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Abstract. We study amenability of de�nable groups and topological groups,
as well as a new notion of �rst order amenability of a theory T , and prove various
results, brie�y described below.

Among our main technical tools, of interest in its own right, is an elabora-
tion on and strengthening of the Massicot-Wagner version [30] of the stabilizer
theorem [15], and also some results about measures and measure-like functions
(which we call means and pre-means).

As an application we show that if G is an amenable topological group, then
the Bohr compacti�cation of G coincides with a certain �weak Bohr compact-
i�cation� introduced in [27]. In other words, the conclusion says that certain
connected components of G coincide: G00

top = G000
top . We also prove wide gen-

eralizations of this result, implying in particular its extension to a �de�nable-
topological� context, con�rming the main conjectures from [27].

Secondly, we study the relationship between de�nability of an action of a
de�nable group on a compact space (in the sense of [12]), weakly almost peri-
odic (wap) actions of G (in the sense of [10]), and stability. We conclude that
any group G de�nable in a su�ciently saturated structure is �weakly de�nably
amenable� in the sense of [27], namely any de�nable action of G on a compact
space supports a G-invariant probability measure. This gives negative solutions
to some questions and conjectures raised in [23] and [27].

Thirdly, we introduce the notion of �rst order [extreme] amenability, as a
property of a �rst order theory T : every complete type over ∅, in possibly
in�nitely many variables, extends to an automorphism-invariant global Keisler
measure [type] in the same variables. [Extreme] amenability of T will follow from
[extreme] amenability of the (topological) group Aut(M) for all su�ciently large
ℵ0-homogeneous countable models M of T (assuming T to be countable), but is
radically less restrictive. A further adaptation of the technical tools mentioned
above is used to prove that if T is amenable, then T is G-compact, namely Lascar
strong type and KP-strong type over ∅ coincide. This extends and essentially
generalizes results in [27].

In the second and third part of the paper, stability in continuous logic will
play a role in some proofs.
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0. Introduction

The general motivation standing behind this research is to understand relation-
ships between dynamical and model-theoretic properties of de�nable [topological]
groups or between dynamical properties of groups of automorphisms of �rst order
structures and model-theoretic properties of the underlying theories. More specif-
ically, similarly to [27], in this paper our goal is to understand model-theoretic
consequences of various notions of amenability.
The consequences that we consider in this paper are versions of G-compactness:

the equality of Lascar strong type and KP-strong type, or for de�nable groups the
equality of G000 and G00 as well as a number of other contexts including arbitrary
topological groups. Although Sections 2, 3, and 4 of this paper are thematically
connected, they can be read relatively independently.
The notions of amenability considered in [27] come from certain natural cate-

gories of �ows, e.g.:

(1) the classical notion of amenability of a topological group is equivalent to
the existence of a left-invariant, Borel probability measure on the universal
topological ambit;

(2) de�nable amenability of a group G(M) de�nable in M means that there is
such a measure on the G(M)-ambit SG(M);

(3) de�nable topological amenability of a topological group G(M) de�nable in
a �rst order structure M so that the members of a basis of open neigh-
borhoods of 1 are de�nable means that there is such a measure on the
G(M)-ambit SG(M)/∼µ, where p ∼µ q ⇐⇒ µ · p = µ · q, where µ is the
subgroup consisting of in�nitesimal elements;

(4) weak de�nable [topological] amenability of a de�nable [topological] group
G(M) means that there is such a measure on the universal de�nable [con-
tinuous] G(M)-ambit (see Section 1).

In each of the contexts mentioned in the above list (topological, de�nable, de�n-
able topological), we have two associated notions of components of G: G00

top, G
000
top;

G00
M , G000

M ; and G00
def,top, G

000
def,top (see Section 1).

The following statement is Conjecture 0.4 in [27].

Conjecture 0.1. Let G(M) be a topological group and assume that the members
of a basis of open neighborhoods of the identity are de�nable. If G is de�nably
topologically amenable, then G00

def,top = G000
def,top.

One of the main results of [27] is Theorem 0.5 in there saying that Conjecture
0.1 is true if G(M) has a basis of open neighborhoods of the identity consisting of
de�nable, open subgroups. This implies that Conjecture 0.2 from [27] holds under
the assumption that G(M) has a basis of open neighborhoods of the identity
consisting of open subgroups, namely, if G(M) is a topological group satisfying
this assumption, then G00

top = G000
top.
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In Subsection 2.6, we will prove Conjecture 0.1 in full generality (see Corollary
2.36). Similarly to [27], the proof is based on the Massicot-Wagner argument from
[30], but here we use means on certain lattices instead of measures on Boolean
algebras. Moreover, in Subsection 2.3, we give a less numerical variant of the
argument from [30], using a general notion of largeness, discussed in Subsection
2.2, which coincides with non-forking in stable theories and seems interesting also
outside stable context. In fact, using these arguments, we obtain in Subsection
2.6 much more general results (namely, Theorems 2.34 and 2.35) than Conjecture
0.1, which do not assume any topology on G(M). All of this also requires some
extension results concerning pre-means, means, and measures � established in
Subsections 2.4 and 2.5 � which may prove to be useful also in other situations.
In Subsection 2.7, we apply these kind of arguments to topological groups equipped
with the so-called

∨
-de�nable group topologies (including group topologies induced

by type-de�nable subgroups as well as uniformly de�nable group topologies). The
key property of a

∨
-de�nable group topology on a ∅-de�nable group G is that

for any model M the group G(M) is also a topological group. We prove (using
our version of the Massicot-Wagner theorem) that the existence of a left-invariant
mean on the lattice of closed, type-de�nable subsets of the group G = G(M∗)
(where M∗ �M is a monster model and G is a ∅-de�nable group) equipped with
a
∨
-de�nable group topology, such that the projections of closed, type-de�nable

sets are closed, implies that cl(G00
M) = cl(G000

M ), where cl denotes closure with
respect to the

∨
-de�nable topology; this is Proposition 2.51.

The notion of a de�nable action of a de�nable group G(M) on a compact space
X comes from [12], namely for any x ∈ X, the map taking g ∈ G(M) to gx is
de�nable, that is induced by a continuous map from the type space SG(M) to X.
In [27, De�nition 3.1(i)], G(M) was de�ned to be weakly de�nably amenable if
any de�nable action of G(M) on a compact space X supports a G(M)-invariant
Borel probability measure on X. In [27, De�nition 3.1(ii)], this notion was also
generalized to the context of topological (not necessarily discrete) groups de�nable
in a structure M . The following generalization of Conjecture 0.1 is stated as
Conjecture 0.3 of [27].

Conjecture 0.2. Let G(M) be a topological group de�nable in an arbitrary struc-
ture M . If G is weakly de�nably topologically amenable, then G00

def,top = G000
def,top.

In Section 3, we will refute this conjecture by showing that it is already false in
the �discrete case�. In fact, we show that a de�nable group G(M), de�ned in an
ℵ1-saturated structure M , is always weakly de�nably amenable. Our methods are
as interesting as the refutation of the conjecture: under the saturation assumption,
de�nable actions are weakly almost periodic, so support invariant measures. Our
proofs involve stable group theory in a continuous logic setting. This will also give
us the negative answer to the question stated in [23, Problem 4.11(1)], namely
whether the assignment SG(M)/E → G/G000

M given by tp(a/M)/E 7→ a/G000
M is
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well-de�ned, where E is the equivalence relation on SG(M) such that SG(M)/E
is the universal de�nable G(M)-ambit. In [23, Proposition 4.10], it was noted
that an analogous assignment to G/G00

M is a well-de�ned continuous semigroup
epimorphism (with the natural semigroup structure on SG(M)/E coming from
the fact that this is the universal de�nable G(M)-ambit). We also provide a
description of the universal de�nable G(M)-ambit as the �Gelfand space� of the
algebra of stable continuous functions from SG(M) to R, and describe the universal
minimal de�nable G(M)-�ow as G/G00

M . In this section, we also discuss de�nable
actions when M is not necessarily saturated, and make the connection between
weakly almost periodic actions and continuous logic stability in a model.
In Subsection 4.2, we introduce the notions of amenable and extremely amenable

�rst order theory. This is part of our attempt to extract the model-theoretic con-
tent of the circle of ideas around [extreme] amenability of automorphism groups of
countable structures, which we discuss further below. We say that T is amenable
if for every p ∈ Sx̄(∅), in any (possibly in�nite) tuple of variables x̄, there exists
an Aut(C)-invariant, Borel probability measure on Sp(C) := {q ∈ Sx̄(C) : p ⊂ q},
where C is a monster model. Extreme amenability of T means that the invariant
measure above can be chosen to be a Dirac. Namely, every p extends to a global
Aut(C)-invariant complete type. We study properties of [extreme] amenability,
showing for example that they are indeed properties of the theory (i.e. do not
depend on C) and providing several equivalent de�nitions. We will discuss here
amenability, leaving the extreme version to the �nal paragraph. One of the equiv-
alent de�nitions of amenability of T is that Aut(C) is relatively de�nably amenable
(i.e. there is an Aut(C)-invariant, �nitely additive, probability measure on the
Boolean algebra of relatively de�nable subsets of Aut(C) treated as a subset of
CC). Relative de�nable amenability of Aut(C) (or, more generally, of the group
of automorphisms of any model) is a natural counterpart of de�nable amenabil-
ity of a de�nable group. The above observations work for any ℵ0-saturated and
strongly ℵ0-homogeneous model M in place of C. For such an M , if Aut(M) is
amenable as a topological group (with the pointwise convergence topology), then
T is amenable. We point out in a similar fashion that (for countable T ) if Aut(M)
is amenable for all su�ciently large ℵ0-homogeneous countable models, then T is
amenable. In the NIP context, we get a full characterization of amenability of T in
various terms, e.g. by saying that ∅ is an extension base, which also yields a class
of examples of amenable theories, e.g. all stable theories are amenable. The main
result of Section 4 is contained in Subsection 4.4, namely, we prove the following

Theorem. Every amenable theory is G-compact.

We should mention here that this result generalizes Theorem 0.7 from [27] which
says that whenever M is a countable, ω-categorical structure and Aut(M) is
amenable as a topological group, then Th(M) is G-compact. [27, Theorem 0.7]
was deduced (by a non-trivial argument which is interesting in its own right) from
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Conjecture 0.1 for groups possessing a basis of open neighborhoods of the iden-
tity consisting of open subgroups (note that Aut(M) has this property). In the
general context of Subsection 4.4, we do not have an argument showing that the
main theorem follows from Conjecture 0.1; instead we give a direct proof working
with relatively de�nable subsets of the group of automorphisms. The engine of our
proof is once again the argument from [30]. In Subsection 4.3, we give a simpler
proof of the above main result of Section 4, but under the stronger assumption
of the existence of ∅-de�nable Keisler measures on all ∅-de�nable sets and using
stability theory in continuous logic. This also includes the ω-categorical context
from [27, Theorem 0.7], yielding yet another proof of [27, Theorem 0.7].
Extreme amenability of automorphism groups of (arbitrary) countable struc-

tures M was studied in detail by Kechris, Pestov, and Todorcevi¢. Their paper
[21] inspired a whole school, connecting to structural Ramsey combinatorics and
dynamics. When Th(M) is ω-categorical, then extreme amenability of Aut(M) is
a property of this �rst order theory, so is a model-theoretic notion (in the sense of
model theory being the study of �rst order theories rather than arbitrary struc-
tures). Some of this extends to homogeneous models of arbitrary theories and to
continuous logic (thanks to Todor Tsankov for a conversation about this with one
of the authors).
Let us comment on the relation between extreme amenability of the automor-

phism group of an ω-categorical countable structure M as considered in [21],
which we call KPT-extreme amenability), and extreme amenability of Th(M) in
our sense. KPT-extreme amenability concerns all �ows of the topological group
Aut(M) and says that the universal �ow (or rather ambit) has a �xed point. Our
�rst order extreme amenability (of Th(M)) can also be read o� from �ows of
Aut(M) and says that a particular �ow Sm̄(M) has a �xed point (where m̄ is an
enumeration of M and Sm̄(M) here denotes the space of complete extensions of
tp(m̄) over M). The class of KPT-extremely amenable ω-categorical theories T
is not at present explicitly classi�ed, but appears to be very special (analogous
to monadic stability in the stable world). It follows from their de�nition that
whenever L′ is a language extending the language L of T and T ′ is a universal L′-
theory consistent with T , then the countable model M of T has an expansion to a
model of T ′ where the new symbols in L′ are interpreted as certain ∅-de�nable sets
in M . Note in particular that KPT-amenability of an ω-categorical structure M
implies the existence of a ∅-de�nable linear ordering on M . By contrast, our �rst-
order extreme amenability is a quite common property; in particular, all Fraïssé
classes with free (or, more generally, canonical) amalgamation enjoy it; so does
T expanded by constants for a model, or, when T is stable, for an algebraically
closed set in T eq, and often also when T is NIP. Although not explicitly named
or identi�ed, this property has also been useful in various situations, such as for
elimination of imaginaries.
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Keisler measures play a big role in this paper (especially in the notion of �rst
order amenability) and we generally assume that the reader is familiar with them.
A Keisler measure on a sort (or de�nable set) X over a model M is simply a
�nitely additive (probability) measure on the Boolean algebra of de�nable (over
M) subsets of X. As such it is a natural generalization of a complete type over
M containing the formula de�ning X. As pointed out at the beginning of Section
4 of [17], a Keisler measure on X over M is the �same thing� as a regular Borel
probability measure on the space SX(M) of complete types over M containing the
formula de�ning X. Keisler measures are completely natural in model theory, but
it took some time for them to be studied systematically. They were introduced
in Keisler's seminal paper [22] mainly in a stable environment, and later played
an important role in [16] in the solution of some conjectures relating o-minimal
groups to compact Lie groups.

1. Some notions and definitions

We recall here model-theoretic de�nitions of certain components of groups in
some categories, and also the relevant variants of the notion of amenability; for
more details, see Section 2 of [27]. The new notions which we introduce in this
paper will appear in the relevant sections.
As usual, by a monster model of a given theory we mean a κ-saturated and

strongly κ-homogeneous model for a su�ciently large cardinal κ (typically, κ > |T |
is a strong limit cardinal). Where recall that the (standard) expression �strongly
κ-homogeneous� means that any partial elementary map between subsets of the
model of cardinality < κ extends to an automorphism of the model. A set [tuple]
is said to be small [short] if it is of bounded cardinality (i.e. < κ). When G is a
∅-de�nable group (in the monster model) and A a (small) set of parameters, then
G00
A denotes the smallest, A-de�nable subgroup of G of bounded index; and G000

A

� the smallest A-invariant subgroup of G of bounded index.
Let G(M) be a topological group ∅-de�nable in a structure M . Assume for a

moment that all open subsets of G(M) are also ∅-de�nable. By G we denote the
interpretation of G(M) in a monster model M∗. De�ne µ to be the intersection
of all U = U(M∗) with U(M) ranging over all open neighborhoods of the identity.
So µ is the subgroup of in�nitesimals of G; it is not necessarily normal, but it is
normalized by G(M).

De�nition 1.1. 1) G00
top := µG00

M ; equivalently, this is the smallest M -type-
de�nable subgroup of G of bounded index which contains µ.
2) G000

top := 〈µG〉G000
M ; equivalently, this is the smallest normal, invariant over M

subgroup of G of bounded index which contains µ.

It turns out that G00
top is a normal subgroup of G and the map G(M)→ G/G00

top

is the classical Bohr compacti�cation of G(M) as a topological group (i.e. the
universal group compacti�cation). For a description of G/G000

top as the initial object
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in a certain category see [27, Proposition 2.18]. In particular, one gets that both
quotients G/G00

top and G/G000
top are independent as topological groups (equipped

with the logic topology) of the choice of the language (provided that all open
subsets of G(M) are ∅-de�nable) and of the choice of the monster model in which
they are computed. Moreover, the closure of the identity in G/G000

top is exactly
G00

top/G
000
top, so the property G00

top = G000
top is also independent from the choice of the

language and the monster model.
There is also a model-theoretic description of the universal (left) G(M)-ambit

as the quotient SµG(M) := SG(M)/∼µ, where p ∼µ q ⇐⇒ µ · p = µ · q with the
distinguished point tp(1/M)/∼µ and the action of G(M) given by g ∗ (µ · p) :=
µ · (g · p) = g · (µ · p). It is clear that this ambit is isomorphic to Sµ\G(M) � the
space of complete types over M of hyperimaginary elements from µ\G.
Recall the classical de�nition of amenability.

De�nition 1.2. The topological group G(M) is amenable if for every G(M)-
�ow (equivalently G(M)-ambit) X there is a G(M)-invariant, Borel probability
measure on X; equivalently, there is a G(M)-invariant, Borel probability measure
on the universal ambit SµG(M).

The following is [27, Conjecture 0.2].

Conjecture 1.3. Let G(M) be a topological group. If G(M) is amenable, then
G00

top = G000
top.

In the above discussion, we are looking at the classical �topological� categories
of topological �ows and compacti�cations via model-theory. In Section 2.2 of [27],
we proposed to look at more general �de�nable-topological� categories. It is a bit
subtle, so we try to be precise about the notions and de�nitions (although a full
account is given in [27]). So we start with an L-structure M , and a group G(M)
∅-de�nable inM . We assume that G(M) is also a topological group, although this
is not necessarily �seen� by the structure M . Let M ′ be an expansion of M in a
language L′ containing L such that we have predicates for all open subsets of the
topological group G(M). Let (M ′)∗ � M ′ be a monster model of Th(M ′) whose
reduct M∗ � M to L is also a monster model. So the dynamics of G(M) as a
topological group is seen through the model theory of M ′ and (M ′)∗ as discussed
earlier in this section. But we are more interested in what is de�nable in M . So
as to avoid too much unnecessary notation, we will rather talk about M,M∗ and
distinguish between de�nability in L (which we just call de�nable) and de�nability
in the richer language L′. G00

M and G000
M are computed in L, and SG(M) denotes

the space of complete types in the sense of L.

De�nition 1.4. 1) G00
def,top := µ ·G00

M = G00
top ·G00

M ; equivalently, this is the small-
est M -type-de�nable (in the sense of L) subgroup of G of bounded index which
contains µ.
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2) G000
def,top := 〈µG〉 ·G000

M = G000
top ·G00

M ; equivalently, this is the smallest normal, in-
variant overM (in the sense of L) subgroup of G of bounded index which contains
µ.

Note that we need the L′-structure to make sense of µ, and G00
top, etc., although

G00
def,top is nevertheless still type-de�nable over M in L.
It turns out that G00

def,top is a normal subgroup of G and the map G(M) →
G/G00

def,top is the (unique up to isomorphism) universal compacti�cation of G(M)
among de�nable (in the sense of L), continuous group compacti�cations of G(M).
Note that the de�nitions G00

def,top := µ ·G00
M and G000

def,top := 〈µG〉·G000
M make sense

even in the wider context when L′ is any extension of L such that all members
of some basis of neighborhoods of the identity in G(M) are de�nable in L′ (with
parameters from M); the di�erence is that now more monster models are allowed,
because we do not require L′ to contain predicates for all open subsets of G. By
a standard argument, we get that the quotients G/G00

def,top and G/G000
def,top do not

depend on the choice of both the language L′ and the monster model in which they
are computed. The property G00

def,top = G000
def,top is also independent of the choice of

L′ and the monster model, which follows directly from de�nitions.

Remark 1.5. i) If G(M) is discrete, then G000
def,top = G000

M ≥ G000
top and G00

def,top =

G00
M ≥ G00

top.
ii) If all open subsets of G(M) are de�nable in M (in the language L), then
G000

def,top = G000
top ≥ G000

M and G00
def,top = G00

top ≥ G00
M .

Recall that a group G(M) de�nable in M is de�nably amenable if and only if
there is a left-invariant, Borel probability measure on SG(M). In order to give a
suitable generalization of this notion in the �de�nable-topological category�, one
needs to assume that all members of some basis of (not necessarily open) neigh-
borhoods of the identity in G(M) are de�nable in M (in the original language L).
In [27], we assumed more, namely, that there is such a basis consisting of open
neighborhoods of the identity, but in the more general context everything works in
the same way. In particular, SµG(M) de�ned as above is still a G(M)-ambit. The
following de�nition was proposed in [27, Section 3].

De�nition 1.6. Assume that all members of some basis of neighborhoods of the
identity in the topological group G(M) are de�nable in M (in L). We say that
G(M) is de�nably topologically amenable if there exists a left-invariant, Borel prob-
ability measure on the G(M)-ambit SµG(M).

Conjecture 0.1 recalled in the introduction is the main conjecture of [27]. As
was recalled in the introduction, one of the main results of [27] was [27, Theorem
0.5] saying that Conjecture 0.1 is true if G(M) has a basis of open neighborhoods
of the identity consisting of de�nable, open subgroups. This implies Conjecture
1.3 for groups possessing a basis of open neighborhoods of the identity consisting
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open subgroups. In Subsection 2.6 of this paper (see Corollary 2.36), we prove
Conjecture 0.1 (and so also Conjecture 1.3) in its full generality.
The de�nition of amenability of a topological group is by saying that there is

a well-behaved measure on the universal topological ambit. The de�nitions of
de�nable amenability or de�nable topological amenability are by saying that there
is a well-behaved measure on the G(M)-ambits SG(M) or SµG(M), respectively.
But these ambits are not universal in any of the categories of ambits considered
in [27]. So based on [23], we proposed in [27] more general notions of amenability,
which we recall now.
As was pointed out in [23], there is a unique closed equivalence relation E on

SG(M) such that SG(M)/E is the universal de�nable G(M)-ambit; a description
of E can be found in Section 3 of [23]. In [27, Subsection 2.2], we described a closed
equivalence relation E1 on SG(M) such that SG(M)/E1 is the universal de�nable
topological G(M)-ambit (where G(M) is a topological group de�nable in M).

De�nition 1.7. 1) We say that G(M) is weakly de�nably amenable if there exists
a left-invariant, Borel probability measure on the universal de�nable G-ambit, i.e.
on SG(M)/E.
2) We say that G is weakly de�nably topologically amenable if there exists a left-
invariant, Borel probability measure on the universal de�nable topological G-
ambit, i.e. on SG(M)/E1.

Conjecture 0.2 from the introduction is the most general conjecture of [27]. In
Section 3, we will show that it is false, even in the case when G(M) is discrete (i.e.
working in the de�nable category). In Subsection 3.4 of [27], a weaker form of this
conjecture was proposed. Namely, let G000+

def,top be the normal subgroup generated by

all products ab−1 for (a, b) ∈ E ′1, where aE ′1b ⇐⇒ tp(a/M)E1 tp(b/M). It is M -
invariant, and by Proposition 3.10 of [23], we easily get that G000

def,top ≤ G000+
def,top ≤

G00
def,top.

Conjecture 1.8. Let G(M) be a topological group de�nable in an arbitrary struc-
ture M . If G is weakly de�nably topologically amenable, then G00

def,top = G000+
def,top.

At �rst glance it seems that this conjecture should be reachable by the methods
of Section 2, but we do not quite see how to prove it.

2. Means and connected components

The main goal of this section is to prove the equality of various connected com-
ponents under the existence of a suitable measure or mean. In particular, we
will prove Conjecture 0.1. As mentioned in the introduction, this conjecture was
proved in [27] but under the stronger assumption that there is a basis of open
neighborhoods of the identity consisting of de�nable open subgroups. Similarly
to [27], our proofs are based on the idea of the proof of Massicot-Wagner version
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of the stabilizer lemma. Our key tricks to deal with the general case will be us-
ing means instead of measures (so something like measures but de�ned only on
certain lattices of subsets), positively

∨
-de�nable sets, and a notion of largeness.

As to the Massicot-Wagner result, we will prove a variant of it (see Proposition
2.10 and Corollary 2.11) which is applicable to various situations. The main re-
sults of this section are contained in Subsection 2.6. In Subsection 2.7, we study
groups equipped with

∨
-de�nable group topologies, also proving that existence of

a mean on the appropriate lattice of subsets implies equality of the closures of the
appropriate connected components.

2.1.
∨
-de�nable sets. Let T be any (complete) theory, M |= T , and C be a

monster model of T . By a [type-]de�nable set we usually mean a set which is
[type-]de�nable with parameters in C. We can identify it with the corresponding
formula [or sets of formulas]. We will be often talking about sets which are A-type-
de�nable, so using parameters from a set A. One can often incorporate parameters
into the language and work over ∅, e.g. in this and in the next subsection we work
with ∅-de�nability, but sometimes parameters are essential (e.g. in Proposition
2.10 and the applications to Theorem 2.34 and Proposition 2.51).
By the category of

∨
-positively de�nable sets, we mean the category whose

objects are expressions of the form
∨
i∈ωDi, where D0 ⊆ D1 ⊆ . . . are positively

de�nable sets, where two such expressions are considered to be equal if they agree
in any model of T (equivalently, in the monster model; so working in the monster
model, any object can be identi�ed with the corresponding subset of the model).
A morphism F :

∨
i∈ωDi →

∨
i∈ω Ei is a collection of de�nable functions Fi : Di →

Eji , where i ranges over ω and ji is some index in ω, such that
⋃
Fi is a well-de�ned

function, and two such collections of functions are identi�ed if they yield the same
function from

∨
i∈ωDi(M) to

∨
i∈ω Ei(M) for every model M , equivalently for

the monster model. We write
∨
i∈ωDi ⊆

∨
i∈ω Ei if this holds in every model

(equivalently, in C); this is equivalent to saying that for every i there is ji such
that Di ⊆ Eji . Whenever

∨
i∈ωDi(x̄) is

∨
-positively de�nable and ā is a tuple of

parameters, we say that
∨
i∈ωDi(ā) holds if there is i such that M |= Di(ā) for

some [any] model M containing ā.
In fact, we can consider any

∨
i∈I Di for a countable set I and positively de�nable

sets Di, as then one can replace I by ω and the Di's by the unions of initial sets Di,
i < n. We will be doing this freely without mentioning. Also, one could extend the
context to uncountable sets I, but countable families are su�cient for the purpose
of our main theorems.
Recall that a subset D of a group G is said to be (left) generic if �nitely many

left translates of it cover G; D is said to be thick if there is n such that for every
g1, . . . , gn ∈ G there is i < j such that g−1

j gi ∈ D. It is clear that each thick subset

of G is generic. As to the converse, if D ⊆ G is generic, then D−1D is thick.
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LetG be a group de�nable in T . For a positively de�nable setD(x, ȳ) ` G(x), by
(∃genx)D(x, ȳ) we mean the

∨
-positively de�nable set

∨
l∈ω(∃l-genx)D(x, ȳ), where

(∃l-genx)D(x, ȳ) := (∃x1, . . . , xl)(∀z)
l∨

i=1

D(xiz, ȳ).

(Formally, the quanti�ers in the last formula are restricted to G; if (G, ·) is a sort,
then this formula is clearly positive, so (∃genx)D(x, ȳ) is

∨
-positively de�nable.

Abusing terminology by allowing in positive formulas both the group operation
on G and quanti�cation over G, we can say that (∃genx)D(x, ȳ) is

∨
-positively

de�nable also for any de�nable G.)
In particular, for any parameters b̄, (∃genx)D(x, b̄) holds i� D(M, b̄) := {a ∈

G(M) : M |= D(a, b̄)} is generic in G(M) for some [any] model M containing b̄.
For a

∨
-positively de�nable set D(x, ȳ) =

∨
i∈ωDi(x, ȳ) such that D(x, ȳ) ` G(x)

by (∃genx)D(x, ȳ) we mean the
∨
-positively de�nable set

∨
i∈ω(∃genx)Di(x, ȳ). In

particular, for any parameters b̄, (∃genx)
∨
i∈ωDi(x, b̄) holds i� for some i the set

Di(M, b̄) := {a ∈ G(M) : M |= Di(a, b̄)} is generic in G(M) for some [any] model
M containing b̄. Working in the monster model, this is equivalent to saying that
D(C, b̄) := {a ∈ G(C) : C |= D(a, b̄)} =

⋃
i∈ωDi(C, b̄) is generic in G(C) (but this

is not true in a non ℵ0-saturated model).
Analogous de�nitions apply when we replace �generic� by �thick�. The only

di�erence is, of course, that the displayed formula above is now the following

(∃l-thickx)D(x, ȳ) := (∀x1, . . . , xl)
∨
i<j

D(x−1
j xi, ȳ).

2.2. A largeness notion. Throughout, G is a group acting on X. We work in the
language of group actions, (G, ·, X, ·, . . . ). (· refers both to the group operation and
the action, and . . . to possible additional structure.) In the particular case when G
acts on itself via left translations, the results which we will obtain for (G, ·, X, ·, . . . )
transfer automatically to the corresponding statements in the language of groups
(G, ·, . . . ) (i.e. without the extra sort for X), just identifying X with G.
We de�ne a largeness notion Lk for subsets of X, resembling �rank ≥ k� for

certain model-theoretic ranks. In fact, we de�ne two largeness notions Lgen
k and

Lthick
k . The stronger notion Lthick

k corresponds to non-forking in stable theories (see
Remark 2.4). For our purposes, both notions work in the same way, so later we
will just write Lk. It would be interesting to further investigate Lgen

k and Lthick
k

(and variants) for unstable theories.
In what follows, we deal with Lgen

k , but everything works also for the analogously
de�ned Lthick

k .

De�nition 2.1. Let Y (x, ȳ) ⊆ X(x) be a
∨
-positively de�nable set

∨
i Yi(x, ȳ).

(1) Lgen
0 (Y (x, ȳ)) is the

∨
-positively de�nable set

∨
i(∃x)Yi(x, ȳ) .
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(2) For k > 0, Lgen
k (Y (x, ȳ)) is the

∨
-positively de�nable set in variables ȳ

(∃genz)Lgen
k−1(Y (x, ȳ) ∩ Y (z−1x, ȳ)).

In particular, using terminology from Subsection 2.1, for a
∨
-positively de�nable

set Y = Y (x) ⊆ X(x) we have a well-de�ned meaning of �Lgen
k (Y ) holds�. Namely,

Lgen
0 (Y ) holds i� Y 6= ∅, and Lgen

k (Y ) holds i� {g ∈ G : Lgen
k−1(Y ∩ gY ) holds} is

generic. The word �hold� will be often skipped from now on.

Remark 2.2. Lgen
k (Y (x, ȳ)) can be expressed by a disjunction of positive, trans-

lation invariant formulas ψj(ȳ) of the language (G, ·, X, ·, Yi)i, where Y =
∨
Yi.

(Here, by a translation invariant formula we mean a formula ψ(Yi:i<ω)(ȳ) depend-
ing on the Yi's (and with variables ȳ appearing only in the Yi(x, ȳ)'s) such that
ψ(Yi:i<ω)(ȳ) is equivalent to ψ(gYi:i<ω)(ȳ) for any g ∈ G.)

Proof. The proof is by induction on k. Clearly Lgen
0 (Y (x, ȳ)) can by expressed as∨

i(∃x)Yi(x, ȳ) which does the job. Now, suppose that Lgen
k (Y (x, ȳ)) can be ex-

pressed as
∨
j∈ω ψj,(Yi:i<ω)(ȳ), where each ψj,(Yi:i<ω)(ȳ) is positive and translation in-

variant. Then Lgen
k+1(Y (x, ȳ)) can be expressed as

∨
j,l∈ω(∃l-genz)ψj,(Yi∩zYi:i<ω)(ȳ, z).

By induction hypothesis, it is clear that each (∃l-genz)ψj,(Yi∩zYi:i<ω)(ȳ, z) is positive
and translation invariant. �

It is also easy to express the Lgen
k directly, e.g. Lgen

2 (Y ) ≡
∨
l,l′ L

gen,l,l′

2 (Y ), where

Lgen,l,l′

2 (Y ) ≡ (∃l-genz)(∃l′-genz′)Lgen
0 (Y ∩ zY ∩ z′Y ∩ zz′Y ).

Let Y = Y (x) ⊆ X(x) and Y =
∨
Yi. Since translation by h on X and

conjugation by h on G gives an isomorphism (G, ·, X, ·, Yi)i → (G, ·, X, ·, , hYi)i, it
follows directly that Lgen

k is translation invariant, i.e. Lgen
k (Y ) ⇐⇒ Lgen

k (hY ).
De�ne

StLgenk (Y ) := {g : Lgen
k (gY ∩ Y )}.

This is an operator from the class of
∨
-positively de�nable sets to itself. Note

that Lgen
k+1(Y ) holds i� StLgenk (Y ) is generic as a

∨
-positive de�nable set (which

remember means that writing StLgenk (Y ) as a suitable countable increasing union

of positively de�nable sets Un say, one of the Un's is generic). By Remark 2.2, we
get

Remark 2.3. S := StLgenk (Y ) satis�es S = S−1. If additionally Lgen
k (Y ), then

1 ∈ S, so S is symmetric. Even more: S can be expressed by a disjunction of
positive formulas which are closed under inversion; if additionally Lgen

k (Y ), then
these formulas can be chosen to contain 1, so they are symmetric.

As already mentioned, the above de�nitions and facts have obvious counterparts
with �generic� replaced by �thick�. In the rest of the paper, we can work with any of
these two versions, so we will be writing L in place of Lgen or Lthick. An exception
is the next remark which holds for Lthick.
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Remark 2.4. When G = Aut(C) is the automorphism group of a monster model of
a stable theory T , and Y is de�nable (over C), then Lthick

k (Y ) holds for all k ∈ ω
if and only if Y does not fork over ∅. (Here, Lthick

k (Y ) is computed in (G, ·,C, ·)
with C equipped with its original stable structure.)

Proof. Let T = Th(C). The structure in which we will be working is (G, ·,C, ·),
with C equipped with its original stable structure.

(←). It is enough to show this implication working in a monster model
(G∗, ·,C∗, ·) � (G, ·,C, ·) (as neither the de�nition of Lthick

k (Y ) nor non-forking
changes under passing to an elementary extension). We argue by induction on k.
If Y does not fork over ∅, then Y 6= ∅, so Lthick

0 (Y ). For the induction step,
consider any Y which does not fork over ∅. By inductive hypothesis, it is enough
to show that

S := {g ∈ G∗ : gY ∩ Y does not fork over ∅}

is thick. Take p∗ ∈ S(C∗) which does not fork over ∅ and contains Y . By sta-
bility, we know that the orbit G∗ · p∗ is bounded (of cardinality at most 2|T |), so
StabG∗(p

∗) is a bounded index subgroup of G∗. Write explicitly Y (x) = ϕ(x, ā).
Then StabG∗(p

∗) is contained in

S ′ := {g ∈ G∗ : gY ∈ p∗} = {g ∈ G∗ : ϕ(x, gā) ∈ p∗} = {g ∈ G∗ : C∗ |= dp∗ϕ(gā)}.

By stability, S ′ is a de�nable subset of G∗ (in the sense of the structure
(G∗, ·,C∗, ·)). All of this implies that S ′ is thick, as otherwise, by the su�cient
saturation of (G∗, ·,C∗, ·), we would get a sequence (gi)i<(2|T |)+ of elements of

G∗ such that g−1
j gi /∈ S ′ for all i < j < (2|T |)+, which contradicts the fact that

[G∗ : StabG∗(p
∗)] < (2|T |)+. On the other hand, S ′ is clearly contained in S.

(→). Suppose Y forks over ∅. Then, by stability, Y k-divides over ∅ for some k.
Then one can easily check that Lthick

k−1 (Y ) does not hold. We will check it for k = 2
and k = 3, leaving the general case for the reader.
Suppose Y 2-divides over ∅. Then, by the strong ℵ0-homogeneity of C, there

are g0, g1, · · · ∈ G such that for all i < j, giY ∩ gjY = ∅. If Lthick
1 (Y ) holds,

then {g : gY ∩ Y 6= ∅} is thick, so there are i < j such that g−1
j giY ∩ Y 6= ∅, a

contradiction. (Note that this argument does not work for �generic� in place of
�thick�.)
Suppose Y 3-divides over ∅. Then there are g0, g1, · · · ∈ G such that for all

i < j < k, giY ∩ gjY ∩ gkY = ∅, and for all i and j, gigj = gi+j. Suppose for a
contradiction that Lthick

2 (Y ) holds. Then there are i < j such that Lthick
1 (g−1

i gjY ∩
Y ) holds. Hence, we can �nd k < l such that (g−1

i gjY ∩ Y ) ∩ (g−1
k glg

−1
i gjY ∩

g−1
k glY ) 6= ∅. In particular, gjY ∩ giY ∩ gl−k+jY 6= ∅, a contradiction as i < j <
l − k + j. �

Let us �nish with the following easy remark.
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Remark 2.5. (1) Let Y (x, ȳ) ⊆ Y ′(x, ȳ) ⊆ X(x) be
∨
-positively de�nable sets.

Then Lk(Y (x, ȳ)) ⊆ Lk(Y ′(x, ȳ)) (as
∨
-de�nable sets in variables ȳ). In particular,

if the tuple ȳ is empty, then �Lk(Y ) holds� implies �Lk(Y ′) holds�.
(2) Let Y (x, ȳ) ⊆ X(x) be a

∨
-positively de�nable set. Then for every k ∈

ω, Lthick
k (Y (x, ȳ)) ⊆ Lgen

k (Y (x, ȳ)). In particular, if the tuple ȳ is empty, then
�Lthick

k (Y ) holds� implies �Lgen
k (Y ) holds�.

2.3. Means and stabilizers. Let X be a G-set. By a G-lattice we mean a family
of subsets of X including ∅ and X, which is closed under G-translations, and
intersections and unions of pairs.

De�nition 2.6. Let G be a group acting on X, D a G-lattice of subsets of X.
A mean is a monotone, (non-negative), translation-invariant function m : D → R
satisfying m(∅) = 0, and for Y, Z ∈ D

m(Y ∪ Z) = m(Y ) +m(Z)−m(Y ∩ Z).

The mean m is normalized, if m(X) = 1.
Given a mean m and ε ∈ R, the ε-stabilizer of a set Y ⊆ X is de�ned to be

Stε(Y ) := {g ∈ G : m(gY ∩ Y ) > (1− ε)m(Y )}.

Lemma 2.7. Let X be a G-set and D a G-lattice. Let m be a mean on D (so
m(X) <∞), and let W ∈ D satisfy m(W ) > 0. Then:

(1) St1(W ) = {g ∈ G : m(gW ∩W ) > 0} is thick (so generic).
(2) We have Lk(W ) for all k (working in (G, ·, X, ·,W, . . . )).

Proof. (1) For some n ∈ N we have n · m(W ) > m(X). Suppose St1(W ) is not
n-thick. Then one can �nd gi ∈ G, i = 1, . . . , n, satisfying g−1

j gi /∈ St1(W ) for all

i < j. Therefore, m(giW ∩ gjW ) = m(g−1
j giW ∩W ) = 0 for all i < j. Hence,

n ·m(W ) ≤ m(X), a contradiction.

(2) Let us work with L = Lthick which clearly implies the version with L =
Lgen. Without loss, we can work in a monster model (G∗, ·, X∗, ·,W ∗, . . . ) �
(G, ·, X, ·,W, . . . ). To see this, apply a standard construction with incorporat-
ing m to the language (as the collection of functions mϕ(x,ȳ), where mϕ(x,ȳ)(b̄) :=
m(ϕ(x, b̄)) when it is de�ned, and say symbol ∞ otherwise), extending to the
monster model, and taking the standard part; this yields a mean (which we still
denote by m) on a certain G∗-lattice of subsets of X∗, includingW ∗, and such that
m(X∗) = m(X) <∞ and m(W ∗) = m(W ) > 0. So without loss (G, ·, X, ·,W, . . . )
is a monster model.
We argue by induction on k. For k = 0, m(W ) > 0 ensures L0(W ). For higher

k, we know by induction that Lk−1(gW ∩W ) holds whenever m(gW ∩W ) > 0.
Thus, {g ∈ G : Lk−1(gW ∩W )} is thick by (1), so Lk(W ) holds by the su�cient
saturation of the model and the de�nition of Lk. (Note that Lk−1(gW ∩ W )
is a

∨
-positively de�nable set

∨
iDi(g), so saturation is needed to deduce that

{g ∈ G : Di(g)} is thick for some i.) �
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Remark 2.8. In fact, the ideal Im = {Y : m(Y ) = 0} is an S1-ideal, i.e. Im is a G-
invariant ideal on the lattice D such that wheneverW ∈ D and there are arbitrary
long �nite sequences (gi) of elements of G such that giW ∩ gjW ∈ I, then W ∈ I.
The stabilizer St1 can be de�ned for any S1-ideal I as {g : gW ∩W /∈ I}, and
Lemma 2.7 continues to hold for W /∈ I. The assumption on m′ in Proposition
2.10 can be replaced by: D′ carries an S1-ideal.

Lemma 2.9. Let X be a G-set and D a G-lattice. Let m be a mean on D. Then,
for any Z ∈ D and ε1, ε2 ∈ R, Stε1(Z) Stε2(Z) ⊆ Stε1+ε2(Z).

Proof. The natural argument uses symmetric di�erences of sets, but here our lat-
tice is not closed under set-theoretic di�erence, so we will mimic means of symmet-
ric di�erences. (In fact, using Proposition 2.20, we could work with the Boolean
algebra generated by D and use symmetric di�erences, but we do not do it here
to keep this argument self-contained and completely elementary.)
Note that, by the invariance of m, for any ε we have

(†) g ∈ Stε(Z) ⇐⇒ m(gZ) +m(Z)− 2m(gZ ∩ Z) < 2εm(Z).

Consider any gi ∈ Stεi(Z) for i = 1, 2. Then, m(giZ) + m(Z) − 2m(giZ ∩ Z) <
2εim(Z) for i = 1, 2. Hence, by invariance, we easily get

m(g1g2Z) + 2m(g1Z) +m(Z)− 2m(g1g2Z ∩ g1Z)− 2m(g1Z ∩Z) < 2(ε1 + ε2)m(Z).

By (†), it is enough to show that the left hand side of the above inequality is greater
than or equal to m(g1g2Z) +m(Z)−2m(g1g2Z ∩Z). By the modularity of m, this
is easily seen to be equivalent to m(g1Z ∪ (g1g2Z ∩ Z)) ≥ m(g1Z ∩ (g1g2Z ∪ Z))
which is true by the monotonicity of m. �

The following proposition is our strong version of the Massicot-Wagner elabo-
ration of the stabilizer theorem of the �rst author. It will be the engine for most
of our main results. We will actually need it only in case X = G, but the more
general statement clari�es some aspects of the proof. Note that when X = G,
the conclusion Y N ⊆ St1(BA) implies that Y N ⊆ BAA−1B−1. A suitable version
also holds for approximate groups (yielding information on amenable approximate
groups as in Massicot-Wagner), but we will stick with the global assumptions.

Proposition 2.10. Let A ⊆ X, B ⊆ G, N ∈ N. Let D′ be the set of �nite
intersections of translates gB. Let D be a G-lattice including A and B′A for
B′ ∈ D′. Let m be an invariant mean on D, m(A) > 0, and m′ an invariant
mean on the lattice generated by D′, with m′(B) > 0. Then there exists a generic,
symmetric set Y ⊆ G that is positively de�nable in (G, ·, B) over parameters from
G, and such that Y N ⊆ St1(BA).

Proof. We use the mean m′ only for the largeness of B. Namely, by Lemma 2.7,
we have Lk(B) for all k ∈ ω. We will show:
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(**) for some k and B′ ∈ D′ with B′ ⊆ B and Lk+1(B′), the set Y := StLk(B
′)

is generic as a
∨
-de�nable set, and Y N ⊆ St1(B′A).

This means that if we present (using Remark 2.3 and the comments preceding
it) Y as

∨
n Yn with the Yn's increasing, symmetric and positively de�nable over

G, then some Yn is generic, and, of course, Y N
n ⊆ Y N . So (**) will su�ce.

Let ε = 1/N . Let f(k) be the in�mum of m(B′A) over all B′ ∈ Lk ∩ D′
with B′ ⊆ B. So 0 < m(A) ≤ f(k) ≤ m(X). Thus, we cannot have
f(l) ≥

√
1 + εf(l − 1) for all l > 0. Fix l > 0 with f(l) <

√
1 + εf(l − 1).

Let λ = f(l)
√

1 + ε. Let B′ ∈ D′ satisfy
(***) Ll(B′) and m(B′A) < λ.

We will show that any such B′ satis�es (**) (with k = l−1.) Let Y = StLl−1
(B′).

Since B′ ∈ Ll, Y is generic as a
∨
-de�nable set. For g ∈ Y we have Ll−1(gB′∩B′),

so

m(gB′A ∩B′A) ≥ m((gB′ ∩B′)A) ≥ f(l − 1) > f(l)/
√

1 + ε > m(B′A)/(1 + ε).

Hence, g ∈ Stε(B
′A). So Y ⊆ Stε(B

′A). By Lemma 2.9, for any Z, Stε(Z)N ⊆
StNε(Z). Thus, we conclude that Y N ⊆ St1(B′A), i.e. m(gB′A ∩ B′A) > 0 for
g ∈ Y N . This proves (**). �

We will also need the following corollary of the proof of Proposition 2.10.

Corollary 2.11. Let A ⊆ X = G, B ⊆ P(G), N ∈ N. Put D′ = {g1B∩· · ·∩gnB :
B ∈ B, g1, . . . , gn ∈ G}. Let D be a G-lattice containing D′ and including A and
B′A for B′ ∈ D′. Let m be an invariant mean on D with m(A) > 0 and m(B) > 0
for B ∈ B. Then there exist l ∈ N>0, λ ∈ R, B ∈ B and g1, . . . , gn ∈ G such that
for B′ := B ∩ g1B ∩ · · · ∩ gnB we have

Ll(B′) and m(B′A) < λ,

and whenever E ∈ B and h1, . . . , hm ∈ G are chosen so that for E ′ := E ∩ h1E ∩
· · · ∩ hmE one has Ll(E ′) and m(E ′A) < λ, then S := StLl−1

(E ′) is generic (as a
set
∨
-de�nable in (G, ·, E)), symmetric, and SN ⊆ E ′A(E ′A)−1 ⊆ EA(EA)−1.

The above corollary will be used later for N = 8 and for N = 16.

2.4. From pre-mean to mean. We show how to extend a pre-mean to a mean
canonically; if the pre-mean is G-invariant, the resulting mean will therefore be
G-invariant, too. This will be essential in the proofs of the main results of Section
2.

De�nition 2.12. A normalized mean on a lattice (L,∪,∩) is a monotone function
ρ : L→ [0, 1], satisfying:

ρ(Y ∪ Y ′) = ρ(Y ) + ρ(Y ′)− ρ(Y ∩ Y ′),
and ρ(∅) = 0, ρ(L) = 1.
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Whenever we present a type-de�nable set Z as an intersection
⋂
i Zi, we mean

that the Zi's are de�nable, i ranges over a directed set (I,<), and Zj ⊆ Zi for
i < j.
Let E =

⋂
i∈I Ri be a type-de�nable equivalence relation on a de�nable set X,

where without loss each Ri is re�exive and symmetric.
Working in the monster model, we write Y/E for the image of Y ⊆ X in X/E,

and Y E for the pullback of Y/E in X. For a binary relation R on X, and Y ⊆ X,
by R ◦ Y we mean {x ∈ X : (∃y ∈ Y )R(y, x)}. In particular, Y E = E ◦ Y .
The following de�nition and lemma can be read over any base set of parameters.

De�nition 2.13. A pre-mean for X/E is a monotone function m from de�nable
subsets ofX into [0, 1], withm(∅) = 0, m(X) = 1, andm(Y ∪Y ′) ≤ m(Y )+m(Y ′),
such that equality holds whenever (Ri ◦ Y ) ∩ Y ′ = ∅ for some i.

By compactness, the condition �(Ri ◦ Y ) ∩ Y ′ = ∅ for some i� is equivalent to
�(E ◦ Y ) ∩ Y ′ = ∅�.

Lemma 2.14. Let m be a pre-mean for X/E. Then m induces a normalized mean
ν on the lattice of sets Y/E, with Y type-de�nable, or equivalently on the lattice
of type-de�nable sets Y with Y E = Y , in the following way

ν(Y ) := inf{m(D) : D de�nable, Y ⊆ D}.

Proof. Let L be the lattice of all
∧
-de�nable sets Y with Y E = Y . For Y ∈ L,

de�ne

ν(Y ) = inf{m(D) : D de�nable, Y ⊆ D}.
Clearly ν(∅) = 0, ν(X) = 1, ν is monotone, and ν(Y ∪ Y ′) ≤ ν(Y ) + ν(Y ′).
If Y, Y ′ ∈ L are disjoint, then

∧
iRi(y, y

′) ∧ y ∈ Y ∧ y′ ∈ Y ′ is inconsistent.
By compactness, for some i and some de�nable D ⊇ Y and D′ ⊇ Y ′, we have
(Ri ◦ D) ∩ D′ = ∅. As m is a pre-mean, we have m(D ∪ D′) = m(D) + m(D′),
and likewise for any de�nable subsets of D,D′. Hence, in this case, ν(Y ∪ Y ′) =
ν(Y ) + ν(Y ′).
Now, L is not complemented, but we do have:

Claim 1: Let Y ⊆ Z be both in L. For any ε > 0 there exists Y ′ ⊆ Z, Y ′ ∈ L, Y ′
disjoint from Y , and with ν(Y ) + ν(Y ′) ≥ ν(Z)− ε.

Proof. Write Y =
⋂
k∈K Yk with de�nable Yk such that Ri(k) ◦ Yj(k) ⊆ Yk (here

i(k) ∈ I and j(k) ∈ K are some functions of k). Similarly write Z =
⋂
l Zl. Find

k such that ν(Y ) ≥ m(Yk)− ε. We have

Yj(k) ∩Ri(k) ◦ (X \ Yk) = ∅.
Let

Y ′ = E ◦ (Z \ Yk) = E ◦

(⋂
l

Zl \ Yk

)
=
⋂
i,l

Ri ◦ (Zl \ Yk).
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Then Y ′ ∈ L, and Y ′ ⊆ E ◦ Z = Z. Also, Y ′ ⊆ E ◦ (X \ Yk) ⊆ Ri(k) ◦ (X \ Yk), so
Y ∩ Y ′ = ∅. Finally, ν(Y ′) = infi,lm(Ri ◦ (Zl \ Yk)) ≥ inf lm(Zl \ Yk), so

ν(Y ′) +m(Yk) ≥ inf
l
m(Zl \ Yk) +m(Yk) ≥ inf

l
m(Zl) = ν(Z)

As m(Yk) ≤ ν(Y ) + ε, we obtain ν(Y ′) + ν(Y ) + ε ≥ ν(Z) as required. �(claim)

From this, the equality ν(Y ∪ Z) = ν(Y ) + ν(Z) − ν(Y ∩ Z) can be shown
as follows. Take any ε > 0. Find Y ′ ∈ L such that Y ′ ⊆ Y , Y ′ disjoint from
Y ∩ Z, and δ1 := ν(Y )− ν(Y ′)− ν(Y ∩ Z) ≤ 1

2
ε. Similarly, �nd Z ′ ∈ L such that

Z ′ ⊆ Z, Z ′ disjoint from Y ∩ Z, and δ2 := ν(Z) − ν(Z ′) − ν(Y ∩ Z) ≤ 1
2
ε. Then

Y ∩ Z, Y ′, Z ′ are pairwise disjoint subsets of Y ∪ Z. Finally, �nd T ∈ L such that
T ⊆ Y ∪ Z, T disjoint from Y ∩ Z, and δ := ν(Y ∪ Z) − ν(T ) − ν(Y ∩ Z) ≤ ε.
Put Y ′′ = Y ′ ∪ (T ∩ Y ) ∈ L and Z ′′ = Z ′ ∪ (T ∩ Z) ∈ L. Then Y ′′, Z ′′ and
Y ∩Z are pairwise disjoint subsets of Y ∪Z. Put T ′′ = Y ′′ ∪Z ′′ ∈ L. We see that
δ′′ := ν(Y ∪Z)−ν(T ′′)−ν(Y ∩Z) ≤ δ ≤ ε and T ′′ is disjoint from Y ∩Z. Moreover,
δ′′1 := ν(Y )− ν(Y ′′)− ν(Y ∩ Z) ≤ δ1 ≤ 1

2
ε and δ′′2 := ν(Z)− ν(Z ′′)− ν(Y ∩ Z) ≤

δ2 ≤ 1
2
ε. Note also that δ′′1 , δ

′′
2 , δ
′′ ≥ 0.

We get |ν(Y ∪Z)−ν(Y )−ν(Z)+ν(Y ∩Z)| = |δ′′+ν(T ′′)−ν(Y )−ν(Z)+2ν(Y ∩
Z)| = |δ′′−(ν(Y )−ν(Y ′′)−ν(Y ∩Z))−(ν(Z)−ν(Z ′′)−ν(Y ∩Z))| = |δ′′−δ′′1−δ′′2 |.
Since δ′′ ∈ [0, ε] and δ′′1 , δ

′′
2 ∈ [0, 1

2
ε], we see that |δ′′ − δ′′1 − δ′′2 | ≤ ε. Letting ε→ 0,

we obtain the desired equality. �

Lemma 2.14 will be su�cient to deal with Case 1 in Subsection 2.6, i.e. to prove
Theorem 2.34. In order to deal with Case 2 and prove Theorem 2.35, we will need
some variant of this lemma. Namely, suppose that the type-de�nable equivalence
relation E is on a de�nable group G.

De�nition 2.15. A G-pre-mean for G/E is a pre-mean for G/E such that m(Y ∪
Y ′) = m(Y ) + m(Y ′) whenever ((g1Ri ∩ · · · ∩ gnRi) ◦ Y ) ∩ Y ′ = ∅ for some
g1, . . . , gn ∈ G and some i ∈ I.

The following variant of Lemma 2.14 follows from Lemma 2.14.

Corollary 2.16. Let m be a G-pre-mean for X/E. Then m induces a normalized
mean ν on the lattice of type-de�nable sets Y with Y (g1E ∩ · · · ∩ gnE) = Y for
some g1, . . . , gn ∈ G, in the following way

ν(Y ) := inf{m(D) : D de�nable, Y ⊆ D}.

2.5. Means and measures. In this subsection, we will prove that, in a certain
general context, the existence of an invariant mean is equivalent to the existence of
an invariant measure on an appropriate space. This is interesting in its own right,
but also yields model-theoretic absoluteness of various notions of �amenability�, i.e.
the existence of invariant measures on appropriate spaces computed for a given
model M does not depend on the choice of M .
Let us recall some de�nitions from measure theory.
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De�nition 2.17. Let R be a ring of subsets of a given set X, namely closed under
�nite unions and di�erences (for example given by a Boolean algebra of subsets of
X).
1) A content on R is a function m : R → [0,+∞] which is �nitely additive and
satis�es m(∅) = 0.
2) A pre-measure on R is a content which is σ-additive, namely if (An)n<ω is
a sequence of pairwise disjoint members of R whose union A is also in R, then
m(A) =

∑
nm(An).

3) A measure is a pre-measure on a σ-algebra of subsets of a given set.

A content m on a ring R of subsets of X is called σ-�nite if X is the union of
an increasing sequence (Xn)n<ω of elements of R with m(Xn) <∞.

Fact 2.18 (Carathéodory extension theorem). Let ν be a σ-�nite pre-measure on
a ring R of subsets of X. Then there is a unique extension of ν to a measure on
the σ-algebra σ(R) generated by R.

From the proof, or from a more precise statement which says that the extended
measure (restricted to σ(R)) is just the outer measure induced by ν, it follows
that if R is a G-ring (for an action of a group G on X) and ν is G-invariant, then
so is the extended measure. It is clear that the converse of the above theorem
is also true, i.e. if a content ν on R extends to a measure on σ(R), then ν is a
pre-measure.
When (Xn)n<ω is a descending sequence of sets whose intersection is empty, we

will write Xn ↓ ∅; when (Xn)n<ω is an ascending sequence of sets whose union is
X, we will write Xn ↑ X.

Remark 2.19. Let ν be a content on a ring R of subsets of X taking only �nite
values. Then ν is a pre-measure if and only if for every sequence (Xn)n<ω of sets
from R such that Xn ↓ ∅ one has limn ν(Xn) = 0 (in this case we say that ν is
continuous at 0). If R is a Boolean algebra, these conditions are also equivalent to
the condition that for every sequence (Xn)n<ω of sets from R such that Xn ↑ X
one has limn ν(Xn) = ν(X).

Proposition 2.20. If ρ is a normalized mean on a lattice (L,∩,∪) of subsets
of a set X, then it extends uniquely to a content ν on the Boolean algebra B(L)
generated by L. If L is a G-lattice and ρ is G-invariant, then so is ν.

Proof. Case 1: L is �nite, say equal to {A0, . . . , An}.
It is clear that there is a unique possible candidate for ν, namely ν is determined

by the formulas

ν
(
A
ε(0)
0 ∩ · · · ∩ Aε(n)

n

)
= ρ

 ⋂
i∈∆+

ε

Ai

− ρ
(

⋂
i∈∆+

ε

Ai) ∩ (
⋃
i∈∆−ε

Ai)

 ,
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for any ε ∈ {0, 1}n+1, where ∆+
ε := {i ≤ n : ε(i) = 1}, ∆−ε := {i ≤ n : ε(i) = 0},

and A0
i := X \ Ai, A1

i := Ai. This follows by �nite additivity of ρ and the fact
that each element of B(L) can be (uniquely) written as a (disjoint) union of sets

of the form A
ε(0)
0 ∩ · · · ∩ Aε(n)

n .
Conversely, it is clear that when we de�ne ν be the above formulas on the atoms

of B(L) and then extend additively, then we get a content. It is also clear that
if ρ is G-invariant, so is ν. The remaining thing to check is that ν extends ρ, i.e.
ν(Ak) = ρ(Ak) for all k ≤ n.
We argue by induction on n, where the base induction step for n = 0 is clear.

Assume the conclusion holds for numbers less then a given n > 0. It is enough to
show that ν(An) = ρ(An).

ν(An) =
∑
ε∈2n

ρ

An ∩ ⋂
i∈∆+

ε

Ai

− ρ
An ∩ (

⋂
i∈∆+

ε

Ai) ∩ (
⋃
i∈∆−ε

Ai)

 = S1 + S2,

where

S1 =
∑
ε∈2n−1

ρ

An ∩ An−1 ∩
⋂
i∈∆+

ε

Ai

− ρ
An ∩ An−1 ∩ (

⋂
i∈∆+

ε

Ai) ∩ (
⋃
i∈∆−ε

Ai)

 ,

S2 =
∑
ε∈2n−1

ρ

An ∩ ⋂
i∈∆+

ε

Ai

− ρ
An ∩ (

⋂
i∈∆+

ε

Ai) ∩ (An−1 ∪
⋃
i∈∆−ε

Ai)

 .

By the modularity of ρ,

S2 =
∑

ε∈2n−1 ρ
(
An ∩

⋂
i∈∆+

ε
Ai
)
− ρ

(
An ∩ (

⋂
i∈∆+

ε
Ai) ∩ (

⋃
i∈∆−ε

Ai)
)

−ρ
(
An ∩ An−1 ∩

⋂
i∈∆+

ε
Ai
)

+ ρ
(
An ∩ An−1 ∩ (

⋂
i∈∆+

ε
Ai) ∩ (

⋃
i∈∆−ε

Ai)
)
.

Thus, S1 + S2 =
∑

ε∈2n−1 ρ
(
An ∩

⋂
i∈∆+

ε
Ai
)
− ρ

(
An ∩ (

⋂
i∈∆+

ε
Ai) ∩ (

⋃
i∈∆−ε

Ai)
)
,

which is equal to ρ(An) by induction hypothesis. Thus, the induction step has
been completed.

Case 2: L is arbitrary.
For uniqueness notice that any content on B(L) extending ρ is determined by

its restrictions to all Boolean algebras generated by �nite sublattices of L and
that these restrictions are unique by Case 1. To show existence, for any �nite
sublattice L0 ⊆ L let νL0 be the unique content on B(L0) extending ρ|L0 , which
exists by Case 1. Then note that by uniqueness in Case 1,

⋃
L0
νL0 is the desired

content. �

The next easy example shows that it may happen that a mean ρ is continuous
at 0, but the unique extension ν to a content on the generated Boolean algebra is
not continuous at 0, i.e. ν is not a pre-measure and so it cannot be extended to a
measure.
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Example 2.21. Take any in�nite set X and present it as an increasing union of
sets Xn. Let the lattice L consist of ∅, X0, X1, . . . , X. De�ne a mean on L by:
ρ(∅) = 0, ρ(X) = 1, ρ(Xn) = 1

2
. Then, if An ↓ ∅, where An ∈ L, then eventually

An = ∅, so ρ is continuous at 0. Let ν be the unique extension of ρ to a content
on B(L). Then X \Xn ↓ ∅, but lim ν(X \Xn) = 1

2
6= 0, so ν is not a pre-measure.

The means that we are interested in come from pre-means, and we will see that
this rules out obstacles as in the above example.
From now on, we work in models of a given theory T . As is well-known, a

de�nable family of de�nable sets is given by a formula ϕ(x̄, ȳ), in the sense that
the family is precisely the collection of sets de�ned by the formulas ϕ(x̄, b̄) as b̄
varies (over a given model, or over the monster model). We generalize this to
the notion of a

∨
-de�nable family (of de�nable sets), given now by a collection

{ϕi(x̄, z̄i) : i ∈ I} of formulas. Namely, the family is the collection of sets de�nable
by formulas ϕi(x̄, b̄i) for i ∈ I and varying parameters b̄i.

De�nition 2.22. We will say that a
∨
-de�nable family E := {ϕi(x, y, z̄i) :

i ∈ I, z̄i belongs to any model} de�nes an equivalence relation if for every model
M , EM :=

⋂
EM is an (M -type-de�nable) equivalence relation, where EM :=

{ϕi(x, y, b̄i) : i ∈ I, b̄i ⊆M}.

By a standard trick, we can and do assume that I is a directed set and for every
i < j, (∀z̄i)(∃z̄j)(ϕj(x, y, z̄j)→ ϕi(x, y, z̄i)).
The above de�nition is introduced in order to capture for example the following

situations. A ∅-type-de�nable equivalence relation E =
⋂
i∈I Ri(x, y) is de�ned by

the
∨
-de�nable family {Ri(x, y) : i ∈ I} (so here there are no parametric variables

z̄i). In particular, the relation of lying in the same left [resp. right] coset of a ∅-type-
de�nable subgroup H of a ∅-de�nable group G is de�ned by a

∨
-de�nable family

(without parametric variables). To get another important example, consider any ∅-
type-de�nable subgroup H =

⋂
i∈I Xi (where I is directed and Xj ⊆ Xi whenever

i < j). Put E = {G(x) ∧G(y) ∧ z−1(yx−1)z ∈ Xi : i ∈ I, z} (where for z /∈ G and
a ∈ G we put z−1az := a). Then, for any model M , EM is the M -type-de�nable
equivalence relation of lying in the same right coset of

⋂
g∈G(M) H

g. More generally,

when G is equipped with a
∨
-de�nable group topology as in Subsection 2.7, then

the relation of lying in the same left [resp. right] coset of the in�nitesimals (i.e.
µM from De�nition 2.38) is also naturally de�ned by a

∨
-de�nable family.

From now on, let G be a ∅-de�nable group and let E be an equivalence relation
on G de�ned by a

∨
-de�nable family E := {ϕi(x, y, z̄i) : i ∈ I, z̄i}; we assume

that each ϕi(x, y, z̄i) implies that x, y ∈ G. Work in a monster model M∗; so
G = G(M∗).

De�nition 2.23. By a G-pre-mean for EM we mean a G-pre-mean for G/EM
(see De�nition 2.15), i.e. a monotone function m on de�nable (with parameters)
subsets of G into [0, 1], with m(∅) = 0,m(G) = 1, and m(Y ∪Y ′) ≤ m(Y )+m(Y ′),
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such that equality holds whenever ((g1ϕi(x, y, b̄1)∩· · ·∩gnϕi(x, y, b̄n))◦Y )∩Y ′ = ∅
for some g1, . . . , gn ∈ G, i ∈ I, and b̄1, . . . , b̄n from M .

By a standard construction (incorporating the mean into the language, as was
recalled in the proof of Lemma 2.7(2)), we have the following remark.

Remark 2.24. A G-pre-mean for EM , but de�ned only on M -de�nable sets and
satisfying the �equality criterion� only for g1, . . . , gn ∈ G(M), extends to a G-pre-
mean for EM (de�ned on all de�nable sets). In fact, it extends to a G-pre-mean
for EM∗ , which is clearly also a G-pre-mean for EN for any N ≺ M∗. If the initial
G-pre-mean is G(M)-invariant, then the G-pre-mean for EM∗ is G(M∗)-invariant,
so it is also a G-invariant G-pre-mean for EN for any N ≺M∗.

For a model M , let DEM be the G-lattice of type-de�nable (with parameters)
subsetsD of G(M∗) such that (g1EM∩· · ·∩gnEM)◦D = D for some g1, . . . , gn ∈ G.
From Corollary 2.16 and Remark 2.24, we get:

Corollary 2.25. Let m be a G-pre-mean for EM . Then m induces a normalized
mean ρ on the lattice DEM via ρ(Y ) := inf{m(D) : D de�nable, Y ⊆ D}. If m is
G(M)-invariant, then we can replace it by a G-invariant pre-mean, and then the
induced ρ is G-invariant as well.

The converse is easy is check.

Remark 2.26. A normalized mean ρ on the lattice DEM induces a G-pre-mean m
for EM via m(Y ) := inf{ρ((g1EM ∩ · · · ∩ gnEM) ◦ Y ) : g1, . . . , gn ∈ G}. If ρ is
G(M)-invariant [resp. G-invariant], so is m.

Corollary 2.27. If DEM carries a [G(M)-invariant], normalized mean, then it
carries such a mean ρ which is induced from a [G-invariant] G-pre-mean m for
EM via ρ(Y ) := inf{m(D) : D de�nable, Y ⊆ D}.

Corollary 2.28. The existence of a G-invariant normalized mean on DEM does
not depend either on the choice of M or the monster model M∗ in which the lattice
is computed.

The next proposition is the main observation of this subsection.

Proposition 2.29. Assume EM is G(M)-invariant. The following conditions are
equivalent.

(1) SG/EM (M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant [G-invariant] G-pre-mean for EM .
(3) The lattice DEM carries a G(M)-invariant [G-invariant], normalized mean.

Proof. First note that EM being G(M)-invariant guarantees that G(M) acts nat-
urally on G/EM , which induces an action of G(M) on SG/EM (M).
(1) → (2). Let µ witnesses (1). For an M -de�nable subset D of G de�ne
m(D) := µ(D̄), where D̄ is the set of complete types (over M) of elements of
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D/EM . Since EM is G(M)-invariant, we easily see that m is a G(M)-invariant G-
pre-mean for EM , but de�ned only onM -de�nable sets and satisfying the �equality
criterion� only for g1, . . . , gn ∈ G(M). By Remark 2.24, it extends to an actual
G-invariant G-pre-mean (de�ned on all de�nable sets) for EM .
(2) → (3). This follows from Corollary 2.25.
(3) → (1). Take a G(M)-invariant, normalized mean on DEM . By Corollary 2.27,
there exists a G-invariant, normalized mean ρ induced from a G-invariant G-pre-
mean m for EM via ρ(Y ) := inf{m(D) : D de�nable, Y ⊆ D}. By Proposition
2.20, let ν be the unique extension of ρ to a G-invariant content on the Boolean
algebra B(DEM ). We will show that ν is a pre-measure, which by the Carathédory
theorem can be further extended to a G-invariant measure ν̄ on the generated σ-
algebra σ(B(DEM )). Then µ̄ induces a G(M)-invariant, Borel probability measure
on SG/EM (M) via µ(P ) := µ̄({a ∈M∗ : tp((a/EM)/M) ∈ P}) for any Borel subset
P of SG/EM (M), and the proof will be complete. So it remains to show

Claim 1: ν is a pre-measure.

Proof. Put R := B(DEM ). By Remark 2.19, it is enough to show that for every
sequence (Xn)n<ω of sets from R such that Xn ↑ G one has limn ν(Xn) = 1. Take
any ε > 0. We need to show that ν(Xn) > 1− ε for some n.
One can �nd sets Zk ⊆ Yk (for k ∈ ω) from DEM and natural numbers n0 <

n1 < . . . such that
Xi = (Y0 \ Z0) t · · · t (Yni \ Zni)

for every i < ω (where t stands for disjoint union). Then

ν(Xi) =

ni∑
k=0

ρ(Yk)− ρ(Zk).

For each k we can choose a de�nable set Dk ⊇ Yk such that
∞∑
k=0

m(Dk)− ρ(Yk) < ε.

For each k let Fk be the family of all sets F de�nable over the set of parameters
over which Zk is de�ned and such that Zk ⊆ F ⊆ Dk. Then

⋂
Fk = Zk for every

k. Therefore,

G =
⋃
i

Xi =
⋃
k

Yk \ Zk ⊆
⋃
k

Dk \ Zk =
⋃
k

(
Dk \

⋂
Fk
)

=
⋃
k

⋃
F∈Fk

Dk \ F,

so by the saturation of M∗, there are k1 < · · · < kn < ω and Fk1 ∈ Fk1 , . . . , Fkn ∈
Fkn such that

G = (Dk1 \ Fk1) ∪ · · · ∪ (Dkn \ Fkn).

(Note that this is not necessarily a disjoint union.)
We also have Zkj ⊆ Fkj . Since Zkj ∈ DEM , by compactness, it is easy to see

that there are de�nable sets F ′kj ∈ Fkj contained in Fkj such that ((g1ϕi(x, y, b̄1)∩



24 EHUD HRUSHOVSKI, KRZYSZTOF KRUPI�SKI, AND ANAND PILLAY

· · · ∩ gnϕi(x, y, b̄n)) ◦ F ′kj) ∩ (Dkj \ Fkj) = ∅ for some g1, . . . , gn ∈ G, i ∈ I, and

b̄1, . . . , b̄n from M (all depending on j of course). Hence, m((Dkj \ Fkj) ∪ F ′kj) =

m(Dkj \ Fkj) +m(F ′kj), which implies that m(Dkj \ Fkj) ≤ m(Dkj)−m(F ′kj).
From all these observations, we get

1 = m(G) = m(
⋃n
j=1Dkj \ Fkj) ≤

∑n
j=1m(Dkj \ Fkj) ≤∑n

j=1m(Dkj)−m(F ′kj) < (
∑n

j=1 ρ(Ykj)− ρ(Zkj)) + ε.

Hence, ν(Xkn) ≥ ν((Yk1 \ Zk1) t · · · t (Ykn \ Zkn)) =
∑n

j=1 ρ(Ykj) − ρ(Zkj) >

1− ε. �(claim)

The proof of the proposition is complete . �

Remark 2.30. In Proposition 2.29, one can add one more equivalent condition:

(4) The G(M)-lattice DEM of type-de�nable subsets D of G(M∗) such that
EM ◦D = D carries a G(M)-invariant, normalized mean.

Proof. The implication (3) → (4) is trivial, while (4) → (1) follows similarly to
(3) → (1) (note that, in the proof of (3)→ (1), it is enough to work with G(M)-
invariant pre-means, means and contents in order to get that µ is G(M)-invariant).

�

The reason why we work with the more complicated lattice DEM instead of DEM
is that the former is a G-lattice which is needed in Case 2 in Subsection 2.6.
From Corollary 2.28 and Proposition 2.29, we get

Corollary 2.31. Assume EM is G(M)-invariant for every model M . Then, the
existence of a G(M)-invariant, Borel probability measure on SG/EM (M) does not
depend on the choice of M .

For the type-de�nable equivalence relation E(x, y) given by x−1y ∈ H, where H
is a ∅-type-de�nable subgroup of G, Corollary 2.31 specializes to

Corollary 2.32. The existence of a G(M)-invariant, Borel probability measure
on SG/H(M) does not depend on the choice of M .

Corollary 2.31 specializes to more absolutness results in the context of
∨
-

de�nable group topologies, which will be discussed in Subsection 2.7 (see Corollary
2.45).

Remark 2.33. If EM is not G(M)-invariant, then there is no natural (left) ac-
tion of G(M) on SG/EM (M). But we can always replace the family E , by E ′ :=
{ϕi(tix, tiy, z̄i) : i ∈ I, ti, z̄i} (where for a /∈ G or b /∈ G we put ab := b). Then,
for any model M , the induced equivalence relation E ′M will be the intersection
of all gEM for g ranging over G(M). And, by Corollary 2.31, the existence of a
G(M)-invariant, Borel probability measure on SG/E′M (M) does not depend on the
choice of M .
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2.6. Measures, means, and connected components. Now, consider a struc-
tureM , a ∅-de�nable group G, and anM -type-de�nable subgroupH of G. Usually
G will stand for the interpretation of G in a monster model M∗ (i.e. G = G∗ =
G(M∗)); by G(M) we denote the interpretation of G in M .
We will be interested in the following two cases.

Case 1: The type space SG/H(M) (i.e. the space of complete types over M of
left cosets modulo H) carries a G(M)-invariant, Borel probability measure.
The discussion below repeats some arguments from the previous subsection in

a special case, but since this will be the context of the main results of Section 2,
we prefer to write it explicitly.
Let m̄ be a G(M)-invariant, Borel probability measure on SG/H(M). We de�ne

a G(M)-invariant pre-mean (see De�nition 2.13, where the equivalence relation is
xH = yH) m′ on M -de�nable subsets of G, by m′(Y ) := m̄(Ȳ ), where Ȳ is the
set of complete types over M of elements of Y/H.
As in the proof of Lemma 2.7, the standard construction allows us to extend

m′ to a G-invariant pre-mean on M∗-de�nable subsets of G = G(M∗). Note that
this extended pre-mean is de�nable over ∅ in some expansion of the language
(meaning that for any closed interval I and for any formula ϕ(x, ȳ) of the original
language the set {b̄ : m′(ϕ(x, b̄)) ∈ I} is ∅-type-de�nable in this expansion of the
language), and M∗ can be chosen so that M ≺ M∗ in the expanded language.
Next, using Lemma 2.14, we obtain a normalized, G-invariant mean m on DH �
the G-lattice of M∗-type-de�nable subsets Y of G satisfying Y H = Y � which
satis�es m(Y ) = inf{m′(D) : D de�nable, Y ⊆ D}.

Case 2: H is normalized by G(M), and SH\G(M) carries a G(M)-invariant,
Borel probability measure, where the action of G(M) on SH\G(M) is induced by
the action on H\G given by g ∗ (Ha) := gHa = H(ga).
Let m̄ be a G(M)-invariant, Borel probability measure on SH\G(M). As in Case

1, we obtain a G(M)-invariant pre-mean (for the equivalence relation Hx = Hy)
m′ on M -de�nable subsets of G. The standard construction allows us to extend it
to a de�nable over ∅ (in some expansion of the language), G-invariant pre-mean
m′ on M∗-de�nable subsets of G = G(M∗), for some monster model M∗ such
that M∗ � M also in the expand language. Moreover, since H is normalized by
G(M), the standard construction gives us the following additional property of
m′: For any Y and Z de�nable subsets of G, M -de�nable superset D of H, and
g1, . . . , gn ∈ G, if (Dg1 ∩ · · · ∩Dgn)Y ∩ Z = ∅, then m′(Y ∪ Z) = m′(Y ) + m′(Z),
i.e. m′ is a G-pre-mean for H\G, using the terminology from De�nition 2.15. By
Corollary 2.16, we obtain a normalized, G-invariant mean m on D′H � the G-lattice
of M∗-type-de�nable subsets Y of G satisfying (Hg1 ∩ · · · ∩Hgn)Y = Y for some
g1, . . . , gn ∈ G � which satis�es m(Y ) = inf{m′(D) : D de�nable, Y ⊆ D}.
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We are ready to prove the main results of this section. They concern situations
from the above Cases 1 and 2, respectively. We will give a detailed proof of the
�rst theorem and only explain how to modify it to get the second one.
In the rest of this section, we will write Z4 to mean ZZZ−1Z−1; Z8 denotes

Z4Z4.

Theorem 2.34. Let H be a ∅-type-de�nable subgroup of G, normalized by G(M).
Let N be the normal subgroup generated by H. Then (1)↔ (2)↔ (3)↔ (4)→ (5):

(1) SG/H(M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant pre-mean for G/H on M-de�nable subsets of

G.
(3) There is a G-invariant pre-mean for G/H which is de�nable over ∅ in some

expansion of the language in which M ≺M∗ (enlarging M∗ if necessary).
(4) The lattice DH carries a normalized, G-invariant mean.
(5) G00

M ≤ NG000
M .

Proof. The equivalence of conditions (1)-(4) essentially follows from Proposition
2.29 applied to E := {G(x) ∧G(y) ∧ x−1y ∈ Xi : i ∈ I}, where H =

⋂
i∈I Xi (with

I directed and Xj ⊆ Xi whenever i < j). For that notice that the relation EM in
this special case is just lying in the same left coset of H, so it is G-invariant, and
the lattice DEM coincides with DH .
However, for the reader's convenience, we explain some of these equivalences

more explicitly. By the above discussion of Case 1, any G(M)-invariant, Borel
probability measure on SG/H(M) induces a G(M)-invariant pre-mean on M -
de�nable subsets of G, which then can be extended to a G-invariant pre-mean
m′ on de�nable subsets of G which is de�nable over ∅ in some expansion of
the language in which M ≺ M∗ (enlarging M∗ if necessary). This in turn
induces a normalized, G-invariant mean m on the lattice DH , which satis�es
m(Y ) = inf{m′(D) : D de�nable, Y ⊆ D}. So (1) → (2) ↔ (3) → (4). The
implication (4)→ (1) follows from the implication (3)→ (1) in Proposition 2.29.
It remains to prove (4) → (5). So assume (4). By (4) → (2) and the above

discussion, we have a G-invariant mean m on DH given by m(Y ) = inf{m′(D) :
D de�nable, Y ⊆ D} for some pre-mean m′ satisfying (3).
Let p ∈ SG(M) be a wide type of G, in the sense thatm(DH) > 0 for any D ∈ p.

In order to �nish the proof, it is enough to show that (HpH)4 contains G00
M . Indeed,

then, since pp−1 ⊆ G000
M implies ppp−1p−1 ⊆ G000

M , and so (HpH)4 ⊆ NG000
M , we

get G00
M ≤ NG000

M which is the desired conclusion.
As HpH is an intersection of partial types P over M satisfying HPH = P

and m(P ) > 0 (namely the appropriate HDH with D M -de�nable), it su�ces to
show that for each such P , P 4 contains G00

M . For this, it su�ces to �nd for any
M -de�nable set P ′ containing P a generic, M -type-de�nable set Q = HQH with
Q8 ⊆ P ′4, for then m(Q) > 0 and we can �nd an M -de�nable set Q′ containing
Q such that Q′8 ⊆ P ′4, and we can iterate: �nd a generic, M -type-de�nable
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R = HRH with R8 ⊆ Q′4 and an M -de�nable R′ containing R and satisfying
R′8 ⊆ Q′4, etc., and at the limit take the intersection P ′4 ∩Q′4 ∩R′4 ∩ . . . � an M -
type-de�nable, bounded index, subgroup contained in P ′4, which clearly contains
G00
M . Since this is true for any M -de�nable P ′ containing P , we get G00

M ⊆ P 4.
So consider a partial type P over M satisfying HPH = P and m(P ) > 0.

Consider any M -de�nable P ′ containing P . We will apply Corollary 2.11 to:
X := G, A := P , and the family

B := {HQH : P ⊆ HQH ⊆ P ′ and Q is M -de�nable}

of subsets of G. Recall that D′ is the collection of all intersections g1B∩· · ·∩gnB,
where B ∈ B and g1, . . . , gn ∈ G, and as D take the lattice generated by: D′, the
set A, and all sets B′A for B′ ∈ D′. Note that D ⊆ DH , so our mean m is de�ned
on D. By Corollary 2.11, we �nd l ∈ N, λ ∈ R, B ∈ B and g1, . . . , gn ∈ G such
that for B′ := B ∩ g1B ∩ · · · ∩ gnB we have

(***) Ll(B′) and m(B′A) < λ,

and whenever E ∈ B and h1, . . . , hm ∈ G are chosen so that for E ′ := E ∩
h1E ∩ · · · ∩ hmE one has Ll(E ′) and m(E ′A) < λ, then StLl−1

(E ′) is generic
(as a set

∨
-de�nable in (G, ·, E)), symmetric and has 8th power contained in

E ′P (E ′P )−1 ⊆ E4.
We can �nd M -de�nable sets C and D such that B ⊆ C ⊆ P ′, P ⊆ D and

for C ′ := C ∩ g1C ∩ · · · ∩ gnC, we have m′(C ′D) < λ (where m′ is the pre-mean
on de�nable subsets of G chosen at the beginning of the proof of (4) → (5)).
Now, choose any M -de�nable set Q such that B ⊆ Q ⊆ HQH ⊆ C. Let Q′ =
Q ∩ g1Q ∩ · · · ∩ gnQ. Then B′ ⊆ Q′, so, by (***), we get Ll(Q′). Since Ll(Q′)
is a

∨
-de�nable (over ∅) condition on g1, . . . , gn in the structure (G, ·, Q) and

Q is M -de�nable in the original theory, we see that Ll(Q′) is an M -
∨
-de�nable

condition on g1, . . . , gn in the original theory. On the other hand, m′(C ′D) < λ is
a
∨
-de�nable (over ∅) condition on g1, . . . , gn in the expanded language (in which

m′ is de�nable over ∅). Since M ≺ M∗ also in this expanded language, we can
�nd g1, . . . , gn ∈ G(M) such that Ll(Q′) and m′(C ′D) < λ still holds for the
corresponding Q′ and C ′. Finally, take E := HQH and E ′ := E ∩ g1E ∩ · · ·∩ gnE.
We see that E ∈ B, Ll(E ′) and m(E ′A) < λ.
De�ne Y := StLl−1

(E ′). By the the choice of l and λ, we have that Y =
∨
ν Yν

is generic and Y 8 ⊆ E4 ⊆ P ′4.
As H is normalized by g1, . . . , gn, we have HE ′H = E ′. Since HE ′ = E ′,

we have HYH = Y , and moreover Y is a disjunction of sets Yν positively M -
de�nable in (G, ·, E) and satisfying HYνH = Yν . Indeed, let R(x, ȳ) be a new
predicate. By the approximations to Ll mentioned in and after Remark 2.2, we
have that for any s ∈ ω there are increasing sets Pν,s(R)(ȳ), ν ∈ ω, positively
∅-de�nable in (G, ·, X, ·, R) such that Pν,s(R(gx, ȳ))(ȳ) ⇐⇒ Pν,s(R(x, ȳ))(ȳ) for
all g ∈ G, and Ls(R(x, ȳ)) can be presented as the

∨
-positively de�nable set
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ν Pν,s(R(x, ȳ))(ȳ). In particular, if R(x, ȳ) is positively de�nable in (G, ·, X, ·, E),

then the Pν,s(R)(ȳ) are positively de�nable in (G, ·, X, ·, E) over the same parame-
ters over which R(x, ȳ) is de�ned. Applying this to our situation for s := l−1 and
R(x, y) := (x ∈ (yE ′ ∩ E ′)), we get that Y = {y : Ls(yE ′ ∩ E ′)} can be presented
as
∨
ν Pν,s(R(x, y))(y). Putting Yν(y) = Pν,s(R)(y), we have that Yν is positively

M -de�nable in (G, ·, E), and, since HE ′ = E ′, we get that for any h1, h2 ∈ H:
Yν(h1yh2) ⇐⇒ Pν,s(R(x, h1yh2))(y) ⇐⇒ Pν,s(x ∈ h1yh2E

′ ∩ E ′)(y) ⇐⇒
Pν,s(x ∈ h1yE

′ ∩ E ′)(y) ⇐⇒ Pν,s(x ∈ yE ′ ∩ h−1
1 E ′)(y) ⇐⇒ Pν,s(x ∈

yE ′ ∩ E ′)(y) ⇐⇒ Yν(y). So HYνH = Yν as was claimed at the beginning of
this paragraph.
Since the Yν ⊆ G are positively M -de�nable in (G, ·, E) and E is M -type-

de�nable in the original theory, we easily get that the Yν are M -type-de�nable
in the original theory. Moreover, some Yν will be generic, and HYνH = Yν , and
Y 8
ν ⊂ P ′4. �

In the situation of Case 2, we have

Theorem 2.35. Let H be a ∅-type-de�nable subgroup of G, normalized by G(M).
Let N be the normal subgroup generated by H. Then (1) ↔ (2) ↔ (3) ↔ (4) ↔
(5)→ (6):

(1) SH\G(M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant pre-mean for H\G on M-de�nable subsets of

G.
(3) There is a G-invariant G-pre-mean m′ for H\G (i.e. a G-invariant pre-

mean m′ for H\G such that m′(Z ∪Z ′) = m′(Z) +m′(Z ′) whenever D′Z ∩
Z ′ = ∅ for some M-de�nable superset D of H and D′ = Dg1 ∩ · · · ∩ Dgn

for some g1, . . . , gn ∈ G).
(4) There is a G-invariant G-pre-mean for H\G which is de�nable over ∅ in

some expansion of the language in which M ≺M∗ (enlarging M∗ if neces-
sary).

(5) The lattice D′H carries a normalized, G-invariant mean.
(6) G00

M ≤ NG000
M .

Proof. The equivalence of conditions (1)-(5) essentially follows from Proposition
2.29 applied to E := {G(x) ∧G(y) ∧ yx−1 ∈ Xi : i ∈ I}, where H =

⋂
i∈I Xi (with

I directed and Xj ⊆ Xi whenever i < j). For that notice that the relation EM in
this special case is just lying in the same right coset of H, so it is G(M)-invariant
by the assumption that H is normalized by G(M), and the lattice DEM coincides
with D′H . One should also use the above discussion of Case 2.
It remains to justify (5)→ (6).
So assume (5). By (5)→ (2) and the discussion of Case 2, we have a G-invariant

mean m on D′H given by m(Y ) = inf{m′(D) : D de�nable, Y ⊆ D} for some pre-
mean m′ satisfying (4). We follow the lines of the proof of (4) → (5) in Theorem
2.34, but now it is enough to work with right cosets modulo Hg1 ∩ · · · ∩ Hgn for
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some g1, . . . , gn ∈ G(M) (in place of two-sided cosets of H), e.g. P is a partial
type over M satisfying (Hg1 ∩ · · · ∩Hgn)P = P (for some g1, . . . , gn ∈ G(M)) and
m(P ) > 0. The way how D′H was de�ned is essential to ensure that D ⊆ D′H (and
so m is de�ned on D). �

Conjecture 0.1 follows immediately from Theorem 2.35, taking H := µ:

Corollary 2.36. 1) Let G(M) be a topological group and assume that the members
of a basis of neighborhoods of the identity are de�nable in M . If G is de�nably
topologically amenable, then G00

def,top = G000
def,top.

2) Let G(M) be a topological group. If G(M) is amenable, then G00
top = G000

top.

2.7.
∨
-de�nable group topologies. In Section 1, we recalled two contexts to

deal with topological groups model-theoretically: one with all open subsets being
de�nable, and a more general one with a basis of open neighborhoods at the iden-
tity consisting of de�nable sets. Notice, however, that in each of these contexts
we do not get a natural group topology when passing to elementary extensions.
In order to get a group topology in an arbitrary elementary extension, one usually
considers a more special context with a uniformly de�nable basis of open neigh-
borhoods at the identity (in other words, when a basis of open sets at the identity
is a de�nable family).
As usual, let G be a ∅-de�nable group, and M or N denotes a model. Here,

we extend the last context, for example to cover topologies induced on G(M)
by type-de�nable subgroups of G normalized by G(M). Note that any ∅-type-
de�nable subgroup H =

⋂
i∈I Xi (with the de�nable sets Xi, where without loss

I is a directed set such that Xj ⊆ Xi for i < j), normalized by G(M), can be
viewed as topologizing G(M) in the sense that the family {Xi : i ∈ I} is a basis
of (not necessarily open!) neighborhoods at the identity; but on a bigger model it
will not in general give a topology. It is thus natural to consider a slightly stronger
condition.
We �rst elaborate on some terminology introduced brie�y in Subsection 2.5. By

a
∨
-de�nable family of de�nable subsets of G, we mean a class T = {ϕi(x, ȳi) : i ∈

I, ȳi belongs to any model}, where ϕi(x, ȳi) are some formulas implying G(x). In
any model M ,

T (M) := {ϕi(M, ȳi) : i ∈ I, ȳi ∈M}
is an actual collection of subsets of G(M); also, put

TM := {ϕi(x, ȳi) : ȳi ∈M}.
By a standard trick, we can, and will from now on, assume that I is a directed set,
and for every i < j we have (∀ȳi)(∃ȳj)(ϕj(x, ȳj) → ϕi(x, ȳi)); the last condition
is equivalent to the property that for every model M and i < j, each member
of the de�nable family {ϕi(M, ȳi) : ȳi ∈ M} contains a member of the family
{ϕj(M, ȳj) : ȳj ∈ M}. (In fact, by the aforementioned standard trick, we could
even replace the word �contains� by �equals�, but we will not need it.)
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De�nition 2.37. A
∨
-de�nable group topology on G is a

∨
-de�nable family T =

{ϕi(x, ȳi) : i ∈ I, ȳi} of de�nable subsets of G containing 1 such that in any model
M , T (M) forms a basis of (not necessarily open) neighborhoods of the identity
for a topology on G(M), making the group operations continuous. Equivalently,
for any model M , T (M) consists of subsets of G(M) containing 1, such that each
of the following sets

(1) the intersection of any two members of T (M),
(2) the inversion of any member of T (M),
(3) the conjugate of any member of T (M) by an element of G(M)

contains a member of T (M), and, additionally, if A ∈ T (M), then there exists
B ∈ T (M) with B2 ⊆ A.

It easy to check that in the above de�nition, it is enough to take a su�ciently
saturated model M .
By compactness, a

∨
-de�nable group topology on G is a

∨
-de�nable family

T = {ϕi(x, ȳi) : i ∈ I, ȳi} of de�nable subsets of G containing 1 such that:

(1) For every i, j ∈ I there is k ∈ I such that (∀ȳi)(∀ȳj)(∃ȳk)(ϕk(x, ȳk) →
(ϕi(x, ȳi) ∧ ϕj(x, ȳj))).

(2) For every i ∈ I there is j ∈ I such that (∀ȳi)(∃ȳj)(ϕj(x−1, ȳj)→ ϕi(x, ȳi)).
(3) For every i ∈ I there is j ∈ I such that (∀ȳi)(∀z)(∃ȳj)(ϕj(z−1xz, ȳj) →

ϕi(x, ȳi)).
(4) For every i ∈ I there is j ∈ I such that (∀ȳi)(∃ȳj)((∃x1, x2)(ϕj(x1, ȳj) ∧

ϕj(x2, ȳj) ∧ x = x1 · x2)→ ϕi(x, ȳi)).

Let T = {ϕ(x, z̄i) : i ∈ I, z̄i} be a
∨
-de�nable group topology on G. Work in a

�xed monster model M∗ (so M ≺M∗ by convention).

De�nition 2.38. We let µTM be the M -type-de�nable subgroup
⋂
D∈TM D. When

the identity of T is clear, we write µM .

It is clear that µTM is normalized by G(M).

Remark 2.39. For any A-de�nable set D, there exists an A-type-de�nable set cl(D)
such that for any model M , the closure of D(M) is cl(D)(M). Namely, a ∈ cl(D)
i�
∧
i(∀ȳi)(a·ϕi(x, ȳi)∩D(x) 6= ∅) (more formally,

∧
i(∀ȳi)(∃x)(ϕi(a

−1x, ȳi)∧D(x)).
For a type-de�nable set D =

⋂
iDi (where Dj ⊆ Di for i < j), let

cl(D) =
⋂
i cl(Di). For any su�ciently saturated model M , the closure of

D(M) is cl(D)(M).

Remark 2.40. For P M -type-de�nable, cl(P ) ⊆ PµTM . Indeed, cl(P ) =
⋂
{PH :

H ∈ T }, which formally means that cl(P )(z) is the type
∧
i(∀ȳi)(∃x1, x2)(P (x1)∧

ϕi(x2, ȳi)∧z = x1·x2). In particular, µTM is closed. Similarly, cl(P ) ⊆ µTMP . In fact,
cl(P ) is contained in both P ((µTM)g1 ∩ · · · ∩ (µTM)gn) and ((µTM)g1 ∩ · · · ∩ (µTM)gn)P
for any g1, . . . , gn ∈ G.
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By CT (or just C) we will denote cl(1). Then C =
⋂
T , so it is ∅-type-de�nable,

and it is a normal subgroup of G. It is clear that C ≤ µM for any M . Note that
formally C coincides with µM∗ which happens to be ∅-type-de�nable in the monster
model M∗.
We say that T is strongly Hausdor� if G(M) is Hausdor� in every model M ;

equivalently C = {1}; equivalently,
⋂
F = {1} for some de�nable family F ⊆ T .

Note that, in contrast with de�nable families, T (M) may be Hausdor� for one
M , without T being strongly Hausdor�. This occurs when µTM(M) = {1}, see
Example 2.44. Note also that given a Hausdor� topological group, we can expand
it to a �rst order structure in which there is an even de�nable T which is strongly
Hausdor� and induces the given topology on the group we started from.
De�ne the following G-lattices of subsets of G (a ∅-de�nable group equipped

with a
∨
-de�nable group topology T ).

(1) DµMT � the G-lattice of sets D type-de�nable in M∗ over arbitrary param-
eters, such that DµTM = D.

(2) DµMT
′ � the G-lattice of sets D type-de�nable in M∗ over arbitrary param-

eters, such that ((µTM)g1 ∩ · · · ∩ (µTM)gn)D = D for some g1, . . . .gn ∈ G.
(3) DT � the G-lattice of closed sets D type-de�nable in M∗ over arbitrary

parameters.
(4) DC � theG-lattice of setsD type-de�nable inM∗ over arbitrary parameters,

such that DC = D.

By Remark 2.40, it is clear that DµMT and DµMT
′ are both contained in DT ⊆ DC.

Now, we give an example showing that type-de�nable subgroups lead, in a nat-
ural way, to

∨
-de�nable group topologies.

Example 2.41. Let H =
⋂
i∈I Xi be any ∅-type-de�nable subgroup of G (and

without loss I is directed, and Xj ⊆ Xi whenever i < j). Let T be the union
of all families Ti,m, where Ti,m is the class of m-fold intersections of conjugates
of Xi, for instance Ti,1 = {g−1Xig : g ∈ G}. It is clear that with the order
(i,m) < (j, n) ⇐⇒ i < j ∧m < n, T can be treated as a

∨
-de�nable family of

de�nable subsets of G containing 1. Clearly, for any model M ,
⋂
TM is a type-

de�nable subgroup of G normalized by G(M); it follows that T (M) de�nes a group
topology on G(M).
In case when H is invariant under conjugation by elements of G(M), we can

recover H as the intersection of all M -de�nable neighborhoods of the identity.
All of this works also for H type-de�nable over M (allowing formulas with

parameters from M in the de�nition of
∨
-de�nable group topology).

In case H is a normal subgroup of G, the family T yields the same topology as
the family {Xi : i ∈ I} (where Xi(x) are de�nable sets which do not depend on
any parameters ȳi), µM = C = H does not depend on M , and cl(P ) = PH for any
type-de�nable set P . In particular, DµMT = DµMT

′ = DT = DC for every M .
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Remark 2.42. Example 2.41 shows a connection between
∨
-de�nable group topolo-

gies and G(M)-normal, M -type-de�nable subgroups:

• each
∨
-de�nable group topology T yields the G(M)-normal, M -type-

de�nable subgroup µTM ;
• each G(M)-normal, type-de�nable over ∅ [or over M ] subgroup H yields
the

∨
-de�nable group topology T on G [de�ned over M , if G is de�ned

over M ] described in Example 2.41, such that µTM = H.

However, the former notion, namely that of a
∨
-de�nable group topology is more

precise, as it is a priori given without reference to the particular small model
M . Also, the map from

∨
-de�nable group topologies to G(M)-normal, M -type-

de�nable subgroups (or topologies on G(M)), given by T 7→ µTM , is not injective;
Example 2.41 provides the smallest

∨
-de�nable group topology specializing to a

given topology on G(M), but there can certainly be others, e.g. in the Abelian
case, non-discrete, strongly Hausdor� topologies are never deduced from a single
model in this way (see also Example 2.44).

Remark 2.43. Let us change the notation only for the purpose of this remark. Let
G be an arbitrary topological group. Choose a basis {Xi : i ∈ I} of open sets at
the identity, with Xj ⊆ Xi whenever i < j. Expand the pure group language with
predicates for all Xi's, and denote the resulting structure by M and the resulting
language by L. Let M∗ be a monster model, G∗ = G(M∗) and X∗i = Xi(M

∗).
Then H :=

⋂
X∗i is a ∅-type-de�nable group which is normalized by G = G(M).

So Example 2.41 yields a
∨
-de�nable group topology T which specializes to the

original topology on G. This is the smallest (in a strong sense)
∨
-de�nable group

topology which specializes to the original topology on G, namely, any other such
topology T ′ which is

∨
-de�nable in an expansion of the pure group structure on

G whose language is denoted by L′, and for any model N � M in the sense of
L∪L′, the topology on G(N) given by T is weaker than the one given by T ′. This
shows that Example 2.41 allows us to extend the given group topology on G to
the canonical (i.e. smallest among topologies

∨
-de�nable in arbitrary expansions)

group topology on elementary extensions.

Let us look at a concrete example illustrating some of the above discussions.

Example 2.44. Take M := (Z,+, ·) and G(M) := (Z,+). Take the ∅-type-
de�nable subgroup H :=

⋂
n∈N n!G. The family T from Example 2.41 coincides

with the
∨
-de�nable family {n!G : n ∈ Z}. So T (M) is Hausdor�, but T is

not strongly Hausdor�. Now, consider the de�nable family F = {g · G : g ∈ G}
of de�nable subsets of G containing 0. It is clear that the family T ′ of �nite
intersections of members of F is a strongly Hausdor�

∨
-de�nable group topology

on G, and T (M) and T ′(M) induce on G(M) the same topology. But for every
ℵ0-saturated model M , the topologies T (M) and T ′(M) on G(M) are di�erent
(as the later is Hausdor�, but the former is not).
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We return to the general context where T = {ϕ(x, z̄i) : i ∈ I, z̄i} is a
∨
-

de�nable group topology on G. Recall that the group G(M), with the topology
induced by T (M), is said to be de�nably topologically amenable if there is a
(left) G(M)-invariant, Borel probability measure on SµM\G(M) (equivalently, on
SµMG (M)). A natural question arises, whether the de�nable topological amenability
of (G(M), T (M)) is independent of the choice of M . The positive answer follows
from Corollary 2.31 applied to the family E := {G(x) ∧ G(y) ∧ ϕi(yx−1, z̄i) :
i ∈ I, z̄i}; similarly, applying Corollary 2.31 to the family E := {G(x) ∧ G(y) ∧
ϕi(x

−1y, z̄i) : i ∈ I, z̄i}, we get item (2) of the following corollary.

Corollary 2.45. Let T be a
∨
-de�nable group topology on G. Then:

(1) the de�nable topological amenability of (G(M), T (M)) does not depend on
the choice of M ,

(2) the existence of a G(M)-invariant, Borel probability measure on SG/µM (M)
does not depend on the choice of M .

But the following question remains open.

Question 2.46. 1) Let T be a
∨
-de�nable group topology on G. Does amenability

of (G(M), T (M)) as a topological group depend on the choice of M?
2) Let G be an arbitrary topological group. Let T be the smallest topology among
topologies

∨
-de�nable in expansions of (G, ·) which specialize to the given topology

on G (see Remark 2.43). Does amenability of G (as a topological group) imply
amenability of (G(N), T (N)) for N �M (where T is de�ned in Th(M)).

It is clear that the positive answer to (1) implies the positive answer to (2).
Question (2) is interesting, as it asks whether there is any chance to transfer
(topological) amenability to elementary extensions. (Note that whenever we have
two group topologies T1 ⊆ T2 on a given group G, then amenability of (G, T2)
implies amenability of (G, T1).)
Still, T = {ϕ(x, z̄i) : i ∈ I, z̄i} is a

∨
-de�nable group topology on G.

De�nition 2.47. 1) A right pre-mean for TM is a G-pre-mean for EM (in the sense
of De�nition 2.23) with E := {G(x) ∧ G(y) ∧ ϕi(x−1y, z̄i) : i ∈ I, z̄i}. Explicitly,
it is a monotone function m on de�nable subsets of G into [0, 1], with m(∅) =
0,m(G) = 1, and m(Y ∪ Y ′) ≤ m(Y ) +m(Y ′), such that equality holds whenever
Y D ∩ Y ′ = ∅ for some D ∈ TM .
2) A left G-pre-mean for TM is a G-pre-mean for EM (in the sense of De�nition
2.23) with E := {G(x)∧G(y)∧ϕi(yx−1, z̄i) : i ∈ I, z̄i}. Explicitly, it is a monotone
function m on de�nable subsets of G into [0, 1], with m(∅) = 0,m(G) = 1, and
m(Y ∪Y ′) ≤ m(Y )+m(Y ′), such that equality holds whenever (Dg1∩· · ·∩Dgn)Y ∩
Y ′ = ∅ for some D ∈ TM and g1, . . . , gn ∈ G.

Then Proposition 2.29 specializes to the following two statements.

Corollary 2.48. The following conditions are equivalent.
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(1) SG/µM (M) carries a G(M)-invariant, Borel probability measure.
(2) There is a G(M)-invariant [G-invariant] right pre-mean for TM .
(3) The lattice DµMT carries a G(M)-invariant [G-invariant], normalized mean.

Corollary 2.49. The following conditions are equivalent.

(1) (G(M), T (M)) is de�nably topologically amenable (i.e. SµM\G(M) carries
a G(M)-invariant, Borel probability measure).

(2) There is a G(M)-invariant [G-invariant] left G-pre-mean for TM .
(3) The lattice DµMT

′ carries a G(M)-invariant [G-invariant], normalized mean.

By Corollary 2.28, we get that the existence of a left-invariant mean on DµMT [or
on DµMT

′, respectively] is independent of the choice of both M and M∗. Similarly,
the existence of an invariant mean on DC is independent of the choice of M∗. A
question is whether the existence of an invariant mean on DT depends on the
choice of M∗.
Along with Remark 2.40, Corollaries 2.48 and 2.49 seem to suggest that one

can get (from amenability) a G-invariant, normalized mean on the lattice DT of
closed, type-de�nable sets; but we do not quite see this. It is certainly not true
about DC: to see this, it is enough to take an amenable (as a topological group)
but not de�nably amenable group G(M) such that G is strongly Hausdor� (as
then DC consists of all type-de�nable subsets of G = G(M∗), so the restriction of
an invariant mean de�ned on DC to the algebra of all de�nable subsets would be a
left-invariant Keisler measure, contradicting the failure of de�nable amenability).
The following is a corollary of the proofs of Theorems 2.34 and 2.35 applied for

H := µM ; the set D̂ from the conclusion below will be p4 := ppp−1p−1 for a type
p ∈ SG(M) which is wide in the sense that m(DµM) > 0 [resp. m(µMD) > 0] for
every D ∈ p.
Corollary 2.50. Let T be a

∨
-de�nable group topology. Assume DµMT [or DµMT

′,
respectively] carries a G-invariant mean m. Then G00

M ≤ G000
M 〈µGM〉. More pre-

cisely, there exists an M-type-de�nable set D̂ ⊆ G000
M , with D̂〈µGM〉 ⊇ G00

M . In fact,
for any wide,M-type-de�nable set P = µMPµM we have P 4 := PPP−1P−1 ⊇ G00

M .

The main result of this subsection is the the following

Proposition 2.51. Let T be a
∨
-de�nable group topology such that for all n ∈ N

the projections (to all subproducts) of every type-de�nable, closed set in Gn are
closed. Assume DT carries a G-invariant mean m. Then cl(G00

M) = cl(G000
M ). More

precisely, there exists an M-type-de�nable set D̂ ⊆ G000
M , with cl(D̂) = cl(G00

M). In
fact, for any closed, wide (i.e. of positive mean), M-type-de�nable set P we have
P 4 := PPP−1P−1 ⊇ G00

M .

Proof. We start from

Claim 1: i) The product of any two closed, type-de�nable sets is always closed
(and clearly type-de�nable).
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ii) For all type-de�nable sets P and Q, cl(cl(P ) · cl(Q)) = cl(P ·Q).
iii) For all type-de�nable sets P and Q, cl(P ) · cl(Q) = cl(P ·Q).
iv) For every type-de�nable set P =

⋂
Pi (where Pj ⊆ Pi whenever i < j),

cl(P ) =
⋂
i cl(Pi).

Proof. i) This would follow immediately from the assumption that projections of
closed, type-de�nable sets are closed if the topology induced by T on G = G(M∗)
was Hausdor�. But if it is not Hausdor�, we can always pass to the Hausdor�
quotient G/C, where C = cl(1). Working with G/C in place of G, we still have
that projections of closed, type-de�nable sets are closed, so the product of any
two closed, type-de�nable subsets of G/C is closed. Now, take any two closed,
type-de�nable subsets P and Q of G. Then P = PC and Q = QC. So P/C and
Q/C are closed, type-de�nable subsets of G/C, and so PQ/C = P/C ·Q/C is closed
in G/C, hence PQ is closed in G.

ii) is a general property of all topological groups.

iii) Using (ii), we immediately see that (iii) is equivalent to (i).

iv) follows from Remark 2.39. �(claim)

Claim 2: For any closed, M -type-de�nable set P with m(P ) > 0, there exists a
generic, closed set Q type-de�nable over some parameters and such that Q8 ⊆ P 4.

Proof. We use Proposition 2.10, with G = X the present G/C (where C = cl(1)),
A = B = P/C, N = 8, D being the lattice of closed, type-de�nable subsets of
G/C, and m = m′ being the pushforward of the mean m from the statement of
Proposition 2.51. (Item (i) of the �rst claim is used to ensure that the assump-
tions of Proposition 2.10 hold.) So there exists a generic, symmetric Q̄ ⊆ G/C
positively de�nable in (G/C, ·, P/C), and with Q̄8 ⊆ (P/C)4. By the assumption
that projections of closed, type-de�nable sets are closed (and the fact that G/C is
Hausdor�), it follows that Q̄ is closed and type-de�nable in the original structure
M∗. So the pullback Q of Q̄ by the quotient map G→ G/C is also generic, closed,
type-de�nable, and Q8 ⊆ P 4. �(claim)

Since we are going to deal with G00
M , we need to be more careful about parame-

ters, and force Q to be de�ned over M .
First, we will prove the last statement of Proposition 2.51, and then we will

quickly explain how to deduce the previous one.
So take any closed, wide, M -type-de�nable set P (where wide means that

m(P ) > 0). Consider any M -de�nable set P ′ containing P 4.
By the �rst and last item of the �rst claim, we can �nd an M -de�nable set P ′′

such that P 4 ⊆ P ′′ ⊆ cl(P ′′) ⊆ P ′. Let Q be a set provided by the second claim.
We can �nd an M -de�nable, generic set Q0 such that Q8

0 ⊆ P ′′, and so, by item
(iii) of the �rst claim, cl(Q0)8 = cl(Q8

0) ⊆ cl(P ′′) ⊆ P ′. By the last item of the �rst
claim, we can �nd an M -de�nable set Q1 such that cl(Q0) ⊆ Q1 and cl(Q1)8 ⊆ P ′.
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Put
C1 := cl(Q1)4.

Now, apply the above argument to cl(Q0) (which isM -type-de�nable by Remark
2.39) in place of P , and Q4

1 in place of P ′. As a result, we obtain M -de�nable,
generic sets R0 and R1 such that cl(R0) ⊆ R1 and cl(R1)8 ⊆ Q4

1. Put

C2 := cl(R1)4.

Continuing in this way, we obtain a sequence C1, C2, . . . of M -type-de�nable,
generic and symmetric subsets of P ′ such that C2

i+1 ⊆ Ci for all i. Then
⋂
iCi is a

bounded index, M -type-de�nable subgroup contained in P ′. Therefore, G00
M ⊆ P ′.

Since P ′ was an arbitrary M -de�nable set containing P 4, we conclude that G00
M ⊆

P 4, which is the desired conclusion.
Let us prove now the existence of D̂. Let p be a wide type of G over M , in the

sense that m(cl(D)) > 0 for any D ∈ p. Let P = cl(p). By the last item of the
�rst claim, and by what we have just proved, we get that P 4 contains G00

M . Put

D̂ := p4. It is clearly contained in G000
M . On the other hand, by item (iii) of the

�rst claim, cl(D̂) = cl(p4) = cl(p)4 = P 4 ⊇ G00
M . �

Remark 2.52. The assumption in Proposition 2.51 that the projections of closed,
type-de�nable sets are closed may seem a bit arti�cial, perhaps it can be changed.
At any rate, it holds in each of the following two situations.

(1) The situation from the last paragraph of Example 2.41, namely: H =⋂
i∈I Xi is a normal, type-de�nable subgroup of G (and without loss Xj ⊆

Xi when i < j), and T := {Xi : i ∈ I}.
(2) T is a de�nable family and (G(M), T (M)) is compact, Hausdor� for some

model M .

Proof. (1) follows from the observation that F ⊆ Gn is closed if and only if F =
F · Cn, where C = cl(1).
(2) By the compactness and Hausdor�ness of G(M), the projections of any closed
subset of G(M)n are closed. Thus, since T = {ϕ(x, ȳ) : ȳ} is a de�nable family,
we easily get that the projections of any closed and de�nable subset F of Gn are
closed. On the other hand, for any type-de�nable, closed set F =

⋂
Fi ⊆ Gn

(where Fj ⊆ Fi whenever i < j), using the last item of the �rst claim of the proof
of Proposition 2.51, we get that F =

⋂
i cl(Fi) and each cl(Fi) is de�nable (by the

de�nability of T ), and, by compactness, any projection of F is the intersection of
the projections of the cl(Fi)'s. So the conclusion follows. �

By virtue of Remark 2.52(1), the following obvious corollary of Theorem 2.34
also follows from Proposition 2.51.

Corollary 2.53. Let N be any normal, ∅-type-de�nable subgroup of G. Assume
the lattice DN (of type-de�nable subsets Y of G such that Y N = N) carries a
G-invariant mean. Then G00

M ≤ NG000
M .
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3. Definable actions, weakly almost periodic actions, and stability

One aim of this section is to give a negative answer to Conjecture 0.3 of [27] about
de�nable actions of de�nable groups on compact spaces: see Corollary 3.3 below.
But we go rather beyond this, discussing the relationships between the notions in
the title of the section. Weakly almost periodic actions (or �ows) of a (topological)
group G on a compact space X are important in topological dynamics. Weak
almost periodicity (for functions on a topological group) was introduced in [9], and
discussed later in [14]. We will be referring to [10] where weak almost periodicity
of G-�ows is de�ned and studied. The connection of weak almost periodicity
with stability is by now fairly well-known, although much of what is in print or
published, such as [4] and [18], deals with the case where the relevant group G is
the (topological) automorphism group of a countable ω-categorical structure. In
contrast, we are here concerned with an action of a group G(M) de�nable in a
structure M on a compact space X where G(M) is viewed as a discrete group,
but where the action on X is assumed to factor through the action of G(M) on
its space SG(M) of types over M .
We will give some background below on both continuous logic (in an appropriate

form) and weak almost periodicity. The connection between stability in continuous
logic and weak almost periodicity goes through results of Grothendieck [14] in
functional analysis, which have been commented on in several expository papers
such as [5] and later [34]. However, it is relative stability, namely stability of a
formula in a model M which is relevant, and only equivalent to stability when the
model is saturated enough.
One of our main structural results is Theorem 3.16 below characterizing when

the action of G(M) on X is weakly almost periodic in terms of stable in M for-
mulas. When M is ω1-saturated, another equivalent condition is that the action
of G(M) on X is de�nable, which will yield the desired conclusions (Theorem 3.2
and Corollary 3.3).
Although this is a model theory paper, it is convenient for us to quote heavily

from the topological dynamics literature, especially for results which have not yet
been developed in the parallel model-theoretic environment.
We will generally be assuming any ambient theory T to be countable.

The notion of a de�nable action of a de�nable group on a compact space was
given in [12] and explored in some degree of generality in [23]. We repeat the
de�nition.

De�nition 3.1. (i) Let X be a set de�nable over M . A function f from X(M) to
a compact space C is said to be de�nable if if for every pair C1, C2 of closed disjoint
subsets of C, there is a de�nable (in M) set Z ⊆ X(M) such that f−1(C1) ⊆ Z,
and f−1(C2) ⊆ G(M) \ Z.
(ii) Suppose G is a group de�nable overM . A group action by G(M) on a compact
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space X by homeomorphisms is said to be de�nable if for every x ∈ X the map
from G to X taking g to g · x is de�nable.

When all types overM are de�nable, then the natural action of G(M) on SG(M)
is a de�nable action and is moreover the universal de�nable G(M)-ambit (see [12]).
This is interesting for structuresM such as the reals or p-adics where all types over
M are de�nable, although the complete theories are unstable. However, in general,
de�nability of an action of G(M) on a compact space X is a rather restrictive
condition. In [23], it was shown that there is always a universal de�nable G(M)-
ambit (which will of course factor through SG(M)). As in [27], G(M) is said to be
weakly de�nably amenable i� whenever G(M) acts de�nably on the compact space
X, then X supports a G(M)-invariant Borel probability measure, equivalently
the universal de�nable G(M) ambit supports a G(M)-invariant Borel probability
measure. In [27], it was conjectured that if G(M) is weakly de�nably amenable,
then G00

M = G000
M . We will show here that this fails drastically, by proving that

whenM is su�ciently saturated, then G(M) is always weakly de�nably amenable.

Theorem 3.2. Suppose M is ω1-saturated. Then G(M) is weakly de�nably
amenable: for any any de�nable action of G(M) on a compact space X, X
supports a G(M)-invariant Borel probability measure.

We deduce a negative answer to Conjecture 0.3 of [27]:

Corollary 3.3. There is a model M , and a group G(M) de�nable in M such that
G(M) is weakly de�nably amenable but G00

M 6= G000
M .

Proof. In fact, whenever G is a group de�nable in a NIP theory T and G00 6= G000,
then choosing an ω1-saturated model M of T , we see from Theorem 3.2 that
G(M) is weakly de�nably amenable. Moreover G00

M = G00 6= G000 = G000
M . There

are many such examples, such as from [8]: T is the theory of the 2-sorted structure
M with sorts (R,+,×) and (Z,+) and no additional structure. As pointed out
there, the universal cover of SL(2,R) is naturally de�nable in M . T is NIP, and if
G is the interpretation of this group in a saturated model, then G00 6= G000. �

3.1. Continuous logic. Continuous logic is about real-valued relations and for-
mulas, or, more generally, formulas with values in compact spaces, and, as such, is
present in a lot of recent work which does not explicitly mention continuous logic
(even in De�nition 3.1 above).
There have been various approaches to continuous logic, starting with [7]. An

attractive formalism was developed in [2] and [3], and our set up will be a special
case. In this section, we will give relatively self-contained proofs, for reasons
explained below. In Subsection 4.3, we will again make use of continuous logic,
but be more precise about the relations between our set-up and [3].
T will be a complete �rst order theory in the usual (non-continuous) sense,

which is countable (for convenience) and we work as earlier in a big saturated (or
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monster) model C. We �x a sort X (which will be a de�nable group G in the
applications). As usual M,N, . . . denote small elementary submodels of C, and
A,B, . . . small subsets of this monster model. There is no harm assuming that
T = T eq.

De�nition 3.4. (i) By a continuous logic (CL) formula on X over A, we mean a
continuous function φ : SX(A)→ R.
(ii) If φ is such a CL-formula, then for any b ∈ X (in the monster model) by φ(b)
we mean φ(tp(b/A)). Hence, we have a map φ : X(N) → R for all models N , in
particular a map φ : X = X(C)→ R. As the notation suggests, we are identifying
a CL-formula on X over A with the latter map, and so may write it as φ(x) where
x is a variable of sort X.
(iii) We consider two such CL-formulas on X, φ, ψ, over sets A,B, respectively to
be equivalent if they agree in the sense of (ii), namely if for all a ∈ X, φ(a) = ψ(a).

Remark 3.5. (i) The range of any CL-formula is a compact subset of R.
(ii) A CL-formula φ (over some A) is equivalent to a CL-formula over B if φ is
invariant under automorphisms of the monster model which �x B pointwise.
(iii) The maps φ : X(M) → R given by CL-formulas φ over M are precisely the
de�nable maps from X(M) to R in the sense of De�nition 3.1.
(iv) Any CL-formula over a set A is (equivalent to a CL-formula) over a countable
subset of A.

De�nition 3.6. (i) Let M be a model, and φ(x, y) a CL-formula over M , where
x, y are variables of sorts X, Y , respectively. Let a ∈ X. Then tpφ(a/M) is the
function taking b ∈ Y (M) to φ(a, b), and is called a complete φ(x, y)-type over M .
(ii) In the context of (i), tpφ(a/M) is de�nable if it is de�nable in the sense of
De�nition 3.1, equivalently, by Remark 3.5(iii), given by or rather induced by a
CL-formula on Y over M .

Remark 3.7. Suppose M is ω1-saturated, φ(x, y) is a CL-formula over M , and a is
in the big model. Then tpφ(a/M) is de�nable if and only if for each closed subset
C of R, {b ∈ Y (M) : φ(a, b) ∈ C} is type-de�nable over some countable subset of
M .

Proof. This follows from Remark 3.5(iv). �

De�nition 3.8. Let φ(x, y) be a CL-formula over M .
(i) We say that φ(x, y) is stable (for the theory T ) if for all ε > 0 there do not exist
ai, bi for i < ω (in the monster model) such that for all i < j, |φ(ai, bj)−φ(aj, bi)| ≥
ε.
(ii) We say that φ(x, y) is stable in M if for all ε > 0 there do not exist ai, bi for
i < ω in M such that for all i < j, |φ(ai, bj)− φ(aj, bi)| ≥ ε

Remark 3.9. (i) Routine methods show that φ(x, y) is stable (for T ) i� whenever
(ai, bi)i<ω is indiscernible (over M), then φ(ai, bj) = φ(aj, bi) for i < j.
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(ii) On the other hand, stability of φ(x, y) in M is easily seen to be equivalent to
Grothendieck's double limit condition: given ai, bi in M for i < ω we have that
limi limj φ(ai, bj) = limj limi φ(ai, bj) if both double limits exist.
(iii) A CL-formula φ(x, y) is stable [in M ] i� φop(x, y) := φ(y, x) is stable [in M ].

The following is due to Grothendieck (modulo a routine translation), and we
give an explanation below.

Proposition 3.10. Let φ(x, y) be a CL-formula over M . Then the following are
equivalent.

(i) φ(x, y) is stable in M .
(ii) Whenever M ≺ M∗, and tp(a/M∗) ∈ Sx(M∗) is �nitely satis�able in M ,

then tpφ(a/M∗) is de�nable over M , namely the function taking b ∈M∗ to
φ(a, b) is given by a CL-formula ψ(y) over M .

Proof. Consider the (compact) space Z = Sy(M) of complete types over M in
variable y, and let C(Z) be the real Banach space of continuous real valued func-
tions on Z. Let A denote the subset of C(Z) consisting of the functions φ(a, y)
for a ∈ M . Note that A is bounded. Let Z0 be the set of realized types, namely
those tp(b/M) for b ∈M , a dense subset of Z. With this notation, Grothendieck's
Theorem 6 in [14] says that the following are equivalent.

(i)' If fi ∈ A and qi ∈ Z0 for i < ω, then limi limj fi(qj) = limj limi fi(qj) if
both double limits exist.

(ii)' The closure of A in the pointwise convergence topology on C(Z) is compact.

Now, if fi is φ(ai, y) and qi = tp(bi/M), then (i)' says precisely that
limi limj φ(ai, bj) = limj limi φ(ai.bj) for all sequences ai, bi ∈ M with i < ω
for which both double limits exist, which by Remark 3.9(ii) says that φ(x, y) is
stable in M , namely condition (i) in the proposition.
On the other hand (ii)' implies that the closure of A in C(Z) (in the pointwise

topology) is a compact, so closed, subset of the space RZ of all functions from Z
to R (equipped with the pointwise, equivalently Tychono� topology). So every
function in the closure of A in RZ is already in C(Z), so is continuous. So it is
clear that (ii)' is equivalent to

(ii)� whenever f ∈ RZ is in the closure of A, then f is continuous.

It is now easy to see that if f ∈ RZ is in the closure of {φ(a, y) : a ∈ M},
then f is of the form φ(a∗, y), where M∗ is a saturated model containing M , and
tp(a∗/M∗) is �nitely satis�able in M . So for q ∈ Z = Sy(M), f(q) = φ(a∗, b) for
some (any) realization b of q in M∗. The continuity of f means that it is given by
a CL-formula ψ(y) over M , which precisely means that ψ(y) is a de�nition over
M of tpφ(a∗/M∗). So we get that (ii) implies (ii)�, and it is again easy to see that
they are equivalent. �

Remark 3.11. (a) Actually the original statement of (ii)' in [14] is that the
closure of A in the weak topology on C(Z) is compact. The weak topology
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on C(Z) is the one whose basic open neighbourhoods of a point f0 are of the
form {f ∈ C(Z) : |g1(f − f0)| < ε, . . . , |gr(f − f0)| < ε}, where g1, . . . , gr are in
L(C(Z),R) � the space of bounded linear functions on C(Z). This so-called weak
topology is stronger than the pointwise convergence topology on C(Z) whose basic
open neighbourhoods of a point f0 are as above but where gi is evaluation at some
point xi ∈ Z. It is pointed out in [14] that relative compactness of a bounded
subset A of C(Z) in the weak topology is equivalent to relative compactness of A
in the pointwise convergence topology, yielding the statement (ii)' in the proof of
Proposition 3.10.
(b) In [5], which seems to be the �rst model theory paper to recognize
Grothendieck's contribution, only the implication �φ(x, y) stable in M im-
plies that all φ-types over M are de�nable� is deduced from Grothendieck's
theorem, rather than the stronger equivalence in Proposition 3.10.
(c) Grothendieck's proof in [14] is basically a model theory proof. See [34] for the
case of classical ({0, 1}-valued) formulas.

Proposition 3.12. The CL-formula φ(x, y) is stable (for T ) if and only if every
complete φ(x, y)-type over any model over which φ is de�ned is de�nable.

Proof. In the more general metric structures formalism, this appears in [3] (Propo-
sition 7.7 there) and adapts to our context. However, we give a relatively self
contained account. Left implies right is given by Proposition 3.10. The other di-
rection is the easy one and can be seen as follows. Assume φ(x, y) to be unstable
(for a contradiction). By (or as in) Remark 3.9, we can �nd ai, bi ∈ C for i ∈ Q,
and real numbers r < s that φ(ai, bj) ≤ r for i < j and φ(ai, bj) ≥ s for i > j. Let
M be a countable model containing the bi for i ∈ Q. By compactness, for each cut
C in Q there is some aC ∈ C such that φ(aC , bj) ≥ s for j < C and φ(aC , bj) ≤ s
for j > C. Now, by assumption, each tpφ(aC/M) is de�nable, so for each C there
is some (ordinary) formula ψC(y) over M such that for any b ∈ M , φ(aC , b) ≤ r
implies ψC(b), and φ(aC , b) ≥ s implies ¬ψC(b). This is a contradiction, as there
are continuum many distinct C's but only countably many (ordinary) formulas
over the countable model M . �

Proposition 3.13. Suppose M is ω1-saturated, φ(x, y) is a CL-formula over M ,
and every complete φ(x, y)-type over M is de�nable. Then every complete φ(x, y)-
type over any model N (over which φ is de�ned) is de�nable, and hence, by Propo-
sition 3.10, φ(x, y) is stable.

Proof. Let A ⊂ M be countable such that φ(x, y) is over A. It su�ces to prove
that every complete φ-type over a countable model containing A is de�nable. As
M is ω1-saturated, it is enough to prove that every complete φ-type over any
countable submodel M0 of M which contains A is de�nable. So let p(x) and M0

be such. Let p′ be a coheir of p over M , namely p′ = tpφ(a/M), p = p′|M0, and
tp(a/M) is �nitely satis�able in M0. By our assumptions, p′ is de�nable. So to
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prove that p is de�nable it su�ces to prove:

Claim 1: p′ is de�nable over M0.

Proof. Let C be a compact subset of R, and let Ψ(y, b) be a partial type over a
countable sequence b from M such that for all c ∈M , φ(a, c) ∈ C i� M |= Ψ(c, b).
We will show that in fact Ψ(y, b) is equivalent to a partial type over M0. For this
it is enough to show that if b′ realizes tp(b/M0) in M , then Ψ(y, b′) is equivalent
to Ψ(y, b).
Suppose c′ ∈ M and suppose M |= Ψ(c′, b′). Let c ∈ M be such that

tp(c, b/M0) = tp(c′, b′/M0). As tp(a/M) is �nitely satis�able in M0, φ(a, c) =
φ(a, c′). As M |= Ψ(c, b), we have that φ(a, c) ∈ C. Hence, φ(a, c′) ∈ C, whereby
M |= Ψ(c′, b). Hence, Ψ(y, b′) is equivalent to Ψ(y, b), as required. This �nishes
the proof of the claim. �(claim)

Hence, the proof of the proposition is also �nished. �

3.2. Weakly almost periodic actions. The context here is a G-�ow (X,G),
where X is a compact space and G a topological group. For f a continuous
function from X to R and g ∈ G, gf denotes the (continuous) function taking
x ∈ X to f(gx). We will take our de�nition of a weakly almost periodic G-�ow
from Theorem II.1 of [10].

De�nition 3.14. (i) A continuous function f : X → R is weakly almost periodic
(or wap) if whenever h ∈ RX is in the closure of {gf : g ∈ G} (in the pointwise
convergence topology) then h is continuous.
(ii) The G-�ow (X,G) is weakly almost periodic (or wap), if every continuous
function f : X → R is weakly almost periodic.

Fact 3.15. Suppose that (X,G) is wap. Then there is a G-invariant Borel proba-
bility measure on X.

Proof. This is well-known within topological dynamics, but we nevertheless give an
account with some references. We may assume that (X,G) is minimal (by passing
to a minimal sub�ow). By Proposition II.8 of [10], the �ow (X,G) is almost
periodic (also known as equicontinuous). The minimal equicontinuous �ows have
been classi�ed in [1] for example (see [1, Chapter 3, Theorem 6]), as homogeneous
spaces for compact groups (on which G acts as subgroups of the compact groups
in question), whereby the Haar measure induces the required G-invariant measure
on X. �

We now pass to the model-theoretic context, which here means that we consider
actions of a de�nable group G(M) on a compact space X which factor through
SG(M).

Theorem 3.16. Let M be a structure, G(M) a group de�nable in M , and let a
G(M)-�ow (X,G(M)) be given, which factors through the action of G(M) on
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SG(M) via a continuous surjective (G(M)-equivariant) map π : SG(M) → X.
Consider the following three conditions:

(i) (X,G(M)) is wap,
(ii) for each continuous function F : SG(M)→ R of the form f ◦π for f : X →

R continuous, the CL-formula F (yx) is stable in M ,
(iii) the action of G(M) on X is de�nable.

Then:

(a) (i) and (ii) are equivalent, and imply (iii),
(b) if M is ω1-saturated, then (i), (ii), (iii) are equivalent, and, moreover, in

(ii) we have that F (yx) is stable for T (not just in M).

Proof. (a) Suppose (X,G(M)) is wap. Let F = f ◦ π for some f ∈ C(X). Let
h : SG(M)→ R be in the pointwise closure of {gF : g ∈ G(M)}. Then clearly for
any p ∈ SG(M), h(p) depends only on π(p), so h = h1 ◦π for a unique h1 : X → R.
But h1 is in the pointwise closure of {gf : g ∈ G(M)}, so, by assumption, h1 is
continuous. Hence, h is continuous. By the proof of Proposition 3.10, or, more
precisely, the equivalence of (i) and (ii)� in there, the CL-formula F (xy) is stable
in M , and so is F (yx) by Remark 3.9(iii).
The converse goes the same way: Let f ∈ C(X), and h : X → R be in the

closure, again in the pointwise topology, of {gf : g ∈ G(M)}. Let F = f ◦ π ∈
C(SG(M)). Let h1 = h ◦ π. Then clearly h1 is in the closure of {gF : g ∈ G(M)}.
As F (yx) is assumed to be stable in M , by Proposition 3.10 (or rather its proof),
h1 is continuous, so clearly h is continuous.
So far we have shown (i) if and only if (ii). We now show that either of these

equivalent conditions imply that the action of G(M) onX is de�nable. Let x0 ∈ X.

Claim 1: For any continuous function f : X → R, the function from G(M) → R
taking g to f(gx0) is de�nable (over M).

Proof. Let p ∈ SG(M) be such that π(p) = x0. Consider the lift F of f to SG(M)
via π. We use x, y to denote variables of sort G. By (ii), the formula F (yx)
(in variables x, y) is stable in M , so, by Proposition 3.10, the function taking
g ∈ G(M) to F (gp) is de�nable over M , namely induced by a CL-formula ψ(y)
over M . But F (gp) = f(gx0). Hence, the claim is proved. �(claim)

De�nability of the action of G(M) on X now follows from the claim and
Urysohn's lemma: Let X0, X1 be disjoint closed subsets of X. By Urysohn, there
is a continuous function f ∈ C(X) such that f is 0 on X0 and 1 on X1. By
the claim, there is some de�nable (in M) subset Z of G(M), such that for all
g ∈ G(M), if f(gx0) = 0 then g ∈ Z, and if f(gx0) = 1 then g /∈ Z. But this
implies that if gx0 ∈ X0 then g ∈ Z, and if gx0 ∈ X1 then g /∈ Z. As x0 ∈ X was
arbitrary, this shows that the action of G(M) on X is de�nable.
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(b) We assume now that M is ω1-saturated. All we have to do is to prove that
(iii) implies the stronger version of (ii) (with stability for T ). Now, exactly as in
the previous paragraph, de�nability of the action of G(M) on X means precisely
that whenever F : SG(M)→ R lifts some continuous function f on X, then every
complete F (yx)-type over M is de�nable. By Proposition 3.13, each such F (yx)
is stable (for T ). �

Proof of Theorem 3.2. We may assume that X is a (de�nable) G(M)-ambit, in
which case by [12] or [23, Remark 3.2], the action factors through the action of
G(M) on SG(M). By Theorem 3.16(b), and ω1-saturation ofM , the action of G on
X is wap, so by Fact 3.15, X has a G(M)-invariant Borel probability measure. �

3.3. On universal ambits and minimal �ows. We give a description of the
universal de�nable wap ambit and universal minimal de�nable wap �ow for a
group G(M) de�nable in a structure M . As seen by the material above, this is
closely connected to stable group theory in a continuous logic sense, but unless M
is saturated enough it will be stability in M . Actually even in the classical case,
stable group theory relative to a model M (i.e. where relevant formulas φ(x, y)
are stable in M) has not been written down, so it is not surprising if we happen to
rely on the topological dynamical literature. By G we mean G(M∗) for a suitably
saturated elementary extension M∗ of M .
M will be an arbitrary structure andG(M) a group de�nable inM . Following on

from notation in the previous section, if F (x) is a CL-formula on G (i.e. where the
variable x ranges over G) overM , then we will call F stable inM if the CL-formula
F (yx) (in variables x, y) is stable in M . Let A be the collection (in fact algebra)
of such stable in M , CL-formulas F (x) on G. For p(x) ∈ SG(M) by p|A we mean
the map which for each F ∈ A gives F (p). The collection {p|A : p ∈ SG(M)} is
clearly a quotient of SG(M) by a closed equivalence relation, hence is naturally
a compact space which we call the type space over M of the stable in M , CL-
formulas over M , and which we denote here by S. Let π0 : SG(M) → S be the
canonical surjective continuous map. Note that G(M) acts on S, and that π0 is
a map of G(M)-�ows (in fact ambits, where π0(e) is taken as the distinguished
point of S). With the above notation we have:

Proposition 3.17. (i) (S, G(M)) is the universal de�nable wap ambit of G(M).
(ii) The universal minimal de�nable wap �ow of G(M) is G/G00

M .

Proof. Let us �rst note:

Claim 1: With above notation, a continuous function F : SG(M)→ R is stable in
M if and only if it is induced, via π0, by a continuous function from S to R.

Proof. This follows from the Stone-Weierstrass theorem and the easy fact that A is
a closed subalgebra of the Banach algebra C(SG(M)) of all real valued continuous
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functions on SG(M) (where C(SG(M)) is equipped with the uniform convergence
topology). �(claim)

(i) follows easily from the claim and previous results. First, by Theorem 3.16 and
the claim, (S, G(M)) (with distinguished point s0 = π0(e)) is de�nable and wap.
Secondly, suppose (X,G(M)) is a de�nable wap ambit with distinguished point
x0, and corresponding π : SG(M) → X (taking e to x0). By Theorem 3.16 again,
for every continuous function f on X, F = f ◦ π is stable, hence is in the algebra
A. This easily induces a surjective continuous G(M)-equivariant map from S to
X taking s0 to x0.
(ii) The action of G(M) on G/G00

M is induced by multiplication on the left. Clearly
every orbit is dense, in particular the image of G(M) in G/G00

M under the canonical
homomorphism ι taking g to g/G00

M is dense. The action factors through the type
space. Why is it wap? Let f be a continuous function from G/G00

M to R, and
F : G → R be f ◦ π where π : G → G/G00

M is the canonical homomorphism. So
F is a CL-formula on G over M such that F (g) depends only on the coset of g
modulo G00

M . We claim that the CL-formula F (yx) in variables x, y (so on G×G)
is stable for the theory, in particular F is stable in M . If not, we can �nd a large
indiscernible sequence ((gi, hi) : i ∈ I) such that for i < j, F (gihj) 6= F (gjhi)
which is clearly a contradiction. So we have shown that the action of G(M) on
G/G00

M is a minimal wap �ow which factors through SG(M) so is also de�nable by
Theorem 3.16.
To see that it is universal such, we will appeal again to the topological dynam-

ics literature. So let (X,G(M)) be a minimal de�nable wap �ow. As already
remarked, we deduce from II.8 of [10] that the �ow (X,G(M)) is equicontinuous.
By Theorem 3.3 from Chapter I of [13], the Ellis semigroup E(X) is a compact
topological group acting by homeomorphisms on X, and, moreover, (X,G(M)) is
isomorphic to E(X)/H for a suitable closed subgroup H of E(X) (with the action
of G(M) on E(X)/H given by g(ηH) = (gη)H). So it remains to show that the
natural homomorphism h : G(M)→ E(X) is de�nable, because in that case E(X)
will be a de�nable group compacti�cation of G(M) (in the sense of [12]) and we
know from Proposition 3.4 of [12] that G/G00

M is the universal such de�nable group
compacti�cation.
The fact that h : G(M)→ E(X) is de�nable follows from the fact that E(X) is

a sub�ow of the product G(M)-�ow XX which is de�nable (because a product of
de�nable �ows is always de�nable [26, Remark 1.12]). �

The above proposition together with Theorem 3.16 yields

Corollary 3.18. When M is ω1-saturated, the universal de�nable wap ambit co-
incides with the universal de�nable ambit and can be described as the type space of
the collection (algebra) of CL-formulas F on G over M which are stable (for T ).

We can also give a description of the universal de�nable G(M)-ambit for an
arbitrary (not necessarily ω1-saturated) M . For this recall that in the proof of
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Theorem 3.16 (Claim 1 and the paragraph afterwards; see also the proof of (b))
we showed that de�nability of the action of G(M) on X means precisely that
whenever F : SG(M) → R lifts some continuous function f on X, then every
complete F (yx)-type over M is de�nable. Thus, applying Stone-Weierstrass as in
the proof of Claim 1 in the proof of Proposition 3.17 and following the lines of the
easy proof of item (i) of this proposition, we get

Corollary 3.19. Let D be the quotient of SG(M) corresponding to the algebra B
of all CL-formulas F (x) on G over M for which every complete F (yx)-type over
M is de�nable. Then G(M) acts naturally on D, and (D, G(M)) is the universal
de�nable ambit.

Finally, as promised in the introduction, we give a negative answer to Problem
4.11 (1) from [23], concerning whether the natural map from SG(M) to G/G000

M

factors through the universal de�nable ambit. When M is su�ciently saturated,
Corollary 3.18 says that the universal de�nable ambit is precisely the universal
de�nable wap ambit. So we consider, as in the proof of Corollary 3.3, a group
G de�nable in a countable NIP theory T such that G000 6= G00. Let M be an
ω1-saturated model over which G is de�ned. Then S, as de�ned above, is, by
Proposition 3.17, the universal de�nable wap ambit of G(M), and likewise the
universal minimal de�nable wap �ow of G(M) is G/G00

M which is a, in fact the
unique, minimal sub�ow of S. The natural map from SG(M) to G/G000

M referred
to above takes tp(g/M) to g/G000

M . If I is a minimal sub�ow of SG(M) then
the same map takes I onto G/G000

M . Following earlier notation, let π0 be the
canonical map from SG(M) to S. Then π0[I] is a (the unique) minimal sub�ow
of S, G/G00

M . So if SG(M) → G/G000
M factored through π0, we would obtain a

(natural) homomorphism from G/G00
M to G/G000

M , implying that G00
M = G000

M , a
contradiction.

4. Amenability and G-compactness

In this section, we introduce the notions of amenable types and theories, and
study their consequences. In Subsection 4.2, we analyze various basic properties
and provide equivalent de�nitions. In Subsections 4.3 and 4.4, we prove the main
result of this section that amenability implies G-compactness: in Subsection 4.3,
we give a relatively simpler proof assuming the existence of de�nable measures, and
in Subsection 4.4, we give a proof in full generality, using in particular Corollary
2.11 and arguments in the spirit of Section 2 (although in a di�erent context).

4.1. Preliminaries on G-compactness. We only recall a few basic de�nitions
and facts about Lascar strong types and Galois groups. For more details the reader
is referred to [29], [6] or [37].
Let C be a monster model of a complete theory T .

De�nition 4.1.



AMENABILITY AND DEFINABILITY 47

i) The group of Lascar strong automorphisms, which is denoted by AutfL(C),
is the subgroup of Aut(C) which is generated by all automorphisms
�xing a small submodel of C pointwise, i.e. AutfL(C) = 〈σ : σ ∈
Aut(C/M) for a small M ≺ C〉.

ii) The Lascar Galois group of T , which is denoted by GalL(T ), is the quo-
tient group Aut(C)/AutfL(C) (which makes sense, as AutfL(C) is a normal
subgroup of Aut(C)). It turns out that GalL(T ) does not depend on the
choice of C.

The orbit equivalence relation of AutfL(C) acting on any given product S of
boundedly (i.e. less than the degree of saturation of C) many sorts of C is usually
denoted by EL. It turns out that this is the �nest bounded (i.e. with boundedly
many classes), invariant equivalence relation on S; and the same is true after the
restriction to the set of realizations of any type in S(∅). The classes of EL are called
Lascar strong types. It turns out that AutfL(C) coincides with the the group of all
automorphisms �xing setwise all EL-classes on all (possibly in�nite) products of
sorts.
For any small M ≺ C enumerated as m̄, we have a natural surjection from

Sm̄(M) := {p ∈ S(M) : tp(m̄/M) ⊆ p} to GalL(T ) given by tp(σ(m̄)/M) 7→
σ/AutfL(C) for σ ∈ Aut(C). We can equip GalL(T ) with the quotient topology
induced by this surjecion, and it is easy to check that this topology does not
depend on the choice of M . In this way, GalL(T ) becomes a topological (but not
necessarily Hausdor�) group (see [37] for a detailed exposition).

De�nition 4.2.

i) By Gal0(T ) we denote the closure of the identity in GalL(T ).
ii) The group of Kim-Pillay strong automorphisms, which is denoted by

AutfKP (C), is the preimage of Gal0(T ) under the quotient homomorphism
Aut(C)→ GalL(T ).

iii) The Kim-Pillay Galois group of T , which is denoted by GalKP (T ), is the
quotient group GalL(T )/Gal0(T ) ∼= Aut(C)/AutfKP (C) equipped with the
quotient topology. It is a compact, Hausdor� topological group.

The orbit equivalence relation of AutfKP (C) acting on any given product S of
(boundedly many) sorts of C is usually denoted by EKP . It turns out that this
is the �nest bounded (i.e. with boundedly many classes), type-de�nable over ∅
equivalence relation on S; and the same is true after the restriction to the set
of realizations of any type in S(∅). The classes of EKP are called Kim-Pillay
strong types. It turns out that AutfKP (C) coincides with the the group of all
automorphisms �xing setwise all EKP -classes on all (possibly in�nite) products of
sorts.
The theory T is said to be G-compact if the following equivalent conditions hold.

(1) AutfL(C) = AutfKP (C).
(2) GalL(T ) is Hausdor�.
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(3) Lascar strong types coincide with Kim-Pillay strong types on any (possibly
in�nite) products of sorts.

By the de�nition of EL, we see that ᾱ EL β̄ if and only if there are ᾱ0 =
ᾱ, ᾱ1, . . . , ᾱn = β̄ and models M0, . . . ,Mn−1 such that

ᾱ0 ≡M0 ᾱ1 ≡M1 . . . ᾱn−1 ≡Mn−1 ᾱn.

In this paper, by the Lascar distance from ᾱ to β̄ (denoted by dL(ᾱ, β̄)) we mean
the smallest natural number n as above. By the Lascar diameter of a Lascar strong
type [ᾱ]EL we mean the supremum of dL(ᾱ, β̄) with β̄ ranging over [ᾱ]EL . It is well
known (proved in [33]) that [ᾱ]EL = [ᾱ]EKP if and only if the Lascar diameter of
[ᾱ]EL is �nite.

4.2. Amenable theories. As usual, C is a monster model of an arbitrary com-
plete theory T . Let c̄ be an enumeration of C and let Sc̄(C) = {tp(ā/C) ∈ S(C) :
ā ≡ c̄}. More generally, for a partial type π(x̄) over ∅, put Sπ(C) = {q(x̄) ∈ S(C) :
π ⊆ q}. In particular, if p(x̄) ∈ S(∅) and ᾱ |= p, then Sp(C) = Sᾱ(C) = {q(x̄) ∈
S(C) : p ⊆ q}. (Note that we allow here tuples x̄ of unbounded length (i.e. greater
than the degree of saturation of C)). Each Sπ(C) is naturally an Aut(C)-�ow.
Let us start from the local version of amenability.

De�nition 4.3. A partial type π(x̄) over ∅ is amenable if there is an Aut(C)-
invariant, Borel (regular) probability measure on Sπ(C).

Remark 4.4. The following conditions are equivalent for a type π(x̄) over ∅.
(1) π(x̄) is amenable.
(2) There is an Aut(C)-invariant, Borel (regular) probability measure µ on

Sx̄(C) concentrated on Sπ(C), i.e. for any formula ϕ(x̄, ā) inconsistent with
π(x̄), µ([ϕ(x̄, ā)]) = 0 (where [ϕ(x̄, ā)] is the subset of Sx̄(C) consisting of
all types containing ϕ(x̄, ā)).

(3) There is an Aut(C)-invariant, �nitely additive probability measure on rel-
atively C-de�nable subsets of π(x̄).

(4) There is an Aut(C)-invariant, �nitely additive probability measure on C-
de�nable sets in variables x̄, concentrated on π(x̄) (i.e. for any formula
ϕ(x̄, ā) inconsistent with π(x̄), µ(ϕ(x̄, ā)) = 0).

Proof. Follows easily using the fact (see [36, Chapter 7.1]) that whenever G acts by
homeomorphisms on a compact, Hausdor�, 0-dimensional space X, then each G-
invariant, �nitely additive probability measure on the Boolean algebra of clopen
subsets of X extends to a G-invariant, Borel (regular) probability measure on
X. �

Thus, by a global Aut(C)-invariant Keisler measure extending π(x̄) we mean a
measure from any of the items of Remark 4.4. And similarly working over any
model M in place of C.
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Proposition 4.5. Amenability of a given type π(x̄) (over ∅) is absolute in the
sense that it does not depend on the choice of the monster model C. It is also
equivalent to the amenability of π(x̄) computed with respect to an ℵ0-saturated and
strongly ℵ0-homogeneous model M in place of C.

Proof. Let M and M ′ be two ℵ0-saturated and strongly ℵ0-homogeneous models.
Assume that there is an Aut(M)-invariant, Borel (regular) probability measure µ
on Sπ(M). We want to �nd such Aut(M ′)-invariant measure µ′ on Sπ(M ′).
Consider any formula ϕ(x̄, ā′) with ā′ ∈M ′. Choose (using the ℵ0-saturation of

M) any ā ∈M such that ā′ ≡ ā, and de�ne

µ′([ϕ(x̄, ā′)] ∩ Sπ(M ′)) := µ([ϕ(x̄, ā)] ∩ Sπ(M)).

By the strong ℵ0-homogeneity of M and Aut(M)-invariance of µ, we see that µ′

is well-de�ned and Aut(M ′)-invariant. It is also clear that µ′(Sπ(M ′)) = 1. It
remains to check µ′ is �nitely additive on clopen subsets (as then µ′ extends to the
desired Borel measure). Take ϕ(x̄, ā′) and ψ(x̄, ā′) such that [ϕ(x̄, ā′)] ∩ Sπ(M ′)
is disjoint from [ψ(x̄, ā′)] ∩ Sπ(M ′). This just means that ϕ(x̄, ā′) ∧ ψ(x̄, ā′) is
inconsistent with π(x̄). Take ā ∈ M such that ā ≡ ā′. Then ϕ(x̄, ā) ∧ ψ(x̄, ā) is
still inconsistent with π(x̄), so µ′(([ϕ(x̄, ā′)] ∩ Sπ(M ′)) ∪ ([ψ(x̄, ā′)] ∩ Sπ(M ′))) =
µ(([ϕ(x̄, ā)]∩Sπ(M))∪ ([ψ(x̄, ā)]∩Sπ(M))) = µ([ϕ(x̄, ā)]∩Sπ(M)) +µ([ψ(x̄, ā)]∩
Sπ(M)) = µ′([ϕ(x̄, ā′)] ∩ Sπ(M ′)) + µ′([ϕ(x̄, ā′)] ∩ Sπ(M ′)). �

Remark 4.6. Assume T to be countable, and let π(x̄) be a partial type. Then π(x̄)
is amenable if and only if for all [su�ciently large] countable, (ℵ0-)homogeneous
models M , π(x̄) has an extension to a Keisler measure µ(x̄) over M which is
Aut(M)-invariant. If T is uncountable, the same is true but with �countable, ℵ0-
homogeneous models� replaced by �strongly ℵ0-homogeneous models of cardinality
|T |�.

Proof. For each [su�ciently large] countable homogeneous model M ≺ C, let
µM(x̄) be an Aut(M)-invariant Keisler measure overM extending π, and let µ̄M be
an arbitrary global Keisler measure extending µM . Working in the compact space
of global Keisler measures, there is a subnet of the net {µ̄M}M , which converges to
some µ̄. But then µ̄ is Aut(C)-invariant: For otherwise, for some formula φ(x̄, ȳ)
and tuples a, b in C with the same type, we have µ̄(φ(x̄, ā)) = r and µ̄(φ(x̄, b̄)) = s
for some r < s. But then we can �nd some countable homogeneous model M
(containing ā, b̄) such that µ̄M(φ(x̄, ā)) < µ̄M(φ(x̄, b̄)), contradicting the Aut(M)-
invariance of µ̄M . �

Lemma 4.7. A type π(x̄) (over ∅) is amenable if and only if each formula ϕ(x̄)
(without parameters) implied by π(x̄) is amenable.

Proof. The implication (→) is obvious, as Sπ(C) ⊆ Sϕ(C), and so for any formula
ψ(x̄, ā) we can de�ne µ′([ψ(x̄, ā)] ∩ Sϕ(C)) := µ([ψ(x̄, ā)] ∩ Sπ(C)), where µ is an
Aut(C)-invariant, Borel probability measure on Sπ(C).
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(←). On the set of formulas (without parameters) implied by π(x̄), consider an
ultra�lter U containing for every ϕ(x̄) a π the set {ψ(x̄) : π(x̄) ` ψ(x̄) ` ϕ(x̄)}.
By assumption and Remark 4.4, for any ϕ(x̄) a π(x̄) we have an Aut(C)-

invariant, �nitely additive probability measure µϕ on C-de�nable subsets of Cx̄

which is concentrated on ϕ(x̄). Put C′ :=
∏

ϕ(x̄)aπ(x̄) C/U and de�ne

µ′ := st

 ∏
ϕ(x̄)aπ(x̄)

µϕ/U

 ,

where st stands for the standard part map. It is clear that µ′ is is a �nitely
additive probability measure on de�nable subsets of C′x̄. By the choice of U , µ′
is concentrated on π(x̄). By the Aut(C)-invariance of all µϕ, for any �nite ā ≡ b̄
from C, for any ϕ(x̄) a π(x̄) and any ψ(x̄, ȳ), we have µϕ(ψ(x̄, ā)) = µϕ(ψ(x̄, b̄)).
Therefore, µ′(ψ(x̄, ā)) = µ′(ψ(x̄, b̄)) (treating ā and b̄ as tuples from C′). Finally,
let µ be the restriction of µ′ to the algebra of C-de�nable sets. We conclude that µ
is an Aut(C)-invariant, �nitely additive probability measure on de�nable subsets
of Cx̄ which is concentrated on π(x̄), which is enough by Remark 4.4. �

Lemma 4.8. All types in S(∅) (possibly in unboundedly many variables) are
amenable if and only if all �nitary types in S(∅) are amenable.

Proof. The implication (→) is trivial. For the other implication, take p(x̄) ∈ Sx̄(∅).
Consider the compact space X := [0, 1]{ϕ(x̄,ā): ϕ(x̄,ȳ) a formula, ā∈C} with the pointwise
convergence topology (where x̄ is the �xed tuple of variables). Then the Aut(C)-
invariant, �nitely additive probability measures on C-de�nable sets in variables x̄
concentrated on p(x̄) form a closed subset M of X. We can present M as the
intersection of a directed family of closed subsets of X each of which witnessing
a �nite portion of information of being in M. But each such �nite portion of
information involves only �nitely many variables, so the corresponding closed set
is nonempty by the assumption that all �nitary types are amenable and Remark
4.4. By the compactness of X, we conclude thatM is nonempty. �

Corollary 4.9. The following conditions are equivalent.

(1) All partial types (possibly in unboundedly many variables) over ∅ are
amenable.

(2) All complete types (possibly in unboundedly many variables) over ∅ are
amenable.

(3) All �nitary complete types over ∅ are amenable.
(4) All consistent formulas (in �nitely many variables x̄) over ∅ are amenable.
(5) tp(c̄/∅) is amenable.
(6) tp(m̄/∅) is amenable for some tuple m̄ enumerating a model.

Proof. The equivalence (1)↔ (2) is obvious (for (2)→ (1) use the argument as in
the proof of (→) in Lemma 4.7). The equivalence (2) ↔ (3) is Lemma 4.8. The
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equivalence (3)↔ (4) follows from Lemma 4.7. The implications (1)→ (5)→ (6)
are trivial. Finally, (6) → (4) also follows from Lemma 4.7, because taking all
possible �nite subtuples m̄′ of m̄ and ϕ(x̄′) ∈ tp(m̄′/∅), we will get all consistent
formulas over ∅. �

De�nition 4.10. The theory T is amenable if the equivalent conditions of Corol-
lary 4.9 hold.

By Proposition 4.5, we see that amenability of T is really a property of T , i.e.
it does not depend on the choice of C.
Analogously, one can de�ne the stronger notion of an extremely amenable theory.

De�nition 4.11. A type π(x̄) over ∅ is extremely amenable if there is an Aut(C)-
invariant type in Sπ(C). The theory T is extremely amenable if every type (in any
number of variables) in S(∅) is extremely amenable.

As in the case of amenability, compactness arguments easily show that these
notions are absolute (i.e. do not depend on the choice of C), and, in fact, they
can be tested on any ℵ0-saturated and strongly ℵ0-homogeneous model in place
of C; moreover, T is extremely amenable if and only if all �nitary types in S(∅)
are extremely amenable. Note that Remark 4.6 specializes to extremely amenable
partial types, too. So note that for countable theories, both amenability and
extreme amenability can be seen at the level of countable models. It is also easy
to see that in a stable theory, a type in S(∅) is extremely amenable if and only if
it is stationary.

Yet another equivalent approach to amenability of T is via Aut(C)-invariant,
�nitely additive probability measures on the algebra of so-called relatively de�n-
able subsets of C. This will be the exact analogue of the de�nition of de�nable
amenability of de�nable groups (via the existence of an invariant Keisler measure).
We will use this approach in Subsection 4.4.
The idea of identifying Aut(C) with the subset {σ(c̄) : σ ∈ Aut(C)} of Cc̄ and

considering relatively de�nable subsets of Aut(C), i.e. subsets of the form {σ ∈
Aut(C) : C |= ϕ(σ(c̄), c̄)} for a formula ϕ(x̄, c̄), already appeared in [28, Section
3]. Here, we extend this notion of relative de�nability to the local context and
introduce an associated notion of amenability which is easily seen to be equivalent
to the amenability of T [or of a certain type in the extended local version].
Let M be any model of T and let m̄ be its enumeration.

De�nition 4.12. i) By a relatively de�nable subset of Aut(M) we mean a subset
of the form {σ ∈ Aut(M) : M |= ϕ(σ(m̄), m̄)}, where ϕ(x̄, ȳ) is a formula without
parameters.
ii) If ᾱ is a tuple of some elements ofM , by relatively ᾱ-de�nable subset of Aut(M)
we mean a subset of the form {σ ∈ Aut(M) : M |= ϕ(σ(ᾱ), m̄)}, where ϕ(x̄, ȳ) is
a formula without parameters.
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The above de�nition di�ers from the standard terminology in which �A-
de�nable� means �de�nable over A�; here, �relatively ᾱ-de�nable� has nothing to
do with the parameters over which the set is relatively de�nable. One should keep
this in mind from now on.
For a formula ϕ(x̄, ȳ) and tuples ā, b̄ from M corresponding to x̄ and ȳ, respec-

tively, we will use the following notation

Aϕ,ā,b̄ = {σ ∈ Aut(M) : M |= ϕ(σ(ā), b̄)}.
When x̄ and ȳ are of the same length (by which we mean that they are also of the
same sorts) and ā = b̄, then this is set will be denoted by Aϕ,ā.

De�nition 4.13. i) The group Aut(M) is said to be relatively de�nably amenable
if there exists a left Aut(M)-invariant, �nitely additive probability measure on the
Boolean algebra of relatively de�nable subsets of Aut(M).
ii) If ᾱ is a tuple of some elements of M , the group Aut(M) is said to be relatively
ᾱ-de�nably amenable if there exists a left Aut(M)-invariant, �nitely additive prob-
ability measure on the Boolean algebra of relatively ᾱ-de�nable subsets of Aut(M).

In particular, Aut(M) being relatively de�nably amenable means exactly that
it is relatively m̄-de�nably amenable.
We will mostly focus on the case when M = C is a monster model. But often

one can work in the more general context whenM is ℵ0-saturated and strongly ℵ0-
homogeneous, including the case of the unique countable model of an ω-categorical
theory.

Remark 4.14. LetM be ℵ0-saturated and strongly ℵ0-homogeneous enumerated as
m̄. Let ᾱ be a tuple of some elements ofM . Then Aut(M) is relatively ᾱ-de�nably
amenable if and only if there is an Aut(M)-invariant, (regular) Borel probability
measure on Sᾱ(M) (equivalently, tp(ᾱ/∅) is amenable). In particular, Aut(M)
is relatively de�nable if and only if there is an Aut(M)-invariant, (regular) Borel
probability measure on Sm̄(M) (equivalently, T is amenable).

Proof. Suppose �rst that Aut(M) is relatively ᾱ-de�nably amenable, witnessed by
a measure µ. For a formula ϕ(x̄, m̄) let [ϕ(x̄, m̄)] be the basic clopen set in Sᾱ(M)
given by this formula. De�ne µ̃([ϕ(x̄, m̄)]) := µ(Aϕ,m̄). It is clear that µ̃ is an
Aut(M)-invariant, �nitely additive probability measure on the algebra of clopen
subsets of Sᾱ(M). This µ̃ extends (by [36, Chapter 7.1])) to an Aut(M)-invariant,
(regular) Borel probability measure on Sᾱ(M).
Conversely, assume that µ̃ is an Aut(M)-invariant, Borel probability measure on

Sᾱ(M). For any relatively ᾱ-de�nable subset Aϕ,m̄ de�ne µ(Aϕ,m̄) := µ̃([ϕ(x̄, m̄)]).
By the ℵ0-saturation and strong ℵ0-homogeneity of M , we easily get that µ is a
well-de�ned, Aut(M)-invariant, �nitely additive probability measure on relatively
ᾱ-de�nable subsets of Aut(M).
The fact that the existence of an Aut(M)-invariant, (regular) Borel probability

measure on Sᾱ(M) is equivalent to amenability of tp(ᾱ/∅) follows from Proposition
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4.5. And then, the fact that the existence an Aut(M)-invariant, (regular) Borel
probability measure on Sm̄(M) is equivalent to amenability of T follows from
Corollary 4.9. �

So the terminologies �Aut(M) is relatively [ᾱ-]de�nably amenable� and �T [resp.
tp(ᾱ/∅)] is amenable� will be used interchangeably.

Corollary 4.15. [For a given tuple ᾱ] relative [ᾱ-]de�nable amenability of an ℵ0-
saturated and strongly ℵ0-homogeneous model M [containing ᾱ] does not depend
on the choice of M .

Corollary 4.16. Let M be ℵ0-saturated and strongly ℵ0-homogeneous. Then, if
Aut(M) is amenable as a topological group (with the pointwise convergence topol-
ogy), then it is relatively de�nably amenable, which in turn implies that it is rela-
tively ᾱ-de�nably amenable for any tuple ᾱ of elements M .
Similarly, extreme amenability of Aut(M) as a topological group implies extreme

amenability of T .

Proof. Amenability of Aut(M) implies that there is an Aut(M)-invariant, Borel
probability measure on Sm̄(M). By Remark 4.14, this implies relative de�nable
amenability of Aut(M). Furthermore, since there is an obvious �ow homomor-
phism from Sm̄(M) to Sᾱ(M), a measure on Sm̄(M) induces a measure on Sᾱ(M),
and this is enough by Remark 4.14. �

As in the introduction, we will call a countable ℵ0-categorical theory KPT-
[extremely] amenable if the automorphism group of its unique countable model is
[extremely] amenable as a topological group.
So, by Corollary 4.16, KPT-[extreme] amenability of a (countable ℵ0-categorical)

theory T implies [extreme] amenability of T in the new sense of this paper. In
fact most, if not all, of the examples of not only KPT-extremely amenable the-
ories (such as dense linear orderings) but also KPT-amenable (not necessarily
KPT-extremely amenable) theories (such as the random graph) come from Fraïssé
classes with canonical amalgamation, hence are extremely amenable in our sense.
Only canonical amalgamation over ∅ is needed here (see the next paragraph for
a justi�cation) which says that there is a map ⊗ taking pairs of �nite structures
(A,B) from the Fraïssé class to an amalgam A ⊗ B (also in the Fraïssé class)
which is compatible with embeddings, i.e. if f : B → C is an embedding of �nite
structure structures from the Fraïssé class, then there exists an embedding from
A⊗ B to A⊗ C which commutes with f and with the embeddings: A→ A⊗ B,
B → A ⊗ B, A → A ⊗ C, and C → A ⊗ C. A typical example is a Fraïssé class
with �free amalgamation�, namely adding no new relations.
Let us brie�y explain why canonical amalgamation of a Fraïssé class of �nite

structures in a relational language [or, more generally, �nitely generated struc-
tures in any language] whose Fraïssé limit M is ω-categorical implies extreme
amenability. First, note that canonical amalgamation implies that for any �nite
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tuples d̄, ā1, b̄1, . . . , ān, b̄n from M , if the structures āi and b̄i are isomorphic (i.e.
have the same quanti�er-free type), then we can amalgamate structures d̄ and
(āi, b̄i : i ≤ n) into a structure d̄′, ā′1, b̄

′
1, . . . , ā

′
n, b̄
′
n in such a way that ā′i is isomor-

phic with b̄′i over d̄
′ for all i ≤ n. Therefore, using ω-categoricity and quanti�er

elimination, one concludes by compactness that any �nitary type in S(∅) extends
to an Aut(M)-invariant type in S(M), so T is extremely amenable (since M is
ω-categorical).
In [27], we proved that both KPT-amenability and KPT-extreme amenability

are preserved by adding �nitely many parameters. This is not the case for our
notion of �rst order [extreme] amenability. For example, if T is the theory of two
equivalence relations E1, E2, where E1 has in�nitely many classes, all in�nite, and
each E1-class is divided into two E2-classes, both in�nite, then T is extremely
amenable, but adding an (imaginary) parameter for an E1-class destroys extreme
amenability. Similar examples can be built by putting uniformly in each E1-class
some non amenable theory.

Corollary 4.17. If Aut(C) is relatively ᾱ-de�nably amenable, where ᾱ is a tuple in
C (e.g. ᾱ = c̄), then there exists an Aut(C)-invariant, �nitely additive probability
measure on the Boolean algebra generated by relatively ᾱ-type-de�nable sets, i.e.
sets of the form {σ ∈ Aut(C) : C |= π(σ(ā), b̄))} for some partial type π(x̄, ȳ), where
x̄ and ȳ are short tuples of variables, and ā, b̄ are tuples from C corresponding to
x̄ and ȳ, respectively, such that ā is a subtuple of ᾱ.
In particular, if Aut(C) is relatively de�nably amenable, then there exists an

Aut(C)-invariant, �nitely additive probability measure on the Boolean algebra gen-
erated by relatively type-de�nable sets (i.e., relatively c̄-type-de�nable sets).

Proof. A set X belongs to the Boolean algebra in question if and only if it is of
the form {σ ∈ Aut(C) : tp(σ(ā)/A)) ∈ P}, where A ⊆ C is a (small) set, ā is a
short subtuple of ᾱ, and P is a �nite Boolean combination of closed subsets of
Sā(A). By Remark 4.14, there is and Aut(C)-invariant, (regular) Borel probability
measure µ̃ on Sᾱ(C). Then de�ne µ(X) := µ̃(π−1[P ]), where π : Sᾱ(C) → Sā(A)
is the restriction map. It is easy to check that it is a well-de�ned measure as
required. �

Recall that in an NIP theory, for any global type p the following conditions are
equivalent (see [17, Proposition 2.11]).

(1) p does not fork over ∅.
(2) The Aut(C)-orbit of p is bounded.
(3) p is Kim-Pillay invariant (i.e. invariant under AutfKP (C)).
(4) p is Lascar invariant.

Proposition 4.18. Assume NIP, and let ᾱ be any tuple in C (e.g. ᾱ = c̄). Then
Aut(C) is relatively ᾱ-de�nably amenable if and only if there exists p ∈ Sᾱ(C) with
bounded Aut(C)-orbit.
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Proof. (←). Consider any formula ϕ(x̄, b̄) with x̄ corresponding to ᾱ. Recall that

Aϕ,ᾱ,b̄ = {σ ∈ Aut(C) : C |= ϕ(σ(ᾱ), b̄)}.

Let Sϕ = {b̄′ : ϕ(x̄, b̄′) ∈ p}. As was recalled above, p is AutfKP (C)-invariant,

i.e. it is invariant over bddheq(∅) (the hyperimaginary bounded closure of ∅). By
Proposition 2.6 of [17] and NIP, there is N < ω such that

Sϕ =
⋃
n<N

An ∩Bc
n+1,

where each An and Bn is type-de�nable and invariant under AutfKP (C).
Let S̃ϕ = {σ/AutfKP (C) : ϕ(x̄, σ−1(b̄)) ∈ p} = {σ/AutfKP (C) : ϕ(x̄, b̄) ∈ σ(p)},

and let π : Aut(C)→ GalKP (T ) be the quotient map.
We claim that S̃ϕ is a Borel (even constructible) subset of GalKP (T ). Indeed,

since p is AutfKP (C)-invariant, we have

π−1[S̃ϕ] = {σ : σ−1(b̄) ∈ Sϕ} =
⋃
n<N

A′n ∩B′cn+1,

where A′n = {σ ∈ Aut(C) : σ−1(b̄) ∈ An} and B′n = {σ ∈ Aut(C) : σ−1(b̄) ∈ Bn}.
Since An and Bn are AutfKP (C)-invariant, we get that A′n and B′n are unions of
cosets of AutfKP (C), so

S̃ϕ = π[π−1[S̃ϕ]] =
⋃
n<N

π[A′n] ∩ π[B′n+1]c.

Moreover, π−1[π[A′n]−1] = A′−1
n = {σ ∈ Aut(C) : σ(b̄) ∈ An} and π−1[π[B′n]−1] =

B′−1
n = {σ ∈ Aut(C) : σ(b̄) ∈ Bn}, so π[A′n] and π[B′n+1] are closed (by type-

de�nability of An and Bn). Therefore, S̃ϕ is constructible.
Let h be the unique (left invariant) normalized Haar measure on the compact

group GalKP (T ). By the last paragraph, S̃ϕ is Borel, hence h(S̃ϕ) is de�ned, and
so we can put

µ(Aϕ,ᾱ,b̄) := h(S̃ϕ).

We leave as an easy exercise to check that µ is a well-de�ned (i.e. does not depend
on the choice of ϕ yielding the �xed set A = Aϕ,ᾱ,b̄), Aut(C)-invariant, �nitely
additive probability measure on relatively ᾱ-de�nable subsets of Aut(C).

(→). Let µ be a measure witnessing relative ᾱ-de�nable amenability. We can �nd
p ∈ Sᾱ(C) such that for every ϕ(x̄, b̄) ∈ p one has µ(Aϕ,ᾱ,b̄) > 0. We claim that
p does not fork over ∅, which will complete the proof by the comments preceding
Proposition 4.18.
Suppose p forks over ∅. Then there is a formula ϕ(x̄, b̄) ∈ p and an indiscernible

sequence 〈b̄i〉i∈ω with b̄0 = b̄ such that 〈ϕ(x̄, b̄i)〉i∈ω is k-inconsistent for some k ∈ ω.
By left invariance of µ, we have µ(Aϕ,ᾱ,b̄i) = ε > 0 for all i ∈ ω. So we can �nd

a maximal n such that µ(Aϕ,ᾱ,b̄0 ∩ · · · ∩ Aϕ,ᾱ,b̄n−1
) = δ > 0. Let ψm(x̄, b̄′m) =

ϕ(x̄, b̄mn)∧ · · · ∧ϕ(x̄, b̄mn+n−1), where b̄′m is the concatenation of b̄mn, . . . , b̄mn+n−1.
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Then µ(Aψm,ᾱ,b̄′m) = δ for all m, but µ(Aψm1,ᾱ,b̄
′
m1

∩ Aψm2 ,ᾱ,b̄
′
m2

) = 0 whenever

m1 6= m2. This is a contradiction. �

By Proposition 4.18 and the discussion preceding it, we get the following corol-
lary, yielding a large class of amenable theories.

Corollary 4.19. Assume T has NIP. Then, T is amenable if and only if ∅ is an
extension base (i.e. any type over ∅ does not fork over ∅). In particular, stable,
o-minimal, and c-minimal theories are all amenable.

By [17, Corollary 2.10], the above characterization gives us

Corollary 4.20. Assume T has NIP. Then amenability of T implies G-
compactness.

In Subsection 4.4, we will generalize this corollary to arbitrary theories, using
di�erent methods.
It is worth mentioning that Theorem 7.7 of [25] yields several other conditions

equivalent (under NIP) to the existence of p ∈ Sc̄(C) with bounded Aut(C)-orbit,
for example: some (equivalently, every) minimal left ideal of the Ellis semigroup
of the Aut(C)-�ow Sc̄(C) is of bounded size.

Let us �nally mention in this subsection some relations between our notions of
amenability and extreme amenability of a theory T and the notion of a strongly
determined over ∅ theory from [19] (originating in work of Ivanov and Macpher-
son [20]). Decoding the de�nition in [19], T is strongly determined over ∅ if any
complete type p(x̄) over ∅ has an extension to a complete type p′(x̄) over C which
is acleq(∅)-invariant. So clearly T extremely amenable implies T is strongly deter-
mined over ∅. Moreover, by Proposition 4.19, assuming NIP, T strongly determined
over ∅ implies amenability of T . In fact, if T is NIP and KP-strong types agree
with usual strong types (over ∅), then T is strongly determined over ∅ i� T is
amenable.

4.3. Amenability implies G-compactness: the case of de�nable measures.

The main result of this section of the paper, that amenability of T implies that
T is G-compact, will be proved in full generality in Subsection 4.4. However,
some special cases have a relatively easy proof. One such is the NIP case above.
Another case is when T is extremely amenable, where the proof of Remark 4.21
of [27] shows that in fact T is G-trivial (the Lascar group is trivial). This is
made explicit in Proposition 4.31 below. Ivanov's observation in [19] that if T is
strongly determined over ∅ then Lascar strong types coincide with (Shelah) strong
types follows from Proposition 4.31 by working over acleq(∅). However, deducing
G-compactness of T from amenability of T in general is more complicated, and
the proof in Subsection 4.4 uses Corollary 2.11 and requires adaptations of some
ideas from Section 2 involving various computations concerning relatively de�nable
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subsets of Aut(C). This subsection is devoted to a proof of the main result in
the special case when amenability of T is witnessed by ∅-de�nable global Keisler
measures, rather than just ∅-invariant Keisler measures. We will make use of CL-
stability as in Section 3. But this time we will also make explicit use of results
from [3].
We �rst discuss the relationship between our formalism and that of [3]. Start

with our (classical) complete �rst order theory T , which we assume for convenience
to be 1-sorted. This is a theory in continuous logic in the sense of [3], but where
the metric is discrete and all relation symbols are {0, 1} valued, where 0 is treated
as �true� and 1 as �false�. The type spaces Sn(T ) are of course Stone spaces. What
are called de�nable predicates, in �nitely many variable and without parameters,
in [3] are precisely CL-formulas over ∅ in the sense of Section 3, but where the
range is contained in [0, 1]. Namely, a de�nable predicate in n variables is given by
a continuous function from Sn(T ) to [0, 1]. The CL-generalization of Morleyizing
T consists of adding all such de�nable predicates as new predicate symbols in the
sense of continuous logic. So if M is a model of T , φ(x̄) is such a new predicate
symbol, and M is a model of T , then the interpretation φ(M) of φ in M is the
function taking an n-tuple ā from M to φ(tp(ā)). Let us call this new theory TCL
(a theory of continuous logic with quanti�er elimination), to which we can apply
the results of [3]. As just remarked, any model M of T expands uniquely to a
model of TCL, but we will still call it M .
To understand imaginaries as in Section 5 of [3], we have to also consider de-

�nable predicates, without parameters, but in possibly in�nitely (yet countably)
many variables. As in Proposition 3.10 of [3], such a de�nable predicate in in�n-
itely many variables can be identi�ed with a continuous function from Sω(T ) to
[0, 1] where Sω(T ) is the space of complete types of T in a �xed countable sequence
of variables. We feel free to call such a function (and the corresponding function
on ω-tuples in models of T to [0, 1]) a CL-formula in in�nitely many variables.
Let us now �x a de�nable predicate φ(x̄, ȳ), where x̄ is a �nite tuple of variables,
and ȳ is a possibly in�nite (but countable) sequence of variables. A �code� for
the CL-formula (with parameters ā and �nite tuple x̄ of free variables) φ(x̄, ā) will
then be a CL-imaginary in the sense of [3], and all CL-imaginaries will arise in
this way. The precise formalism (involving new sorts with their own distance re-
lation) is not so important, but the point is that the code will be something �xed
by precisely those automorphisms (of a saturated model) which �x the formula
φ(x̄, ā). In other words, the code will be the equivalence class of ā with respect
to the obvious equivalence relation Eφ(ȳ, z̄), on tuples of the appropriate length.
If ȳ is a �nite tuple of variables, then we will call a corresponding imaginary (i.e.
code for φ(x̄, ā)) a �nitary CL-imaginary. We will work in the saturated model
M̄ = C of T which will also be a saturated model of TCL. When we speak about
interde�nability of various objects, we mean a priori in the sense of automorphisms
of M̄ .
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The notion of hyperimaginary is well-established in (usual, classical) model the-
ory [29]. A hyperimaginary is by de�nition ā/E where ā is a possibly in�nite (but
small compared with the saturation) tuple and E a type-de�nable over ∅ equiva-
lence relation on tuples of the relevant size. It is known that up to interde�nability
we may restrict to tuples of length at most ω, which we henceforth do. When the
length of ā is �nite, we call ā/E a �nitary hyperimaginary. The following is routine,
but we sketch the proof.

Lemma 4.21. (i) Any [�nitary] CL-imaginary is interde�nable with a [�nitary]
hyperimaginary.
(ii) If E is a bounded type-de�nable over ∅ equivalence relation on �nite tuples,
then each class of E is interde�nable with a sequence of �nitary CL-imaginaries.

Proof. (i) if φ(x̄, ȳ) is a CL-formula where ȳ is a possibly countably in�nite tuple,
then the equivalence relation E(ȳ, z̄) which says of (ā, b̄) that the functions φ(x̄, ā)
and φ(x̄, b̄) are the same, is a type-de�nable over ∅ equivalence relation in T .
(ii) It is well-known that E is equivalent to a conjunction of equivalence relations
each of which is de�ned by a countable collection of formulas over ∅ and is also
bounded. So we may assume that E is de�ned by a countable collection of formulas.
Then C/E is a compact space, metrizable via an Aut(C)-invariant metric d (see [24,
Section 3, p. 237]). De�ne ψ(x̄, ȳ) := d(x̄/E, ȳ/E). This is clearly a CL-formula,
and we see that each ā/E is interde�nable with the code of ψ(x̄, ā). �

Let acleqCL(∅) denote the collection of CL-imaginaries which have a bounded num-
ber of conjugates under Aut(M̄). Likewise bddheq(∅) is the collection of hyperimag-
inaries with a bounded number of conjugates under Aut(M̄). Now, Theorem 4.15
of [29] says that any bounded hyperimaginary is interde�nable with a sequence of
�nitary bounded hyperimaginaries. Therefore, by Lemma 4.21, we get

Corollary 4.22. (i) Up to interde�nability, acleqCL(∅) coincides with bddheq(∅).
(ii) Moreover, acleqCL(∅) is interde�nable with the collection of �nitary CL-
imaginaries with a bounded number of conjugates under Aut(M̄).

We now appeal to the local stability results in [3] (which go somewhat beyond
what we deduced purely from Grothendieck in Section 3). Fix a �nite tuple x̄ of
variables and consider ∆(x̄), the collection of all stable formulas (without param-
eters) φ(x̄, ȳ) of TCL, where ȳ varies and where stability is as de�ned in Section
3. For an n-tuple b̄ and set A of parameters (including possibly CL-imaginaries),
tp∆(b̄/A) is the function taking the formula φ(x̄, ā) to φ(b̄, ā) where φ(x̄, ȳ) ∈ ∆
and φ(x̄, ā) is over A (i.e invariant under Aut(M̄/A)). By de�nition, a complete
∆-type over A is something of the form tp∆(b̄/A) (and b̄ is a realization of it).

Remark 4.23. For any b̄, tp(b̄/ bddheq(∅)) (in the classical case) coincides with
tp∆(b̄/ acleqCL(∅)) in the continuous framework.
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Proof. Using Corollary 4.22, the left hand side always implies the right hand
side. For the other direction, since x̄ ≡bddheq(∅) ȳ is a bounded, type-de�nable

over ∅ equivalence relation (in fact, it is exactly EKP ), it is enough to show
that for any bounded, type-de�nable over ∅ equivalence relation E, whenever
tp∆(b̄/ acleqCL(∅)) = tp∆(b̄′/ acleqCL(∅)), then E(b̄, b̄′). Let ψ(x̄, ȳ) be the CL-formula
from the proof of Lemma 4.21(ii). As E is bounded, ψ(x̄, ȳ) is stable. The code
of ψ(x̄, b̄) is interde�nable with b̄/E, hence it is in acleqCL(∅), and so ψ(x̄, ā) is over
acleqCL(∅). Since clearly ψ(b̄, b̄) = 0, we conclude that ψ(b̄′, b̄) = 0 which means that
E(b̄, b̄′). �

We have already explained in Section 3 what we mean by de�nability of a
complete ∆-type over a model M . The following is a consequence of the local
theory developed in Section 7 of [3] and the discussion around glueing in Section
8 of the same paper. We restrict ourselves to the case needed, i.e. over ∅.
Fact 4.24. Let p(x̄) be a complete ∆-type over acleqCL(∅). Then for any model M
(which note contains acleqCL(∅)) there is a unique complete ∆-type q(x̄) over M
such that q(x̄) extends p(x̄) and q is de�nable over acleqCL(∅). We say q = p|M . In
particular, if M ≺ N , then p|M is precisely the restriction of p|N to M .

De�nition 4.25. We say that b̄ is stably independent from B (or that b̄ and B
are stably independent) if tp∆(b̄/B) equals the restriction of p|M to B, where M
is some model containing B and p = tp∆(b̄/ acleqCL(∅)).
The usual Erdös-Rado arguments, together with Fact 4.24 give:

Corollary 4.26. Let p(x̄) be a complete ∆-type over acleqCL(∅). Then there is an
in�nite sequence (b̄i : i < ω) of realizations of p which is indiscernible and such
that b̄i is stably independent from {b̄j : j < i} for all i.
The following consequence of Fact 4.24 will also be important for us:

Corollary 4.27. Suppose we have �nite tuples b̄ and c̄ from the (classical) model
C. Suppose that b̄ is stably independent from c̄. Then for any stable CL-formula
ψ(x̄, ȳ) (over ∅), the value of ψ(b̄, c̄) depends only on tp(b̄/ bddheq(A)) and
tp(c̄/ bddheq(A)) (in the sense of the classical structure C).

Proof. Let p(x̄) = tp(b̄/ bddheq(A)), which by Remark 4.23 coincides with
tp∆(b̄/ acleqCL(∅)). The ψ(x̄, ȳ)-type of p|C is by Fact 4.24 de�nable by a CL-
formula χ(y) over acleqCL(∅) = bddheq(∅). So assuming the stable independence of
b̄ and c̄, by de�nition and Fact 4.24, the value of ψ(b̄, c̄) is equal to χ(c̄), which
by Remark 4.23 depends only on tp(c̄/ bddheq(∅)). If b̄ is replaced by another
realization b̄′ of p which is stably independent from another realization c̄′ of
tp(c̄/ bddheq(∅)), then the above shows that ψ(b̄′, c̄′) = χ(c̄′) = χ(c̄) = ψ(b̄, c̄). �

Proposition 4.28. Let µ(x̄) be a global ∅-de�nable Keisler measure. Let ā and
b̄ be tuples of the same length from C, with the same type over bddheq(∅), and
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stably independent. Let p(x̄, ā) be a complete type over ā which is �µ-wide� in
the sense that every formula in p(x̄, ā) gets µ-measure > 0. Then the partial type
p(x̄, ā)∪ p(x̄, b̄) is also µ-wide (again in the sense that every formula implied by it
has µ-measure > 0).

Proof. By de�nition, we have to show that if φ(x̄, ā) is a formula with µ-measure
> 0, then φ(x̄, ā)∧ φ(x̄, b̄) has µ-measure > 0. By ∅-de�nability of µ, the function
ψ(ȳ, z̄) de�ned to be µ(φ(x̄, ȳ) ∧ φ(x̄, z̄)) is de�nable over ∅, i.e. is a CL-formula
without parameters. Moreover, by Proposition 2.25 of [15], ψ(ȳ, z̄) is stable. Bear-
ing in mind Remark 4.23, let, by Corollary 4.26, (āi : i < ω) be an indiscernible
sequence of realizations of tp(ā/ bddheq(∅)) such that āj and āi are stably indepen-
dent for all i < j (equivalently for some i < j). Since µ is Aut(C)-invariant, we
see that µ(φ(x̄, āi)) is positive and constant for all i, and µ(φ(x̄, āi) ∧ φ(x̄, āj)) is
positive (and constant) for i 6= j. In particular, ψ(ā0, ā1) > 0. By Corollary 4.27,
ψ(ā, b̄) > 0, which is what we had to prove. �

Proposition 4.29. Suppose that amenability of (the classical, �rst order theory)
T is witnessed by ∅-de�nable Keisler measures. Namely, for every formula φ(x̄)
over ∅ there is a global ∅-de�nable Keisler measure µ(x̄) concentrating on φ(x̄).
Then T is G-compact.

Proof. We have to show that if b̄, c̄ are tuples of the same (but possibly in�nite)
length and with the same type over bddheq(∅), then they have the same Lascar
strong type.
Assume �rst that b̄ and c̄ are stably independent in the sense of De�nition 4.25.

(If the length of these tuples is in�nite, we mean that any two �nite corresponding
subtuples of ā and b̄ are stably independent.) Fix a model M0 and enumerate it.
We will �nd a copy M of M0 such that tp(b̄/M) = tp(c̄/M) (which immediately
yields that b̄ and c̄ have the same Lascar strong type). By compactness, given a
consistent formula φ(ȳ) in �nitely many variables, it su�ces to �nd some realization
m̄ of φ(ȳ) such that tp(b̄/m̄) = tp(c̄/m̄). Again by compactness, we may assume
that b̄, c̄ are �nite tuples. By assumption, let µ(ȳ) be a global Keisler measure
concentrating on φ(ȳ) and which is ∅-de�nable. Let p(ȳ, b̄) be a complete type over
b̄ which is µ-wide. By Proposition 4.28, p(ȳ, b̄)∪p(ȳ, c̄) is also µ-wide, in particular
consistent. So let m̄ realize it.
In general, given (possibly in�nite) tuples b̄, c̄ with the same type over bddheq(∅),

let d̄ have the same type over bddheq(∅) and be stably independent from {b̄, c̄} (by
Fact 4.24, uniqueness, and compactness). By what we have just shown, b̄ and d̄
have the same Lascar strong type, and c̄ and d̄ have the same Lascar strong type.
So b̄ and c̄ do, too. �

4.4. Amenability implies G-compactness: the general case. Let T be an
arbitrary theory, C |= T a monster model, and c̄ an enumeration of C. The goal of
this subsection is to prove
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Theorem 4.30. If T is amenable, then T is G-compact. In fact, the diameter of
each Lascar strong type (over ∅) is bounded by 4.

Recall, once again, that in [27] it was deduced from Conjecture 0.1 for groups
with a basis of open sets at 1 consisting of open subgroups that if M is a count-
able ω-categorical structure and Aut(M) is amenable (as a topological group),
then Th(M) is G-compact. By Corollary 4.16, we see that Theorem 4.30 is a
generalization of this result.
Before we start our analysis towards the proof of Theorem 4.30, let us �rst note

an analogous statement for extreme amenability, which is much easier to prove.

Proposition 4.31. If p(x̄) ∈ S(∅) is extremely amenable, then p(x̄) is a single
Lascar strong type. Moreover, the Lascar diameter of p(x̄) is at most 2.
In particular, if T is extremely amenable, then the Lascar strong types coincide

with complete types (over ∅), i.e. the Lascar Galois group GalL(T ) is trivial.

Proof. Choose C so that x̄ is short in C. Let q ∈ Sp(C) be invariant under Aut(C).
Fix ᾱ |= q (in a bigger model). Take a small M ≺ C and choose β̄ ∈ C such that
β̄ |= q|M . Then ᾱ EL β̄. But also, for any σ ∈ Aut(C), σ(β̄) |= σ(q)|σ[M ] = q|σ[M ],
and so σ(β̄)EL ᾱ. Therefore, σ(β̄)EL β̄ for any σ ∈ Aut(C), which shows that
p(x̄) is a single Lascar strong type.
For the �moreover part� notice that, in the above argument, both dL(ᾱ, β̄) and

dL(σ(β̄), ᾱ) are bounded by 1. �

Recall from Corollary 4.17 that by a relatively type-de�nable subset of Aut(C) we
mean a subset of the form Aπ,ā,b̄ := {σ ∈ Aut(C) : C |= π(σ(ā), b̄))} for some partial
type π(x̄, ȳ) (without parameters), where x̄ and ȳ are short tuples of variables and
ā, b̄ are from C. (Note that although here we allow repetitions in the tuple ā,
whereas in Corollary 4.17 ā was a subtuple of c̄, both versions yield the same class
of relatively type-de�nable sets.) Without loss x̄ is of the same length as ȳ and
ā = b̄, and then we write Aπ̄,ā. In fact, the following remark is very easy.

Remark 4.32. For any partial types π1(x̄1, ȳ1) and π2(x̄2, ȳ2) and tuples ā1, ā2, b̄1, b̄2

in C corresponding to x̄1, x̄2, ȳ1, ȳ2, one can �nd partial types π′1(x̄, ȳ) and π′2(x̄, ȳ)
with x̄ of the same length (by which we also mean of the same sorts) as ȳ and a
tuple ā in C corresponding to x̄ such that Aπ1,ā1,b̄1 = Aπ′1,ā and Aπ2,ā2,b̄2 = Aπ′2,ā.

For a short tuple ᾱ and a short tuple of parameters b̄, a subset of Aut(C) is
called relatively ᾱ-type-de�nable over b̄ if it is of the form Aπ,ᾱ,b̄ for some partial
type π(x̄, ȳ).
The next fact was observed in [25].

Fact 4.33 (Proposition 5.2 of [25]). If G is a closed, bounded index subgroup
of Aut(C) (with Aut(C) equipped with the pointwise convergence topology), then
AutfL(C) ≤ G.

Using an argument similar to the proof of Fact 4.33, we will �rst show
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Proposition 4.34. If G is a relatively type-de�nable, bounded index subgroup of
Aut(C), then AutfKP (C) ≤ G.

Proof. Let σi, i < λ, by a set of representatives of the left cosets of G in Aut(C)
(so λ is bounded). Then

G′ :=
⋂

σ∈Aut(C)

Gσ =
⋂
i<λ

Gσi

is a normal, bounded index subgroup of Aut(C) (where Gσ := σGσ−1).
Let us show now that G′ is relatively type-de�nable. We have G = Aπ,ā = {σ ∈

Aut(C) : C |= π(σ(ā), ā)} for some type π(x̄, ȳ) (with short x̄, ȳ) and tuple ā in
C. Then Gσi = {σ ∈ Aut(C) : C |= π(σ(σi(ā)), σi(ā))}, so putting ā′ = 〈σi(ā)〉i<λ,
x̄′ = 〈x̄i〉i<λ, ȳ′ = 〈ȳi〉i<λ (where x̄i and ȳi are copies of x̄ and ȳ, respectively) and
π′(x̄′, ȳ′) =

⋃
i<λ π(x̄i, ȳi) (as a set of formulas), we see that

G′ = Aπ′,ā′ = {σ ∈ Aut(C) : C |= π′(σ(ā′), ā′)},
which is clearly relatively type-de�nable.
The orbit equivalence relation E of the action of G′ on the set of realizations of

tp(ā′/∅) is a bounded equivalence relation. This relation is type-de�nable, because

ᾱ E β̄ ⇐⇒ (∃g ∈ G′)(g(ᾱ) = β̄) ⇐⇒ (∃b̄′)(π′(b̄′, ā′) ∧ ā′ᾱ ≡ b̄′β̄).

But E is also invariant (as G′ is a normal subgroup of Aut(C)), so E is type-
de�nable over ∅. Therefore, E is re�ned by EKP .
Now, take any σ ∈ AutfKP (C). By the last conclusion, there is τ ∈ G′ such that

σ(ā′) = τ(ā′). Then τ−1σ(ā′) = ā′ and σ = τ(τ−1σ). Since the above formula for
G′ shows that G′ · Fix(ā′) = G′, we get σ ∈ G′. Thus, AutfKP (C) ≤ G′ ≤ G. �

Corollary 4.35. If {Ci : i ∈ ω} is a family of relatively de�nable, generic, sym-
metric subsets of Aut(C) such that C2

i+1 ⊆ Ci for all i ∈ ω, then
⋂
i∈ω Ci is a

subgroup of Aut(C) containing AutfKP (C).

Proof. It is clear that
⋂
i∈ω Ci is a subgroup of Aut(C), and it is easy to show that it

has bounded index (at most 2ℵ0). Moreover, it is clearly relatively type-de�nable.
Thus, the fact that it contains AutfKP (C) follows from Proposition 4.34. �

Lemma 4.36. i) Let π(x̄, ȳ) be a partial type (over ∅) and ā, b̄ short tuples from
C corresponding to x̄ and ȳ, respectively. Then A−1

π,ā,b̄
= Aπ′,b̄,ā, where π

′(ȳ, x̄) =

π(x̄, ȳ).
ii) Let n ≥ 2 be a natural number. Let x̄, ȳ and x̄1, . . . , x̄n be disjoint, short tuples
of variables of the same length. Then there exists a partial type Φn(x̄, ȳ, x̄1, . . . , x̄n)
such that for every partial types π1(x̄1, ȳ), . . . , πn(x̄n, ȳ) and tuple ā corresponding
to x̄ one has

Aπ1,ā · . . . · Aπn,ā = Aπ,ā,

where

π(x̄, ȳ) = (∃x̄1, . . . , x̄n)(π1(x̄1, ȳ) ∧ · · · ∧ πn(x̄n, ȳ) ∧ Φn(x̄, ȳ, x̄1, . . . , x̄n)).
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Proof. (i) follows immediately from the fact that for any σ ∈ Aut(C)

C |= π(σ(ā), b̄) ⇐⇒ C |= π(ā, σ−1(b̄)) ⇐⇒ C |= π′(σ−1(b̄), ā).

(ii) We will show that for n = 2 the type Φ2(x̄, ȳ, x̄1, x̄2) := (x̄x̄1 ≡ x̄2ȳ) and for
n ≥ 3 the type Φn(x̄, ȳ, x̄1, . . . , x̄n) de�ned as

(∃z̄1, . . . , z̄n−2)(x̄z̄n−2 ≡ x̄nȳ ∧ z̄n−2z̄n−3 ≡ x̄n−1ȳ ∧ · · · ∧ z̄2z̄1 ≡ x̄3ȳ ∧ z̄1x̄1 ≡ x̄2ȳ)

is as required.
First, let us see that Aπ1,ā · . . . ·Aπn,ā ⊆ Aπ,ā. Take σ from the left hand side, i.e.

σ = σ1 ·. . .·σn, where |= πi(σi(ā), ā). Then |= π(σ(ā), ā) is witnessed by x̄i := σi(ā)
for i = 1, . . . , n and z̄i := (σ1 . . . σi+1)(ā) for i = 1, . . . , n− 2. So σ ∈ Aπ,ā.
Finally, we will justify that Aπ1,ā · . . . · Aπn,ā ⊇ Aπ,ā. Take any σ such that |=

π(σ(ā), ā). Let ā1, . . . , ān be witnesses for x̄1, . . . , x̄n, and b̄1, . . . , b̄n−2 be witnesses
for z̄1, . . . , z̄n−2, i.e.:

(1) |= πi(āi, ā) for i = 1, . . . , n, and
(2) σ(ā)b̄n−2 ≡ ānā ∧ b̄n−2b̄n−3 ≡ ān−1ā ∧ · · · ∧ b̄2b̄1 ≡ ā3ā ∧ b̄1ā1 ≡ ā2ā.

By (2), there are τ1, . . . , τn−1 ∈ Aut(C) mapping the right hand sides of the equiv-
alences in (2) to the left hand sides. Then τ1(ān) = σ(ā), so τ−1

1 σ(ā) = ān,
so τ−1

1 σ ∈ Aπn,ā by (1). Next, τ1(ā) = b̄n−2 = τ2(ān−1), so τ−1
2 τ1(ā) = ān−1,

so τ−1
2 τ1 ∈ Aπn−1,ā by (1). We continue in this way, obtaining in the last step:

τn−1(ā) = ā1, so τn−1 ∈ Aπ1,ā by (1). Therefore,

σ = τn−1(τ−1
n−1τn−2) . . . (τ−1

2 τ1)(τ−1
1 σ) ∈ Aπ1,ā · . . . · Aπn,ā.

�

Corollary 4.37. Let π1(x̄, ȳ), . . . , πn(x̄, ȳ) be partial types, ā a tuple corresponding
to x̄ and ȳ, and ε1, . . . , εn ∈ {−1, 1}.
(i) Then

Aε1π1,ā
· . . . · Aεnπn,ā =

⋂{
Aε1ϕ1,ā

· . . . · Aεnϕn,ā : π1 ` ϕ1, . . . , πn ` ϕn
}
.

ii) If Aε1π1,ā · . . . ·A
εn
πn,ā is contained in a relatively de�nable subset A of Aut(C), then

there are ϕi(x̄, ȳ) implied by πi(x̄, ȳ) for i = 1, . . . , n, such that Aε1ϕ1,ā·. . .·A
εn
ϕn,ā ⊆ A.

Lemma 4.38. Let p(x̄) ∈ S(∅) with x̄ short, q ∈ Sp(C), M ≺ C small, and
ᾱ |= q|M . Then Aq|ᾱ,ᾱAq|ᾱ,ᾱA

−1
q|ᾱ,ᾱA

−1
q|ᾱ,ᾱᾱ ⊆ {β̄ ⊂ C : dL(ᾱ, β̄) ≤ 4} ⊆ [ᾱ]EL.

Proof. Let us start from the following

Claim 1: For any β̄ |= q|ᾱ, dL(β̄, ᾱ) ≤ 1.

Proof. Take γ̄ |= q|Mᾱ. Then dL(γ̄, ᾱ) ≤ 1, so the conclusion follows from the fact
that β̄ ≡ᾱ γ̄. �(claim)
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Now, consider any σ1, σ2, σ3, σ4 ∈ Aq|ᾱ,ᾱ. Then σi(ᾱ) |= q|ᾱ, so, by the claim, we
get dL(σi(ᾱ), ᾱ) ≤ 1. Therefore, dL(σ−1

4 (ᾱ), ᾱ) ≤ 1, so dL(σ−1
3 σ−1

4 (ᾱ), σ−1
3 (ᾱ)) ≤ 1,

so dL(σ−1
3 σ−1

4 (ᾱ), ᾱ) ≤ 2, so dL(σ2σ
−1
3 σ−1

4 (ᾱ), σ2(ᾱ)) ≤ 2, so dL(σ2σ
−1
3 σ−1

4 (ᾱ), ᾱ) ≤
3, so dL(σ1σ2σ

−1
3 σ−1

4 (ᾱ), σ1(ᾱ)) ≤ 3, so dL(σ1σ2σ
−1
3 σ−1

4 (ᾱ), ᾱ) ≤ 4. �

Lemma 4.39. Assume Aut(C) is relatively de�nably amenable. By Corollary 4.17,
take the induced Aut(C)-invariant, �nitely additive, probability measure µ on the
Boolean algebra A generated by relatively type-de�nable subsets of Aut(C). Suppose
A ⊆ Aut(C) is relatively type-de�nable with µ(A) > 0 and A4 := AAA−1A−1 ⊆ A′

for some relatively de�nable A′ ⊆ Aut(C). Then there exists a relatively type-
de�nable, generic, symmetric Y ⊆ Aut(C) such that Y 8 ⊆ A′.

Proof. By Lemma 4.36, relatively type-de�nable sets are closed under taking
products and inversions, and one can easily check that also under left translations.

Claim 1: There exists a generic and symmetric set S ⊆ Aut(C) such that:

(1) S16 ⊆ AAA−1A−1,
(2) S = {σ ∈ Aut(C) : tp(σ(ā)/ā) ∈ P} for some P ⊆ Sā(ā) and some short

tuple ā (which is a tuple of �nitely many conjugates by elements of Aut(C)
of the tuple over which A is relatively type-de�nable).

Proof. Apply Corollary 2.11 for G := Aut(C), A from the statement of Proposition
4.39, B := {A}, andN = 16. As a result, we obtain a set B′ = A∩σ1[A]∩· · ·∩σn[A]
for some σi's in Aut(C) such that for some l ∈ N>0, S := StLl−1

(B′) is generic,
symmetric and satis�es S16 ⊆ AAA−1A−1. Since A is relatively type-de�nable
over some short tuple ᾱ, so is B′, but over ā := ᾱσ1(ᾱ) . . . σn(ᾱ). Hence, by the
de�nition of S, we easily get that

Aut(C/ā) · S · Aut(C/ā) = S,

which means that S = {σ ∈ Aut(C) : tp(σ(ā)/ā) ∈ P} for some P ⊆ Sā(ā).
�(claim)

Take any p ∈ P . We can write p = p(x̄, ā) for the obvious complete type p(x̄, ȳ)
over ∅. Then (Ap,ā · A−1

p,ā)
8 ⊆ (SS−1)8 = S16 ⊆ AAA−1A−1 ⊆ A′. Hence, by

Corollary 4.37(ii), there is ψp(x̄, ȳ) ∈ p(x̄, ȳ) for which (Aψp,ā · A−1
ψp,ā

)8 ⊆ A′.

Now, the complement of
⋃
p∈P Aψp,ā equals

⋂
p∈P A¬ψp,ā which is clearly relatively

type-de�nable. Thus,
⋃
p∈P Aψp,ā ∈ A. On the other hand, S ⊆

⋃
p∈P Aψp,ā and S

being generic implies that
⋃
p∈P Aψp,ā is generic. Therefore, µ(

⋃
p∈P Aψp,ā) > 0.

Let µ̃ be the Aut(C)-invariant, (regular) Borel probability measure on Sc̄(C)
from which µ is induced. Then µ̃(

⋃
p∈P [ψp]) > 0, so, by regularity, there is a

compact K ⊆
⋃
p∈P [ψp] of positive measure. But K is covered by �nitely many

clopen sets [ψp] one of which must be of positive measure, i.e. µ̃([ψp]) > 0 for some
p ∈ P . Then µ(Aψp,ā) > 0. This implies that Y := Aψp,ā ·A−1

ψp,ā
is generic, and it is
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clearly symmetric. By Lemma 4.36, it is also relatively type-de�nable. Moreover,
by the choice of ψp, Y

8 ⊆ A′, so we are done. �

Corollary 4.40. Assume Aut(C) is relatively de�nably amenable. By Corollary
4.17, take the induced Aut(C)-invariant, �nitely additive, probability measure µ
on the Boolean algebra A generated by relatively type-de�nable subsets of Aut(C).
Suppose A ⊆ Aut(C) is relatively type-de�nable and µ(A) > 0. Then AutfKP (C) ⊆
AAA−1A−1.

Proof. Take any A′ relatively de�nable, symmetric, and such that AAA−1A−1 ⊆
A′. Put C0 := A′.
By Lemma 4.39, we obtain a relatively type-de�nable, generic, symmetric Y such

that (Y 4)2 ⊆ A′. So, by Corollary 4.37, there is a relatively de�nable, symmetric
Y ′ satisfying Y 4 ⊆ Y ′ and Y ′2 ⊆ A′. Put C1 := Y ′.
Next, we apply Lemma 4.39 to Y in place of A and Y ′ in place of A′, and we

obtain a relatively type-de�nable, generic, symmetric Z such that (Z4)2 ⊆ Y ′. So,
by Corollary 4.37, there is a relatively de�nable, symmetric Z ′ satisfying Z4 ⊆ Z ′

and Z ′2 ⊆ Y ′. Put C2 := Z ′.
Continuing in this way, we obtain a family {Ci : i ∈ ω} of relatively de�nable,

generic, symmetric subsets of Aut(C) such that C2
i+1 ⊆ Ci for every i ∈ ω. By

Corollary 4.35, AutfKP (C) ⊆
⋂
i∈ω Ci ⊆ A′. Since A′ was an arbitrary relatively

de�nable, symmetric set containing A4, we get AutfKP (C) ⊆ A4. �

We have now all the ingredients to prove the main result of this section.

Proof of Theorem 4.30. By Corollary 4.17, a measure µ̃ on Sc̄(C) witnessing rel-
ative de�nable amenability of Aut(C) induces an Aut(C)-invariant, �nitely ad-
ditive, probability measure µ on the Boolean algebra A generated by relatively
type-de�nable subsets of Aut(C).
Consider any p(x̄) = tp(ᾱ/∅) ∈ S(∅) with a short subtuple ᾱ of c̄. Choose a

µ-wide type q ∈ Sp(C), i.e. µ̃([ϕ(x̄′, b̄)]) > 0 (equivalently, µ(Aϕ,ᾱ,b̄) > 0) for any

ϕ(x̄, b̄) ∈ q (where x̄′ ⊃ x̄ is the tuple of variables corresponding to c̄). Take a
small model M ≺ C. Applying an appropriate automorphism of C to q and M ,
and using Aut(C)-invariance of µ, we can assume that ᾱ |= q|M .
Consider any ϕ(x̄, ᾱ) ∈ q|ᾱ. Then µ(Aϕ,ᾱ) > 0, so, by Corollary 4.40, we

conclude that AutfKP (C) ⊆ Aϕ,ᾱAϕ,ᾱA
−1
ϕ,ᾱA

−1
ϕ,ᾱ. Therefore, by Lemma 4.37(i), we

get

AutfKP (C) ⊆
⋂

ϕ(x̄,ᾱ)∈q|ᾱ

Aϕ,ᾱAϕ,ᾱA
−1
ϕ,ᾱA

−1
ϕ,ᾱ = Aq|ᾱ,ᾱAq|ᾱ,ᾱA

−1
q|ᾱ,ᾱA

−1
q|ᾱ,ᾱ.

On the other hand, Lemma 4.38 tells us that

Aq|ᾱ,ᾱAq|ᾱ,ᾱA
−1
q|ᾱ,ᾱA

−1
q|ᾱ,ᾱᾱ ⊆ {β̄ : dL(ᾱ, β̄) ≤ 4} ⊆ [ᾱ]EL .

Therefore, [ᾱ]EKP = [ᾱ]EL has diameter at most 4. �
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Theorem 4.30 is a global result. It is natural to ask whether we can extend it
to a local version (as in Proposition 4.31).

Question 4.41. Is it true that if p(x̄) ∈ S(∅) is amenable, then the Lascar strong
types on p(x̄) coincide with Kim-Pillay strong types? Does amenability of p(x̄)
imply that the Lascar diameter of p(x̄) is at most 4?

One could think that the above arguments should yield the positive answer to
these questions. The problem is that, assuming only amenability of p(x̄), we have
the induced measure µ but de�ned only on the Boolean algebra of relatively ᾱ-
type-de�nable subsets of Aut(C), for a �xed ᾱ |= p. So, for the recursive proof of
Corollary 4.40 to go through, starting from a set A ⊆ Aut(C) relatively ᾱ-type-
de�nable [where for the purpose of answering Question 4.41 via an argument as
in the proof of Theorem 4.30, we can additionally assume that A is de�ned over
ᾱ] of positive measure, we need to produce the desired Y also relatively ᾱ-type-
de�nable [over ᾱ] (in order be able to continue our recursion). But this requires a
strengthening of Lemma 4.39 to the version where for A relatively ᾱ-type-de�nable
of positive measure one wants to obtain the desired Y which is also relatively ᾱ-
type-de�nable; the variant with A and Y de�ned over ᾱ would also be su�cient.
Trying to follow the lines of the proof of Lemma 4.39, even if A is de�ned over
ᾱ, Claim 1 requires a longer tuple ā which produces the desired set Y which
is relatively ā-type-de�nable, and this is the only obstacle to answer positively
Question 4.41 via the above arguments.

5. Final remarks

5.1. Connected components and approximate subgroups. We clarify the
connections between the question of the equality of connected components G000 =
G00, and de�nable approximate subgroups.
Here, we will work in the simpler case where no de�nable topology is present.

Also, we work in a saturated model and over a �xed small set of parameters (even
a small model). De�nability, connected components, etc. will be relative to this
set of parameters.
We consider to begin with a de�nable group G and a de�nable, symmetric subset

X of G. 〈X〉 denotes the subgroup H, say, of G generated by X (an ind-de�nable
subgroup) and X is said to be an approximate subgroup of G if X is generic in H,
namely a bounded number of translates of X cover H. (It may be of interest to
consider the same notion for type-de�nable X.) In this context, and under various
auxiliary amenability-type hypotheses, one proves the �stabilizer theorem�

(�) H00 ⊆ X4.

This leads to a connection with locally compact groups L, and through them Lie
groups. (See [15], [31], [35], and most relevant to us [30].) Massicot and Wagner
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conjecture that �even without the de�nable amenability assumption a suitable Lie
model exists�.
In this paper, we have restricted to the case where the ind-de�nable group

H is actually de�nable, hence may be assumed, notationally, to be G. In this
case, the locally compact group L is compact. This case is not ruled out as
trivial, and indeed is of considerable interest; for instance some of the �rst the-
orems in this line, by Gowers and Helfgott, asserted in e�ect that generic de-
�nable subsets of certain pseudo�nite groups generated the group in boundedly
many steps (3 or 4), and were in turn important in further developments by
Bourgain-Gamburd and many others. Remaining in this de�nable context, it is
known that G000 is generated by a certain partial type, generic in G, namely
P = {a1a

−1
2 : (a1, a2, ...) is indiscernible}. Writing P as an intersection of de�n-

able, symmetric subsets Pn, then each Pn is an approximate subgroup of G. Hence,
if the basic result (�) holds for every generic, de�nable, symmetric subset X of G,
it follows that G00 ⊆ P4, hence G000 = G00.
More generally, in the ind-de�nable setting above (where H = 〈X〉) we can

consider the same notions, and again the truth of (�) for all generic, de�nable,
symmetric subsets of H implies that H000 = H00.
So, we see that any example where the relevant connected components di�er

must include de�nable approximate subgroups where (�) fails (even with 4 replaced
by any de�nite integer).
Starting from another angle, let f : G→ H be a quasi-homomorphism, namely

a map such that f(xy)f(y)−1f(x)−1 has �nite image. Then any approximate
subgroup Γ of H pulls back to an approximate subgroup f−1[Γ] of G. Examples
in [11] (with H = Z∗) show that even if Γ is a subgroup of H, f−1[Γ] need not be
a subgroup or even rapidly generate one. Thus, the source of approximateness of
f−1[Γ] (or for that matter of f itself as a subset of G×H) does not appear to lie
in Lie groups.
Regarding the Massicot-Wagner conjecture mentioned above, this shows at least

that any connection to a suitable �Lie model� would have to di�er substantially
from the one proved in the amenable cases.

5.2. Connected components and complexity. Let us consider these notions
from the point of view of descriptive set theory (see for example [32] for the terms
below.) Fix a countable language L with distinguished sort G (with a binary
operation), and consider the space of complete theories T (with G a group). For
now, G000 etc. will mean G000

∅ etc.
The condition G = G000 is at the �nite level of the Borel hierarchy (�arithmetic�),

and is in fact a countable union of closed sets. This can be seen as follows. First
it is known that G = G000 is equivalent to Pn = G for some n, where P is as
in the previous subsection. We can now unwind the statement Pn = G, using
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compactness: for any approximation Ik to indiscernibility,

T |= (∀x)(∃yi1, yi2)i≤n

(
x = y11y

−1
12 . . . yn1y

−1
n2 ∧

∧
i

Ik(yi1, yi2)

)
.

The condition G = G00 is Π1
1, because the negation is equivalent to the existence

of a proper type-de�nable subgroup containing P , i.e. a sequence of consistent
formulas φn(x) with φn(x) ∧ φn(y) → φn−1(xy−1) in T , and such that φn(x) is
generic but not equal to G.
The condition G00 = G000 is also Π1

1, as one sees by combining the two analyses
above for the statement G00 ⊆ Pm. This su�ces to show that G00 = G000 is indeed
a property of T itself and does not depend on the ambient model of set theory.
It would be instructive to know if the conditions G = G00 or G00 = G000

are actually ∆1
1. This seems related to a better understanding of the automatic

de�nability aspects of (�) (from the previous subsection). In the amenable setting,
if there exists any generic Y with Y 8 ⊆ X4, then there is a de�nable such Y . What
happens in the non-amenable setting?
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