of an ascending chain of fields.

2. Note that for every n, the extension Fpn/Fp is Galois of degree n since
finite fields are perfect. By definition, for every m, the field Fpm is precisely
the field fixed by Frm, the m-th power of the Frobenius map Fr(x) = xp,
and so in particular, Frm ∈ Gal(Fpn/Fp). Now, Frm fixes Fpn if and only
if n divides m. Therefore Fr has order n in Gal(Fpn/Fp). Since Fpn/Fp
is Galois of degree n, Gal(Fpn/Fp) = 〈Fr〉 ∼= Z/nZ, the cyclic group with
elements {id,Fr,Fr2, . . . ,Frn−1}.
Let σ ∈ Gal(Falgp /Fp). Since Falgp is the union over all n of Fpn , σ is
determined by the restriction to each Fpn . Since Gal(Fpn/Fp) ∼= Z/nZ,

we have a natural map from Gal(Falgp /Fp) to Ẑ defined by σ 7→ (an)n∈ω
where σ �Fpn

= Fran where an ∈ Z/nZ. We leave it as an exercise to
show that this map is in fact a group homomorphism. It is clear that
this map is injective, since σ 7→ (0, 0, . . .) if and only if σ �Fpn

= Frn for

every n ∈ ω. To see that this map is surjective, note that if (an)n∈ω ∈ Ẑ,
then the sequence of automorphisms Fran ∈ Gal(Fpn/Fp) determines an
automorphsims σ ∈ Gal(Falgp /Fp). This is left as an exercise.

Observe that, an easy adaptation of the arguement of part 2. from above, for
any finite field F , Gal(F alg/F ) = Ẑ. As we will see, this property, equivalent
to F having exactly one extension of degree n for all n, is expressable in a first-
order way. This suggests that this property should be expressed in our theory
Tf of finite fields.

Proposition IV.5. There is an axiom schema (ϕn)n∈ω in the language of
unitary rings such that a field F |= ϕn if and only if F has a unique algebraic
extension of degree n.

Proof. We follow the proof given in [1] Let n ∈ ω. For every 1 ≤ m < n
consider the formula ψm(ȳ) in variables y0, . . . , yn−1 which expresses the fact
that (∀z0, . . . , zm−1, w0, . . . , wn−m−1)(

Xn +

n−1∑
i=0

yiX
i

)
6=

Xm +

m−1∑
j=0

zjX
j

(Xn−m +

n−m−1∑
h=0

whX
h

)

i.e. that the polynomial Xn +
∑n−1
i=0 yiX

i is not expressible as the product of a
polynomial of degree m with a polynomial of degree n−m. Let ψn be the the
sentence ∃ȳ

∧n−1
m=1 ψm(ȳ). This sentence then asserts that there is a irreducible

polynomial of degree n. That is F |= ψn if and only if F has an algebraic
extension of degree n.
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To finish the proof we need to be able to express the uniqueness of the field
extension of degree n. Recall that if F is a field and P (x) =

∑
i cix

i is an
irreducible polynomial of degree n with tuple of coefficients c̄ = (c0, . . . , cn−1, 1)
in F , then for α ∈ F alg a solution of P (x) = 0, the field extension F (α) of
degree n is an F -vectorspace with basis {1, α, . . . , αn−1}. Note that F (α) is
the unique estension of degree n if and only if, for every irreducible polynomial
Q(x) over F of degreen n, Q(x) = 0 has a solution in F (α). Thus, the strategy
is to show that the field F (α) is uniformly interpretable in F using only the
parameters c̄ and then to express that for any field extension of degree n must
be the same as F (α).

We interpret F (α) as the F -vector space Fn with basis {1, α, . . . , αn−1}.
The field F is interpreted as the set {(a, 0, 0, . . . , 0) : a ∈ F}, α is represented
as (0, 1, 0, . . . , 0) and so on. Now, observe that multiplication by α induces the
linear map

Lα =


0 0 . . . 0 −c0
1 0 . . . 0 −c1
...

...
. . .

...
...

0 0 . . . 1 −cn−1


since αn =

∑n−1
i=0 −ciαi. Thus, multiplication by αk is given by the linear map

Lkα. We can therefore interpret multiplication in F (α) as

(a0, . . . , an−1)× (b0, . . . , bn−1) ≡
(
a0I + a1Lα + . . .+ an−1L

n−1
α

)


b0
b1
...

bn−1

 .

Observe that this multiplication is definable using just c̄ as a parameter. Let
θn(ȳ) be for fomula

∧n−1
m=1 ψm(ȳ) from before expressing irreducibility. Clearly

F |= θn(c̄). Suppose that F |= θn(b̄) also. That is, suppose that Q(x) =∑n
i=0 bix

i is irreducible over F . Then the field extension generated by a root of
Q(x) = 0 is the same as F (α) if and only if there is β ∈ F (α) with Q(β) = 0.
That is, if and only if there is (a0, . . . , an−1) ∈ Fn such that

n∑
i=0

bi(a0, . . . , an−1)i = (0, . . . , 0)

where the power (a0, . . . , an−1)i is defined as above. Using this, let χ(b̄, c̄) be
the formula expressing that if θn(b̄) and θn(c̄), then the irreducible polynomials
with coefficients b̄ and c̄ each generate the same degree n extensions of F . Then
ϕn is ψn ∧ ∀x̄, ȳχ(x̄, ȳ).

What more can we say about Tf?
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Fact IV.6 (Lang-Weil Estimates). Fix n, d. Then there exists a constant
C(n, d) = C ∈ N such that for any finite field Fq and (absolutely) irreducible va-
riety V (⊆ (Falgq )n) over Fq defined by finitely many polynomials in Fq[x1, . . . , xn]
of degree ≤ d,

||V (Fq)| − qdim(V )| ≤ Cqdim(V )− 1
2 .

Remark IV.7. 1. V (Fq) = {(x1, . . . xn) ∈ Fnq : (x1, . . . xn) ∈ V }

2. So if
√
q > C, then V (Fq) 6= ∅ since∣∣∣∣ |V (Fq)|

qdim(V )
− 1

∣∣∣∣ ≤ C
√
q
.

The goal here is to have a suitable translation of the Lang-Weil estimates
for a (saturated) pseudofinite field of cardinality q ∈ N∗ (and so q ≥ n for all
n ∈ N). Indeed, we have the following:

Fact IV.8. The pseudofinite analogue of the Lang-Weil Estimates is true by
transfer: For V an absolutely irreducible variety over F defined by polynomials
in F [x1, . . . xn] of degree ≤ d,∣∣∣|V (F )| − qdim(V )

∣∣∣ ≤ Cqdim(V )− 1
2

for some C = C(n, d) ∈ N .

Indeed,
∣∣∣ |V (F )|
q dim(V ) − 1

∣∣∣ ≤ C√
q is infinitesimal, so

µdim(V )(V ) := st

(
|V (F )|
qdim(V )

)
= 1.

Exercise IV.9. If V = A then dim(V ) = n and |V (F )| = |Fn|.
Remark IV.10. Consider x2 + y2− 1 = 0. In a field F , we may think number of
solutions is approximately ≥ 2|F |. But we do not expect the same for y−x2 = 0,
because not every y is a square.

The following is a crucial fact:

Fact IV.11. We assume that we are working in the theory ACF. Fix n, d, r ∈ N.
Let P1(x̄), . . . , Pr(x̄) be polynomials of degree ≤ d in variables x̄ = (x1, . . . , xn)
with Pi(x̄) having tuple of coefficients āi all in some algebraically closed field K.
Let V be the variety defined by P1 = P2 = . . . = Pr = 0.

1. Let D ≤ n. Then there is a formula θD(ȳ1, . . . , ȳn) such that

dim(V ) = D iff K |= θD(ā1, . . . , ān)

2. There is θ2(ȳ1, . . . , ȳn) such that

V is (absolutely) irreducible iff θ2(ā1, . . . , ān)
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Recall that Tf = theory of finite fields in the language of unitary rings. We
will let T ∗f be the theory in the same language axiomatised by the axioms for
fields and:

1. F is perfect,

2. F has exactly one extension of degree n for all n,

3. Suppose V is an absolutely irreducible variety over F defined by r poly-
nomials in x1, . . . , xn of degree ≤ d and if |F | > C(n, d)2 then V (F ) 6= ∅.
By IV.11 this is expressible.

By earlier lemmas, Tf |= T ∗f , i.e. every finite field is a model of T ∗f . Our
goal now is to show that T ∗f |= Tf , i.e. T ∗f = Tf .

Remark IV.12. Note that the theory of the class of infinite models of T ∗f is
axiomatized by 1. from above, and the axiom scheme expressing that any (ab-
solutely) irreducible variety V defined over F contains an F -rational point (F
is pseudo-algebraically closed).

Exercise IV.13. If F is a finite field, then some absolutely irreducible variety
over F has no F -point.

Therefore, we wish to show that T∞f = (T ∗f )∞.
We now give a summary of model theory of pseudofinite fields. For more

details see [3], [2].

Lemma IV.14. Let K,L be models of (T ∗f )∞. Suppose K,L have a common
subfield k which is relatively algebraically closed in K and L (in the field theoretic
sense). That is, whenever b ∈ K is algebraic over k (in the field theoretic sense)
then b ∈ k and likewise for L, i.e. kalg ∩K = k, kalg ∩L = k. (Note that k ≺ K
implies that k relatively algebraic in K.) Then K ≡k L, i.e.

Th(K, a)a∈k ≡ Th(L, a)a∈k.

Proof. We may assume K,L are (|k|+ω)+-saturated. Now we try to show that
the collection of isomorphisms f between small relatively algebraically closed
subsets E1 of K, E2 of L, f : E1

∼= E2 such that f � k = id, has the back and
forth property.
Let a ∈ K. We want to extend id : k ∼= k to some relatively algebraically closed
E containing k ∪ {a}. Let E be the relative algebraic closure of k ∪ {a} in K,
E = k(a)alg ∩ K. Want to find f : E 'k f(E) relatively algebraically closed
in L. Let b̄ ⊂ E. Let I(b̄/k) be the set of polynomials P (x1, . . . , xn) over k
such that P (b̄) = 0. Let V = V (I(b̄/k)). As k is relatively algebraic in K, V is
(absolutely) irreducible. So V (L) 6= ∅ by since L is pseudo-algebraically closed.
For the same reason, V has a generic point (over k) in L, say c̄. i.e.

I(c̄/k) = I(b̄/k)

qftp(c̄/k) = qftp(b̄/k)
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So f : k(b̄) → k(c̄), f(b̄) = c̄, f � k = id is an isomorphism. i.e. for all b̄ ∈ E,
qftp(b̄/k) can be realized in L.

Let ~b enumerate all of E. By saturation of L, one can realize qftp(~b/k) in L.
This yields an embedding f : E ↪→ L over k. It is left as an exercise to show
that we may choose f such that f(E) is relatively algebraically closed in L using

the fact that any model of (T ∗f )∞ has absolute Galois group Ẑ.

Corollary IV.15. Suppose K ⊂ L are models of (T ∗f )∞ and Kalg ∩ L = K.
Then K ≺ L. (Take k = K as in IV.14.)

Definition IV.16. Let K be any field. By Abs(K), the field of “absolute

numbers” of K, we mean kalg0 ∩K, where k0 < K is the prime field Fq or Q.

Corollary IV.17. If K,L |= (T ∗f )∞, then K ≡ L iff Abs(K) ∼= Abs(L).

Proof. Exercise.

Question What are the possibilities for Abs(K), K |= (T ∗f )∞?

Remark IV.18. 1. Suppose K |= (T ∗f )∞ and E is relatively algebraically
closed in K. Then E has at most one extension of degree n, for all n,
because if E1, E2 were different such extensions, then KE1,KE2 would
be different extensions of K of degree n.

2. Abs(K) has at most one extension of degree n for all n.

Lemma IV.19. Let k0 = Fp or Q, and E ⊆ kalg0 such that E has at most one
extension of degree n for all n. Then there exists a non-principal ultraproduct
of finite fields K such that Abs(K) ∼= E.

As an example, consider the special case of E = Fp. Let P be set of all
primes and let U be a non-principal ultrafilter on P . Let K =

∏
r∈P Fpr/U .

Then Abs(K) = Fp.
Exercise IV.20. Prove Lemma IV.19. (HARD!)

Corollary IV.21. Tf = T ∗f .

Proof. We observed earlier that Tf |= T ∗f and so we want to show that T ∗f |= Tf .
If K |= T ∗f and K is finite, then K |= Tf . So we may assume K is infinite, i.e.
K |= (Tf )∞. Let E = Abs(K). Then E has at most one extension of degree n,
for all n. By IV.19, there exists L, a non-principal ultraproduct of finite fields,
such that Abs(L) = E. Therefore, L |= (T ∗f )∞ and E ⊆ K,L, with E relatively
algebraically closed in K and L. By IV.17 (or IV.14), K ≡ L, so K |= Tf .

Therefore, we have show that Tf = T ∗f and thus a pseudofinite field is
precisely a model of Tf . In particular, a strictly pseudofinite field is a model of
T∞f .

The theory T∞f is incomplete. However, by Lemma IV.19, we know the com-
pletions of T∞f . We note that Tf does not eliminate quantifiers. For example,
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the formula ϕ(x) given by “(∃y)x = y2” is not equivalent to a quantifier-free
formula modulo Tf . If it were, the for a model M |= T∞f , ϕ(M) would be finite
or cofinite. However, for a finite field, precisely half of the non-zero elements are
squares and so, in a strictly pseudofinite field, ϕ(x) defines an infinite, coinfinite
set.

Though we do not get full quantifier elimination, we can expand our language
in such a way that we can eliminate quantifiers up to existential formulas. We
expand the language by new constant symbols

ci,n, n ≥ 2, 0 ≤ i ≤ n− 1

and get the theory Tf,c̄ by adding to Tf the axioms expressing that

xn + cn−1,nx
n−1 + . . .+ c1,nx+ c0,n

is irreducible for every n. Any pseudofinite field F has an expansion to model of
Tf,c̄, by the fact that every psdeudofinite field has a unique algebraic extension
of degree n.

Lemma IV.22. Let K,L |= T∞f,c̄, and let k be a common substructure of K
and L (so containing interpretations of the ci,j). If k is relatively algebraically
closed in K then k is also relatively algebraically closed in L.

Proof. Suppose k is relatively algebraically closed in K but not relatively alge-
braically closed in L. Since k is not relatively algebraically closed in L, there
exists a finite extension k < k1 < L, of degree n for some n ∈ ω over k. By an
earlier observation k1 is the unique extension of degree n. Since k is relatively
algebraically closed in K, the compositum Kk1 is an extension of K of degree
n and so generated by a solution of

P (x) = xn + cn−1,nx
n−1 + . . .+ c1,nx+ c0,n = 0.

Since Kk1 is generated by the same element which generated k1 over k, there
is a solution of P (x) = 0 in k1 < L, which contradicts the fact that P (x) is
irreducible.

Recall that a theory T has quantifier elimination if and only if for every M |=
T and finite tuple ā ⊂M , T ∪qftp(ā) is complete (in the language expanded by
constants for ā). Using a similar idea, we show that we can eliminate quantifiers
up to existential formulas modulo the theory.

Corollary IV.23. Let K |= T∞f,c̄. Let k < K be relatively algebraically closed.
Let ~a enumerate k. Then T∞f,c̄ ∪ qftp(~a) is complete.

Proof. Let (L,~a) |= T∞f,c̄ ∪ qftp(~a). By IV.22, k is relatively algebraically closed
in L too. So by IV.14, K ≡k L, i.e. tpL(~a) = tpK(~a).

Compactness yields the following:
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Corollary IV.24. For every formula ϕ(x̄) ∈ L(T∞f,c̄) there is a positive, quantifier-
free ψ(x̄, ȳ) such that

T∞f,c̄ |= ∀x̄(ϕ(x̄)↔ ∃ȳψ(x̄, ȳ))

and therefore T∞f,c̄ is model complete. Furthermore, for some N ∈ N,

T∞f,c̄ |= ∀x̄∃≤N ȳψ(x̄, ȳ). (IV.1)

Proof. Let K |= T∞f,c̄. For any tuple b̄ ∈ K, acl(b̄) ⊆ K is a relatively alge-

braically closed subfield of K and so T∞f,c̄ ∪ qftp(acl(b̄)) is complete. Let ϕ(x̄)

be a formula. Then, for any b̄ ∈ K, K |= ϕ(b) if and only if there is quantifier
free ψ(x̄, ȳ) and d̄ ∈ acl(b̄) ⊂ K such that K |= ψ(b̄, d̄). Therefore,

T∞f,c̄ |= ∀x̄(ϕ(x̄)↔ ∃ȳψ(x̄, ȳ)).

Here, we may assume that ψ(x̄, ȳ) is positive, since for any occurence of a
subformula of the form P (z̄) 6= 0 for P a polynomial, we may replace it with
∃r(rP (z̄) = 1). The bound IV.1 follows from the algebraicity of d̄ over b̄.

Essentially, IV.24 says that every definable set is the image of a variety under
some N -to-1 map. This result gives us some idea of what definable sets in finite
fields look like. Roughly, suppose that F ≤ F ′ are finite fields, ā ∈ F and ϕ(x̄, ā)
is a formula with parameters ā ∈ F . What can we say about |ϕ(x̄, ā)(F ′)|? By
IV.24, we have such a positive, quantifier-free formula ψ(x̄, ā, z̄). Let us assume
that ψ(x̄, ā, z̄) defines (in some larger algebraically closed field) an absolutely
irreducible variety over F and that in (IV.1) we have “= N” rather than “≤ N”.
Then, for a large enough finite field F ′ > F we get

|ϕ(x̄, ā)(F ′)| = 1

N
|ψ(x̄, ā, z̄)(F ′)|

using the fact that ϕ(x̄, ā) defines a set which is the image of a variety un-
der an N -to-1 map. By the Lang-Weil Estimates (IV.6), |ψ(x̄, ā, z̄)| is within

C |F ′|d−1/2
of |F ′|d where d is the dimension of the variety defined by ψ(x̄, ā, z̄),

and so we get a good description of |ϕ(x̄, ā)(F ′)| as well. The upshot (with some
additional work) is the following:

Theorem IV.25 (Chatzidakis, van den Dries, MacIntyre [3]). Let ϕ(x̄, ȳ) be
a formula in the language of rings with x̄ = (x1, . . . , xm) and ȳ = (y1, . . . , yn).
Then there is a positive constant C and a finite set D of pairs (d, µ) with 0 ≤
d ≤ n and µ ∈ Q>0 or (d, µ) = (0, 0) and for every (d, µ) ∈ D, there is an Lring-
formula ϕd,µ(ȳ) such that for every finite field Fq and every ā ∈ Fnq , exactly one
of the ϕd,µ(ȳ) holds of ā, and, if Fq |= ϕd,µ(ā), then∣∣|ϕd,µ(x̄, ā)(Fq)| − µqd

∣∣ < Cqd−1/2.
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This theorem has a natural interpretation in the non-standard setting. Fix
ϕ(x̄, ȳ) a formula in the language of rings and let F be a pseudofinite fields of
non-standard cardinality q ∈ N∗. Then, for every ā ∈ Fn, there is a unique
(d, µ) ∈ Dϕ such that ϕd,µ(ā) holds. Moreover, if F |= ϕd,µ(ā), then

st

(
|ϕ(x̄, ā)(F )|

qd

)
= µ.

That is, to an infinite definable set ϕ(x̄, ā)(F ) in an pseudofinite field F , we are
associating a dimension d, and a measure, µ.

Exercise IV.26. T∞f is a simple theory and, for ϕ(x̄, ā) as above, d is the SU-rank
of ϕ(x̄, ā).

In [12], Tao used IV.25 to prove a regularity lemma for definable graphs in
pseudofinite fields.

Open Question: Real closed fields, pseudofinite fields, p-adically closed fields
are examples of “nice fields” in the sense of having almost quantifier elimination:
every formula is equivalent to a formula with finite fibres (existential, plus some
other stuff?) as in IV.24. One can ask what fields have this property? If our
theory has full quantifier elimination, then it is necessarily the case that models
are algebraically closed fields, so the more interesting question is what fields have
this property and do not eliminate quantifiers. We say a field K has Serre’s
Property (F) if for every n ∈ N there are at most finitely many extensions K ′

of degree n (eqiv. abs Galois group is small i.e. profinite?). Thus, the related
question is: “Does a field K have Serre’s Property (F) if and only if K (the
theory of K?) has “almost” quantifier elimination?
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Chapter V

Strongly Minimal
Pseudofinite Structures

In this chapter, we study pseudofinite theories which are also strongly minimal.
Strong minimality is a property that one usually first encounters in the theory
of algebraically closed fields. It turns out that, in general, strongly minimal
theories are very nice in a model theoretic sense. They are, for example, un-
countably categorical and have many features which make them geometically
interesting as well.

Definition V.1. Let T be a complete, 1-sorted theory. T is called strongly min-
imal if, for every model M |= T and every definable (possibly with parameters)
set X ⊆M , X is either finite or cofinite.

We will also say that a structure M is strongly minimal if Th(M) is strongly
minimal. Equivalently, for every elementary extension M ′ of M and every
definable X ⊆ M ′, X is either finite or cofinite. Note that in a many sorted
theory, it makes sense to talk about the sorts being strongly minimal. We will
sometimes write D for some saturated, strongly minimal set.

Example V.2. Some examples of strongly minimal theories/structures are:

• ACFp, the theory of algebraically closed fields of charachteristic p for p = 0
or prime;

• Th(Q,+), the theory of rational numbers with addition;

• Th(Fωp ,+);

• Th(Z, s), the theory of the integers with a successor function;

• Th(N, s), the theory of the natural numbers with a successor function.

• Let G be a group and let X be an infinite, free G-set. Let our language
be L = {fg : g ∈ G}. Then (X, fg)g∈G is a strongly minimal structure,
where we interpret the symbols fg as functions fg(x) = gx.
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We will assume, for now, that T is 1-sorted and strongly minimal.

Exercise V.3. For any formula ϕ(x, ȳ), there is Nϕ ∈ N such that for every
M |= T and every b̄ ∈M , we have that ϕ(x, b̄)(M) is infinite if it has cardinality
greater than or equal to Nϕ. This is related to the elimination of the quantifier
(∃∞). A theory T eliminates the (∃∞) quantifier if for every formula ϕ(x̄, ȳ),
there isNϕ ∈ N such that for everyM |= T and ever b̄ ∈M , if |ϕ(x̄, b̄)(M)| ≥ Nϕ
then |ϕ(x̄, b̄)(M)| ≥ ω.

Lemma V.4. Let M |= T , A ⊆M and b1, b2 ∈M\acl(A). Then tpM (b1/ acl(A)) =
tpM (b2/ acl(A)).

Proof. For each ϕ(x) ∈ LA, either ϕ(x)(M) is finite or cofinite, since T is
strongly minimal. If ϕ(x)(M) is finite then ϕ(x)(M) ⊆ acl(A), so M |= ¬ϕ(b)
for every b ∈M \acl(A). That is, for every b ∈M \acl(A) and every ϕ(x) ∈ LA,
M |= ϕ(b) if and only if ϕ(x)(M) is cofinite. Note that if M is saturated enough
compared to A, there is some b ∈M \ acl(A).

We remark that, for general T not necessarily strongly minimal, if M 4 N ,
then aclN (M) = M . Suppose b ∈ N and N |= ϕ(b, ā) where ā ∈ M and that
N |= ∃=kxϕ(x, ā) (i.e. b is algebraic over M). Then M |= ∃=kxϕ(x, ā) and so
all of the (finitely many) realizations of ϕ(x, ā) in N must already be in M .

Back in the strongly minimal setting, acl has some aditional useful proper-
ties:

Lemma V.5 (Symmetry of acl). Let M |= T , A ⊆ M and b, c ∈ M . Suppose
that c ∈ acl(A ∪ {b}) \ acl(A). Then b ∈ acl(A ∪ {c}) \ acl(A).

Proof. Our assumption that c ∈ acl(A∪{b}) is witnessed by a formula ϕ(x, y) ∈
LA such that M |= ψ(b, c) where ψ(x, y) is

ϕ(x, y) ∧ ∃=kzϕ(x, z).

We claim that the formula ψ(x, c) (which is realised by b) has finitely many
solutions, which shows that b is algebraic over A ∪ {c}. If not, then ψ(x, c)
has cofinitely many solutions in M . Let us assume that all but r ∈ N many
elements of M realise ψ(x, c). Consider the formula χ(y) ∈ LA expressing the
the statement “all but r-many elements x satisfy ψ(x, y)”. By construction, we
have that M |= χ(c). Now, we are also assuming that c /∈ acl(A) and so we can
choose k + 1 distinct realizations c1, . . . , ck+1 ∈M of χ(y). Therefore, for each
ci, there are only r-many elements d ∈M such that M |= ¬ψ(d, ci). Hence, we
can find b′ ∈M such that

M |=
k+1∧
i=1

ψ(b, ci).

This is a contradiction, however, since ψ(b, x) expresses that there are precisely
k-many realizations. This shows that b ∈ acl(A ∪ {c}). This completes the
proof, since if b ∈ acl(A), then acl(A ∪ {b}) = acl(A) and therefore c ∈ acl(A),
which we assumed was not the case.
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Definition V.6. A set {bi}i∈I is said to be algebraically independent over a
set A if bi /∈ acl(A, bj , j ∈ I \ {i}).

Lemma V.7. Let T be strongly minimal and let M |= T .

1. Let A ⊆ M and let {bi : i < α} for α an ordinal be such that b0 /∈ acl(A)
and for every i < α, bi /∈ acl(A, {bj : j < i}). Then {bi : i < α} is
algebraically independent over A.

2. Let B ⊂M and A ⊆M . Let B0 ⊆ B be a maximal algebraically indepen-
dent over A subset of B. Then B ⊆ acl(B0 ∪A).

3. Let B ⊂ M , A ⊆ M . The cardinality of any maximal algebraically inde-
pendent over A subset of B is unique and denoted dim(B/A) or dim(b̄/A)
where b̄ is some (any) enumeration of B.

Proof. 1. Suppose not. Then for some i < α,

bi ∈ acl(A, b0, . . . , b̂i, . . .).

Let γ < α be least such that for any ϕ(x, c̄) realizing the algebraicity of
bi, γ is the largest such that bγ appears as a parameter in ϕ(x, c̄). Thus,

bi ∈ acl(A, b0, . . . , b̂i, . . . , bγ) \ acl(A, b0, . . . , b̂i, . . . , bβ : β < γ).

By Lemma V.5,

bγ ∈ acl(A, b0, . . . , bi, . . . , bβ : β < γ) \ acl(A, b0, . . . , b̂i, . . . , bβ : β < γ),

but then in particular,

bγ ∈ acl(A, b0, . . . , bi, . . . , bβ : β < γ),

a contradiction. Note that the converse is immediate.

2. Suppose not. Then there is b ∈ B such that b /∈ acl(B0 ∪ A). By part
1., B0 ∪ {b} is algebraically independent over A. This contradicts the
maximality of B0.

3. Let C = {c0, c1, . . .} and D = {d0, d1, . . .} be two distinct, maximal,
algebraically independent over A subsets of B ⊆ M (with no particular
enumeration). Suppose C has cardinality λ ≥ ℵ0 and D has cardinality κ
and that λ > κ. By part 2., D ⊆ B ⊆ acl(A,C) and so for every di ∈ D,
there is a formula ϕi(x) over D ∪ A realizing the algebraicity of di. Let
Ei be the finite subset of D ∪A appearing as parameters in ϕi(x). Let

E =
⋃
i∈κ

Ei.

Then, by set theory, |E| = κ < λ and so there is some j ∈ λ such that
cj ∈ C does not appear in any Ei. Since D is a maximal algebraically
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independent subset of B over A, cj ∈ acl(A,D). Then, cj is algebraic over
some finite subset of A ∪ D. Since every element of D is algebraic over
some finite subset of A∪E, we have that cj ∈ acl(A,E). Since cj /∈ E, and
E ( C, we have contradicted the fact that C is algebraically independent.

Suppose now C and D are maximally algebraically independent over A
sets such that C has cardinality n < ℵ0 and, for a contradiction, that D
has cardinality m > n. We know by maximality that

D ⊆ acl(A,C) \ acl(A).

Let C = {c1, . . . , dn} and D = {d1, . . . , dm}. By maximality, there is some
di and cj such that

di ∈ acl(A, c1, . . . , cn) \ acl(A, c1, . . . , cj−1, cj+1, . . . , cn),

since otherwise we would have D ⊆ acl(A,C \ {cj}) and by maximality
of D, C would not be independent. By renumbering if necessary, we may
assume d1 and c1 are such a pair. By V.5,

c1 ∈ acl(A, d1, c2, . . . , cn) \ acl(A).

Since D is an algebraically independent set, d2 6∈ acl(A, d1). However,
since c1 ∈ acl(A, d1, c2, . . . , cn), and d2 ∈ acl(A,C) \ acl(A), we have that

d2 ∈ acl(A, d1, c2, . . . , cn) \ acl(A, d1)

and so by symmetry again, we may suppose that

c1, c2 ∈ acl(A, d1, d2, c3, . . . , cn) \ acl(A).

Repeating this process, we find that

c1, . . . , cn ∈ acl(A, d1, . . . , dn) \ acl(A).

However, since C is maximally algebraically independent over A, we have
that there is some dk ∈ D \ {d1, . . . , dn} such that dk ∈ acl(A,C) and
hence dn+1 ∈ acl(A, d1, . . . , dn), which contradicts the fact that D is alge-
braically independent. Thus, m ≤ n. By the same argument, m = n.

Note that, in particular, for any A ⊆M and any n-tuple b̄, 0 ≤ dim
(
b̄/A

)
≤

n and, in fact, dim
(
b̄/A

)
= RM

(
tpM

(
b̄/A

))
. The following fact will be useful.

Fact V.8. Let T be a strongly minimal theory and M a monster model of T .
Then for every formula ϕ(x̄, ȳ), and every k ∈ ω, the set

{b̄ ∈M : RM(ϕ(x̄, b̄)) = k}

is definable in M .
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Exercise V.9. 1. Let b̄ = b1, . . . , bn and c̄ = c1, . . . , cn each be algberaically
independent n-tuples over A. Then tp

(
b̄/A

)
= tp (c̄/A).

2. Let b̄, c̄ be finite tuples, and A ⊆M . Then

dim
(
b̄, c̄/A

)
= dim

(
b̄/A, c̄

)
+ dim (c̄/A) .

Definition V.10. 1. Let b̄ be a finite tuple and A,C ⊆ M . We say that
“ b̄ is indepenedent from C over A”, denoted by b̄ |̂ A C, if dim

(
b̄/A

)
=

dim
(
b̄/A ∪ C

)
.

2. Let b̄ be a possibly infinite tuple. We say that b̄ is independent from C
over A if b̄′ |̂ A C for all finite subtuples b̄′ ⊆ b̄.

Equivalently, b̄ |̂ A C if any finite subtuple b̄′ of b̄ which is algebraically
independent over A remains algebraically independent over A ∪ C. We remark
that this notion of independence is precisely non-forking independence in a
special case. That is, in a strongly minimal theory T , b̄ |̂ A C if and only if
tp
(
b̄/A ∪ C

)
does not divide over C.

It is useful to note that for infinite tuple b̄, by definition b̄ |̂ A C if and only
if b̄′ |̂ A C for all finite subtuples b̄′ ⊂ b̄, and also, if and only if b̄′ |̂ A C ′ for
all finite subtuples b̄′ ⊂ b̄ and all finite subsets C ′ ⊆ C.

Exercise V.11. 1. (Transitivity.) Let A ⊆ B ⊆ C and let ē be a (possibly
infinite) tuple. Then ē |̂ A C if and only if ē |̂ A B and ē |̂ B C.

2. (Symmetry.) Let b̄, c̄ be (possibly infinite) tuples. Then b̄ |̂ A c̄ if and only
if c̄ |̂ A b̄. For b̄, c̄ finite tuples, this is the same as showing dim

(
b̄, c̄/A

)
=

dim
(
b̄/A

)
+ dim (c̄/A).

3. (Existence of Non-Forking Extensions.) Suppose we are given a tuple c̄
and A ⊂ B. Then there exists a tuple c̄′ such that tp (c̄′/A) = tp (c̄/A) and
c̄′ |̂ A B. We say that tp (c̄′/B) is a “non-forking extension” of tp (c̄/A).

Of particular interest are so called stationary types:

Definition V.12. A complete type p(x) ∈ S(A) is said to be stationary if it
has a unique non-forking extension over any set B ⊇ A.

Remark V.13. Stationary types in ACF are the generic types of absolutely
irreducible varieties.

The following result is true more generally in all stable theories, though we
will give a proof for T strongly minimal:

Proposition V.14. Let T be strongly minimal and let M be a (small) model
of T . Let p (x̄) ∈ S(M). Then p (x̄) is stationary.

Proof. Let C ⊇M be some set and let d̄ ∈ U in some very saturated elementary
extension of M realize p(x̄) so that p(x̄) = tp(d̄/M). Suppose also that d̄ |̂ M C.
That is, tp(d̄/C) is a non-forking extensions of p(x̄). Let us write d̄ = āb̄ (we
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will consider the variable x̄ = z̄ȳ) where ā is algebraically independent over
M and b̄ ∈ acl(ā,M). It suffices to show that for ā′b̄′ realizing p(x̄) such that
ā′b̄′ |̂ M C, it must be the case that tp(āb̄/C) = tp(ā′b̄′/C). Suppose we have
such a ā′b̄′. Since b̄ ∈ acl(ā,M), the type tp(b̄/Mā) is algebraic. Suppose that
this type has k-many realizations. By compactness, there is a formula ϕ(ā, ȳ)
over M which isolates tp(b̄/Mā). Since ϕ(z̄ȳ) = ϕ(x̄) ∈ p(x̄), we have that
|= ϕ(ā′, b̄′). Now, by Exercise V.9, ā and ā′ have the same type over M , so take
some automorphism σ fixing M which sends ā to ā′. Then ϕ(ā′, ȳ) isolates the
type tp(σ(b̄)/Mā′) = tp(b̄′/Mā′). Now, if ϕ(ā, ȳ) isolates a complete type over
C, we are done. This is because, ā′b̄′ |̂ M C if and only if ā′ is algerbaically
independent over C and so by Exercise V.9.1 tp(ā/C) = tp(ā′/C). By similar
reasoning as before, tp(b̄/Cā) = tp(b̄′/Cā′) and so tp(āb̄/C) = tp(ā′b̄′/C).

For a contradiction, let us suppose that ϕ(ā, ȳ) does not isolate a complete
type over C. Then, it must be the case that there is ψ(ā, c̄, ȳ) over M , with
c̄ ∈ C such that

• |= ψ(ā, c̄, b̄);

• |= ∀ȳ(ψ(ā, c̄, ȳ)→ ϕ(ā, ȳ));

• ψ(ā, c̄, ȳ) has k′ < k many solutions.

That is, ψ(ā, c̄, ȳ) isolates a complete algebraic type and the type tp(ā/C) is
definable over M . Let χ(z̄) be the definition over M (in fact, over ∅) of the
formula

∀ȳ (ψ (x̄, z̄, ȳ)→ ϕ (x̄, ȳ)) ∧ ∃=k′ ȳψ (x̄, z̄, ȳ) .

Now, |= χ(c̄) and so there is c̄′ ∈M such that M |= χ(c̄′). This contradicts the
fact that ϕ(ā, ȳ) isolates tp(b̄/Mā).

Corollary V.15. Let T be strongly minimal and let M |= T . Let b̄1, b̄2 in some
saturated elementary extension of M be such that b̄1 |̂ M b̄2. Then tp(b̄1, b̄2/M)
is determined by tp(b̄1/M) and tp(b̄2/M).

Proof. Exercise.

Definition V.16. Let D be a saturated, strongly minimal set and let ϕ(x̄) be
a formula defining X ⊆ Dn with parameters from some small set A ⊂ D. Then:

1. dim(ϕ(x̄)) = dim(X) = max{dim(b̄/A) : b̄ ∈ X ⊆ Dn};

2. if dim(X) = k, define the degree or multipicity of X, mult(X) as the
maximum d such that one can write X = X1 t . . . tXd, a disjoint union
of definable sets Xi, such that dim(Xi) = k for 1 ≤ i ≤ d.

Exercise V.17. The definition of dimension does not depend on A. The dimen-
sion is the same if one replaces A with small B ⊃ A.
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Note that this definition of dimension and degree aligns well with the corre-
sponding definitions for varieties.

Lemma V.18. Suppose b̄ ∈ Dn is such that dim(b̄/A) = k. Then there exists
a formula ψ(x̄) ∈ tp(b̄/A) such that dim(ϕ(x̄)) = k.

Proof. We may assume that b̄ = (b1, . . . , bk, bk+1, . . . , bn) is such that (b1, . . . , bk)
are algebraically independent over A. Hence, bk+1, . . . , bn ∈ acl(A, b1, . . . , bk).
This is witnessed by some formula ϕ(x1, . . . , xk, xk+1, . . . , xn) over A such that
D |= ϕ(b̄) and

D |= ∀(x1, . . . , xk)∃≤r(xk+1, . . . , xn)ϕ(x̄)

for some r ∈ N. Therefore, dim(ϕ(x̄)) ≤ k. Since dim(b̄/A) = k and ϕ(b̄), we
have dim(ϕ(x̄)) = k.

Lemma V.19. 1. dim(Dn) = n;

2. mult(Dn) = 1.

Proof. 1. Given any n ∈ N, by saturation of D, we can find ai ∈ D such
that ai /∈ acl(a1, . . . , ai−1) for i ≤ n. Therefore (a1, . . . , an) ∈ Dn is an
algerbaically independent tuple of maximum lenght n. Hence dim(Dn) =
n.

2. Suppose, for a contradiction, that Dn = X t Y where X and Y are de-
finable (over some set A) and that dim(X) = dim(Y ) = n. Then we
may choose b̄ ∈ X and c̄ ∈ Y with dim(b̄/A) = dim(c̄/A) = n. How-
ever, tp(b̄/A) 6= tp(c̄/A) since the formula x ∈ X is in tp(b̄/A) and not
in tp(c̄/A). This contradicts the uniqueness of the non-algebraic type
(Exercise V.9).

Definition V.20. By a k-cell, we mean a definable set X ⊆ Dn for some n ≥ k
such that under some projection π : Dn → Dk, we have dim(π(X)) = k and
π �X : X � π(X) is r-to-1 for some r > 0.

Note that any k-cell X definable over a set A has dimension k and, for every
b̄ ∈ X, b̄ ∈ acl(π(b̄), A).

Proposition V.21. Let X ⊆ Dn be definable. Then X is a finite union of
cells.

Proof. Suppose that X is defined over A. Let b̄ ∈ X and suppose dim(b̄/A) = k
with (b1, . . . , bk) algebraically independent overA. Let r = mult(tp(b̄/Ab1, . . . , bk))
(i.e. the number of realizations of tp(b̄/Ab1, . . . , bk), since each realization is a
point of dimension k and there are only finitely many since the type is algebraic).
Let ϕb̄(x̄) ∈ tp(b̄/Ab1, . . . , bk) be a formula witnessing this. That is,

D |= ∀x1, . . . , xk (∃xk+1, . . . , xnϕb̄(x̄)↔ ∃=rxk+1, . . . , xnϕb̄(x̄))
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and

dim (∃xk+1, . . . , xnϕb̄(x̄)) = k.

It is immediate from the definition that ϕb̄(x̄) defines a k-cell, since the pro-
jection of ϕb̄(x̄)(D) onto the cooridnates xk+1, . . . , xn has dimension k and the
fibres are of size r. Therefore,

“x ∈ X” |=
∨
b̄∈X

ϕb̄(x̄).

The result follows by compactness by appealing to the fact that the ϕb̄(x̄) de-
pends only on the type of b̄ over A and so there are few enough types since A
is small.

Remark V.22. 1. In the proof of Proposition V.21, we may assume that
A = M 4 D is a model and argue as in the proof of Lemma V.14
to show that each of the cells is of multiplicity 1. That is, we let b̄ ∈
X defined over M and consider tp(b̄/M) with b1, . . . , bk algebraically
independent over M and b̄ ∈ acl(b1, . . . , bk). Choose ψb̄(x̄) such that
ψb̄(b1, . . . , bk, xk+1, . . . , xn) isolates tp(bk+1, . . . , bn/Mb1, . . . bk). Then ψb̄(x̄)
has dimension k and multiplicity 1, as in the proof of V.14. Thus, mult(X)
exists for any definable X.

2. We can also require that X is a finite disjoint union of cells.

Example V.23. Let D = C and let X ⊂ D2 be X = {(x, y) : x = y2 ∧ x 6= 0}.
Let π : X → C be the projection onto the x-coordinate. Then π(X) = C \ {0},
which has dimension 1. Note that π �X is a 2-to-1 map. X has dimension 1 and
multiplicity 1, since it is an irreducible curve (X is a 1-cell).

Lemma V.24. Let X,Y be definable over a set A with dimension k1 and k2

respectively and both of multiplicity 1. Then dim(X×Y ) = k1+k1 and mult(X×
Y ) = 1.

Proof. Since X and Y are definable over A, so is X × Y . Let (b̄1, b̄2) ∈ X × Y .
We have dim(b̄i/A) ≤ ki for i = 1, 2 and so dim(b̄1, b̄2/A) ≤ k1 + k2 and
hence dim(X × Y ) ≤ k1 + k2. For equality, choose b̄1 ∈ X and b̄2 ∈ Y such
that dim(b̄i/A) = ki for i = 1, 2 and furthermore, such that b̄1 |̂ A b̄2. Then
dim(b̄1, b̄2/A) = dim(b̄1/A) + dim(b̄2/A) = k1 + k2.

It remains to show that mult(X×Y ) = 1. Observe that if mult(X×Y ) > 1,
then there would be Z1, Z2 ⊂ X × Y definable over some model M ⊃ A such
that Z1 ∩ Z2 = ∅ and dim(Zi/M) = k1 + k2 for i = 1, 2. Therefore, we can
find c̄1 ∈ Z1 and c̄2 ∈ Z2 such that dim(c̄i/M) = k1 + k2 for i = 1, 2 but
tp(c̄1/M) 6= tp(c̄2/M). Therefore, it suffices to show that for any M ⊇ A, M a
model, there exists a unique type over M of dimension k1 + k2 containing the
formula “(x, y) ∈ X × Y ”. So, let M be such a model, (b̄1, b̄2) ∈ X × Y with
dim(b̄1, b̄2/M) = k1 + k2. This forces:
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1. dim(b̄1/M) = k1, since otherwise dim(b̄1/M) < k1 and so dim(b̄2/M) >
k2, which is impossible;

2. dim(b̄2/M) = k2, for the same reason as above;

3. b̄1 |̂ M b̄2, since if not, dim(b̄1, b̄2/M) 6= dim(b̄1/M) + dim(b̄2/M) =
k1 + k2.

By (i) and (ii), as X and Y each have multiplicity 1, tp(b̄1/M) and tp(b̄2/M) are
uniquely determined (by the same observation that we made assuming mult(X×
Y ) > 1). BY (iii) and Corollary V.15, tp(b̄1, b̄2/M) is uniquely determined.

One might ask what can be said about a theory T which is both strongly
minimal and pseudofinite. Traditionally, theories which were categorical (more
specifically, ℵ0-categorical) were more popular as a topic of study that pseud-
ofinite theories. For a strongly minimal theories, we have the following auto-
matically:

Proposition V.25. If T is strongly minimal, then T is uncountably categorical.

Proof.

However, ℵ0-categoricity is not automatic and was a natural hypothesis. The
following big theorem was proven by Zilber [13] and independently by Cherlin,
Harrington, and Lachlan [4]:

Theorem V.26. Any ℵ0-categorical, strongly minimal (complete) theory T in
a countable language is pseudofinite.

In fact, the original conclusion was stated as “T is not finitely axiomatiz-
able,” as the property of being pseudofinite was not seen as being particularly
important or interesting, but the proof goes by pseudofiniteness.

Note that, originally, Zilber, Cherlin, Harrington, and Lachlan proved The-
orem V.26 in order to show that theories satisfying the hypotheses were not
finitely axiomatizable. That result is a direct consequence of V.26, since any
finitely axiomatizable, pseudofinite theory has a finite model. It in particular
is axiomatized by a single sentence (the conjunction of the axioms), and that
sentence must have a finite model by pseudofiniteness. This fact is mainly of
historical interest, since pseudofiniteness is now considered more important than
finite axiomatizability.

Geometric Notions, Again

We continue our study of the geometric notions related to strong minimality
and pseudofiniteness.

Definition V.27. A strongly minimal, complete theory T is locally modular
if, in a saturated model D, we have, for all finite tuples a and b from Deq,

dim(ab) = dim(a) + dim(b)− dim(acl(a) ∩ acl(b)).
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Local modularity generalizes the corresponding property of dimensions in
linear algebra. The notion yields a nice structural result:

Remark V.28. Let T be a locally modular (also strongly minimal and complete).
Then exactly one of the following holds of D, a saturated model:

1. acl is trivial: for A ⊆ D,

acl(A) =
⋃
a∈A

acl(a)

2. There is a strongly minimal interpretable (i.e., definable in T eq) commuta-
tive group G in D. Moreover, every definable subset of Gn (for all n ∈ ω)
is a finite boolean combination of translates of definable subgroups.

Note that case 1 essentially says that all the interesting relations are binary
(for an appropriate sense of “interesting”). Examples of case 1 include a set
with no structure and the theory the integers with the successor function.

Exercise V.29. ACFp is not locally modular for any p.

Remark V.28 is largely the content of Hrushovski’s PhD thesis [5]. Boris
Zilber showed the same conclusion for ℵ0-categorical strongly minimal theories.
Also note that in [13],[4], they probe that strongly minimal ℵ0-categorical the-
ories are locally modular. Cherlin, Harrington, and Lachlan’s proof uses the
classification of finite simple groups, and Zilber used model theoretic methods.
See [9] for details.

It is an open problem to find a similar structure result for strongly minimal
theories in general.

In the late 1980s, Hrushovski [6] gave an account of Zilber’s proof in more
generality by proving that, for a complete strongly minimal theory,

• ℵ0-categoricity implies an additional property called “unimodularity” (fairly
easy), and

• unimodularity implies local modularity.

Definition V.30. Let D be a saturated and strongly minimal. D is unimodular
if, whenever a and b are interalgebraic, algebraically independent tuples of the
same finite length n, the multiplicity of a over b equals the multiplicity of b over
a.

Observe that any ℵ0-categorical strongly minimal theory is unimodular.

Exercise V.31. Prove that ℵ0-categorical, strongly minimal theories are uni-
modular. (Hint: use the fact that, in an ℵ0-categorical theory, the algebraic
closure of a finite set is finite, and use a counting argument.)

We will eventually prove in these notes that strongly minimal, pseudofinite
structures are unimodular (and hence locally modular). By V.26, this general-
izes the work of Zilber / Cherlin / Harrington / Lachlan.

For the rest of this chapter, let D be a strongly minimal, pseudofinite, satu-
rated model. We will consider D equiped with the general non-standard count-
ing machinery from, e.g., Construction I.9.
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Proposition V.32. Suppose |D| = q ∈ N∗. Let X ⊆ Dn be definable (with
parmaters). Then there is a polynomial PX ∈ Z[x] with positive leading coeffi-
cient such that |X| = Px(q). Moreover, the degree of PX is the Morley rank of
X.

Moreover, given ϕ(x̄, ȳ) ∈ L, there exists ψ1(ȳ) . . . ψk(ȳ) ∈ L and P1 . . . Pk ∈
Z[x] such that, for any b̄, exactly one of ψi(b̄) holds, and |ϕ(D, b̄)| = Pi(q)
whenever |= ψi(b̄).

The key point of Proposition V.32 is that we know the exact cardinality of
definable sets, and it’s controlled internally (without resorting to the language
expansion in, e.g., Construction I.9).

Proof. We leave the proof of the final part of the claim (i.e., definability of the
parameters giving a certain size) as an exercise, and proof the rest here.

Note that D has Morley rank 1, and |D| = q. Therefore we can take PD(x) =
x. More generally, PDn(x) = xn.

We proceed by induction on dim(X). If dim(X) = 0, X is finite, so PX(x) =
m, where m = |X| ∈ Z.

For the inductive step, let X ⊆ Dn. By Proposition V.21, X is a finite
disjoint union of cells. We may therefore assume that dim(X) = k, and X is a
k-cell. That is, there is a projection π : Dn → Dk whose image has dimension
k, with π � X an r-to-1 map.

By Lemma V.19, Dk has dimension k and multiplicity 1, so dim(Dk\π(X)) <
k. By the inductive hypothesis, |Dk\π(X)| = Q(q), where Q ∈ Z[x] has positive
leading coefficient and degree < k. Therefore

|X| = r|π(X)|
= r

(
|Dk| − |Dk \ π(X)|

)
= r

(
qk −Q(q)

)
.

Note that, in the case of pseudofinite fields (which are not strongly minimal),
the conclusions of Proposition V.32 (in particular getting an exact count) are
closely related to the Weil conjectures. Recall that we do have a similar result
for fields in Fact IV.8 but that only gives an asymptotic estimate.

The counting result in Proposition V.32 gives us unimodularity. They key
to this result is that we can apply similar reasoning to the ℵ0-categorical case:
in that case we could count points because the relevant sets were finite; here we
can count as a result of Proposition V.32.

Corollary V.33. D (which is strongly minimal, pseudofinite) is unimodular,
and therefore locally modular.

Proof. Let ā, b̄ be generic, interalgebraic, and length n. Take ϕ(x̄, ȳ) such that
ϕ(x̄, b̄) isolates tp(ā/b̄) and ϕ(ā, x̄ isolates tp(b̄/ā). Let k = mult(ā/b̄) and
l = mult(b̄/ā). We want to show that k = l.
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Let Z ⊆ Dn×Dn be the (definable without parameters) set of pairs (ā0, b̄0)
realizing ϕ(x̄, ȳ) such that ∃=kx̄ϕ(x̄, b̄0) and ∃=lȳϕ(ā0, ȳ). Note that:

• (ā, b̄) ∈ Z

• Fibers of left projection of Z are never larger than l and such fibers of
algebraically independent tuples are of size exactly l (since all such tuples
have the same type as ā0.

• Similarly for fibers of right projection with respect to size k.

It is clear that dim(Z) = n, so take s(t) a polynomial with rational coeffi-
cients such that |Z| = s(|D|); s has degree n. Let Z0 ⊆ Z be the points for
which left-projection is exactly l-to-1, and X0 ⊆ Dn be their left projections.
Note that Z0 and X0 are definable without parameters. Since X0 contains ā,
which is algebraically independent, dim(X0) = n. Furthermore, since the degree
of Dn is 1, dim(Dn \X0) < n. Compute:

|s(|D|)− l|D|n| = ||Z| − l|D|n|
≤ ||Z0| − l|D|n|+ |Z \ Z0|
= |l |X0| − l|D|n|+ |Z \ Z0|
≤ l ||X0| − |D|n|+ l |Dn \X0|
= 2l |Dn \X0|

< |D|n− 1
2 .

Therefore the leading coefficient of s is l. By the same argument, the leading
coefficient of s is k. Therefore k = l.

This concludes our discussion of strongly minimal, pseudofinite theories.
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Chapter VI

Definable Regularity
Lemmas

Recall that the Szemeredi regularity lemma is about subsets of any finite graphs,
which we know is equivalent to a statement about internal subsets of any pseud-
ofinite graph. In this chapter, we present some stronger theorems about cases
where we know that the graph is tame in some model-theoretic sense. For
example, we may consider

• graphs definable in a strongly minimal, pseudofinite structure ([10]),

• graphs definable in a pseudofinite field ([12]),

• pseudofinite graphs such that the edge relation is stable ([7])

In these various more specializes cases, we can get stronger results than those
in Chapter II. These strengthenings come in two varieties. Some cases give
results which eliminate the “exceptional sets” of classes for which regularity
fails. Other cases strengthen the regularity to a dichotomy of edges “almost
everywhere” or “almost nowhere,” for suitable such notions.

Stable Case

We turn first to the case of pseudofinite graphs with a stable edge relation,
following [7]. Recall the definition of a stable relation:

Definition VI.1. Let T be a complete theory, ϕ(x̄, ȳ) a formula, and k ∈ ω.
Then ϕ is k-stable if there are no sequences

ā1, . . . , āk b̄1, . . . , b̄k

in any model such that |= ϕ(āi, b̄j) iff i < j. A formula is stable if it is k-stable
for some k.
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On the face of it, the main result in [7] is about all finite graphs with a
k-stable edge relation, for fixed k. We present here an equivalent form of the
theorem for pseudofinite graphs with a stable edge relation. The equivalence is
via the same mechanism as in Chapter II.

Proposition VI.2. Let (V,W,E) be a saturated, pseudofinite, bipartite graph
whose edge relation E is stable. Fix ε > 0 ∈ R. Then we can write

V = V1 t . . . t Vr
W = W1 t . . . tWs,

where these sets are internal, such that

||Vi| − |Vj || ≤ 1

||Wi| − |Wj || ≤ 1.

We can take this partition to have the property that, for all i ≤ r and all j ≤ s,
either

1. For at least ε |Vi| many a ∈ Vi there are at least ε |Wj | many b ∈Wj with
|= E(a, b), or

2. For at least ε |Vi| many a ∈ Vi there are at least ε |Wj | many b ∈Wj with
|= ¬E(a, b).

The conclusion of Proposition VI.2 is quite strong. There is no exceptional
set of partitions, and we furthermore have that the pairs are not only regular,
they are either dense or codense. Note that the partition is still only into internal
sets, not definable sets.

The proof of Proposition VI.2 uses the notion of ϕ−2 rank in a finite context,
among other techniques. It may be possible to find a conceptual proof in the
pseudofinite context using local stability, forking, and counting measures, but
such efforts so far have not been successful.

Field Case

Here we present a version of Szemeredi regularity for pseudofinite fields. This
result is due to Tao [12], with a refinement due to Pillay and Starchenko [11].

Proposition VI.3. Let L be the language of fields, F a saturated, pseudofinite
field, and (V,W,E) a bipartite graph definable in F . The we can write

V = V1 t . . . t Vr
W = W1 t . . . tWs,

where these sets are definable, such that, for some fixed C ∈ R+

|Vi| ≥
|V |
C
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|Wi| ≥
|W |
C

.

We can take this partition to have the property that, for all i ≤ r and j ≤ s,
there is dij such that, for all A ⊆ Vi and B ⊆Wj internal subsets,

||E ∩A×B| − dij |A| |B|| ≤ C |F |−
1
4 |Vi| |Wj | ,

where C is the same as above.

Note that, as in the stable case, there are no exceptional sets. In contrast
to the stable case, we do not get that the sets are either dense or codense, but
we do get that the partitions are definable. The regularity we get in the style of
weak Szemeredi regularity (Proposition II.4), further strengthened so that the

error factor is the infinitessimal C|F |− 1
4 , rather than ε ∈ R+.

The proof of Proposition VI.3, which we do not reproduce here in full, op-
erates crucially via the following lemma. To parse that lemma, recall from
Theorem IV.25 that in a pseudofinite saturated field F , a set X defined by
ϕ(x̄, ā) has a dimension d and measure µ such that∣∣∣|X| − µ |F |d∣∣∣ < C |F |d−

1
2

for some C ∈ R+. Furthermore, both d and µ depend definably on ā.

Lemma VI.4. In the context Proposition VI.3, assume dim(V ) = n, dim(W ) =
k, and both are defined over some small A ⊆ F . Then we can partition W into
sets

W1, . . . ,Wm

definable over acl(A), all of dimension k, such that, for all i, j, there are cij ∈
Q+ and Dij ⊂Wi×Wj definable over acl(A) of dimension < 2k such that either

1. for all (a, b) ∈Wi ×Wj \Dij, dim(E(x, a) ∩ E(x, b)) < n, or

2. for all (a, b) ∈Wi ×Wj \Dij, (dim, µ)(E(x, a) ∩ E(x, b)) = (n, cij).

55



Bibliography

[1] Z. Chatzidakis. Notes on the model theory of finite and pseudo-finite fields.
http://www.logique.jussieu.fr/~zoe/papiers/Helsinki.pdf.

[2] Z. Chatzidakis. Model theory of finite fields and pseudo-finite fields. Annals
of Pure and Applied Logic, 88(23):95 – 108, 1997. Joint AILA-KGS Model
Theory Meeting.

[3] Z. Chatzidakis, L. van den Dries, and A. Macintyre. Definable sets over
finite fields. Journal fr die reine und angewandte Mathematik (Crelles Jour-
nal), 427:107–136, 1992.

[4] G. Cherlin, L. Harrington, and A. H. Lachlan. ℵ0-Categorical, ℵ0-Stable
Structures. Annals of Pure and Applied Logic, 28(2):103–135, 1985.

[5] E. Hrushovski. Contributions to Stable Model Theory. PhD thesis, Univer-
sity of California at Berkeley.

[6] E. Hrushovski. Unimodular minimal structures. J. London Math. Soc, 2:46,
1992.

[7] M. Malliaris and S. Shelah. ℵ0-Categorical, ℵ0-Stable Structures. Trans.
Amer. Math. Soc., 366(3):1551–1585, 2014.

[8] S. Pierre. A Guide to NIP Theories. http://arxiv.org/abs/1208.3944,
2014.

[9] A. Pillay. Geometric Stability Theory. Oxford logic guides. Clarendon
Press, 1996.

[10] A. Pillay. Strongly minimal pseudofinite structures. http://arxiv.org/

abs/1411.5008, 2014.

[11] A. Pillay and S. Starchenko. Remarks on Tao’s algebraic regularity lemma.
http://arxiv.org/abs/1310.7538, 2013.

[12] T. Tao. Expanding polynomials over finite fields of large characteristic, and
a regularity lemma for definable sets. http://arxiv.org/abs/1211.2894,
2013.

56

http://www.logique.jussieu.fr/~zoe/papiers/Helsinki.pdf
http://arxiv.org/abs/1208.3944
http://arxiv.org/abs/1411.5008
http://arxiv.org/abs/1411.5008
http://arxiv.org/abs/1310.7538
http://arxiv.org/abs/1211.2894


[13] B.I. Zilber. Totally categorical theories: Structural properties and the
non-finite axiomatizability. In Leszek Pacholski, Jedrzej Wierzejewski, and
AlecJ. Wilkie, editors, Model Theory of Algebra and Arithmetic, volume
834 of Lecture Notes in Mathematics, pages 381–410. Springer Berlin Hei-
delberg, 1980.

57


	Definitions and Basic Examples
	Graph Regularity Lemmas
	Algebraically Closed Fields
	Pseudofinite Fields
	Strongly Minimal Pseudofinite Structures
	Definable Regularity Lemmas

