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Introduction

The purpose of this course was to explore connections between contemporary
model theory and category theory. By model theory we will mostly mean first
order, finitary model theory. Categorical model theory (or, more generally,
categorical logic) is a general category-theoretic approach to logic that includes
infinitary, intuitionistic, and even multi-valued logics.

Say More Later.
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Chapter I

A Brief Survey of
Contemporary Model
Theory

I.1 Some History

Up until to the seventies and early eighties, model theory was a very broad
subject, including topics such as infinitary logics, generalized quantifiers, and
probability logics (which are actually back in fashion today in the form of con-
tinuous model theory), and had a very set-theoretic flavour. In particular, the
focus was usually on models and methods of constructing models. There was
a general feeling of model theory as being a collection of techniques, such as
compactness, which only really “came to life” in applications, such as in non-
standard analysis or the Ax-Kochen theorem.

Starting in the mid-eighties, the focus of model theory tended towards the
study of first-order finitary logic as well as the category of definable sets of
models and not just the models themselves. On the pure side, the focus became
the classification of theories and, in application, more sophisticated techniques
were being used.

Elaborate/add more. This was all that was said in lecture.

I.2 Model Theory Basics

Model theory is a “set-based theory” in the sense that the objects being studied
are sets. In recent times, model theory has adopted a more category-theoretic
perspective, perhaps näıvely, in the form of the categories Mod(T ) and Def(T ),
which we will introduce in this section. We also aim to introduce the basic
concepts of model theory and briefly outline some important notions, such as
hyperdefinability, and examples. adjust wording here. Very awkward.
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The fundamental correspondence in model theory is the one between syntax
and semantics. On the syntactic side, we have the notion of a vocabulary (we
assume for convenience that everything is 1-sorted) or language, L, is a set
consisting of:

• relation symbols R, each equipped with an airity nR ≥ 0;

• function symbols f , each equipped with an airity nf ≥ 0;

• constant symbols c (one may also consider constant symbols as 0-ary func-
tion symbols);

• logical symbols: ∧, ∨, ¬, →, ∀, ∃, =, >, ⊥, (, ), and a countable list of
variables x, y, z, . . ..

In practice, we will omit the arity nR of a relation symbol (similarly for function
symbols) when the context is clear. We will also omit the logical symbols, and
assume they are always in our language. For example, the language of graphs
is Lgraphs = {R} where R is a binary relation symbol; the language of rings is
Lrings = {+,×,−, 0, 1} where “+” and “×” are binary function symbols, “−”
is a unary function symbol, and “0” and “1” are constant symbols.

Given a language L.... include inductive definition of formula.

Remark I.1. Say something about continuous model theory

We write “ϕ(x) ∈ L” to mean an L-formula with free-variable “x”. That is,
the variable “x” is not quantified over, and the truth of ϕ(x) depends on our
interpretation of “x”. For example, in the language of rings,

P (x1, . . . , xn) = 0,

where P (x1, . . . , xn) is a polynomial with integer coefficients, is a formula with
free-variables x1, . . . , xn. The formula

∃z((x− y)2 = z)

has free-variables x and y, and z is a bound variable. A formula ϕ with no
free-variables is called a sentence.

On the semantic side, we have the notion of an L-structure, M, which
consists of a set M (the universe) and

• for each relation symbol R of arity nR, we have an interpretation of R as
a subset R(M) ⊆MnR ;

• for each function symbol f of arity nf , we have an interpretation as a
subset f(M) ⊆Mnf ×M that is the graph of a total function f : Mnf →
M ;

• for each constant symbol c, we have an interpretation as an element cM ∈
M .
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In practice, we will usually just identify M and M as well as each symbol with
its interpretation.

The main definition is that of truth of a formula in a model. We write
“M |= ϕ(ā)” to mean that ϕ(x̄) is true in M when x̄ is interpreted as tuple
ā ∈M . If σ is a sentence, we say that “M models σ” if M |= σ. If Σ is a set of
L-sentences, possibly infinite, we say M models Σ and write M |= Σ if M |= σ
for every σ ∈ Σ. For a set of L-sentences Σ and another L-sentence σ, Σ |= σ
(Σ implies or entails σ) if, for any L-structure M , if M |= Σ, then M |= σ.

As mentioned earlier, contemporary model theory is concerned not only
with models, but with the collection of definable sets of a structure. Given an
L-formula ϕ(x̄) and an L-structure M , we write

ϕ(M) := {ā ∈Mn : M |= ϕ(ā)}.

A set X ⊆ Mn is said to be definable (0-definable or ∅-definable) if there is
an L-formula ϕ(x̄) such that X = ϕ(M). If A ⊆ M , then a set X is called
A-definable (or definable over A) if there is an L-formula ψ(x̄, ȳ) and a tuple
b̄ ∈ Am such that

X = {ā ∈Mn : M |= ψ(ā, b̄)}.

Given to L-structures M and N , an embedding f : M ↪→ N is called an elemen-
tary embedding if it preserves all of the definable structure of M and N ; that
is, f : M ↪→ N is an elementary embedding if and only if, for every L-formula
ϕ(x̄) and every ā ∈Mn,

M |= ϕ(ā)⇔ N |= ϕ(f(ā)).

If M ⊆ N and the inclusion map ι : M ↪→ N is elementary, we say that “M is an
elementary substructure of N” or, equivalently, “N is an elementary extension
of M” and write M 4 N . If f : M ↪→ N is elementary, we will often implicitly
identify M with its image f(M) and write M 4 N anyway.

Example I.2. Let L = {+, 0} be the language of additive groups. The natural
embedding

(Z,+, 0) ↪→ (Ẑ,+, 0),

where Ẑ is the profinite completion of the integers, is an elementary embedding
of additive abelian groups.

Given a language L, an L-theory, T , is a consistent set of L-sentences (often
assumed to be closed under logical implication). By consistent, we mean that T
has a model. We say that T is complete if for every L-sentence σ, either σ ∈ T
or ¬σ ∈ T . Given an L-structure M , we call the set

Th(M) := {σ ∈ L : M |= σ}
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the theory of M . Th(M) is always a complete L-theory. Observe that if M 4 N
then Th(M) = Th(N) (the converse is not true in general).

The fundamental theorem of model theory is the compactness theorem, which
characterizes when a theory (or any set of sentences) is consistent in terms of
its finite subsets:

Theorem I.3 (The Compactness Theorem). Let Σ be a set of L-sentences.
Then Σ is consistent if and only if every finite subset Σ′ of Σ is consistent.

Remark I.4. It is arguable that model theory is interesting precisely because
the compactness theorem holds.

The compactness theorem gives rise to “non-standard models” of a theory.

Example I.5. 1. Let L = {∈}. The axioms of Zermelo-Frankel set theory
(ZF) give an incomplete L-theory.

2. ACF0, the theory of algebraically closed fields of characteristic 0, is a
complete Lrings-theory.

To a given L-theory T , we can naturally associate two categories: Mod(T ),
the category of models, and Def(T ), the category of (0-) definable sets. Mod(T )
is given by the following data:

• objects: models M |= T ;

• morphisms: elementary embeddings M ↪→ N .

The category Def(T ) is given by

• objects: equivalence classes [ϕ(x̄)] of formulas modulo T : two formulas
ϕ(x̄) and ψ(x̄) are equivalent modulo T if T |= ∀x̄(ϕ(x̄)↔ ψ(x̄)).

• morphisms: a morphism from [ϕ(x̄)] to [ψ(ȳ)] is given by an equivalence
class modulo T of L-formulas χ(x̄, ȳ) such that

T |= ∀x̄
[
ϕ(x̄)→ ∃=1ȳχ(x̄, ȳ)

]
∧ ∀x̄, ȳ [ϕ(x̄) ∧ χ(x̄, ȳ)→ ψ(ȳ)] ,

i.e. in any model M of T , the formula χ(x̄, ȳ) defines a the graph of a
function from ϕ(M) to ψ(M) (here, “∃=1” is an abbreviation for “there
exists exactly one”, which is expressable in a first-order way).

Remark I.6. Note that it is not totally necessary to take equivalence classes of
formulas modulo T as the objects of Def(T ); one could take formulas themselves
and allow equivalent formulas modulo T to be isomorphic objects in Def(T ).
However, it is important to take morphisms as equivalence classes.

A reoccuring theme in categorical model theory (after Makkai) is the ques-
tion of when Def(T ) can be recovered completely from Mod(T ). Lascar [3]
showed that this is possible when T is ℵ0-categorical and G-finite.

In many cases, Def(T ) has real mathematical content.
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Example I.7. 1. For ACF0, the theory of algebraically closed fields of char-
acteristic 0, Def(ACF0) is essentially the category of of algebraic varieties
over Q with morphisms regular maps.

2. If T = RCF , the theory of real closed fields, Def(T ) is the category of
semi-algebraic sets with semi-algebraic functions.

I.3 Morleyization and the T eq Construction
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Chapter II

Introduction to Category
Theory and Toposes

II.1 Categories, functors, and natural transfor-
mations

Definition II.1. A category C is a collection of objects X,Y, Z,A,B, . . . , a, b, . . .
and a collection of morphisms f, g, . . . such that each morphism f has a domain
dom(f) and a codomain cod(f) which are objects of C. If dom(f) = X and
cod(f) = Y we write f : X → Y , but this does not mean that f is an actual
function. In addition, for each object X there is a distinguished identity mor-
phism 1X : X → X or idX : X → X, and there is a composition operation: if
f : X → Y and g : Y → Z then the composite is g◦f or gf : X → Z. Moreover,
we require that

• Composition is associative: h(gf) = (hg)f whenever defined, and

• Composition is unital: f1X = f = 1Y f .

Remark II.2. It’s an easy exercise to show that the identity 1X is uniquely
defined by condition of being unital.

Notation. Given C sometimes C0 denotes the set of objects, and C1 the set of
morphisms. If X,Y ∈ C0, then MorC(X,Y ) or HomC(X,Y ) denotes the set of
morphisms between X and Y .

Example II.3. Categories are everywhere. Some examples:

(a) Let (P,≤) be a partially ordered set. Then we define a category with
object set P and such that there is a morphism betwen a and b iff a ≤ b
in which case this morphism is unique. Formally, we may think of the
morphism set as {(a, b) | a ≤ b} with dom(a, b) = a and cod(a, b) = b.
Unitality is given by reflexivity and associativity is given by transitivity.
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(b) The category Set. Objects are sets, and morphisms are mappings between
sets. Identities are the usual maps, and unitality and associativity are
well-known.

(c) By a monoid, we mean a set X with a binary operation (x, y) 7→ x · y
which is associative and has a unit e ∈ X such that e ·x = x = x · e for all
x ∈ X. This can be thought of as a category with a single object ∗ and
X as the set of morphisms, with composition given by ·. And conversely,
any category with a single object can be thought of as a monoid: this is a
1-1 correspondence.

(d) The category Grp whose objects are groups and morphisms are homomor-
phisms.

(e) The category Top whose objects are topological spaces and morphisms
are continuous maps. (Generally, if you’re studying some class of mathe-
matical object, you’ll probably consider the category of those objects and
structure-preserving maps at least implicitly. . . ).

(f) Mod(T ), where T is a theory. Objects are models of T , morphisms are
elementary maps. (Or: you could take morphisms to be embeddings – cf.
East-Coast Model Theory vs. West-Coast Model Theory.)

(g) Def(T ), where T is a theory. Objects are definable sets and morphisms.
This is analogous to algebraic geometry, where a morphism of affine va-
rieties is a polynomial map – a sort of definable function rather than
structure-preserving map (but it can be viewed that way by viewing it as
a map of coordinate rings!).

(h) Def(M), the category of definable sets in a model M (over some fixed
collection of parameters).

(i) Let C be a category. Then we say that C is definable in a structure M
(over parameters A) if:

(a) Each object and each morphism is an element of M , and the sets C0,
C1 are A-definable sets in M .

(b) The functions dom(), codom() : C1 → C0 have graphs which are A-
definable in M .

(c) The graph of the morphism composition function (−◦−) : C2
1 → C1

is A-definable in M .

Remark II.4. If C is an A-definable category in a structure M then the
map assigning each object to its identity morphism has an A-definable
graph.

(j) Likewise, a category C is definable in a theory T if for every model M of
T , C is ∅-definable in T .
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(k) The empty category 0 has no objects and no morphisms. The one-object
category 1. More generally, if S is a set, there is a category with object set
S and only identity morphisms. This sets up a bijection between sets and
discrete categories – i.e. categories with all morphisms being identities.

Remark II.5. We will not take size issues very seriously in this course. But note
that a category where the objects and morphisms both form sets is called small
and if the collection of morphisms with any given domain and codomain is a
set, the category is called locally small.

Definition II.6. Let C,D be categories. By a functor F : C → D, we mean a
pair (F0, F1) with F0 : C0 → D0 and F1 : C1 → D1 begin mappings such that
F0(dom f) = dom(F1(f)), F0(cod f) = cod(F1(f)) and composition and units
are preserved: F1(gf) = F1(g)F1(f) and F1(1X) = 1F0(X). Often we write F in
place of F0, F1.

Example II.7. Functors are everywhere. Some examples:

(a) “Forgetful functors” (no formal definition). For example Grp→ Set taking
the underlying set. Or if you have a sub-theory, you an take a reduct, and
this will be a forgetful functor.

(b) For any category C, there is a unique functor 0→ C and a unique functor
C → 1.

(c) There is a projection functor C×D → C. Here we introduce the product of
two categories, with (C ×D)0 = C0 ×D0, and HomC×D((CD), (C ′, D′)) =
HomC(C,C

′)×HomD(D,D′). Composition and units are likwise given by
taking the product of the operations in C and D. The projection functor
sends (C,D) 7→ C and (f, g) 7→ f . There is, of course, also a projection
functor onto the second factor.

(d) “Free functors”, for example if X is set, then let F (X) be the free group
on X, i.e. the group of words on the letters {x | x ∈ X} ∪ {x−1 | x ∈ X}.
This works for any variety in the sense of universal algebra.

(e) Let C be a category and let X ∈ C0. Then there is a functor yX : C →
Set given by yX(Y ) = MorC(X,Y ) and if f : Y → Z, then yX(f) :
MorC(X,Y )→ MorX(X,Z) is given by composition with f . Such a func-
tor is called a representable functor.

(f) Let T be a theory and ϕ(~x) a formula. Then there is a functor ϕ :
Mod(T )→ Set, ϕ(M) = ϕ(M) = {~a ∈ Mn | M |= ϕ(~a)}. Aside: Charac-
terizing functors of the form ϕ is one of the themes we will explore as we
go along.

(g) Given T , M |= T , we have a category Def(M) of M -definable sets, and
there is a functor Mod(T )→ Cat, M 7→ Def(M).
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Remark II.8. There is a category Cat of categories where an object is a category,
a morphism is a functor.

Example II.9 (Slice category). Given a category C and an object X ∈ C0, the

slice category C/X has objects morphisms in C with codomain X, like Y
f→ X.

A morphism from Y
f→ X to Z

g→ X consists of a morphism h : Y → Z in C
such that gh = f :

Y Z

X

f

h

g

There is a functor C → Cat sending X 7→ C/X. The action on morphisms is
by postcomposition.

Definition II.10. (i) Let C be a category. There is a category Cop the op-
posite category of C with the same objects and morphisms as C, but with
domain and codomain reversed.

(ii) A covariant functor F : C → D is just a functor. A contravariant functor
from C to D is a functor from Cop → D.

Example II.11. Given C, the map C0×C0 → Set sending (A,B) 7→ HomC(A,B)
yields a functor Cop × C → Set. The action on morphisms is given by composi-
tion.

Definition II.12. Let C be a category.

(i) A morphism f : X → Y in C is monic, or a monomorphism, if for any
g, h : Z → X, if fg = fh, then g = h.

(ii) Dually, a morphism f : X → Y is called epic, or an epimorphism if it is
monic in Cop, i.e. if for every g, h : Y → Z, if gf = hf , then g = h.

(iii) A morphism f : X → Y is called a split monomorphism if there exists
a g : Y → X such that gf = idX (exercise: in this case f is indeed a
monomorphism).

(iv) A morphism f : X → Y is called a split epimorphism if there exists a
g : Y → X such that fg = idY (exercise: in this case, f is indeed an
epimorphism).

(v) A morphism f : X → Y is called an isomorphism if there exists g : Y → X
such that gf = idX and fg = idY (exercise: in this case g is uniquely
defined by these conditions), and we write g = f−1. (exercise: a morphism
which is split monic and epic is an isomorphism. Dually, a morphism which
is epic and split monic is an isomorphism.)

Example II.13. (a) In Set, a map f is monic iff it is injective, and it is epic
iff it is surjective.
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(b) In Mon, the category of monoids, the inclusion map f : N → Z is both
monic and epic, but not an isomorphism. Monicness is easy to see. For
epicness, suppose that g, h : Z→ H with gf = hf . Then g(n) = h(n) for
all n ∈ N. Then g(−n) = g(n)−1 = h(n)−1 = h(−n) because inverses in a
monoid are unique. So g = h.

(c) A group can be identified with a one-object category in which all mor-
phisms are isomorphisms. The opposite group corresponds to the opposite
category.

(d) A groupoid is a category where all morphisms are isomorphisms.

(e) Equivalence relations can be identitified with groupoids which are at the
same time posets – that is, all morphisms are isomorphisms and there is
at most one morphism X → Y for any X,Y . The correspondence works
just as for posets in general.

Definition II.14. Let F,G : C → D. A natural transformation from F to G,
written α : F → G, consists of a family of morphisms αX : F (X) → G(X)
of morphisms in D for each X ∈ C0, which is natural in the sense that for
any f : X → Y , we have αY F (f) = G(f)αX . That is, the following diagram
commutes:

F (X) G(X)

F (Y ) G(Y )

αX

F (f) G(f)

αY

If each αX is an isomorphism, then α is called a natural isomorphism.

Remark II.15. 1. Suppose that F,G,H : C → D are functors and α : F ⇒ G
and β : G ⇒ H are natural transformations, then there is a composite
natural transformation βα : F ⇒ H with (βα)X = βXαX (check that this
is natural!).

2. If C,D are categories then the functor category DC is the category whose
objects are functors C → D, and morphisms are natural transformations.
Composition is defined as in the previous item, and the identity on a
functor idF : F ⇒ F is the transformation with components (idF )X =
idFX . One can show natural isomorphisms are the isomorphisms of this
category.

In Set, there is a bijection between the set of functions X × Y → Z and the
set of functions X → ZY , where ZY is the set of functions Y → Z.

Proposition II.16. The same holds for the category of categories. That is,
given categories C,D, E, there is a natural bijection HomCat(E×C,D) ∼= HomCat(E ,DC).
That is, we have a natural isomorphism of functors Catop ×Catop ×Cat→ Set.

Remark II.17. This property is called being a cartesian closed category, which
we will discuss more later. That is, we’re observing that Cat and Set are both
cartesian closed categories.
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Proof. First we describe the map HomCat(E × C,D) → HomCat(E ,DC). Let
F : E×C → D be a functor. The image of F under the bijection will be a functor
F̄ : E → CD defined as follows. First we define F̄0 : E0 → (CD)0. For each E ∈ E ,
denote by FE : C → D the functor which on objects is FE(C) = F (E,C) and
on morphisms for f : C → C ′ in C we define FE(f) : F (E,C) → F (E,C ′) to
be F1(idE , f) : F (E,C) → F (E,C ′). Check that this is a functor FE : C → D.
We set F̄0(E) = FE . Now we define the action on morphisms F̄1 : E1 → (DC)1.
If g : E → E′ is a morphism in E , then F̄1(g) should be a morphism F̄1(g) :
F̄0(E) → F̄0(E′) in CD, i.e. a natural transformation F̄1(g) : FE ⇒ FE′ . For
C ∈ C0, we define the component (F̄1(g))C = F (g, idC) : F (E,C) → F (E′, C).
Check that this defines a natural transformation F̄1(g) : FE
nattoFE′ .

Now we describe the inverse map HomCat(E ,DC)→ HomCat(E×C,D). Given
G : E → DC), we define a functor G̃ : E × C → D as follows. On objects, we
define G̃0(E,C) = G(E)(C). On morphisms (g, f) : (E,C) → (E′, C ′), we
define G̃1(g, f) : G(E)(C) → G(E′)(C ′) to be the composite G(g)C′G(E)(f),
or equivalently by the naturality of the natural transformation G(g) : G(E) ⇒
G(E′), the composite G(E′)(f)G(g)C′ . Check that this defines a functor G̃ :
E × C → D.

Then we check that these two maps are inverse to one another. We can also
check naturality in C,D, E .

II.2 Yoneda’s Lemma

Often in mathematics, one defines some sort of abstract mathematical object
with certain concerete examples in mind. It’s important to ask to what extent
the abstract objects can be represented concretely. For example, the Stone
representation theorem allows one to represent an abstract Boolean algebra B
concretely as an algebra of sets, i.e. to embed B in the powerset algebra of some
set. Cayley’s theorem in group theory allows one to represent an abstract group
G concretely as a group of permutations, i.e. to embed G into the permutation
group of some set (namely, the underlying set of the group itself). In this
section, we will see how to represent an abstract category C concretely as a
category of (multi-sorted, unary) algebras and homomorphisms between them,
i.e. to embed C into a category of multisorted unary algebras. In fact, we will
recover Cayley’s theorem as a special case, by regarding a group as a 1-object
category.

Exercise: Let C be a category. Define a language L as follows. The sorts of L
are the objects of C. There are no relation symbols, and the function symbols of
L (which are all unary) are the morphisms of C. The “input” sort of a morphism
is its domain, and the “output” sort is its codomain. Define an L-theory T as
follows. For every composable pair of function symbols f, g, there is an axiom
∀xg(f(x)) = gf(x) (where gf is the composite in C). Show that there is a
bijection between models of T and functors C → Set, and that this extends to a
bijection between homomorphisms of models of T and natural transformations
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between functors C → Set. The upshot is that categories of the form SetC are
certain categories of algebras.

Definition II.18. Fix a category C. For C ∈ C. In Example II.7.(e) we defined
the representable functor

yC : Cop → Set

C ′ 7→ MorC(C
′, C)

f : C ′′ → C ′ 7→ MorC(f, C) : MorC(C
′, C)→ MorC(C

′′, C)

(i.e. precpompose by f)

Moreover, given g : C1 → C2 we obtain a natural transformation

yg : yC1
⇒ yC2

(yg)C3
= MorC(C3, g) : MorC(C3, C1)→ MorC(C3, C2)

(i.e. postcompose by g)

Check that yg is natural. Check that together we have defined a functor

Y = y(−) : C → SetC
op

This functor is called the Yoneda embedding of C.

(Actually, earlier we defined a functor C → Set dual to this one: to translate
between the two definitions, interchange C and Cop.)

Let us define the term “embedding” that we just used.

Definition II.19. Let F : C → D be a functor. We say that

• F is full if for all C,C ′, the map F : HomC(C,C
′) → HomD(FC,FC ′) is

surjective.

• F is faithful if for all C,C ′ the map F : HomC(C,C
′)→ HomD(FC,FC ′)

is injective.

• F is an embedding if it is injective on objects, full, and faithful.

Example II.20 (full,faitful,embedding). Let F : C → D be a functor. We say
that

• F is full if, for every C,C ′ ∈ C, the map F : C(C,C ′) → D(FC,FC ′) is
surjective.

• F is faithful if, for every C,C ′ ∈ C, the map F : C(C,C ′)→ D(FC,FC ′)
is injective.

• F is an embedding if it is faithful and injective on objects.

Proposition II.21. The functor Y is an embedding.
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To prove this, we will use:

Lemma II.22. Given an object F of SetC
op

and an object C of C, there is a
natural bijection

fC,F : SetC
op

(yC , F )→ F (C)

κ 7→ κC(idC)

where naturality means that for all g : C → C ′ ∈ C and ϕ : F ⇒ F ′ in SetC
op

,
the following diagram commutes:

SetC
op

(yC , F ) F (C)

SetC
op

(yC′ , F
′) F (C′)

fC,F

SetC
op

(g,µ) µC′F (g)

fC′,F ′

Note on the righthand side of the diagram that by naturality of µ, µC′F (g)
could equivalently be written as F ′(g)µC .

Proof. Let us show that fC,F is injective. Consider the following diagram:

HomC(C
′, C) F (C ′)

HomC(C,C) F (C)

κC′

yC(f)

κC

F (f)

The diagram commutes by naturality of κ. Consider idC ∈ HomC(C,C) in
the bottom left corner. Comparing the two ways of getting to the top right, we
have

F (f)(κC(idC)) = κC′(yC(f)(idC))

= κC′(f) (II.1)

That is, κ is entirely determined by where it sends κC(idC). But recall that by
definition, fC,F (κ) = κC(idC). So fC,F is injective.

For surjectivity, we note choose any x ∈ F (C), and we define κC(idC) = x,
and extend this definition by equation (II.1). That is, we define κC′(f) =
F (f)(x). We check that under this definition, κ is natural.

We check the naturality statement. On the one hand, µC′F (g)(fC,F (κ)) =

µC′F (g)(κC(idC) = µC′κC′(g). On the other hand, fC′,F ′(Set
Cop

(g, µ)(κ)) =

SetC
op

(g, µ)(κ)C′(1C′) = µC′κC′(g), so they agree.

We can now prove the proposition :

Proof. We first show that Y is injective on objects. Let C ∈ C, then idC ∈
Y (C)(C), as it is a morphism from C to itself. But for all C ′ ∈ C not equal to
C and all D ∈ C, the morphism idC does not belong to Y (C ′)(D), as this is the
set HomC(D,C

′).
We now show that it is bijective on Hom sets, which will complete the proof.

Let C,C ′ ∈ C. The previous lemma yields a bijection fC,Y (C′) between F (C)
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and SetC
op

(Y (C), Y (C ′)). But F (C) = HomC(C,C
′), so fC,Y (C′) is a bijection

between HomC(C,C
′) and SetC

op

(Y (C), Y (C ′)). We check that this is induced
by Y .

Exercise II.23. Let C be a category, and A,B be objects of C. Suppose that
for all X ∈ C, there is bijection fX : HomC(X,A) → HomC(X,B). More-
over, suppose that for all g ∈ HomC(X,X

′), the following diagram commutes :

HomC(X,A) HomC(X,B)

HomC(X
′, A) HomC(X

′, B)

fX

·◦g ·◦g

fX′

Then there is an isomorphism between A and B in C.
Remark II.24. Functors from Cop to Set are called presheaves on C.

Example II.25 (of a natural transformation). Let U : Grp → Set be the
forgetful functor, and let F : Set → Grp be the free group functor. There are
natural transformations :

ε : FU ⇒ idGrp

ν : idSet ⇒ UF
They are defined as follow : for G ∈ Grp, the morphism εG : FU(G) → G

sends the word g±1
1 · · · g±1

n to the product g±1
1 · · · g±1

n in G. And for some A ∈
Set, the morphism νA → UF (A) sends the element a to the word a. We can
check that these are natural transformations.

Maybe this would fit better after the definition of a natural transformation

II.3 Equivalence of categories

An isomorphism between to categories C and D is defined as a functor from
C to D with an inverse. That is, we consider this functor as a morphism in
the category Cat of categories, it is an isomorphism if it has an inverse in this
category.

Example II.26. Let T be a complete 1-sorted theory, and M |= T . Then the
categories Def(T ) and Def∅(M) are isomorphic.

This is often too strong, and categories we view as similar may fail to be
isomorphic. This motivates the introduction of the following notion :

Definition II.27. A natural transformation α between two functors F,G :
C → D is a natural isomorphism if for each X ∈ C, the morphism αX is an
isomorphism.

Definition II.28. Two categories C and D are equivalent if there are functors
F : C → D and G : D → C and natural isomorphisms µ : idC ⇒ GF and
ν : idD ⇒ FG.

In that case, we say that F and G are equivalences of categories, pseudo
inverse of each others.
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Example II.29. Let (P,≤) be a preorder (i.e ≤ is reflexive and transitive),
which we see as a category. Define an equivalence relation E on objects by
E(x, y) if and only if x ≤ y and y ≤ x. Let π : P → Q be the quotient map.
Then Q is a partial order, and π is an equivalence of categories.

Example II.30. A discrete category is a category in which the only morphisms
are the identity morphisms.

A category D is equivalent to a discrete category if and only if it is given by
an equivalence relation, that is D is a groupoid such that there is at most one
morphism between any two objects. Note that this is equivalent to being both
a groupoid and a preorder.

Remark II.31. Both of these examples are equivalent to the axiom of choice.
Indeed, in both cases, to construct a pseudo inverse, we have to choose a repre-
sentative for each equivalence class.

Exercise II.32. Let F : C → D be a functor. Then it is an equivalence of
categories if and only if it is full, faithful, and essentially surjective, i.e : for any
D ∈ D, there is C ∈ C such that F (C) ∼=D D

Definition II.33. A duality between two categories C and D is an equivalence
of categories between C and Dop.

We will illustrate this notion with an example that is relevant to logic. But
first, we will need to state a few definitions. From now on, by a compact space,
we mean a compact Hausdorff space.

Definition II.34. A topological space is said to be zero-dimensional if it has
a basis of clopen sets.

Remark II.35. For a locally compact Hausdorff space, this is equivalent to being
totally disconnected, meaning that each point is its own connected component.

We will call compact zero-dimensional space Stone spaces.

Definition II.36. A boolean algebra is a set B together with two distinguished
elements 0 and 1, two binary operations ∨ (the join) and ∧ (the meet), and an
unary operation ¬ (the complement) such that :

• ∨ and ∧ are associative

• ∨ and ∧ are commutative

• for all a, b, we have a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a (absorption)

• for all a, we have a ∨ 0 = a and a ∧ 1 = a

• ∨ and ∧ are distributive on each other

• for all a, we have a ∨ ¬a = 1 and a ∧ ¬a = 0

We will denote C the category of boolean algebra with structure preserving
maps, and D the category of Stone space with continuous maps.
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Remark II.37. If B is a boolean algebra, then for all a, b one can define a partial
order by a ≤ b if and only if a ∨ b = b. It has greatest element 1 and smallest
0. Moreover, the meet and join operations correspond to the infimum and the
supremum, respectively.

Example II.38. If X is any set, then its power set P(X) is a boolean algebra
with the usual meet, join and complement. The partial order is in this case
given by inclusion.

Definition II.39. Given a boolean algebra B, a filter on B is a subset F of B
such that :

• a, b ∈ F ⇒ a ∧ b ∈ F

• a ∈ F and a ≤ b⇒ b ∈ F

• 0 6∈ F

Example II.40. Let a ∈ B, a > 0. The set Fa = {x ∈ B, a ≤ x} is a filter. It
is called the principal filter generated by {a}.

If B is infinite, non principal filter exist. If B = P(N), then the set of cofinite
subset is a filter, called the Frechet filter.

Definition II.41. An ultrafilter is a maximal (for inclusion) filter. Equiva-
lently, it is a filter U such that for all a, either a ∈ U or ¬a ∈ U .

Fact II.42. Using the axiom of choice, one can prove that every filter extends
to an ultrafilter.

We will now associate, to every boolean algebra B, a Stone space S(B).

Construction II.43. Let B be a boolean algebra. Consider the set of ul-
trafilters on B, denoted S(B). The collection of subsets {{U ∈ S(B),U ⊃
F},F a filter } ∪ {∅} are the closed sets of a topology on S(B).

To prove that this is a Stone space, we must find a basis of clopen sets, and
prove the space is compact. The basis of clopen sets is given by {{U , a ∈ U}, a ∈
B}. These are closed because equal to an intersection of closed sets. Moreover,
if Xa is the set associated to a, then (Xa)c = X¬a, so they are open as well.

The space is Hausdorff because if U 6= V, there must be a such that a ∈ U
and ¬a ∈ V. So Xa and X¬a separate them.

The reader is invited to check that to show compactness it is enough to prove
that if A ⊂ B is such that any finite part of A is contained in an ultrafilter, then
A itself is contained in an ultrafilter. But this assumption on A is equivalent
to every finite part of A having non-empty meet. Now consider the set F of
elements b ∈ B such that there is a1, · · · , an ∈ A such that a1 ∧ · · · ∧ an ≤ b. It
is an ultrafilter, and contains A. So the space S(B) is compact.

If f : B → C is a morphism of boolean algebra (that is, a structure preserving
map), the reader can check that the map :

S(f) : S(C)→ S(B)
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U → f−1(U)

is well defined and continuous. This also preserves identities and composition,
and therefore defines a functor S : C → Dop.

We can define another functor G : Dop → C. It maps a Stone space X to
the boolean algebra of its clopen subsets. And if f : X → Y is a continuous
map and C ⊂ Y is clopen, then f−1 is clopen. Therefore we can define a map
G(B) : G(Y ) → G(X), which is easily checked to be a morphism of boolean
algebras.

Theorem II.44. The two functors S and G define a duality between C and D.

Remark II.45. This implies in particular that any boolean algebra is isomorphic
to the boolean algebra of clopen sets of a Stone space.

The Stone duality applies to logic via boolean algebras of formulas.

Example II.46 (Propositional logic). We consider the language given by propo-
sitional variables P1, P2, · · · , the symbols ∨ and ∧ for disjunction and conjunc-
tion, 0 and 1 for false and true, a symbol , for comma, and parenthesis ( and
).

We can then define formulas inductively, as was done in the introduction to
model theory. Given variables P and Q, an example of a formula is (¬P ) ∨G.
This particular formula is abbreviated as P → Q, and the formula (P → Q) ∧
(Q→ P ) is abbreviated as P ↔ Q.

A model of a collection of formulas is a truth assignment to each of the
propositional variables, such that each of the formula is true. A theory is a
consistent set of formulas (that is, it has a model).

Let T be a theory, then we can define a boolean algebra B(T ) as the boolean
algebra of formula with meet ∧, join ∨, and complement 6=, up to equivalence
modulo T . That is, to formulas ϕ and ψ are equivalent if and only if ϕ↔ ψ is
a logical consequence of T .

Now consider S(B(T )), the reader can check that it is in one-one corre-
spondance with models of T . Therefore in this case, Stone duality is a duality
between the syntax B(T ) and semantics (models of T ).

One of the objectives of categorical logic is to generalize this approach to
predicate logic.

II.4 Product, Pullbacks, Equalizers

Definition II.47. Let C be a category, and A,B two objects of C. A product of
A and B is an object X of C and two morphisms π1 : X → A and π2 : X → B,
which are universal. That is, for any object Y and morphisms f : Y → A, g :
Y → B, there exists a unique morphism from Y to X making the following
commute :
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A

Y X

B

f

g

π1

π2

this morphism is sometimes denoted (f, g).

Remark II.48. 1. Products, if they exist, are unique up to isomorphism, and
denoted A×B

2. We can define in a similar way the product of an arbitrary family of
objects. Again if it exists, it is unique up to isomorphism.

3. The product of the empy family, if it exists, is called the terminal object,
and denoted 1. Any object has a unique morphism going to 1.

4. In Set, the categorical product is the cartesian product, and the terminal
object is any singleton set.

5. If (P,≤) is a poset and a, b ∈ P , then a× b = inf{a, b} whenever it exists.

Definition II.49. Let C be a category. Let f : B → A and g : C → A
be morphisms in C. A pullback of f and g is an object P and morphisms
p : P → A, q : P → B such that for all X and morphisms β : X → B, γ : X → C
satisfying fβ = gγ, there exists a unique morphismX → P making the following
commute :

B

X P A

C

f

β

γ

p

q g

Remark II.50. 1. If it exists, a pullback is unique up to isomorphism.

2. In Set, pullbacks exist and are fibered products. If f : B → A and
g : C → A, then B ×A C = {(b, c) ∈ B × C, f(b) = g(c)}, and the
morphisms to A are given by restriction of the projections.

Definition II.51. Let C be a category, and let f, g : A → B be morphisms in
C. An equalizer of these two morphisms is an object E along with a morphism
e : E → A such that for any object X and morphism ε : X → A satisfying fε =
gε , there exists a unique morphism X → E making the following commutes :
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X E A B

ε

e
f

g

Remark II.52. 1. If it exists, an equalizer is unique up to isomorphism.

2. In Set, equalizers exist, and the equalizer of
A B

f

g

is given by the

subset {x ∈ A, f(x) = g(x)} of A, with the inclusion in A.

If we consider products, pull backs and equalizers in the category Cop, we
obtain the same diagrams, but with every arrow reversed. These give the defi-
nition of coproduct, pushout and coequalizer. Once again, if these objects exist,
they are unique up to isomorphism.

Example II.53. Given A and B objects in C, a coproduct of A and B is given
by an object X and two morphisms i1 : A→ X and i2 : B → X, such that for
any object Y and any pair of morphisms f : A→ Y and g : B → Y , there exists
a unique morphism X → Y making the following commute :

A

Y X

B

f

i1

g
i2

We can define in a similar way the product of any indexed family of objects.
The product of the empty family, if it exists, is called the initial object, denoted
0. There is a unique morphism from zero to any object.

In Set, the coproduct correspond to the disjoint union, and the initial object
is the empty set.

The reader in invited to work out the definitions of the two other notions,
and construct them in Set.

Exercise II.54. Show that :

1. Equalizers are monic

2. Coequalizers are epic

3. If
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B

X A

C

is a pullback and B → A is monic, then X → C is monic too.

Definition II.55. Let C and D be categories. Let F : D → C and G : C → D
be functors. Then F is said to be left adjoint to G (and G right adjoint to
F ) if there is a natural isomorphism between C(F (·), ·) : Dop × C → Set and
D(·, G(·)) : Dop × C → Set. That is, there is a collection of bijections {MD,C :
C(F (D), C)→ D(D,G(C)), C ∈ C, D ∈ D} such that for every f : D → D′ and
g : C ′ → C, the following commutes :

C(F (D), C) D(D,G(C))

C(F (D′), C ′) D(D′, G(C ′))

MD,C

(Ff,g)

MD′,C′

(f,Gg)

where the functions on the sides are obtained by precomposition on the left
and composition on the right. For example, if α : F (D′)→ C ′ then (Ff, g)(α) =
g ◦ α ◦ F (f). There might be a better notation for this

Adjunctions are ubiquitous in mathematics, and can often shed light on
certain constructions. The case of forgetful functors is a good illustration of
this.

Example II.56. 1. Consider the free group functor F : Set → Grp and the
forgetful functor G : Grp → Set. Then for D ∈ Set and C ∈ Grp, can
construct the bijections MD,C : C(F (D), C)→ D(D,G(C)) like we did in
II.25. It is easy to check that these make F left adjoint to G.

2. Let k be a field, and C be the category of k-vector spaces. Consider the
forgetful functor G : C → Set, and the functor F : Set → C which send a
set X to the k vector space it generates. Then G is right adjoint to F .
Essentially, this means that linear maps are determined by their restriction
to a basis.

3. Consider the category C of compact topological groups, and the category
D of topological group. The inclusion I : C → D is a functor, and it
has a right adjoint B. For a group G, the group B(G) is called the Borh
compactification of G. Bohr compactification

Remark II.57. Given F : D → C left adjoint to G : C → D, the family
{MD,C , C ∈ C, D ∈ D} is determined by the family {MD,F (D)(idF (D)) : D →
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GF (D), D ∈ D}. Similarly, the family {M−1
D,C , D ∈ D, C ∈ C} is determined by

the family {MG(C),C(idG(C)) : FG(C)→ C, c ∈ C}.

Proof. Consider α : F (D)→ C, the adjunction yields the following commutative
diagram :

C(F (D), F (D)) D(D,G(F (D)))

C(F (D), C) D(D,G(C))

MD,F (D)

(α,idF (D)) (G(α),idD)

MD,C

Therefore, we obtain MD,C(α) = G(α) ◦ MD,F (D)(idF (D)), which proves
the first half of the remark. For the other half, observe in a similar way that
M−1
D,C(β) = MG(C),C(idG(C)) ◦ F (β).

For D ∈ D, we let ηD = MD,F (D)(idF (D)) : D → GF (D) and for C ∈ C, we
let εC = MG(C),C(idG(C)) : FG(C) → C. The family η = (ηD)D is a natural
transformation from idD to GF , called the unit. Similarly, the family ε = (εD)D
is a natural transformation from FG to idC , called the co-unit.

Remark II.58. 1. Let β : D → G(C), then the following commutes :

D G(C)

GF (D) GFG(C)

β

ηD

GF (β)

G(εC)

2. Similarly, for any α : F (D)→ C, the following diagram commutes :

F (D) C

FGF (D) FG(C)

α

F (ηD)

FG(α)

εC

3. Let ηG = {ηG(C), C ∈ C}, it defines natural transformation from G to
GFG. We also let Gε = G(εC), it defines a natural transformation from
GFG to G. Define Fη and εF in a similar way. We then have two
commutative diagrams of natural transformations :

G GFG

G

ηG

idG Gε
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F FGF

F

Fη

idF εF

Proof. 1. There is α : F (D)→ C such that β = MD,C(α), so α = M−1
D,C(β).

We also know that MD,C(α) = G(α) ◦ ηD and M−1
D,C(β) = εC ◦ F (β). So

we obtain :

MD,C(MD,C−1(β)) = G(M−1
D,C(β)) ◦ ηD

β = G(M−1
D,C(β)) ◦ ηD

= G(εC ◦ F (β)) ◦ ηD
= G(εC) ◦GF (β) ◦ ηD

2. Similar.

3. For the first diagram, apply 1. to β = idG(C). For the second one, apply
2. to α = idF (D).

Lemma II.59. Let F : D → C and G : C → D be functors. Then F is a left
adjoint to G if and only if there are natural transformations η : idD ⇒ GF and
ε : FG⇒ idC satisfying the identities Gε ◦ ηG = idG and εF ◦ Fη = idF of the
previous remark.

Sketch of proof. To prove adjunction, we need to construct a natural isomor-
phism Φ : C(F (·), ·)⇒ D(·, G(·)). Let f ∈ C(F (D), C). ThenG(f) ∈ D(GF (D), G(C)),
so G(F ) ◦ ηD ∈ D(D,G(C)). We let ΦD,C(f) = G(f) ◦ ηD. This collection of
maps defines a natural transformation because η is a natural transformation.
We obtain, in a similar way, a natural transformation Ψ : D(·, G(·))⇒ C(F (·), ·).
For g : D → G(C), let ΨD,C(g) = εC ◦ F (g).

We obtain the following equalities, for f ∈ C(F (D), C):

ΨΦ(f) = εC ◦ F (Φ(f))

= εC ◦ F (G(f) ◦ ηD)

= εC ◦ FG(f) ◦ F (ηD) by functoriality of F

= f ◦ εF (D) ◦ F (ηD) by naturality of ε

= f ◦ idF (D) by assumption

= f

We check that Φ ◦ Ψ is the identity in the same way. So Φ is the natural
isomorphism we are looking for.
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In practice, this lemma will allow us to prove adjunction between two func-
tors by finding two natural transformations, and making sure the unit-co-unit
equations hold.

Definition II.60. Let C be a category, and let A be an object in C. Suppose
that that there is a functor A× · : C → C such that for all B, the object A×B
is a product of A and B.

If this functor has a right adjoint, we denote it (·)A, say that A is exponen-
tiable, and call BA the exponential of B with respect to A.

Note. 1. Unpacking this adjunction, we see that it means the existence of
natural bijections between C(C,BA) and C(A× C,B).

2. Assuming the right adjoint exists, it has a co-unit ε, which is the collection
of morphisms {εB : A×BA → B,B ∈ C}, called evaluation maps.

Example II.61. In Set, any A is exponentiable, and for all B, the exponential
is AB , the set of functions from B to A. The co-unit is the evaluation map :

εB : A×BA → B

(a, f)→ f(a)

Definition II.62. The category C is cartesian closed if it has finite products,
and each product functor has a right adjoint.

Exercise II.63. For any category C, the category SetC
op

is cartesian closed.

Let C,D be categories, and D an object in D. By ∆D we mean the constant
functor C → D which sends every object to D and every arrow to idD.

Construction II.64. Given a functor F : C → D, by a cone for F we mean
a natural transformation µ : ∆D → F , for some D ∈ D. It is a family {µC :
D → F (C), C ∈ C} such that for any C,C ′ ∈ C and f : C → C ′, we have
µC′ = F (f) ◦ µC .

Given two cones (D,µ) and (E, ν) for F , a map from (D,µ) to (E, ν) is a
morphism g : D → E such that for any C,C ′ ∈ C and f : C → C ′, the following
diagram commutes :

F (C ′)

D E

F (C)

µC′

g

µC

νC′

νC

F (f)

Equipped with this notion of morphism, cones for F form a category. A
limiting cone for F is a terminal objet in the category of cones for F .
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Example II.65. Let C be the discrete category with two objects C and C ′,
and F : C → D be a functor. Let A and B be the images of the two objects in
C. Then a morphism from a cone (D,µ) to (E, ν) is a commutative diagram :

B

D E

A

µC′

g

µC

νC′

νC

Therefore, a limiting cone is simply a product of A and B. The reader is
invited to work out similar conic definitions for pullbacks and equalizers.

Remark II.66. By reversing the direction of the arrows, we obtain the dual
notion of a co-cone. It can be used to formalize co-products, push forwards and
co-equalizers.

Definition II.67. We say the category D is complete, or has limits, if it has
limiting cones for all functors F : C → D, where C is a small category.

We say that D has finite limits if it has limiting cones for all functors F :
C → D where C is a finite category (meaning finitely many objects, and all Hom
sets are finite).

Example II.68. The category Set is complete.

For the remaining part of the section, we are going to use the following
notations. We will use J to denote the index category and C to denote the
category where we want to compute the limits. Hence the cateory of functors
from J to C will be denoted by CJ . Also, there is a canonical functor ∆ : C →
CJ , which is defined to be such that ∆c is the constant functor of c.

Lemma II.69. Suppose every diagram F : J → C has a limiting cone, then ∆
as above has a right adjoint, denoted by lim←−J : CJ → C, where for each F ∈ CJ0 ,

its image under lim←−J is the vertex of the limiting cone. Furthermore, the counit

ε, which is a natural transformation ∆ lim←−J ⇒ idCJ , where εF : ∆ lim←−J (F )→ F

is the limiting cone of F , or equivalently, the natural transformation ∆c ⇒ F ,
where c is the vertex of the limiting cone.

Proof. From the definition.

Remark II.70. Suppose G : C → D is a functor and J is a small category.
Furthermore, we assume that limits of type J exists in both C and D, we can
obtain the following diagram,

CJ C

DJ D

lim←−J

GJ G

lim←−J

where GJ sends F to GF .
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We have a canonical natural transformation αJ : G lim←−J ⇒ lim←−J G
J , which

is given by the universal property of limits. To be more precise, for each F a
functor J → C, G lim←−J (F ) is the veretex of a cone over GF , and lim←−J G

J is

the limiting cone of GF , hence there is a unique map into it by the universal
property.

Definition II.71. A functor G is said to preserve limits of type J is αJ as
above is an natural isomorphsim.

Need to check the following

Lemma II.72. G : C → D preserves all limits iff G has a left adjoint.

Before the end of the section, we define the dual notion of limits, which are

called colimits, one can think of them as limits in CopJ , and a cocone will be
a natural transformation from F to some ∆c for c ∈ C0. And if colimits exists
for given J , we have the functor lim−→J , which is a left adjoint to the functor

∆ : C → CJ , given by the universal property.
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Chapter III

More Advanced Category
Theoy and Toposes

III.1 Subobject classifiers

Definition III.1. For a category C and X ∈ C0, a subobject of X is a monic
Y � X( acctually, it is an equivalence class of such monics up to isomorphsim).
And SubC(X) is the set of subobjects of X. Furthermore, we have a partial
order on the set of subobjects. Let g : Y0 � X and h : Y1 � X be two
subobjects of X, Y0 ≤ Y1 if there is f : Y0 → Y1 such that hf = g. Note that
such f is automatically monic.

Remark III.2. In Set, we have as special set 2 = {0, 1}.In particular Y ⊂ X is
characterized by its characteristic function χY : X → 2 where x 7→ 0 iff x ∈ Y .
Working in categories other than Set, the special element 2 is replaced by an
object Ω, which is called the subobject classifier provided it exists.

Definition III.3. Let C is a category with finite limits. In particular, it has a
terminal object. A subobject classifier is a (monic) arrow, which we call it true,
1� Ω, where 1 is a terminal object, such that for every monic S � X, there

is unique ϕ : X → Ω such that

S 1

X Ωϕ

is a pullback.

Example III.4. In Set, 1 = {0} and Ω = {0, 1} where u : 1 � Ω is the
inclusion map. If S ⊂ X, let i denote the inclusion of S into X. Then the
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following diagram is a pullback.

S 1

X Ω = 2

i u

ϕ=χS

The following lemma characterizes the existence of subobject classifiers

Lemma III.5. Suppose C has finite limits and small Hom sets, then C has
a subobject classifier iff there is Ω ∈ C0 such that for each X, there is a nat-
ural bijection θx : SubC(X) → HomC(X,Ω). The naturality condition means
for each g ∈ HomC(X,Y ), the following diagram commutes, where the vertical
maps are defined by pullback by g(Note that pullbacks of monics are monics).

SubC(Y ) HomC(Y,Ω)

SubC(X) HomC(X,Ω)

θY

θX

Proof. Suppose we have subobject classifer 1� Ω, for each S → X a subobject,
the unique ϕ : X → Ω given by the definition of subobject classifiers gives us
the natural bijection θX . It suffices to verify that it is sujective.

Let ϕ : X → Ω, by pullback, we can find S � X such that

S 1

X Ωϕ

, and

this gives us the surjectivity.
Conversely, if the right hand side is satisfied, then there will be 1 � Ω, a
subobject of Ω that corresponds to idΩ : Ω→ Ω. Now for each S � X, there is
ϕ : X → Ω that corresponds to it. By naturality, we have the following diagram,

SubC(Ω) HomC(Ω,Ω)

SubC(X) HomC(X,Ω)

θΩ

θX

, where the vertical maps are induced by ϕ, and

in particular, S is the pullback of 1→ Ω along ϕ. Now, we have to show that 1
as above is a terminal object. But this is clear, since we consider ϕ1, ϕ2 : X → 1

be two morphisms, then we would have

X 1

X Ω

ϕi

id are trivially pullbacks.

And by the fact that 1� Ω is monic, we have ϕ1 = ϕ2.

Note that the right hand side condition in the above lemma is actually saying
that the functor SubC : Cop → Set is representable and the representing object
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is Ω. Furthermore, Ω is unique up to isomorphism by Yoneda’s lemma.

III.2 Elementary topos and Heyting algebra

Definition III.6. An elementary topos is a category C with all finite limits and
exponentials and a subobject classifier.

The word elementary means that the above condition is expressible in the
first order language of categories, where you have sorts for objects and morpisms
and relation symbol for compositions and some additional data.

Definition III.7. (i) A lattice is a poset with sup for pairs, denoted by ∨
and inf for pairs, denoted by ∧.

(ii) A lattice is distriubtive if it satisfies x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). Note
this implies the dual x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

(iii) Let L be a lattice with 0 as minimum and 1 as maximum, then a comple-
ment for x ∈ L is a y such that x∧ y = 0 and x∨ y = 1. Such y is unique
if L is distributive.

(iv) A Boolean algebra is a distributive lattice with 0,1 and complement.

Remark III.8. The above definition can be viewed category theoretically, for
example, a lattice with 0, 1, is a poset with all finite products and coprod-
ucts(which implies finite limits and colimits).

Definition III.9. By a Heyting algebra H, we mean H is a poset with all finite
products and finite coproducts and Cartesian closed, i.e. a lattice with 0, 1 and
for all x, y ∈ H, yx exists.

Note that −x is the right adjoint to x×− and −×x, so ∀zz ≤ yx iff z∧x ≤ y,
usually we use x ⇒ y to denote yx. So, in notation, z ≤ (x ⇒ y) iff z ∧ x ≤ y.
Hence, x⇒ y is the sup of all z such that z ∧ x ≤ y. In particular, in a lattice
L where arbitrary sup exists, x⇒ y exists.

Exercise III.10. (i) A Boolean algebra is a Heyting algebra where x ⇒ y is
¬x ∨ y. (A Heyting algebra is distributive.)

(ii) Let X be a topological space, then the collection of open sets in X is
a Heyting algebra where U ⇒ V is the largest open set W such that
W ∩ U ⊆ V .

Remark III.11. We have the following easy facts.

(i) A Heyting algebra is distributive

(ii) In a Heyting algebra, we can define ¬x as x ⇒ 0. For example, in a
Heyting algebra of open sets of a topological space, ¬U = (U c)◦, the
interior of the complement of U . Note that ¬x is the largest element u
such that u ∧ x = 0.
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(iii) H, a Heyting algebra is a Boolean algebra iff ¬x ∨ x = 1 for all x ∈ H iff
¬¬x = x for all x ∈ H.

An important example of Heyting algebra is SubC(X) for X ∈ C0. Recall
that a subobject of X is (an isomorphism class of) a monic Y � X, wher an
isomorphism is an isomorphism in this sense is an isomorphism that commutes
with the monic arrows. Recall that in Definition III.1, we have a partial order-
ing on SubC(X).
In Set, we have canonical representatives of subobjects of X, namely the images
of the monic maps with inclusion. Via the above identification, SubSet(X) ∼=
P(X), the powerset of X, where the isomorphism above is actually an isomor-
phism of Boolean algebras. Namely, it preserves ∧,∨,¬, 0, 1.
We can do similar constructions in SetC

op

. For the remaining part of the chap-
ter, we use Ĉ to denote the category SetC

op

. For each F ∈ Ĉ0, it is a functor
F : Cop → Set. A subobject of F can be identified with a subfunctor G of F ,
where G : Cop → Set and for each x ∈ C0, G(x) ⊆ F (x) and for each f : x→ y,

the following diagram commutes,

F (y) F (x)

G(y) G(x)

F (f)

G(f)

, where the vertical arrows

are inclusion maps.

Lemma III.12. (i) Let F ∈ Ĉ0, then SubC(F ) with the canonical partial
order is a Heyting algebra.

(ii) Let ϕ : F ⇒ G be a natural transformation. We can define ϕ] : SubĈ(G)→
SubĈ(F ) via pullback. Precisely, for each G1 ⇒ G, a subobject, ϕ](G1)(X) =

ϕ−1
X (G1(X)) for each x ∈ C0. Or we can see it through the following di-

agram.

G1(X)

F (X) G(X)
ϕ(X)

ϕ](G1)(X) is defined to be the pullback of

it. Then we have that ϕ] is a map between Heyting algebras that respescts
0, 1,∧,∨,≤,⇒.

Proof of (i). Clearly the 0 element should be the empty functor and 1 = F .
We can defien ≤ pointwise, basically, say G1 ≤ G2 iff G1(X) ≤ G2(X) for all
X ∈ C. Similarly, we defien (G1∨G2) to be the functor such that G1∨G2(X) =
G1(X) ∪ G2(X) and (G1 ∨ G2)(X) = G1(X) ∩ G2(X) and arrows come from
restricting arrows given by F .
However, the pointwise approach does not work for ⇒ and ¬, they don’t give
subfunctors in general. We define, (G1 ⇒ G2)(X) = {x ∈ F (X) : ∀f : Y →
X ∈ C1, F (f) : F (X) → F (Y ), F (f)(x) ∈ G1(Y ) implies F (f)(x) ∈ G2(X)}.
Likewise, for negation (¬G)(X) = {x ∈ F (X) : ∀f : Y → X,F (f)(x) /∈ G(X)}.
And the arrows come from restricting arrows given by F similarly.
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Remark III.13. Let us take a look at the above definition, the pointwise def-
inition for G1 ∧ G2 works because whenever you have f : X → Y , Gi(f) :
Gi(Y ) → Gi(X) is the restriction of F (f) to Gi(Y ), and is defined. However,
taking pointwise definition for negation does not work beacuse F (f) maps G(Y )
into G(X) does not necessarily guarantee that G(Y )c maps into G(X)c.

Now, since we wish to develop logic, we need to define quantifiers categori-
cally.
Naively, when working in Set. Let f : Z → Y be a function. Let S ⊂ Z. We
can define ∃f (S) = {y ∈ Y : ∃z ∈ S, f(z) = y} = {y ∈ Y : ∃z ∈ f−1(y), z ∈ S}
and ∀f (S) = {y ∈ Y : ∀z ∈ f−1(y), z ∈ S}. Note, when f is the projection
p : X×Y → Y , the above definitions agree with our usual notion of quantifiers.

Lemma III.14. Work in Set. Let f : Z → Y be an arrow in Set. Let f∗ :
P(Y ) ∼= SubSet(Y ) → P(X) ∼= SubSet(X), Z 7→ f−1(Z). Then f∗ has a left
adjoint ∃f and a right adjoint ∀f .

Proof. Note that f∗ is induced by f−1 and the map ∃f : P(Z) → P(Y ) U 7→
f(U) is induced by f . And it can be easily checked that it is the left adjoint
of f∗, namely, for A ⊆ Z and B ⊆ Y , ∃f (A) = f(A) ⊆ B iff A ⊆ f−1(B).
Likewise for ∀f , for each A ⊆ Z, ∀f (A) = {y ∈ Y : ∀z ∈ f−1(y), z ∈ A}. Then
for A ⊆ Z and B ⊆ Y f−1(B) ⊆ A iff B ⊆ ∀f (A).

The above disgussion generalizes to the following.

Lemma III.15. Let F,G ∈ Ĉ0, let ϕ : F ⇒ G be a natural transformation.
Define ϕ] : SubĈ(G) → SubĈ(F ) via pullback. Then ϕ] has left and right
adjoints. We call them ∃ϕ and ∀ϕ respectively.

Proof. need to fill in the details

Recall that F ∈ Ĉ = SetC
op

is called a presheaf in C. For every X ∈ C0, we
have F (X) as a set and f : Y → X gives F (f) : F (X)→ F (Y ). For each X, we

can view F (X) as {s : X → E : sections of f} for some total space E. SetC
op

is
an elementary topos.

Lemma III.16. SetC
op

= Ĉ has all finite/small limits and colimits.

Proof.

III.3 More on limits

Recall that a presheaf F on C is a functor F : Cop → Set. The representable
presheaves are those of the form Hom(−, A) for some A ∈ C0. The Yoneda
lemma says that for any F , F(X) ∼= set of natural transformations from Hom(−, X)
to F(−).
Now, assume that we have a functor F : J → C. For each X ∈ C0, to view X
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as a cone, we need the following data (αY : X → F (Y ))Y ∈J0 , which is a natu-
ral transformation between ∆X and F . We use coneF (X) to denote the set of
all such natural formations and hence given a presheaf coneF : Cop → Set.
To say limit exists is the same as saying there is an object A ∈ C0 such
that finding a cone on X is the same as finding a morphism X → A, i.e.
Hom(X,A) ∼= coneF (X).

Proposition III.17. coneF (X) ∼= lim Hom(X,F (−)).

Proof. lim Hom(X,F (−)), as X varies, we can view it as a presheaf on C, and
by Yoneda lemma, we have that it is in bijection with the set of all natural
transformations αY : Hom(Y,X) → lim Hom(Y, F (−)). Since giving a map to
a limit is the same as giving each component maps, we have that the above
is in bijection with the set of natural transformations αY Z : Hom(Y,X) →
Hom(Y, F (Z)). By Yoneda lemma again, when we vary Y , we can view the above
as a presheaf and it will be in bijection with the set of natural transformations
αZ : X → Hom(X,F (Z)), which by definition, is coneF (X).

As a corollary, we have the following.

Corollary III.18. coneF (X) ∼= lim Hom(X,F (−)) ∼= Hom(X, limF (−)).

Theorem III.19. Right adjoints preserve limiting cones.

Proof. Let L : C → D be a functor and R is the right adjoint of L. Let F : J → C
be a functor. Then we have Hom(X,R limF (−)) ∼= Hom(LX, limF (−)) ∼=
lim Hom(LX,F (−)), where the latter bijection is by the above corollary. Now
apply the property of adjoints again, lim Hom(LX,F (−)) ∼= lim Hom(X,RF (−)) ∼=
Hom(X, limRF (−)), where the latter bijection is by the above corollary again.
But this is the same as saying, the limit of RF is the same as R limF .

Next, we state a theorem that characterize the existence of small limits.

Theorem III.20. Let C be a category, then C has small/finite limits iff C has
equalizers and small/finite products.

Proof. One direction is trivial since equalizers and products are limits. It suf-
fices to prove the other one. The following proof works for both finite and small
case by restricting J to be a small/finite category respectively.
Let F : J → C be a functor. Then coneF (X) is the set of natural transformations
αA : X → F (A). Since Set has products, we have the above set is the same
as {α ∈

∏
A∈J0

Hom(X,F (A)) : for all f ∈ J1, F (α)αdom(f) = αcod(f)}. The
above set is in bijection with {α ∈

∏
A∈J0

Hom(X,F (A)) : (F (f)αdom(f))f∈J1
=

(αcod(f))f∈J1
}. By the universal property of products( in C), we have the above

set is in bijection with {α ∈ Hom(X,
∏
A∈J0

(F (A)) : (F (f)projdom(f))α =
(projcod(f))α}. Note that the last condition is a equalizer diagram.

X
∏
A∈J0

(F (A)) F (cod(f))α
F (f)projdom(f)

projcod(f)
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Hence it is in bijection with Hom(X,Eq((F (f)projdom(f))f∈J , (projcod(f))f∈J1))
by the universal property of equalizers. And by our discussion preceeding the
proposition, it is the same as saying that Eq((F (f)projdom(f))f∈J , (projcod(f))f∈J1

)
is the limit of F .

Similarly, we have the following statement.

Theorem III.21. Let C be a category, then C has finite limits iff C has pullbacks
and a terminal object.

Proof. Since pullbacks and terminal objects are finite limits, we have one direc-
tion is trivial. It suffices to show the reverse direction.
First,given X,Y ∈ C0, let 1 denote the terminal object in the category. Consider
the following pullback diagram.

X

T Z 1

Y

β

γ

p

q

Clearly, Z satisfies the universal property of X × Y . Hence finite products ex-
ists in C. It remains to show that equalizers exists. let f, g : X → Y , then the
equalizer of f, g is the pullback of the following.

Y

X Y × Y
id

f×g
Hence we can conclude the theorem from the previous theorem.

Theorem III.22. f : X → Y is monic iff

X X

X Y

id

id f

f

is a pullback.

Proof. f is monic iff for all g, h : Z → X, fg = fh implies g = h. Hence the
diagram is a pullback.
Conversely, if the above diagram is a pullback, then for g, h : Z → X such
that fg = fh, the following diagram (without the dotted arrow) commutes.
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X

Z X Y

X

f

g

h

id

id f

no matter I interpret the dotted arrow as g or h, the above diagram commutes,
and hence by the universal property of pullback (uniqueness of the dotted ar-
row), we have that g = h. Hence f is monic.

III.4 Elementary Topos

In this section, we wish to show that Ĉ is an elementary topos. In particular,
we show that Ĉ has exponentials and a subobject classifier.Then, we will give
some more definitions regarding toposes. Recall that y : C → Ĉ is the Yoneda
where y(C) = yC and yC(C ′) = HomC(C

′, C).

Lemma III.23. Every X ∈ Ĉ is a colimit of yC ’s.

Proof. Recall that the Yoneda lemma gives a natural bijection between elements
of X(C) (for X ∈ Ĉ, C ∈ C) and arrows yC ⇒ X. If x ∈ X(C), we have some
µx : yC → X such that (µx)C(idC) = X (i.e. (µx)C : yC → X(C)). Let y ↓ X
be the category whose objects are pairs (C, µ) where C ∈ C and µ : yC ⇒ x and
arrows between (C, µ)→ (C ′, ν) are given by f : C ′ → C in C such that:

yC →yf yC′

µ ↘ ↙ν

X

Let UX : y ↓ X ⇒ C be the forgetful functor where (C, µ) 7→ C and f 7→ f .
So, y ◦ UX : y ↓ X → Ĉ. Notice that y ◦ UX is a diagram in Ĉ with y ↓ X as
its indexing category. Let ρ be the natural transformation from y ◦ UX to ∆X

(where ∆X is the constant functor at X) from y ↓ X to Ĉ.

ρ(C,µ) is a map from (y ◦ UX)(C, µ) to X. I.e. yc ⇒ X and is precisely µ.
Notice that ρ is a natural transformation from (y ◦UX) to the constant functor
at X (otherwise known as a cocone from y ◦ UX to X). We claim that this
cocone is colimiting.

Proposition III.24. ρ is colimiting.

Proof. Given Z ∈ Ĉ and given γ : y ◦ UX ⇒ ∆Z we want to find a g : X → Z
such that ∆g ◦ρ = γ. Claim: gC(µ) = γ(C,µ)(idC) is the unique solution. Notice
that the domain of gC is X(C) and we have used the Yoneda lemma to identify
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X(C) with the set of natural transformation from yC to X. The verification
that g is natural, ∆g ◦ ρ = γ, and the uniqueness are routine.

In fact, the Yoneda embedding is the free colimit completion of C.Whenever
F : C → D where D is cocomplete, there is a unique (up to isomorphism) colimit
preserving functor F̃ : Ĉ → D such that F̃ ◦ y ∼= F . Concretely F̃ (X) is the
colimit in D of the diagram y ↓ X →UX

C →F D. Also note that F is the left
Kan extension of F along y.

When C is the 1 point category, then Ĉ ∼= Set ∼= Set1.

Proposition III.25. Ĉ has exponentials

Proof. Let X,Y ∈ Ĉ. Then, we define Y X as follows: Y X : Cop → Set where
Y X(C) = Ĉ(yC ×X,Y ) = HomĈ(yC ×X,Y ) and if f : C ′ → C, then Y X(f) :

Ĉ(yC′×X,Y )→ Ĉ(yC×X,Y ) which is precisely the composition with yf×idX :
yC′ ×X → yC ×X.

Now we need to show that Y X is the required exponential. It suffices to show
that for any Z in Ĉ there is a natural bijection between Ĉ(Z, Y X) and Ĉ(Z ×
X,Y ). Notice that when Z is representable by yC , the Yoneda Lemma gives a
natural bijection between Ĉ(yC , Y X) and Y X(C) = Ĉ(yC ×X,Y ). This extends
to arbitrary Z in Ĉ by III.23.

Proposition III.26. Ĉ has a subobject classifier.

Proof. We want to show that there exists 1 and Ω in Ĉ and a morphism true :
1 → Ω such that for every Y � X there exists a map from X to Ω such that
the following diagram is a pull-back:

Y → 1
↓ ↓
X → Ω

Notice that if Ω exists, then Ω has the property that ∀F ∈ Ĉ there exists a
bijection between SubĈ ↔ HomĈ(F,Ω) natural in F . Define Ω as follows: we let
Ω(C) = the set of all subfunctors of yC . If f : C ′ → C, let Ω(f) : Ω(C ′)→ Ω(C)
be the pull back along yf . By this, we mean the f∗(A) in the following pullback
diagram:

C � A ∈ Ω(C)
↑f ↑
C ′ ← f∗(A) ∈ Ω(C ′)

We define 1 : C → Set as 1(C) = {∅}. So, true : 1→ Ω is a natural transforma-
tion which is a map which takes the unique element 1(C) to yC ∈ Ω(C).

So, if X = yC for some C, then Hom(yC ,Ω) ∼= Ω(C) ∼= Sub(yC)
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As a remark, all of this can be expressed in the language of Sieves. So,
yC : Cop → Set takes C ′ to HomC(C

′, C) (which is a functor). A subfunctor
R of yC takes C ′ ∈ C to a subset of HomC(C

′, C). So the subfunctor R can
be viewed as a collection of arrows in the category C with codomain C, i.e.⋃
C′∈C R(C ′).

Now, the naturalness means if f : C ′ → C is in R (R(C ′)) and g : C ′′ → C ′,
then f ◦ g : C ′′ → C is in R. Such an R is called a sieve on C. Therefore,
Ω(C) is the collection of associated sieves on C. More explicityl, we have that
if f : C ′ → C is in C and R is a sieve on C then Ω(f)(R) = f∗(R) = {g : D →
C ′|fg ∈ R,D ∈ C}. Finally, true : 1→ Ω takes 1(C) to the maximum sieve on
Ω(C) (which is yC itself).

Therefore, we can conclude that Ĉ is an elementary topos.

Definition III.27. Let C be a category and let X ∈ C. Then A is a power
object of X if there is a natural one-to-one correspondence between C(Y,A) ∼=
SubC(Y ×X) for any Y ∈ C.

Proposition III.28. An elementary topos also has power objects. The power
object for X is ΩX .

Definition III.29. A category is called cartesian if it has all finite limits. A
functor between cartesian categories is called cartesian if it preserves all finite
limits (also called left exact).

Definition III.30. Regular Categories.

• C has images; Let A,B ∈ C and if f : A → B there exists a smallest
subjobject C � B through which f factors.

• A regular epimorphism f : B → C is an epimorphism which is a coequal-
izer, i.e. ∃A such that

A⇒g1
g2
→ B →f C

• A category C is regular if C is cartesian, has images, and regular epimor-
phisms are stable under pull-back, i.e. if

X1 → X2

a ↓ ↓ f
X3 → X4

is a pull-back and f is a regular epimorphism, then so is a.

Proposition III.31. C has images iff for any morphism f : A → B f∗ :
SubC(B)→ SubC(A) has a left adjoint ∃f .

Definition III.32. Assume C has images. Let f : A → B and assume that C
is the image of f . Then, g : A→ C is the cover of f .
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Proposition III.33. In a regular category, the covers are regular maps precisely
when the epimorphisms are regular.

Proof.

Fact III.34. In a regular category, coeualizers need not exist but we always
have coequalizers of ”Kernal Pairs”.

Proof. Assume that f : X → Y is a kernal pair. Then, the following diagram
in a pull-back:

Z →p1 X
↓p2

↓f
X →f Y

Then, the image of f will be an equalizer for Z ⇒ X.

Definition III.35. A regular functor between regular categories is one which
preserves finite limits.

Example III.36. • Set and Groups are regular categories and covers are
surjective maps.

• The category of monoids is regular.

• Top is not a regular category since covers (surjective continuous maps)
are not stable under pullbacks. Consider the map f : [0, 1)→ R/Z.

• CAT is not regular.

Definition III.37. A category C is coherent if it is regular and for each A ∈ C0,
SubC(A) has finite coproducts.

Definition III.38. C is positive if it has disjoint unions. If A1, A2 ∈ C then
there exists f1 : A1 � A and f2 : A2 � A such that

0 → A1

↓ ↓f1

A2 →f1
A

is a pullback.

In a positive category, coproducts have a special property. Namely, if A1+A2

is the coproduct of A1, A2, there there exists f1 : A1 → A1 +A2 and f2 : A1 +A2

such that both f1, f2 are monic.
What is an equivalence relation? Well, in the set theory case, R is a relation

on A×A which is reflexive, symmetric, and transitive. They bring this into the
category theory context. Let A ∈ C and let R be a subobject of A. Now we
consider the following diagram:
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A
π1 ↗

R � A

π2
↘

A

Notice that R is determined by its cordinate maps.

Definition III.39. (Equivalence Relation) Let A ∈ C. We say that R ∈ C is
an equivalence relation on A if R is a subobject such that:

• ∆A : A→ A×A factors through R.

• (reflexive) ∃r : A→ R such that π1r = π2r = idA

• (symmetry) ∃s : R→ R such that π1s = π2 and π2s = π1

• (transitivity) Consider the pullback below. Now, ∃t : P → R such that
π1t = π1p and π2t = π2q

P →q R
↓p ↓π1

R →π2 A

Example: A kernal pair is an equivalence relation.

Definition III.40. (Effective, Pre-topos, Boolean)

• A Coherent category, C is effective if every equivalence relation in C is
given by a kernal pair.

• A pre-topos is a coherent category that is positive and effective.

• A coherent category is Boolean if SubC(X) is a boolean algebra for all
X ∈ C

For example, For any first order theory T , Def(T eq) is a Boolean Pre-topos.

III.5 Grothendieck Topologies and Sheaves

First, Let X be a topological space and let O(X) be the category of open
sets viewed as a poset where if V ⊂ U we let iV U be the inclusion morphism.
Therefore, if F is a presheaf on O(X), then F : O(X)→ Set where:

• if U ∈ O(X), then F (U) ∈ Set.

• if V ⊂ U , we can view this relation as the canonical inclusion map of
iV U : V → U . Then F (iV U ) : F (U)→ F (V ).
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For example, we let X = R, the O(X) is the collection of open subsets of
the reals. Let F (U) be the collection of continuous real valued functions on U .
Assume that V ⊂ U . Then, we let F (iV U ) : F (U) → F (V ) be the restriction
map. What makes a presheaf into a sheaf? Well, we want to be able to glue
things together.

Definition III.41. (Gluing Axiom) Assume that U ⊂open X and let {Ui}i∈I
be an open cover of U , i.e.

⋃
i∈I Ui = U . Let xi ∈ F (Ui). Then, we say that the

collection {xi}i are compatible if F (i(Ui)(Ui∩Uj))(xi) = F (i(Uj)(Ui∩Uj))(xj) for
each pair xi, xj . If this is the case, then ∃!x ∈ F (U) such that F (i(U)(Ui))(x) =
xi.

Definition III.42. A sheaf is a presheaf which satisfies the gluing axiom.

Definition III.43. A presheaf is called seperated if for any U ⊂o penX and
x, y ∈ F (U) and convering {Ui}i of U , we have that if F (iUiU )(x) = F (iUiU )(y)
for each i then x = y.

Example III.44. Let X = R. F (U) be the collection of bounded continuous
functions on U and F (iV U ) is the corresponding restriction map. Then F is a
separeated presheaf, but not a sheaf.

Recall that a sieve on C is a subfunctor of the Yoneda embedding yC , which
is also the functor Hom(−, C).)

It is easy to see that a monic arrow in the functor category is a precisely
a natural transformation η where each component ηC is a monomorphism in
SET, such that the relevant diagrams commute. Thus if R is a subfunctor of
yC , each R(D) can be identified with a set of maps from D to C. We will make
this identification from here forward.

Definition III.45. A Grothendieck topology on a category C is an assign-
ment J of each object C ∈ C to a family of sieves over C, J(C), called covering
sieves of C. Each family J(C) has the following properties:

• The maximal sieve yC is in J(C) for each C ∈ C.

• For every subfunctor R of yC and arrow f : C ′ → C define the collection
f∗(C) of arrows g : C → C ′ with f ◦ g ∈ R(dom(g)). If R ∈ J(C) and
f : C ′ → C then f∗(R) ∈ J(C).

• Transitivity: Whenever R is some sieve over C and S ∈ J(C) such that
f ∈ S implies f∗(R) ∈ J(dom(f)), then R ∈ J(C).

Definition III.46. A site is a category C equipped with a Grothendieck topol-
ogy.

Definition III.47. A basis for a Grothendieck topology (also known as a pre-
topology) on a category C is a family {K(C) : C ∈ C} of morphisms (sometimes
denoted Cov(C)) with codomain C with the following properties:
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• Every set covers itself: The singleton {idC : C → C} is in K(C) for each
C.

• Stability under pullbacks, or, a cover of a set leads to a cover of a subset:
If {fi : i ∈ ∆} ∈ K(C) and g : D → C then each pullback D ×C dom(fi)
exists; namely we have the following pullback diagram:

D ×C dom(fi) dom(fi)

D C

ϕi

gi fi

g

Moreover, the family {gi : i ∈ ∆}, is in K(C).

• Refinements of covers lead to covers: Suppose {fi : Ci → C} ∈ K(C) and
for all i, {gij : Dij → Ci} ∈ K(Ci). Then {fi ◦ gij} ∈ K(C).

Exercise III.48. If a category C has a basis for a Grothendieck topology, then
the family {J(C) : C ∈ C}, where each J(C) is the set of sieves on C containing
some f ∈ K(C), is a Grothendieck topology on C.

Example III.49.

1. TOP is a site, where for each open set U , K(U) is the collection of open
covers of U . More precisely, K(U) is the collection of sets of inclusions
{fi : Ui → U} such that ∪idom(fi) = U .

2. The coarsest Grothendieck topology {J(C) = {yC}} is a Grothendieck
topology.

3. The finest Grothendieck topology {J(C) : C ∈ C}, where each J(C) is
the collection of all subfunctors of yC , is a Grothendieck topology. In this
context, we denote J(C) by Ω(C).

Definition III.50. Let C be a site with Grothendieck topology {J(C) : C ∈ C}.
A compatible family of a sieve R ∈ J(C) with a presheaf F ∈ SET COP

is a
family of elements {xf : f ∈ R(dom(f))} such that:

• If f : C ′ → C is in R then Xf ∈ F (C ′) and if g : C ′′ → C is any arrow
then xfg ∈ F (C ′′).

Recall that F is a functor to SET, so talking about elements of F (D), F (E),
etc. makes sense.

Exercise III.51. Such a compatible family is “precisely” an arrow R→ F in the
category of functors. Recall that an arrow is a natural transformation in this
category.
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Solution. (⇒) Let η : R ⇒ F be a natural transformation. Define, for each f
such that f ∈ R(dom(f)), xf := η(f). Recall ηdom(f) : R(domf) → F (dom(f)
so this notation makes sense. We claim {xf} is a compatible family.
Pick some f : D → C such that f ∈ R(dom(f) and let g : E → D be any mor-
phism. Since R is a subfunctor of yC , there is a monic natural transformation
ε : R → yC such that εE(R(g)[f ]) = yC(g)[εD(f)] [To self: insert the relevant
diagram]. Since ε is monic, each component is an inclusion in SET, so we may
write R(g)[f ] = yC(g)[f ]. But by definition yC(g)[f ] = Hom(g, C)[f ] = f ◦ g so
R(g)[f ] = f ◦ g.
Now since η is a natural transformation, we have the following commutative di-
agram: [Insert] Thus ηE(R(g)[f ]) = F (g)[ηd(f)] which implies xf◦g = F (g)[xf ]
as was desired.
(⇐) Conversely, let {xf} be a compatible family. Define, for each object D, ηD
element-wise by letting ηD(f) = xf . In order to show that η = {ηD : D ∈ C}
is a natural transformation, it remains only to show that the relevant dia-
grams commute. But for each g : D → E, the relevant diagram commutes
precisely by definition of compatible family and since R(g)[f ] = f ◦ g for each
f ∈ R(dom(f)).

Definition III.52. An amalgamation of such a compatible family is some
x ∈ F (C) such that xf = F (f)[x] for all f ∈ R.

Definition III.53. A preseheaf F is a sheaf if every compatible family has a
unique amalgamation. More precisely, let C be site with Grothendieck topology
J . A presheaf is a sheaf with respect to J if for every J(C) and every R ∈ J(C),
every family {xf} of R with F has a unique amalgamation.

Definition III.54. A presheaf is called separated if every compatible family
has at most one amalgamation.

Definition III.55. A Grothendieck topos is a category of sheaves on a site;
namely, let C be a site with topology J . Consider the collection of all presheaves
which are sheaves with respect to J . This collection forms a category which is
called the Grothedieck topos over C.

Exercise III.56.

1. If C is site with respect to the coarsest Grothendieck topology J then every
presheaf is a sheaf.

2. Every Grothendieck topos is an elementary topos.

We now proceed to discuss the correspondence between sheaves and so-called
ètale bundles. In fact, ètale bundles are often called sheaves.

Definition III.57. A map p : E → X between topological spaces is a local
homeomorphism if for every point e ∈ E there is an open set U of E containing e
and an open set V ⊂ X such that the restriction map p �U is a homeomorphism.

Remark III.58. Every local homeomorphism is continuous.
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Definition III.59. An ètale bundle is a map p : E → X between topological
spaces which is a local homeomorphism.

Remark III.60. Given the above definition, one may ask why one would call a
local homeomorphism an ètale bundle if the two notions are precisely the same.
The answer is that the local homeomorphism contains all of the data of an ètale
bundle, but the bundle properly speaking is a tuple (p,E, (Ex)x∈X , X). For
each x ∈ X define Ex = p−1({x}); we call this set the stalk over x or the fiber
over x. However, this latter definition conflicts with another notion we shall
call a fiber later, so we will not use it. The elements of each stalk Ex are called
germs at x. We call E = ∪Ex the stalk space and X the base space, and the
whole bundle is sometimes called a bundle of stalks over X. This terminology
is motivated by the following picture: [To self: add picture]

Example III.61. The map R→ R/Z ∼= S1 is a local homeomorphism and thus
an ètale bundle. [To self: add diagram]

Definition III.62. A function s : X → E is a section of a bundle p : E → X
if s(x) ∈ Ex for each x ∈ X. In other words, s is precisely any continuous
function which “picks” a germ from the stalk above x; one can think of “slicing”
the stalks horizontally, motivating the use of the word ‘section’. Equivalently, s
is a function so that for all x, p ◦ s = idX . The section of an open set U ⊆ X is
a continuous map s such that p ◦ s = idU .

Lemma III.63. Let X be a topological space whose Grothendieck topology is
given by basis with K(U) being the collection of open coverings of U , for each
open U . Then every sheaf over X corresponds to an ètale bundle and vice verse.

Proof. (⇐) Let p : E → X be an ètale bundle. We define a sheaf F over X as
follows:

• On objects, define F (U) to be the set of sections of U .

• On morphisms, for each inclusion i : U → V , define F (i) to be the “re-
striction” function which, on input s ∈ F (V ), outputs the function s �U .
Note that s �U is clearly a section on U .

It remains to check that F is a sheaf.
(⇒) Let F be a sheaf in on a topological space X. We define an ètale bundle

over X. Let U, V be open subsets of X containing x ∈ X let s ∈ F (U) and
t ∈ F (V ). We say that s ∼x t or that s,t have the same germ at x if there is
an open neighborhood W ⊆ U ∩ V containing x such that s �W= t �W , where
s �W is defined as F (i)[s], where i is the inclusion i : U ⇒ V .
Note briefly this is a generalization of the case when F is the functor taking U
to itself and sending inclusions to literal restrictions (To self: Is this correct???),
we can identify each s ∈ F (U) with U and define, for each x, an equivalence
relation U ∼x V on open sets containing x, when “U, V look the same locally
at x,” or when there is a W ⊆ U such that W ∩ U = W ∩ V . This motivates
why we should say that s ∼x t if “s, t have the same germ at x.”
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One must check s ∼x t is an equivalence relation. Let Ex be the set of equiv-
alence classes with x fixed but U, V, s, t vary. Note that each Ex is disjoint.
Define E = ∪xXEx. Define p : E → X by sending each e ∈ Ex to x. This is the
ètale bundle we want. In order for this map to be a local homeomorphism, we
must define a topology on E.
For each open set U in X and each s ∈ F (U), define s̃(U) to be the collection
of germs of s at x for each x ∈ U . We let the s̃(U)’s be a basis for the desired
topology. It only remains to be shown that p is a local homeomorphism.
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Chapter IV

Categorical Logic

IV.1 Categorical Semantics

Let L be a many-sorted, finitary language with propositional symbols >, ⊥,
and let E be an elementary topos. In this section, we define the notion of an
E-valued L structure, and explain the semantic interpretation of the L-terms
and L-formulas in such a structure.

In the following definition, it is useful to note that if E is Set, we recover the
notion of L-structure familiar to model theory.

Definition IV.1 (E-valued L-structures). Suppose L is a many-sorted, finitary
language and E is an elementary topos. An E-valued L-structure M consists of
the following:

1. For each sort X of L, an object X(M) of E ,

2. For each relation symbol R in L of type X1×· · ·×Xn, a subobject R(M)
of the product X1(M)× · · · ×Xn(M) in E ,

3. For each function symbol f in L of type X1× · · · ×Xn → X, a morphism
f(M) : X1(M)× · · · ×Xn(M)→ X(M) in E and

4. For each constant symbol c in L of sort X, a morphism c(M) : 1→ X(M)
in E , where 1 is the terminal object of E .

For the rest of the section, we let M be an E-valued L structure. Before
we can define the semantic value of L-formulas and L-sentences in M , we must
assign interpretations to the L-terms.

Definition IV.2 (Interpretations of terms). Suppose t(x1, . . . , xn) is an L-term
of type X1 × · · · ×Xn → X. We assign to t a morphism t(M) : X1(M)× · · · ×
Xn(M)→ X(M) in E inductively, as follows:

1. If t is a constant symbol c, where c has sort X, then t(M) is c(M).
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2. If t is the variable x, where x has sort X, then t(M) is idX(M).

3. If t is f(t1, . . . tn) where ti : X1×· · ·×Xn → Yi and f : Y1×· · ·×Yn → Z,
then f(t1, . . . , tn)(M) : X1(M) × · · · × Xn(M) → Z is the composition
f(M) ◦ (t1(M), . . . , tn(M)).

We now describe how to interpret an L-formula ϕ(x1, . . . , xn), where xi has
sort Xi, as a subobject ϕ(M) of X1(M)× · · · ×Xn(M) in E . If ϕ is a sentence,
then ϕ(M) is a subobject of the terminal object 1.

We showed in Chapter 3 that if E is SetC
op

, then for any E ∈ E , SubE(E)
is a Heyting algebra. Furthermore, if f : C → D is a morphism in E , then f ] :
SubE(D) → SubE(C) has left and right adjoints ∃f , ∀f : SubE(C) → SubE(D).
These facts are true in a general elementary topos E , and we use them freely in
the definition below.

Definition IV.3 (Interpretation ϕ(M) of an L-formula ϕ). Suppose ϕ(x1, . . . , xn)
is an L-formula where xi is of sort Xi.

1. If ϕ is t1 = t2(x̄) where t1 and t2 are L-terms of sort X1 × · · · ×Xn → Y ,
then ϕ(M) is the equalizer of the following diagram:

X1(M)× · · · ×Xn(M) Y (M)
t2(M)

t1(M)

.

2. If ϕ is R(t1(x̄), . . . , tn(x̄)), where each ti : X1×· · ·×Xm → Yi is an L-term
and R is a relation of type Y1 × · · · × Yn, then ϕ(M) is the pullback

ϕ(M) R(M)

ΠXi(M) ΠYi(M)
(t1(M)...tn(M))

.

3. If ϕ is >(x1, . . . , xn), then ϕ(M) is the top subobject of X1(M) × · · · ×
Xn(M); similarly, if ϕ is ⊥(x1, . . . , xn), then ϕ(M) is the bottom subob-
ject of X1(M)× · · · ×Xn(M).

4. If ϕ is ϕ1 ∧ ϕ2(x̄), ϕ∨ϕ2(x̄), ¬ϕ1(x̄), or ϕ1 ⇒ ϕ2(x̄), then ϕ(M) is
interpreted according to the Heyting algebra SubX1(M)×···×Xn(M), i.e.,
ϕ1 ∧ ϕ2(M) is ϕ1(M) ∧ ϕ2(M), etc.

47



5. Finally, suppose ϕ is (∃y)(ϕ1(x̄, y)) or (∀y)(ϕ1(x̄, y)), where y has sort Y .
Let π : X1(M) × · · · ×Xn(M) × Y (M) → X1(M) × · · · ×Xn(M) be the
projection. Then (∃y)(ϕ1(x̄, y))(M) is ∃π(ϕ1(M)), and (∀y)(ϕ1(x̄, y))(M)
is ∀π(ϕ1(M)).

A theory T is a collection of formulas ϕ of L. ϕ(x̄) is valid (true) in M if
ϕ(M) is the maximal subobject of X1(M)× · · ·×Xn(M). M is a model of T if
every formula ϕ in T is valid in M . If ϕ is a sentence, then validity of ϕ means
that ϕ(M) is the maximal subobject of 1.

IV.2 Geometric Theories

Throughout this section, all topoi we consider are elementary topoi. In this
section, we consider which functors preserve theories and which maps are the
“good” maps between topoi.

Definition IV.4. Let F , E be topoi. A geometric morphism f : F → E is a
pair of functors (f∗, f∗) where f∗ : F → E , f∗ : E → F , f∗ is left adjoint to f∗
and f∗ is a left exact functor. We call f∗ the direct image part of f and f∗

the inverse image part of f .

Example IV.5. Let X,Y be Hausdorff topological spaces. Let Sh(X) be the
Grothendieck topos of sheaves over X considered as a site, and Sh(Y ) the same
for Y . Then a geometric morphism Sh(X) → Sh(Y ) is precisely a continuous
map f : X → Y . More precisely, to every such geometric morphism there
corresponds such a continuous map and vice verse.

Proof. (⇐) Suppose f : X → Y is a continuous map. We first define f∗, the
direct image functor. On objects, for each sheaf functor F in Sh(X) we define
the functor f∗[F ] in Sh(Y ) element-wise, as follows. For each open set V in Y ,
let

f∗[F ](V ) = F (f−1(Y )).

Since f is continuous, f−1(Y ) is open in X and the expression on the right hand
side is therefore well-defined.
Defining f∗ on arrows is left to the reader.

We now define f∗, the inverse image functor. On objects, for each sheaf functor
G in Sh(Y ), we must define a sheaf functor f∗(G) in Sh(X). We will take advan-
tage of the correspondence between sheaves and étale bundles. Let p : E → Y
be the étale bundle over Y associated with G. We will construct, from p, an
étale bundle over X, and then define f∗(G) to be the sheaf in Sh(X) associated
with this bundle.
In the category of topological spaces, we let E′ be the topological space that
makes the following a pullback diagram:

48



E′ E

X Y

p′ p

f

The map p′ is the desired étale bundle. It remains for the reader to check that
this will be a local homeomorphism.
Finally, one must show that (f∗, f∗) is an adjoint pair and that f∗ is left exact.
(⇒) Let (f∗, f∗) be a geometric morphism from Sh(X) to Sh(Y ). We want to
construct a continuous function f̄ : X → Y . Note that f∗ preserves finite limits,
arbitrary colimits, and the terminal object. Therefore f∗ takes subobjects of
the terminal object in Sh(Y ) to subobjects of the terminal object in Sh(X).
Note that the terminal object in Sh(Y ) is the functor F that takes every open
V to F (V ) = {a} = 1 or equivalently, the identity bundle. The subobjects of
F as defined above are the open subsets of V considered as subfunctors. So
f∗ takes open subsets of Y to open subsets of X. [To self: elaborate.]. In
particular, f∗(Y ) = X. Now f∗ preserves finite intersections and arbitrary
unions so we can define the map f̄ : X → Y such that f̄(x) = y if x ∈ f∗(V ) for
all neighborhoods V of y in Y , by the Hausdorff condition. [To self: elaborate]
We now check that f̄ is well-defined. Now there is at most one such point y
by the Hausdorff condition, since f∗ preserves intersection, and since f∗(∅) = ∅
[Proceeds by contradiction.] There is at least one such y since otherwise, for all
y ∈ Y there is a neighborhood Vy of y in Y such that x 6∈ f∗(Vy). So

x 6∈ ∪y∈Y f∗(Vy) = f∗ (∪y∈Y Vy) = f∗(Y ) = X.

But this is a contradiction.
It remains to be checked that f̄ is continuous.
Note briefly that f∗(V ) = f̄−1(V ), motivating the name inverse image functor
It remains to be shown that f̄∗ is naturally isomorphic to f∗; that is, this map
we have defined really does correspond to the geometric morphism in a strong
way. Recall that we defined, for each F ∈ Sh(X), V open in Y , f̄∗(F )[V ] =
F (f̄−1(V )).
So by the Yoneda lemma,

f̄∗(F )[V ] = F (f̄−1(V ))

∼= HOMSh(X)(f̄
−1(V ), F )

∼= HOMSh(X)(f
∗(V ), F )

∼= HOMSh(Y )(V, f∗(F )) ∼= f∗(F )[V ]

where the second to last natural isomorphism holds by definition of geometric
morphism; in particular, by the adjunction.

Lemma IV.6. Let f : F → E be a geometric morphism between elementary
topoi.

...[There is a lacuna in the text]...
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The following makes reference to Anand’s numbering and needs to be ad-
justed once the previous contents are filled in.

Definition IV.7 (Geometric theory). Let L be a first order finitary possibly
many-sorted language. Recall that an L-formula is geometric if it is built up
from atomic formulas using ∧, ∨ and ∃.

A geometric theory in L is a collection of L-formulas, which are called axioms,
of the form

∀x̄(ϕ(x̄)⇒ ψ(x̄))

where ϕ and ψ are geometric formulas with variables among x̄ = (x1, . . . , xn)
for some n ∈ N.

Note that in ordinary first-order model theory, first-order theories are usu-
ally assumed to be closed under logical consequence. However, we make no
assumption on geometric theories.

Furthermore, note that geometric theories may include axioms of the form
∀x̄ϕ(x̄) and ∀x̄¬ϕ(x̄), where ϕ(x̄) is a geometric L-formula with free variables
among x̄ since ∀x̄ϕ(x̄) is equivalent to the formula ∀x̄(> ⇒ ϕ(x̄)), and similarly,
∀x̄¬ϕ(x̄) is equivalent to ∀x̄(ϕ(x̄)⇒ ⊥).

However, one should be careful to note that ∀x̄(ϕ(x̄) ⇒ ψ(x̄)) is not a
geometric formula even when ϕ and ψ are geometric formulas. In other words,
one should not confuse geometric formulas with axioms of a geometric theory.

To make one last minor point, note that our logical (syntactical) symbol for
implication is ‘⇒’ rather than the usual ‘→’ seen in ordinary first-order model
theory. We use the former to be consistent with Mac Lane and Mordeijk’s
notation.

Corollary IV.8. Let T be a geometric theory in a fixed first-order and possibly
many-sorted language L. Let f : F → E be a geometric morphism (between
topoi F and E) where f = (f∗, f∗). Let M be a model of T in the sense of E.

Then the inverse image f∗(M) of M is a model of T in the topos F .
Moreover, f∗ induces a functor from the category of models of T in E to the

category of models of T in F .

Proof. Let T be a geometric theory and let ∀x̄(ϕ(x̄)⇒ ψ(x̄) ∈ T . For this axiom
to be valid in M just means, by definition, that ϕ(M) ≤ ψ(M) as subobjects
of the relevant product X1(M) × . . . Xn(M). By Theorem 4.11 and by the
fact that f∗ preserves the inclusion of subobjects (Lemma 4.8), it follows that
ϕ(f∗(M)) ≤ ψ(f∗(M)) as subobjects of X1(f∗(M))× . . .×Xn(f∗(M)), which
means that the axiom is valid in f∗ as well.

Check the moreover part.

Remark IV.9. Note that the previous theorem uses three claims that we will
discuss in more detail, i.e. (i) Lemma 4.8 according to Anand’s numbering, (ii)
preservation of inclusion of subobjects by f∗, and (iii) the equivalence of the
validity of ∀x̄(ϕ(x̄)) and ϕ(x̄).
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Remark IV.10. Note that Mac Lane and Mordeijk define the notion of an ‘open’
[4]. Mac Lane and Mordeijk prove that Theorems 4.11 and IV.8 hold for all
formulas and all theories when f is an open geometric morphism.

Example IV.11. (i) Rings: Let Lrings be the (one-sorted) first-order lan-
guage of rings, i.e. Lrings = {+,×, 0, 1}. We will often suppress the
multiplication symbol when there is no ambiguity. The theory of commu-
tative rings is a geometric theory consisting of the following axioms:

• ∀x(1x = x)

• ∀x(0 + x = x)

• ∀x, y(xy = yx)

• ∀x, y(x+ y = y + x)

• ∀x, y, z((xy)z = x(yz))

• ∀x, y, z((x+ y) + z = x+ (y + x))

• ∀x∃y(x+ y = 0)

• ∀x, y, z(x(y + z) = xy + xz)

(ii) Local rings: Let L be Lrings. Then the theory of commutative local rings
is geometric and given by the following axioms:

• The axioms for commutative rings

• ∀x((∃y(xy = 1) ∨ ∃y((1− x)y = 1))).

Intuitively, local rings are rings that have a unique (proper) maximal ideal.

(iii) Linear (not strict) orderings with endpoints: Let L = {≤, b, t} where b and
t are the least and greatest elements. Then the theory of linear orderings
with endpoints is geometric and given by the following axioms:

• ∀x, y(x ≤ y ∨ y ≤ x)

• ∀x(x ≤ x).

• ∀x, y((x ≤ y ∧ y ≤ x)⇒ x = y)

• ∀x, y, z((x ≤ y ∧ y ≤ z)⇒ x ≤ z)
• ∀x(b ≤ x ≤ t)
• (b = t)⇒ ⊥

(iv) Fields: Let L = {+,×,−, 0, 1}. The theory of fields is geometric and given
by the ring axioms and the following axiom:

∀x(x = 0 ∨ ∃y(xy = 1)). (IV.1)

Note that in the category Set, the last axiom is equivalent to
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∀x(¬y(xy = 1)⇒ x = 0) (IV.2)

However, this equivalence does not hold in every topoi. For example, let
X be a Hausdorff topological space, and let E be the category of sheaves
on X. Then the sheaf of real-valued functions on X is a model of the ring
axioms in the sense of E satisfying (IV.2) but not (IV.1).

Now, for M an L-structure in E , we want to define a category Def(M).

Remark IV.12. First, one should note that there is a correspondence between
“functions” and their “graphs.” in suitable categories where the composition
of functions correspond to pullbacks of “graphs.” In the case of Set, there is a
trivial relationship between functions and graphs.

Definition IV.13. Let E be a topos, s : A → B a morphism in E . The graph
of s the subobject of A×B corresponding to the induced map A→ A×B:

A

A×B B

A

id

s

π1

π2

Note that this map is monic because id : A → A is monic; one can verify
monicity directly from the definition.

In Definition IV.13, we described the graph of a morphism s : A → B as a
subobject of A×B by finding a particular monomorphism into A×B. It is useful
to remember that subobjects are defined only up to isomorphism. Lemma IV.14
characterizes when a subobject of A × B is equivalent (as subobjects) to the
graph of s.

Lemma IV.14. Let s : A→ B be a morphism in a topos, and let S be an object
together with a morphism S → A×B. By the universal property of A×B, we
may view this morphism as a pair (α, s′), with α : S → A and s′ : S → B. Then
(α, s′) is monic and presents S as an equivalent subobject to the graph of s if
and only if α is an isomorphism over B. That is, if α is an isomorphism and
the following diagram commutes:

S A

B

α

s′

s

Proof. (⇒) Assume (α, s′) : S → A × B is monic and equivalent to the graph
of s as a subobject of A × B. That is, recalling that (id, s) is the graph of s,

52



there is an isomorphism β : S → A such that (id, s) ◦β = (α, s′). Consequently,
β = α and s ◦ α = s′, as desired.

(⇐) Assume α is an isomorphism over B. We want to show that α is
moreover an isomorphism over A × B (monicity of the map into is immediate
from this isomorphism and the monicity of (id, s) : A→ A×B). That is, we want
to show that (id, s) ◦ α = (α, s). Since it is sufficient by the universal property
of products to check each coordinate separately, the result is immediate.

Via Lemma IV.14, we can observe that the graph of the composition of
two morphisms is the pullback of their individual graphs over the common
domain/codomain.

Lemma IV.15. Let s : A → B and t : B → C be morphisms in a topos, and
let (α, s′) : S → A×B and (β, t′) : T → A×B be their respective graphs. Then
S ×B T is the graph of ts, were the relevant morphism into A × C is given by
the following diagram:

S ×B T T C

S B

A

β

t′

α

s′

t

s

Proof. The result is immediate from Lemma IV.14 and the fact that both pull-
backs of isomorphisms and compositions of isomorphisms are isomorphisms.

We can now define the category Def(M), where M is a structure in a topos.

Definition IV.16. Let L be a language, E a topos, and M an L-structure in
E . By Def(M), we mean the following category:

• Objects are pairs (X,A), where X = (X1, . . . , Xn) is a tuple of sorts and
A is a subobject of X(M) that arises as the interpretation in M of some
geometric formula ϕ(x1, . . . , xn).

• Morphisms are (X,A) → (Y,B) are morphisms s : A → B in E whose
graph, as a subobject of X(M)×Y (M), arises as the interpretation in M
of some geometric formula σ(x, y).

Composition and identity morphisms are induced by the category E .

Lemma IV.17. The category Def(M) is well defined by Definition IV.16.

Proof. We defined identity and composition morphisms by deferring to identity
and composition in E ; we must check that the graphs of these morphisms arise
as the interpretations of geometric formulas. (We must also check that identity
and composition obey the necessary algebraic laws, but this follows immediately
from the fact that E is a category obeying these laws.)
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(Identity.) The graph of the identity morphism is given by coordinate-wise
equality, which can be expressed as a finite conjunction of atomic equality as-
sertions, and is therefore given by a geometric formula.

(Composition.) By Lemma IV.15, the graph of a composition is a pullback of
the graphs of the morphisms being composed. Pullbacks of definable functions
are expressible by geometric formulas: let σ(x, z), τ(y, z) be the graphs of s :
A → C and t : B → C, respectively. Then their pullback is defined by the
formula ∃z ∈ C : σ(x, z) ∧ τ(y, z), where “z ∈ C” is shorthand for the formula
defining C as a subobject of Z(M).

Note that Definition IV.16 of Def(M) gives rise to a canonical “forgetful”
functor Def M → E by sending the object (X,A) ∈ Def(M) to A ∈ E and
f : (X,A) → (Y,B) to f : A → B. (To be needlessly technical, since the A
in (X,A) is a subobject of X(M), it only determines an equivalence class of
objects in E , rather that a specific object. Consequently, the forgetful functor
is “weak” in that it is only defined up to unique isomorphism in the functor
category, rather than as a specific functor in particular. In practice, since it is
defined up to unique isomorphism, this distinction is irrelevant.)

Proposition IV.18. The category Def(M) has a finite limits, and the forgetful
functor Def(M)→ E is left exact.

Proof. Let F : Def(M) → E denote the forgetful functor. Note that F is by
definition full and faithful, meaning that it induces bijections on hom sets:

HomDef(M)(X,Y ) ∼= HomE(F (X), F (Y ))

Also, since E is a topos, it has finite limits. Letting J be a finite diagram
in Def(M), we must check that limX∈J HomDef(M)(−, X) is representable in
Def(M). Given the above observations, it suffices to check that the finite limits
present in E arise as images of objects in Def(M) itself. Let L ∈ Def(M) be the
assumed object such that F (L) = limX∈J(F (X)). Then

lim
X∈J

HomDef(M)(−, X) ∼= lim
X∈J

HomE(F (−), F (X))

∼= HomE(F (−), lim
X∈J

(F (X)))

∼= HomE(F (−), F (L))
∼= HomDef(M)(−, L)

so Def(M) has finite limits which are preserved by F .
Now we show that the finite limiting cones (of diagrams that are themselves

images under F ) that exist in E are images of diagrams in Def(M). By Theo-
rem III.20, it suffices to check finite products and equalizers. The result is then
immediate, since the diagrams corresponding to finite products and equalizers
are directly definable by geometric formulas.

Given a topos E , language L, and L-structure M in the sense of E , we aim
to define a Grothendieck Topology on Def(M).
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Recall that a Grothendieck topology on a category C is an assignment J
of each object C ∈ C to a family of sieves over C, J(C), called covering sieves
of C. Moreover, each family J(C) has the following properties:

• The maximal sieve yC is in J(C) for each C ∈ C where yC is the presheaf
(functor) HomC(−, C).

• For every subfunctor R of yC and arrow f : C ′ → C define the collection
f∗(C) of arrows g : C → C ′ with f ◦ g ∈ R(dom(g)). If R ∈ J(C) and
f : C ′ → C then f∗(R) ∈ J(C).

• Transitivity: Whenever R is some sieve over C and S ∈ J(C) such that
f ∈ S implies f∗(R) ∈ J(dom(f)), then R ∈ J(C).

Furthermore, recall that a basis for a Grothendieck topology (also known
as a pretopology) on a category C is a family {K(C) : C ∈ C} of morphisms
(sometimes denoted Cov(C)) with codomain C with the following properties:

• Every set covers itself: The singleton {idC : C → C} is in K(C) for each
C.

• Stability under pullbacks, or, a cover of a set leads to a cover of a subset:
If {fi : i ∈ ∆} ∈ K(C) and g : D → C then each pullback D ×C dom(fi)
exists; namely we have the following pullback diagram:

D ×C dom(fi) dom(fi)

D C

ϕi

gi fi

g

Moreover, the family {gi : i ∈ ∆}, is in K(C).

• Refinements of covers lead to covers: Suppose {fi : Ci → C} ∈ K(C) and
for all i, {gij : Dij → Ci} ∈ K(Ci). Then {fi ◦ gij} ∈ K(C).

It was an exercise to show that if a category C has pullbacks and a basis for
a Grothendieck topology, then C has a Grothendieck topology. That is, suppose
C has pullbacks and a basis. Then one can generate a Grothendieck topology by
defining, for for each C ∈ C, the set J(C) of sieves S on C that contains some
R ∈ K(C).

Since we have shown that Def(M) has finite limits, it follows that Def(M)
has pullbacks, and thus, we can show that Def(M) has a Grothendieck Topology
by defining a basis.

Definition IV.19. We define the following basis on Def(M). For each object
(B, Y ) in Def(M) where B = ϕ(M) for some ϕ a geometric L-formula and Y is
a list of sorts Y1, . . . Yn, a member of K(B, Y ), i.e. a cover for (B, Y ), is a finite
family of arrows in Def(M),
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si : (Ai, X
(i))→ (B, Y ) for i = 1, . . . ,m.

such that the induced map qmi Ai → B is an epimorphism in E .

Lemma IV.20. Let E be an elementary topos, L be a first order language,
and M an L-structure in the sense of E. Moreover let (B, Y ) be an object of
Def(M) and let

si : (Ai, X
(i))→ (B, Y ), where i = 1, . . . ,m

be a family of maps. Then the induced map qmi Ai → B is an epimorphism
in E if and only if the formula

∀y(ψ(y)⇒ (∃x1σ1(x1, y) ∨ . . . ∨ ∃xn(σn(xn, y))) (IV.3)

is valid in M (in E) where B = ψ(M) for ψ a geometric formula, and where
σi(M) defines the graph of si.

Proof. Note that (IV.3) is valid in M (in E) if and only if

B = {y : ψ(y)}(M) ⊂ Y (M)

is contained in the subobject

S = ∃x1(σ1(x1, y)) ∨ . . . ∨ ∃xn(σn(xn, y))(M).

By definition of our logical symbols, this implies that S = Im(s1) ∨ . . . ∨
Im(Sn) ⊆ B where ∨ is the supremum and where si : Ai → in E . This supre-
mum S can be described as the image of the map qmi Ai → B induced by {si}mi .
This map is an epimorphism if and only if its image contains all of B, which
just means that (IV.3) is valid in M (in E)

Definition IV.21. A Grothendieck topology on a category C is subcanonical
if, for every C ∈ C, the representable presheaf HomC(−, C) is a sheaf for this
topology.

Fact IV.22. The Grothendieck topology on Def(M) is generated by the basis
defined in IV.19 is canonical.

Given a geometric theory T , we define the category Def(T) and a Grothendieck
topology on Def(T).

Definition IV.23. Let T be a geometric theory. We define the category Def(T)
as follows:

• Objects: The objects of Def(T) are given by a finite list of sorts X =
(X1, . . . , Xn) and an equivalence class [ϕ(x1, . . . , xn)] of geometric formu-
las ϕ(x1, . . . , xn) with variables xi of sort Xi, and where the equivalence
relation is as follows:
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ϕ(x̄) ∼ ψ(x̄) if ϕ(M) = ψ(M) as subobjects of X1(M)× . . .×Xn(M)

in every model model M of T in every topos E . We denote such an object
by [ϕ,X]

• Morphisms: A morphism in Def(T) between [ϕ, Y ] and [ψ, Y ] is an equiv-
alence class of certain geometric formulas σ(x̄, ȳ) ⊂ X × Y where x̄ =
(x1, . . . , xn) and ȳ = (y1, . . . , ym) with xi (resp. yi) of sort Xi (resp.
yi). Moreover, we require that morphisms in Def(T) have the property
that for every E and every model M of T in the sense of E , σ(x̄, ȳ)(M) ⊂
X(M)×Y (M) is the graph of the arrow in Def(M) from (A,X) to (B, Y )
where A = ϕ(M) and B = ψ(M). In particular, σ(x̄, ȳ) is a subobject of
ϕ(M)×ψ(M) and σ(x̄, ȳ) ∼ σ′(x̄, ȳ) if σ(x̄, ȳ)(M) = σ′(x̄, ȳ)(M) for every
M in every E ; or equivalently, if σ(x̄, ȳ)(M) and σ′(x̄, ȳ) define graphs of
the same arrow in Def(M).

Lemma IV.24. Let T be a geometric theory. Then

(i) Def(T) is a well-defined category.

(ii) Def(T) has all finite limits.

(iii) For each model M of T in E, the following functor is left exact, i.e pre-
serves limits,

FM : Def(T)→ Def(M)

where FM ([ϕ,X]) = (ϕ(M), X).

Proof. In the proof of Lemma IV.17, we described how identity morphisms and
composition are witnessed by geometric formulas. We now note that the specific
choice of formula did not depend on M itself, but only on the defining formu-
las for the objects and morphisms involved. Define identity and composition
morphisms in Def(T ) according to the scheme described in that proof. Given
that objects and morphisms in Def(T ) are defined as formulas up to having
equivalent behavior in all models, the fact that Def(M) is itself a category for
all M implies that are necessary algebraic laws are satisfied.

Similarly we noted in the proof for Proposition IV.18 that the limit cones
for finite products and equalizers are definable by geometric formulas. Again,
these formulas did not depend on M . These cones are vacuously preserved by
the functors Def(T ) → Def(M), so we must only check that they are limiting
cones in Def(T ). Note that the functors Def(T ) → Def(M) need not be full
or faithful, so we can’t use the same “trick” we used in the proof of Proposi-
tion IV.18. However, directly verifying the universal property for finite products
and equalizers is routine.

Now we define the Grothendieck topology on Def(T )
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Definition IV.25. Let si : Ai → B be a finite family of morphisms in Def(T ).
Say that these si cover B if, for every model M of T in every topos, the induced
functor Def(T ) → Def(M) sends this family to a cover with respect to the
topology on Def(M).

Lemma IV.26. Definition IV.25 defines a basis for a Grothendieck topology
on Def(T ) (see Definition III.47). Moreover, the induced functors Def(T ) →
Def(M) send covers to covers.

Proof. Per Definition III.47, we must show that every set covers itself, that cov-
ers are stable under pullback, and that refinements of covers are covers. These
properties follow immediately from the definition of the topology on Def(T ),
the fact that the topologies on Def(M) follow the required laws, and that the
functors Def(T ) → Def(M) preserve identities, pullbacks, and compositions,
respectively.

That the functors Def(T )→ Def(M) send covers to covers is vacuous.

Lemma IV.27. Suppose a finite family of morphisms si : Ai → B in Def(T )
are given by geometric formulas σi(x

i, y). Then the family covers B if and only
if, in every model M of T in every topos, M models

∀y ∈ B,
∨
i

∃xi ∈ Ai : σi(x
i, y)

Proof. Immediate from Lemma IV.20.

At this point, Anand defined what it means for a functor C → E to be
continuous by requiring it to send covering sieves to epimorphic families. That
definition requires that E have infinitary coproducts, which isn’t true in an
elementary topos in general. I don’t actually think there is a good definition for
when a functor from a site to an elementary topos is continuous: the definition
“ought” to be equivalent to requiring the induced adjunction between SetC

op

and
E to be a geometric morphism (i.e., the left adjoint is left exact) that moreover

factors through the sub-topos (of SetC
op

) of sheaves on C. Unless E is actually
an elementary topos, or at least has satisfies assumptions for some sufficient
Adjoint Functor Theorem, the induced adjunction need not exist, however. The
only way to fix it, as far as I can tell, is to outright require the existence of the
adjunction as part of the definition of “continuous”.

Looking ahead, the problem is actually even worse. We’ve been using
“topos” to mean “elementary topos”, and marching on toward building B(T )
as the universal model for T in any topos. But that universal property only
actually works for models in Grothendieck toposes, not elementary ones.

Before formally defining the classifying topos B(T ) and its properties, we
need more background on geometric morphisms, which form the correct notion
of morphisms between toposes.

Remark IV.28. Given toposes F and E , the collection of geometric morphisms
F → E forms a category. Given f, g : F → E geometric morphisms, the ar-
rows f ⇒ g are given by natural transformations f? ⇒ g?, or equivalently by
transformations g? ⇒ f?.
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Remark IV.29. Given a geometric morphism g : G → F (between toposes G and
F) where g = (g∗, g∗), we can define the following functor:

Hom(g, E) : Hom(F , E)→ Hom(G, E)

Such that we have the following maps on objects and arrows, respectively:
Objects: For f ∈ Hom(F , E), Hom(g, E)(f) = f ◦ g ∈ Hom(G, E);
Arrows: Let α : f∗1 → f∗2 where f1, f2 ∈ Hom(F , E) and f1 = (f∗1 , f1∗) and

analogously for f2. Then Hom(g, E)(α) = g∗α, which is an arrow in Hom(G, E)
between (f1g)∗ = g∗f∗1 and (f2g)∗ = g∗f∗2 such that for E ∈ E , (g∗α)E =
g∗(αE) : g∗f∗1E → g∗f∗2E.

Definition IV.30. Let T be a geometric theory in a language L. Let Def(T )
be equipped with its Grothendieck topology J(T ) (see Definition IV.25). We
denote by B(T ) the topos of sheaves on the site Def(T ) (with respect to its
Grothendieck topology J(T )).

Theorem IV.31. The topos B(T ) is the classifying topos for T , i.e., for any
cocomplete topos E (i.e. E has all small colimits), there is an equivalence of
categories

Hom(E ,B(T )) ∼= Mod(T, E) (IV.4)

that is natural in E in the following sense:
Let f : E → F be a geometric morphism and Hom(F ,B(T )) ∼= Mod(T,F),

then the following diagram commutes:

Hom(F ,B(T )) Mod(T,F)

Hom(E ,B(T )) Mod(T, E)

∼=

Hom(f , B(T )) f∗

∼=

(IV.5)

where f∗ : F → E is left exact, and so it takes models of T in F to models
of T in E by Corollary IV.8.

Proof. First, by [4] Chapter VII, Corollarly 9.4, there is an equivalence of cate-
gories between Hom(E ,B(T )) and the category of left exact continuous functors
from Def(T ) to E . One direciton of this equivalence is given by a geometric
morphism f : E → B(T ) where f = (f∗, f∗). Take f∗ : B(T )→ E and compose
with Yoneda embedding y : Def(T )→ B(T ). One checks that f∗◦y is left exact.

Now given a model M of T in a topos E , we construct a left exact continuous
functor AM : Def T → E , which is the composition of FM : Def(T ) → Def(M)
(i.e. evaluating objects of Def(T ) at M) and the ‘forgetful’ functor Def(M)→ E .
We have seen that AM is left exact and continuous. Note that the objects of
Def(T ) are of the form [ϕ(x), X] and AM ([ϕ(x), X]) = ϕ(M) as an object of E
and similarly for arrows.

There are a few things to check: First, that M → AM is a functor, i.e.
given a homomorphism of models M → M ′, we get a natural transformation
AM → AM ′ .
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For the other direction of the proof, let A : Def(T ) → E be a left exact
continuous functor A : Def(T )→ E . We want to construct a model MA of T in
the topos E .

Let Xi be a sort in the language L. We will use the formula xi = xi for a
variable xi of the sort Xi to define the object

Xi(MA) = A([xi = xi, Xi]) (IV.6)

We assume that L has just relation symbols and equality, although the prov-
ing where L has function symbols is not difficult. Let R ⊂ X1 × . . .×Xn be a
relation symbol of L. Then we define

R(MA) = A([R(x), x]) (IV.7)

where x = (x1, . . . , xn). Since A preserves monomorphisms, we have that A
yields the monomorphism

R(MA)� X1(MA)× . . .×XN (MA) (IV.8)

This gives us MA from the continuous left-exact functor A : B(T ) → E . To
complete the proof, we need the following two lemmas.

Lemma IV.32. For any geometric formula ϕ(x1, . . . , xn) where xi is of the sort
Xi, there is a natural isomorphism between the subobjects ϕ(MA) ⊂ X1(MA)×
. . .×Xn(MA) and A([ϕ,X]) as subobjects of X1(MA)× . . .×Xn(MA).

Proof. The proof follows by induction on ϕ, which uses the existence of covers
and pullbacks, and the fact that A is left exact and continuous.

Lemma IV.33. MA is a model of T in E. That is, every axiom ∀x̄(ϕ(x̄)→ ψ(x̄)
of T is valid in MA in E.

Proof. By assumption, for every model M of T in any topos E , we have ϕ(M) ⊂
ψ(M) as subobjects of X(M).

Claim. There is a corresponding inclusion [ϕ,X]� [ψ,X] in Def(T ).

Proof of claim. In every model M , we have that the formula x = x yields the
arrows:

ϕ(M) X(M)

ψ(M)
(IV.9)

So we obtain the same diagram in Def(T ):
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[ϕ,X] [x = x,X]

[ψ,X]
(IV.10)

Now we know that A preserves inclusion of subobjects, so A[ϕ,X] ⊂ A[ψ,X]
as subobjects of A[x = x,X]. By Lemma ??, we have that ϕ(MA) ⊂ ψ(MA) as
subobjects of X1(MA)× . . .×Xn(MA).

To complete the proof of Theorem IV.31 , one checks that the functors taking
M → AM and A → MA are inverses of each other up to natural isomorphism,
natural in E .

Definition IV.34. The universal (topos-valued) model UT is the model of T in
B(T ) corresponding to the identity geometric morphism B(T )→ B(T ).

Proposition IV.35. Let M be a model of T in a complete topos E. Let cM :
E → B(T ) be the corresponding geometric morphism. Then M is the image of
UT under c∗M : B(T )→ E, which is a left-exact continuous functor.

Proof. By the naturality of (IV.4), we have the following commutative diagram
as a special case of (IV.5)

UT ∈ Mod(T,B(T )) Hom(B(T ),B(T )) 3 id

M ∈ Mod(T, E) Hom(E ,B(T )) 3 cm

∼=

c∗M Hom(cM , B(T ))

∼=

(IV.11)

Remark IV.36. One can provide the following description of UT . Given a
geometric theory T , and the topos B(T ) of sheaves on Def(T ). Note that
id : B(T )→ B(T ) corresponds to the Yoneda embedding y : Def(T )→ B(T ). So
by the constructions of Theorem IV.31, we have that UT is precisely the model
My.
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