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Abstract. Suppose G is a finite group and A ⊆ G is such that {gA : g ∈ G}
has VC-dimension strictly less than k. We find algebraically well-structured
sets in G which, up to a chosen ε > 0, describe the structure of A and behave

regularly with respect to translates of A. For the subclass of groups with
uniformly fixed finite exponent r, these algebraic objects are normal subgroups

with index bounded in terms of k, r, and ε. For arbitrary groups, we use Bohr

neighborhoods, of bounded dimension and width, inside normal subgroups of
bounded index. Our proofs are largely model theoretic, and heavily rely on a

structural analysis of compactifications of pseudofinite groups as inverse limits

of Lie groups. The introduction of Bohr neighborhoods into the nonabelian
setting uses model theoretic methods related to the work of Breuillard, Green,

and Tao [7] and Hrushovski [21] on approximate groups, as well as a result of

Alekseev, Glebskǐı, and Gordon [1] on approximate homomorphisms.

1. Introduction and statement of results

Szemerédi’s Regularity Lemma [39] is a fundamental result about graphs, which
has found broad applications in graph theory, computer science, and arithmetic
combinatorics. Roughly speaking, the regularity lemma partitions large graphs into
few pieces such that almost all pairs of pieces have uniform edge density. In 2005,
Green [18] proved the first arithmetic regularity lemma, which uses discrete Fourier
analysis to define arithmetic notions of regularity for subsets of finite abelian groups.
For groups of the form Fnp , Green’s result states that given A ⊆ Fnp , there is H ≤ Fnp
of bounded index such that A is Fourier-uniform with respect to almost all cosets of
H. Arithmetic regularity lemmas, and their higher order analogues (see [16, 19]),
are now important tools in arithmetic combinatorics. From a general perspective,
one can view regularity lemmas as tools for decomposing mathematical objects into
ingredients that are easier to study because they are either highly structured (e.g.,
a partition of a graph) or highly random (e.g., a regular pair in a graph).

Recently, a large body of work has developed around strengthened regularity lem-
mas for classes of graphs which forbid some particular bipartite configuration. This
setting is fundamental in both combinatorics and model theory, although often for
very different reasons. In combinatorics, forbidden configurations often lead to sig-
nificant quantitative improvements in results about graphs, and several well-known
open problems arise in this pursuit (e.g., the Erdős-Hajnal conjecture). In model
theory, the focus is usually on infinite objects, and forbidden configurations are
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used to obtain qualitative results about definable sets in mathematical structures.
Indeed, much of modern model theory developed from the study of mathematical
structures in which every definable bipartite graph omits a finite “half-graph” as
an induced subgraph (such structures are called stable).

In combinatorics and model theory, the practice of forbidding finite bipartite
configurations is rigorously formulated using VC-dimension. By definition, the VC-
dimension of a bipartite graph (V,W ;E) is the supremum of all k ∈ Z+ such that
(V,W ;E) contains ([k],P([k]);∈) as induced subgraph (where [k] = {1, . . . , k}). We
call (V,W ;E) k-NIP if it has VC-dimension at most k − 1.1 While this definition
is based on omitting one specific bipartite graph, an illuminating exercise is that if
(V,W ;E) omits some finite bipartite graph (V ′,W ′, E′) as induced subgraph, then
(V,W ;E) is k-NIP for some k ≤ |V ′| + dlog2 |W ′|e. In other words, having finite
VC-dimension is equivalent to omitting some finite bipartite configuration.

In [2], Alon, Fischer, and Newman proved a strengthened regularity lemma for
finite graphs of bounded VC-dimension2, in which the bound on the size of the par-
tition is polynomial in the degree of irregularity. This is in contrast to Szemerédi’s
original work, where these bounds are necessarily tower-type [17]. Strengthened reg-
ularity lemmas have also been found for semi-algebraic hypergraphs (e.g., [14, 15]),
as well as for various model theoretic settings inside NIP (see [4, 10, 11, 28]). The
strongest result is in the setting of stable graphs,3 where Malliaris and Shelah [28]
prove the existence of regular partitions with polynomial bounds, no irregular pairs,
and such that the uniform edge density in any regular pair is close to 0 or 1 (i.e.,
as a bipartite graph, each regular pair is almost empty or complete). This final
condition on regular pairs is also obtained in the regularity lemmas for NIP graphs.
In other words, for NIP graphs, the normally random ingredients of Szemerédi
regularity are in fact also highly structured.

The goal of this article is to develop arithmetic regularity for arbitrary finite
groups in the context of forbidden bipartite configurations, as quantified by VC-
dimension. In analogy to the case of graphs, we show that by forbidding finite
bipartite configurations, one obtains a strengthened version of arithmetic regular-
ity in which all aspects are highly structured and the random ingredients have
been removed. Our results qualitatively generalize and strengthen recent work of
the third author and Wolf [43] and Alon, Fox, and Zhao [3] on arithmetic reg-
ularity lemmas for stable and NIP sets in finite abelian groups. Moreover, our
proof methods deepen the connection between model theory and additive combina-
torics, in that we use pseudofinite methods to extend combinatorial results for finite
abelian groups to the nonabelian setting. This is in the same vein as Hrushovski’s
[21] celebrated work on approximate groups, and the subsequent structure the-
ory proved by Breuillard, Green, and Tao [7]. We will use techniques and results
from the literature on approximate groups in order to formulate arithmetic reg-
ularity in nonabelian groups using Bohr sets, which are fundamentally linked to
abelian groups. Finally, our results show that NIP arithmetic regularity for finite
sets in abelian groups coincides with a certain model theoretic phenomenon called
“compact domination”. This notion was first isolated by Hrushovski, Peterzil, and

1This terminology is from model theory, where a bipartite graph with infinite VC-dimension

is said to have the independence property, and so NIP stands for “no independence property”.
2The VC-dimension of a graph (V ;E) is that of the associated bipartite graph (V, V ;E).
3A bipartite graph (V,W ;E) is called k-stable if it omits ([k], [k];≤) as induced subgraph.
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Pillay [22] in their proof of the so-called “Pillay conjectures” for groups definable
in o-minimal theories, and later played an important role in the development of
definably amenable groups definable in NIP theories [9, 22, ?, 24].

Before stating the main results of this paper, we briefly recall our main result on
stable arithmetic regularity from [13], as it provides a template for the “structure
and regularity” statements will will obtain for NIP sets. In [43], the third author
and Wolf consider arithmetic regularity for sets A ⊆ Fnp such that the graph on Fnp
given by x + y ∈ A is k-stable for some k ≥ 1. They prove that such sets satisfy
a strengthened version of Green’s arithmetic regularity lemma above, in which
there is an efficient bound on the index of H and there are no non-uniform cosets.
They also show that any stable subset of Fnp is approximately a union of cosets
of a subgroup of small index, which is the arithmetic analogue of “0-1 density” in
regular pairs. In [13], we generalized and strengthened the qualitative aspects of
the stable arithmetic regularity lemma from [43] to the setting of arbitrary finite
groups, but without explicit bounds (a quantitative analogue remains open).

Theorem 1.1 (Conant, Pillay, Terry [13]). For any k ≥ 1 and ε > 0, there is
n = n(k, ε) such that the following holds. Suppose G is a finite group and A ⊆ G
is k-stable. Then there is a normal subgroup H ≤ G, of index at most n, satisfying
the following properties.

(i) (structure) There is D ⊆ G, which is a union of cosets of H, such that

|A4D| < ε|H|.
(ii) (regularity) For any g ∈ G, either |gH ∩A| < ε|H| or |gH\A| < ε|H|.

Moreover, H is in the Boolean algebra generated by {gAh : g, h ∈ G}.
Our first result on arithmetic regularity in the setting of bounded VC-dimension

is for k-NIP subsets of finite groups with uniformly bounded exponent.

Theorem 3.3. For any k, r ≥ 1 and ε > 0, there is n = n(k, r, ε) such that the
following holds. Suppose G is a finite group of exponent r, and A ⊆ G is k-NIP.
Then there are

∗ a normal subgroup H ≤ G of index at most n, and
∗ a set Z ⊆ G, which is a union of cosets of H with |Z| < ε|G|,

satisfying the following properties.

(i) (structure) There is D ⊆ G, which is a union of cosets of H, such that

|(A\Z)4D| < ε|H|.
(ii) (regularity) For any g ∈ G\Z, either |gH ∩A| < ε|H| or |gH\A| < ε|H|.

Moreover, H is in the Boolean algebra generated by {gAh : g, h ∈ G}.
Thus the behavior of NIP sets in bounded exponent groups is almost identical

to that of stable sets in arbitrary finite groups, where the only difference is in
the the error set Z. Theorem 3.3 also qualitatively generalizes and strengthens a
recent result of Alon, Fox, and Zhao [3] on the case of k-NIP subsets of finite abelian
groups of uniformly bounded exponent.4 A version of Theorem 3.3 with polynomial
bounds, but slightly weaker qualitative ingredients, is conjectured in [3].

We then turn to k-NIP sets in arbitrary finite groups. Easy counterexamples
show that one cannot expect a statement involving only subgroups, as in Theorem

4Once again, “qualitative” means that we do not obtain explicit bounds, in contrast to [3].
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3.3. Such counterexamples live in groups which have very few subgroups (e.g. cyclic
groups of prime order). In situations like this, one often works with Bohr neigh-
borhoods, which are certain well-structured sets in groups. Bohr neighborhoods
in cyclic groups were used in Bourgain’s improvement of Roth’s Theorem [6], and
also form the basis of Green’s arithmetic regularity lemma for finite abelian groups
[18]. Results related to ours, with quantitative bounds but for abelian groups, were
recently obtained by Sisask [38].

Given a group H, an integer r ≥ 0, and a δ > 0, we define a (δ, r)-Bohr neigh-
borhood in H to be a set of the form Brτ,δ := {x ∈ H : d(τ(x), 0) < δ}, where
τ : H → Tr is a homomorphism and d denotes the usual invariant metric on the
r-dimensional torus Tr. Our main structure and regularity result for NIP sets in
finite groups is as follows.

Theorem 5.7. For any k ≥ 1 and ε > 0 there is n = n(k, ε) such that the following
holds. Suppose G is a finite group and A ⊆ G is k-NIP. Then there are

∗ a normal subgroup H ≤ G of index at most n,
∗ a (δ, r)-Bohr neighborhood B in H, for some r ≤ n and δ ≥ 1

n , and
∗ a subset Z ⊆ G, with |Z| < ε|G|,

satisfying the following properties.

(i) (structure) There is D ⊆ G, which is a union of translates of B, such that

|(A4D)\Z| < ε|B|.

(ii) (regularity) For any g ∈ G\Z, either |gB ∩A| < ε|B| or |gB\A| < ε|B|.
Moreover, H and Z are in the Boolean algebra generated by {gAh : g, h ∈ G}, and
if G is abelian then we may assume H = G.

In order to prove Theorems 3.3 and 5.7, we will first prove companion theorems
for these results involving definable sets in infinite pseudofinite groups (Theorems
3.2 and 5.5, respectively). We then prove the theorems about finite groups by
taking ultraproducts of counterexamples in order to obtain infinite pseudofinite
groups contradicting the companion theorems.

To prove these companion theorems, we work with a saturated pseudofinite group
G, and an invariant NIP formula θ(x; ȳ) (see Definitions 2.1 and 2.11). In [12],
the first two authors proved “generic compact domination” for the quotient group
G/G00

θr , where G00
θr denotes the local type-definable connected component relative

to θ(x; ȳ). In this case, G/G00
θr is a compact Hausdorff group, and generic compact

domination roughly states that, given a θ-definable set X ⊆ G, the set of cosets of
G00
θr , which intersect both X and G\X in “large” sets, has Haar measure 0 (see Fact

2.16). This is essentially a regularity statement for X with respect to the subgroup
G00
θr , which is rather remarkable as generic compact domination originated in the

global NIP setting (see [22]) related to conjectures of the second author on the Lie
structure of groups definable in o-minimal theories [33].

The regularity provided by generic compact domination for θ-definable sets in G
cannot be transferred directly to finite groups, as the statement depends entirely on
type-definable data (such as G00

θr ). Thus, much of the work in this article focuses on
obtaining definable approximations to G00

θr and the other objects involved in generic
compact domination. We first investigate the situation when G/G00

θr is a profinite
group, in which case G00

θr can be approximated by definable finite-index subgroups
of G. Using this, we prove Theorem 3.2 (the pseudofinite companion to Theorem
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3.3 above). The connection to Theorem 3.3 is that, if G is elementarily equivalent
to an ultraproduct of groups of uniformly bounded exponent, then G/G00

θr is a
compact Hausdorff group of finite exponent, hence is profinite [25].

When G/G00
θr is not profinite, there are not enough definable finite-index sub-

groups available to describe G00
θr , and it is for this reason that we turn to Bohr

neighborhoods. This is somewhat surprising, as Bohr neighborhoods are funda-
mentally linked to commutative groups, and we do not make any assumptions of
commutativity. However, by a result of the second author [34], since G is pseu-
dofinite, the identity component in G/G00

θr is commutative. It is at this point
that we see the beautiful partnership between pseudofinite groups and NIP for-
mulas. Specifically, we have generic compact domination of θ-definable sets by
the commutative-by-profinite group G/G00

θr , which allows us to describe θ-definable
sets in G using Bohr neighborhoods inside of definable finite-index subgroups. In
order to obtain a statement involving only definable objects, we use approximate
homomorphisms to formulate a notion of approximate Bohr neighborhoods. This
leads to Theorem 5.5 (the pseudofinite companion of Theorem 5.7 above), and to
a version of Theorem 5.7 involving approximate Bohr neighborhoods (see Lemma
5.6). We then apply a result of Alekseev, Glebskǐı, and Gordon [1] on approximate
homomorphisms in order to find actual Bohr neighborhoods inside of approximate
Bohr neighborhoods and, ultimately, prove Theorem 5.7.

In Section 6, we prove similar results for fsg groups definable in distal NIP
theories (see Theorems 6.6 and 6.7). This follows our theme, as such groups satisfy
a strong form of compact domination (see Fact 6.4). In Section 7, we discuss
compact p-adic analytic groups as one concrete example of the distal fsg setting.

2. Preliminaries

Let L be a first-order language expanding the language of groups, and let G be a
sufficiently saturated L-structure expanding a group. An LG-formula is a formula
in the language L with parameters from G. Throughout the paper, we say that a
set is bounded if its cardinality is strictly less than the saturation of G.5

We note some terminology for formulas, and refer the reader to [29] for an
introduction to first-order languages and basic model theory.

Definition 2.1. Let θ(x; ȳ) be an LG-formula.

(1) An instance of θ(x; ȳ) is a formula of the form θ(x; b̄) for some b̄ ∈ Gȳ.
(2) A θ-formula is a finite Boolean combination of instances θ(x; ȳ) (we allow

x = x as a trivial θ-formula).
(3) Let Sθ(G) denote the space of complete θ-types over G (i.e. ultrafilters

in the Boolean algebra of θ-formulas).
(4) Let θr(x; ȳ, u) denote the formula θ(x · u; ȳ).
(5) θ(x; ȳ) is (left) invariant if, for any a ∈ G and b̄ ∈ Gȳ, there is c̄ ∈ Gȳ

such that θ(a · x; b̄) is equivalent to θ(x; c̄).

The typical example of an invariant LG-formula is something of the form θ(x; y) :=
φ(y-1 · x), where φ(x) is an LG-formula in one variable.

Definition 2.2.

5This is not to be confused with later uses of the phrase “uniformly bounded” in the context
of theorems about finite groups.
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(1) A set X ⊆ G is definable if X = φ(G) for some LG-formula φ(x). If φ(x)
is a θ-formula, for some θ(x; ȳ), then X is θ-definable.

(2) A set X ⊆ G is type-definable if X =
⋂
i∈I φi(G), where each φi(x) is an

LG-formula and I is bounded. If each φi(x) is a θ-formula, for some (fixed)
θ(x; ȳ), then X is θ-type-definable.

2.1. Compact quotients. Throughout the paper, when we say that a topological
space is compact, we mean compact and Hausdorff. Given a compact group K,
we let K0 denote the connected component of the identity in K. Recall that K
is profinite if it is a projective limit of finite groups. If K is compact, then K is
profinite if and only if K0 is trivial.

Continuing with the fixed saturated group G from above, we recall some basic
facts about quotients of G by type-definable subgroups.

Remark 2.3. Suppose Γ ≤ G is type-definable and normal of bounded index.

(1) G/Γ is a compact group under the logic topology, where X ⊆ G/Γ is closed
if and only if {a ∈ G : aΓ ∈ X} is type-definable. See [33] for details.

(2) If X ⊆ G is definable then {aΓ ∈ G/Γ : aΓ ⊆ X} is an open subset
of G/Γ. Indeed, by saturation of G and type-definability of Γ, the set
{a ∈ G : aΓ ∩G\X 6= ∅} is type-definable.

Definition 2.4. Suppose X ⊆ G is definable, Y is a compact space, and f : X → Y
is a function. Then f is definable if f -1(C) is type-definable for any closed C ⊆ Y .

Remark 2.5. If f : X → Y is definable in the above sense then, by saturation of
G, for any closed C ⊆ Y and open U ⊆ Y , with C ⊆ U , there is D ⊆ X definable
such that f -1(C) ⊆ D ⊆ f -1(U).

Given a type-definable bounded-index subgroup Γ ≤ G, since G/Γ is a compact
group, it can be analyzed using the structure theory involving (finite-dimensional)
compact Lie groups. Since the topology on G/Γ is controlled by type-definable
objects in G, this leads to an analysis of the type-definable structure of Γ involving
compact Lie groups. The follow lemma collects the basic ingredients of this analysis.
We say that a set X ⊆ G is θr-countably-definable if it is an intersection of countably
many θr-definable sets.

Lemma 2.6. Let θ(x; ȳ) be invariant and suppose Γ is a θr-countably-definable
bounded-index normal subgroup of G. Then there is a sequence (Γt)

∞
t=0 of θr-

countably-definable bounded-index normal subgroups of G, and a sequence (Ht)
∞
t=0

of θr-definable finite-index normal subgroups of G, with the following properties.

(i) For all t ∈ N, Γt+1 ≤ Γt, Ht+1 ≤ Ht, and Γt ≤ Ht.
(ii) Γ =

⋂∞
n=0 Γt.

(iii) G/Γ = lim←−G/Γt and (G/Γ)0 = lim←−Ht/Γt.

(iv) For all t ∈ N, G/Γt is a compact Lie group, Ht/Γt = (G/Γt)
0 is a compact

connected Lie group, and the projection map G→ G/Γt is θr-definable.

Proof. Since the logic topology on G/Γ is induced by θr-type-definability (see [12,
Corollary 4.2]), we may assume L is countable, and thus G/Γ is separable (see [9,
Remark 2.15], [36, Proposition 5.1]). Now G/Γ is a separable compact group, and so
there is a sequence (Kt)

∞
t=0 of closed normal subgroups of G/Γ such that (G/Γ)/Kt

is a Lie group, Kt+1 ≤ Kt for all t ∈ N,
⋂∞
t=0Kt = {1}, and G/Γ = lim←−(G/Γ)/Kt

(see [40]). Let Γt be the pullback of Kt to G. Then Γt is a θr-type-definable
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bounded-index normal subgroup of G containing Γ. Using Remark 2.5, one sees
that each Γt is θr-countably-definable. Since

⋂∞
t=0Kt = {1}, we have

⋂∞
t=0 Γt = Γ.

For any t ∈ N, Kt+1 ≤ Kt implies Γt+1 ≤ Γt. Now (G/Γ)/Kt and G/Γt are
isomorphic topological groups, and so we have G/Γ = lim←−G/Γt.

Fix t ∈ N, and let Ht be the pullback to G of (G/Γt)
0. Since (G/Γt)

0 is a closed
finite-index normal subgroup of G/Γt, and the projection from G to G/Γt is θr-
definable, we have that Ht is a θr-type-definable finite-index normal subgroup of G.
So Ht is θr-definable. Note also that Ht/Γt = (G/Γt)

0 and (G/Γ)0 = lim←−Ht/Γt. In

particular, Ht/Γt is a compact connected Lie group. Finally, the pullback of Ht/Γt
to G/Γt+1 is a clopen normal finite-index subgroup, and thus contains (G/Γt+1)0 =
Ht+1/Γt+1. So Ht+1 ≤ Ht. �

Remark 2.7. Lemma 2.6 can be reformulated for θr-type-definable subgroups of
G of bounded-index, using inverse systems indexed by directed sets.

Corollary 2.8. Let θ(x; ȳ) be invariant, and suppose Γ is a θr-countably-definable
bounded-index normal subgroup of G. If G/Γ is profinite then Γ is a countable
intersection of θr-definable finite-index subgroups of G.

Proof. If G/Γ is profinite then, in Lemma 2.6, we have Ht = Γt for all t ∈ N. �

In the next section, we will focus on the case that G is pseudofinite which, as G
is saturated, we take to mean that G is an elementary extension of an ultraproduct
of finite L-structures, each of which is a group. The following fact is the key
ingredient which will eventually allow us to introduce Bohr sets into the setting of
NIP subsets of possibly non-commutative groups.

Fact 2.9 (Pillay [34]). Assume G is pseudofinite. If Γ is a type-definable bounded-
index normal subgroup of G then (G/Γ)0 is commutative.6

Thus, in the case that G is pseudofinite and Γ ≤ G is type-definable of bounded
index, (G/Γ)0 is a projective limit of compact connected commutative Lie groups.
Recall that compact connected commutative Lie groups are classified as precisely
the finite-dimensional tori. So for n ∈ N, let Tn denote the n-dimensional torus,
i.e., Tn = R/Z× . . .× R/Z (n times). Note T0 is the trivial group.

Corollary 2.10. Assume G is pseudofinite. Let θ(x; ȳ) be invariant, and suppose Γ
is a θr-countably-definable bounded-index normal subgroup of G. Then, in Lemma
2.6, we have that for all t ∈ N there is nt ∈ N such that Ht/Γt ∼= Tnt .
2.2. NIP formulas in pseudofinite groups. We continue to work with a satu-
rated group G as in the previous section.

Definition 2.11. Let θ(x; ȳ) be an LG-formula. Given k ≥ 1, θ(x; ȳ) is k-NIP if
there do not exist sequences (ai)i∈[k] in G and (b̄I)I⊆[k] in Gȳ such that θ(ai, b̄I)
holds if and only if i ∈ I. We say θ(x; ȳ) is NIP if it is k-NIP for some k ≥ 1.

Remark 2.12. Given k ≥ 1, an LG-formula θ(x; ȳ) is k-NIP if and only if the set
system {θ(G; b̄) : b̄ ∈ Gȳ} on G has VC-dimension at most k − 1.

Definition 2.13. A subset A ⊆ G is left generic (resp. right generic) if G is
a union of finitely many left (resp. right) translates of A. A formula φ(x) is left
generic (resp. right generic) if φ(G) is left generic (resp. right generic).

6In [31], Nikolov, Schneider, and Thom generalize this to arbitrary compactifications of (ab-
stract) pseudofinite groups.



8 G. CONANT, A. PILLAY, AND C. TERRY

Now we focus on the case that G is pseudofinite (as defined above). In this case,
µ will always denote the pseudofinite counting measure on G, which is obtained
from the ultralimit of normalized counting measures on finite L-structures (and
then lifted to G, which is an elementary extension of an ultraproduct of finite L-
structures). In several proofs, we will apply  Loś’s Theorem to properties of µ, which
requires an expanded language L+ containing a sort for the ordered interval [0, 1]
with a distance function, and functions from the G-sort to [0, 1] giving the measures
of L-formulas. There are many accounts of this kind of formalism, and so we will
omit further details and refer the reader to similar treatments in the literature, for
example [12, Section 2.2] and [21, Section 2.6].

The next fact is a fundamental property of NIP formulas in pseudofinite groups,
which forms the basis for much of the work in [12].

Fact 2.14 (Conant & Pillay [12]). Assume G is pseudofinite. Suppose φ(x) is an
LG-formula such that φ(y-1 · x) is NIP. Then the following are equivalent:

(i) φ(x) is left generic;
(ii) φ(x) is right generic;

(iii) µ(φ(x)) > 0.

A straightforward exercise is that, if θ(x; ȳ) is invariant and NIP, and φ(x) is a
θr-formula, then φ(y-1 · x) is NIP. So, in this situation, we will just say that φ(x)
is generic in the case it is left generic (equivalently, right generic). We also call a
θr-type p ∈ Sθr (G) generic if every formula in p is generic.

Corollary 2.15. Assume G is pseudofinite. If θ(x; ȳ) is invariant and NIP then
there are generic types in Sθr (G).

Proof. The set of θr-formulas of µ-measure 1 is a filter, and so can be extended to
a type in Sθr (G). This type must be generic by Fact 2.14. �

The next fact gives the “generic compact domination” statement from [12].

Fact 2.16 (Conant & Pillay [12]). Assume G is pseudofinite. Suppose θ(x; ȳ)
is invariant and NIP. Then there is a normal subgroup G00

θr of G satisfying the
following properties.

(a) G00
θr is θr-countably-definable of bounded index, and is the intersection of all

θr-type-definable bounded-index subgroups of G.
(b) Suppose X ⊆ G is θr-definable. Let EX ⊆ G/G00

θr be the set of C ∈ G/G00
θr

such that

p |= C ∩X and q |= C ∩ (G\X)

for some generic θr-types p, q ∈ Sθr (G). Then EX has Haar measure 0 and
so, for any ε > 0, there is a θr-definable set Z ⊆ G such that µ(Z) < ε and
{a ∈ G : aG00

θr ⊆ EX} ⊆ Z.

Remark 2.17. Except for Section 6, our use of NIP and finite VC-dimension is
entirely concentrated in the application of Fact 2.16. So it is worth emphasizing that
the proof of this fact heavily uses fundamental tools about set systems of finite VC-
dimension, namely, the Sauer-Shelah Lemma, the VC-Theorem, and Matoušek’s
general version [30] of the (p, q)-theorem. See also [9] and [36, Chapter 6].
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3. Structure and regularity: the profinite case

Let G be a saturated L-structure expanding a group, as in Section 2. In this
section, we prove a structure and regularity theorem for θr-definable sets in G, in
the case that θ(x; ȳ) is NIP, G is pseudofinite, and G/G00

θr is profinite (see Theorem
3.2). As an application, we obtain a structure and regularity theorem for NIP sets
in finite groups of uniformly bounded exponent (see Theorem 3.3).

First, we prove a key lemma. Specifically, given an invariant NIP LG-formula
θ(x; ȳ), we use generic compact domination for G/G00

θr (Fact 2.16) to derive regu-
larity for θr-definable sets in G, with respect to definable approximations of G00

θr .

Lemma 3.1. Assume G is pseudofinite. Let θ(x; ȳ) be invariant and NIP, and let
{Wi : i ∈ N} be a collection of definable sets such that G00

θr =
⋂∞
i=0Wi and, for all

i ∈ N, Wi+1 ⊆ Wi. Fix a θr-definable set X ⊆ G. Then, for any ε > 0, there is a
θr-definable set Z ⊆ G and some i ∈ N such that

(i) µ(Z) < ε, and
(ii) for any g ∈ G\Z, either µ(gWi ∩X) = 0 or µ(gWi\X) = 0.

Proof. To ease notation, let Γ = G00
θr and let K = G/G00

θr . Let π : G → K be the
canonical projection. Let EX ⊆ K be as in Fact 2.16, and fix ε > 0.

Claim 1 : For any a 6∈ π-1(EX) there is some i ∈ N such that either µ(aWi∩X) =
0 or µ(aWi\X) = 0.

Proof : Since Γ is θr-type-definable, a routine compactness argument shows that
we may assume each Wi is θr-definable. Suppose the claim fails, i.e. there is a 6∈
π-1(EX) such that, for all i ∈ N, µ(aWi ∩ X) > 0 and µ(aWi\X) > 0. Let
p0 = {aWi ∩ X : i ∈ N} and q0 = {aWi\X : i ∈ N}. Then p0 and q0 are partial
types of generic θr-definable sets, and are closed under finite conjunctions. So there
are generic p, q ∈ Sθr (G) such that p0 ⊆ p and q0 ⊆ q. Note that p |= aΓ ∩X and
q |= aΓ ∩ (G\X). Thus aΓ ∈ EX , which is a contradiction. aClaim 1

By Fact 2.16, we may fix a θr-definable set Z ⊆ G such that µ(Z) < ε and
π-1(EX) ⊆ Z. Let U = {C ∈ K : C ⊆ Z}. Then EX ⊆ U , π-1(U) ⊆ Z, and U is an
open set in K by Remark 2.3(2). Toward a contradiction, suppose that for all i ∈ N
there is some ai 6∈ π-1(U) such that µ(aiWi ∩X) > 0 and µ(aiWi\X) > 0. Then
(aiΓ)∞i=0 is an infinite sequence in K\U . Since U is open and K is compact, we
may pass to a subsequence and assume that (aiΓ)∞i=0 converges to some aΓ ∈ K\U .

Claim 2 : For all i ∈ N, µ(aWi ∩X) > 0 and µ(aWi\X) > 0.
Proof : First, given i ∈ N, let Ui = {C ∈ K : C ⊆ aWi}. As above, each Ui is

open in K. Moreover, for any i ∈ N, since Γ ⊆Wi, we have aΓ ∈ Ui ⊆ aWi/Γ.
Next, since Wi+1 ⊆ Wi for all i ∈ N, Γ =

⋂∞
i=0Wi, and Γ is a group, it follows

from compactness that, for all i ∈ N, there is ni ∈ N such that WniWni ⊆Wi.
Now fix i ∈ N. Since Uni is an open neighborhood of aΓ, there is j ≥ ni such

that ajΓ ∈ Uni . In particular, aj ∈ π-1(Uni) ⊆ aWni . Now we have ajWj ⊆
ajWni ⊆ aWniWni ⊆ aWi. Since µ(ajWj ∩X) > 0 and µ(ajWj\X) > 0, we have
µ(aWi ∩X) > 0 and µ(aWi\X) > 0. aClaim 2

Finally, since a 6∈ π-1(U) ⊇ π-1(EX), Claim 2 contradicts Claim 1. So there is
some i ∈ N such that, for all a 6∈ π-1(U), we have µ(aWi∩X) = 0 or µ(aWi\X) = 0.
Since π-1(U) ⊆ Z, this finishes the proof. �

Theorem 3.2. Assume G is pseudofinite. Let θ(x; ȳ) be invariant and NIP, and
suppose G/G00

θr is profinite. Fix a θr-definable set X ⊆ G and some ε > 0. Then
there are
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∗ a θr-definable finite-index normal subgroup H ≤ G, and
∗ a set Z ⊆ G, which is a union of cosets of H with µ(Z) < ε,

satisfying the following properties.

(i) (structure) There is D ⊆ G, which is a union of cosets of H, such that

µ((X\Z)4D) = 0.

(ii) (regularity) For any g ∈ G\Z, either µ(gH ∩X) = 0 or µ(gH\X) = 0.

Proof. Let X ⊆ G and ε > 0 be fixed. By Corollary 2.8, there is a collection
{Ht : t ∈ N} of θr-definable finite-index subgroups of G, such that Ht+1 ⊆ Ht for
all t ∈ N and G00

θr =
⋂∞
t=0Ht. By Lemma 3.1, there is a θr-definable Z ⊆ G and

some t ∈ N such that µ(Z) < ε and H := Ht satisfies (ii). Replace Z by {a ∈ G :
aH ⊆ Z}. Then Z is still θr-definable, and we still have µ(Z) < ε and condition
(ii). For condition (i), take D =

⋃
{gH : gH ∩ Z = ∅ and µ(gH ∩X) > 0}. �

As an application, we now prove structure and regularity for NIP sets in finite
groups of uniformly bounded exponent. In this case, we obtain the optimal situation
where NIP sets are entirely controlled by finite-index subgroups, up to a small error
set. This theorem is related to a recent result of Alon, Fox, and Zhao [3], which
obtains a similar regularity lemma for abelian groups of bounded exponent, in
which the index of the subgroup is polynomial in ε-1. Our result is stronger in the
sense that the abelian assumption is removed and the structural conclusions are
improved, but also weaker in the sense that we do not obtain explicit bounds. This
is analogous to the comparison of our stable arithmetic regularity lemma in [13]
(Theorem 1.1) to the work of the third author and Wolf [43] on stable sets in Fnp .

Given an arbitrary group G and an integer k ≥ 1, we say that a set A ⊆ G
is k-NIP if the collection of left translates {gA : g ∈ G} has VC-dimension at
most k − 1. Note that this is equivalent to saying that the invariant “formula”
θ(x; y) := x ∈ y ·A is k-NIP in the sense of Definition 2.11.

Theorem 3.3. For any k, r ≥ 1 and ε > 0, there is n = n(k, r, ε) such that the
following holds. Suppose G is a finite group of exponent r, and A ⊆ G is k-NIP.
Then there are

∗ a normal subgroup H ≤ G of index at most n, and
∗ a set Z ⊆ G, which is a union of cosets of H with |Z| < ε|G|,

satisfying the following properties.

(i) (structure) There is D ⊆ G, which is a union of cosets of H, such that

|(A\Z)4D| < ε|H|.
(ii) (regularity) For any g ∈ G\Z, either |gH ∩A| < ε|H| or |gH\A| < ε|H|.

Moreover, H is in the Boolean algebra generated by {gAh : g, h ∈ G}.

Proof. Note that if we have condition (i), then condition (ii) follows immediately.
So suppose condition (i) is false. Then we have fixed k, r ≥ 1 and ε > 0 such that,
for all i ∈ N, there is a finite group Gi of exponent r, which is a counterexample.
Specifically, there is a k-NIP subset Ai ⊆ Gi such that, if H ≤ Gi is normal with
index at most i, and Y,Z ⊆ Gi are unions of cosets of H with |Z| < ε|Gi|, then
|(Ai\Z)4Y | > ε|H|.

Let L be the group language with a new predicate A, and consider (Gi, Ai) as
a finite L-structure. Let G be a saturated elementary extension of a nonprincipal
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ultraproduct of (Gi, Ai)i∈N. Let θ(x; y) be the formula x ∈ y · A, and note that
θ(x; y) is invariant and k-NIP (in G). Since G has exponent r, G/G00

θr is a compact
torsion group, and thus is profinite (see [25, Theorem 4.5]). By Theorem 3.2, there
is a θr-definable finite-index normal subgroup H ≤ G and D,Z ⊆ G, which are
unions of cosets of H, such that µ(Z) < ε and µ((A\Z)4D) = 0.

Let n = [G : H], and fix θr-formulas φ(x; ȳ), ψ(x; z̄), and ζ(x; ū) (without
parameters) such that H, D, and Z are defined by instances of φ(x; ȳ), ψ(x; z̄), and
ζ(x; ū), respectively. Given i ∈ N, let µi be the normalized counting measure on
Gi. Let I be the set of i ∈ N such that, for some tuples āi, b̄i, and c̄i from Gi,

(i) φ(x; āi) defines a normal subgroup Hi of Gi of index n,
(ii) ψ(x; b̄i) and ζ(x; c̄i) define sets Di, Zi ⊆ Gi, respectively, which are each

unions of cosets of Hi, and
(iii) µi(Zi) < ε and µi((Ai\Zi)4Di) <

ε
n .

Then I ∈ U by elementarity and  Loś’s Theorem, and so there is i ∈ I such that
i ≥ n. This contradicts the choice of (Gi, Ai). �

The previous result is almost identical to Theorem 1.1 on stable subsets of arbi-
trary finite groups, except for the need for the error set Z. As in [13, Corollary 3.5],
we can use this result to deduce a very strong graph regularity statement for the
Cayley graphs determined by NIP subsets of finite groups of uniformly bounded
exponent. Since we work with possibly nonabelian groups, it is more natural to
consider bipartite graphs.

Given a bipartite graph Γ = (V,W ;E), subsets X ⊆ V and Y ⊆W , and vertices
v ∈ V and w ∈W , define

degΓ(v, Y ) = |{y ∈ Y : E(v, y)}| and degΓ(X,w) = |{x ∈ X : E(x,w)}|.

Given ε > 0 and nonempty X ⊆ V and Y ⊆ W , with |X| = |Y |, we say that the
pair (X,Y ) is uniformly ε-good for Γ if either:

(i) for any x ∈ X and y ∈ Y , degΓ(x, Y ) = degΓ(X, y) ≤ ε|X|, or
(ii) for any x ∈ X and y ∈ Y , degΓ(x, Y ) = degΓ(X, y) ≥ (1− ε)|X|.

It is straightforward to show that if the pair (X,Y ) is uniformly ε2-good then it is
ε-regular in the usual sense, with edge density δΓ(X,Y ) at most ε or at least 1− ε.
In fact, it a stronger property holds: if X0 ⊆ X and Y0 ⊆ Y are nonempty and
either |X0| ≥ ε|X| or |Y0| ≥ ε|Y |, then |δΓ(X0, Y0)− δΓ(X,Y )| ≤ ε (see [13]).

Now suppose G is a finite group and A is a subset of G. The Cayley graph
CG(A) is a bipartite graph (V,W ;E) where V = W = G and E(x, y) holds if and
only if xy ∈ A. Given X ⊆ G and g ∈ G, note that degCG(A)(g,X) = |A ∩ gX|,
and degCG(A)(X, g) = |A∩Xg|. We now observe that Theorem 3.3 implies a graph
regularity statement for Cayley graphs of NIP subsets of finite groups of uniformly
bounded exponent, in which the partition is given by cosets of a normal subgroup,
almost all pairs are uniformly good, and even more pairs are regular. Given a group
G, a normal subgroup H ≤ G, and C,D ∈ G/H, let C ·D denote the product of C
and D in the quotient group G/H.

Corollary 3.4. For any k, r ≥ 1 and ε > 0 there is m = m(k, r, ε) such that the
following holds. Suppose G is a finite group of exponent r and A ⊆ G is k-NIP.
Then there is a normal subgroup H of index n ≤ m, and set I ⊆ G/H, with
|I| ≤ ε2n, satisfying the following properties.
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(i) If Σ = {(C,D) ∈ (G/H)2 : C ·D ∈ I}, then |Σ| ≤ ε2n2 and any (C,D) 6∈ Σ
is uniformly ε2-good for CG(A).

(ii) If (C,D) 6∈ I × I then (C,D) is ε-regular for CG(A), with edge density at
most ε or at least 1− ε (note that |I × I| ≤ ε4n2).

Proof. Fix k, r ≥ 1 and ε > 0 and let m = n(k, r, ε2) be from Theorem 3.3. Fix a
finite group G and k-NIP set A ⊆ G. By the theorem, there is a normal subgroup
H ≤ G, of index n ≤ m, and a set I ⊆ G/H, with |I| ≤ ε2n such that for any
C 6∈ I, either |C ∩ A| ≤ ε2|H| or |C ∩ A| ≥ (1 − ε2)|H|. It follows that, with
Σ ⊆ (G/H)2 defined as in (i) above, any (C,D) not in Σ is uniformly ε2-good for
CG(A) (see also [13]). Note that Σ =

⋃
C∈G/H C

-1 · I, and so |Σ| ≤ ε2n2.

Finally, suppose (C,D) 6∈ I × I. Then, for X ⊆ C and Y ⊆ D, with |X| ≥ ε|H|
and |Y | ≥ ε|H|, a straightforward calculation as in [13] shows that the edge density
in CG(A) of the pair (X0, Y0) is either at most ε or at least 1− ε. �

Remark 3.5. The assumption of uniformly bounded exponent was used to obtain
profinite quotients in ultraproducts, and so it is worth reviewing the actual content
of the results above. Specifically, fix k ≥ 1 and suppose G is a class of finite
groups satisfying the following property. For any sequences (Gi)

∞
i=0 and (Ai)

∞
i=0,

where Gi ∈ G and Ai ⊆ Gi is k-NIP, and for any ultrafilter U on N, if G is
a sufficiently saturated extension of

∏
U (Gi, Ai), then G/G00

θr is profinite, where
θ(x; y) := x ∈ y · A. Then, for any ε > 0 there is n = n(k, ε,G) such that any
group G ∈ G and k-NIP set A ⊆ G satisfy the conclusions of Theorem 3.3 using n.
Indeed, Theorem 3.3 only uses that, for any k, r ≥ 1 the class Gr of finite groups
of exponent r satisfies the property above, for the rather heavy-handed reason that
compact torsion groups are profinite.

Profinite quotients also arise when A ⊆ G is k-stable, which means there do not
exist a1, . . . , ak, b1, . . . , bk ∈ G such that aibj ∈ A if and only if i ≤ j (note that
this implies A is k-NIP). In fact, if G is pseudofinite and saturated, and θ(x; ȳ) is
a stable formula, then the group G/G00

θr is actually finite (see [12, Corollary 3.17]).
Therefore, in this case, the set EX in Fact 2.16 is empty and so, if one replaces
“NIP” with “stable” in Lemma 3.1 and Theorem 3.2, then the error set Z can be
chosen to be empty. This yields Theorem 1.1 for stable subsets of groups.7

4. Bohr neighborhoods

In this section, we recall some basic definitions and facts concerning Bohr neigh-
borhoods, and then define an approximate version of Bohr neighborhoods, which
we will need for later arguments involving ultraproducts.

Given a group G, 1G denotes the identity (if G is abelian we use 0G). A Bohr
neighborhood in a group G is a subset of G of the form π-1(U), where π : G → L
is a homomorphism from G to a compact group L, with dense image, and U ⊆ L
is an identity neighborhood (see, e.g., [5]). Under this definition, {1G} is a Bohr
neighborhood in any finite group G and so, in the setting of finite groups, one
works with a more quantitative formulation (defined below). For our purposes, it

7It is worth noting that this explanation of Theorem 1.1 is not a faster proof than what is
done in [13]. In particular, [12, Corollary 3.17] relies on the same results from [23] used in [13] to

directly prove Theorem 1.1.
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will suffice to consider the case that L is compact and metrizable.8 Recall that
the topology on a compact metrizable group L is induced by a bi-invariant metric,
which we fix and denote dL. When working with Ln under the product topology,
we assume dLn(x̄, ȳ) = max1≤i≤n dL(xi, yi).

In the setting of finite groups, Bohr neighborhoods are usually defined in the
case of abelian groups and characters to the torus (e.g. [6],[18]). In order to match
these definitions more explicitly, we choose the usual invariant metric on T1 = R/Z,
namely dT1(x, y) = min{|x− y|, 1− |x− y|}.

Definition 4.1. Let H be a group and L a compact metrizable group. Given some
ε > 0 and a homomorphism τ : H → L, define

BLτ,ε = {x ∈ H : dL(τ(x), 1L) < ε}.

A set B ⊆ H is an (ε, L)-Bohr neighborhood in H if B = BLτ,ε for some homo-
morphism τ : H → L.

If L = Tn for some n ∈ N, then we use the notation Bnτ,ε for BTn
τ,ε, and say B ⊆ H

is an (ε, n)-Bohr neighborhood in H if it is an (ε,Tn)-Bohr neighborhood in H.9

The next result gives a lower bound on the size of Bohr neighborhoods. The
proof is a standard averaging argument (adapted from [42, Lemma 4.20], see also
[18, Lemma 4.1]). We include the details for the sake of clarity and to observe that
the method works when H is nonabelian and L is any compact metrizable group.

Proposition 4.2. Let L be a compact metrizable group and, given δ > 0, let `δ be
the Haar measure of {t ∈ L : dL(t, 1L) < δ}. For any finite group H and δ > 0, if
B ⊆ H is a (2δ, L)-Bohr neighborhood in H, then |B| ≥ `δ|H|.

Proof. Fix a finite group H, a homomorphism τ : H → L, and some δ > 0. Given
x ∈ H, let fx : L→ {0, 1} be the characteristic function of {t ∈ L : dL(t, τ(x)) < δ}.
Then

`δ|H| =
∑
x∈H

∫
L

fx dη =

∫
L

∑
x∈H

fx dη,

where η is the (normalized) Haar measure on L. So there must be some t ∈ L such
that

∑
x∈H fx(t) ≥ `δ|H|, i.e. if S = {x ∈ H : dL(τ(x), t) < δ} then |S| ≥ `δ|H|.

Fix a ∈ S. For any x ∈ S, we have

dL(τ(xa-1), 1L) = dL(τ(x), τ(a)) ≤ dL(τ(x), t) + dL(τ(a), t) < 2δ.

Therefore Sa-1 ⊆ BLτ,2δ, and so |BLτ,2δ| ≥ |Sa-1| = |S| ≥ `δ|H|. �

Our ultimate goal is to transfer Bohr neighborhoods in a pseudofinite group G to
(ε, n)-Bohr neighborhoods in finite groups. More generally, we wish to approximate
arbitrary Bohr neighborhoods in expansions of groups by definable objects. This
necessitates an approximate notion of Bohr neighborhood, which involves approxi-
mate homomorphisms of groups.

Definition 4.3. Let H be a group and L a compact metrizable group.

(1) Given δ > 0, function f : H → L is a δ-homomorphism if f(1H) = 1L
and, for all x, y ∈ H, dL(f(xy), f(x)f(y)) < δ.

8In fact, we will ultimately only be concerned with compact connected Lie groups, and the

only reason we consider groups other than Tn is for the work in Section 6.
9In this case n is sometimes referred to as the dimension of B, and ε is the width of B.
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(2) Given ε, δ > 0, a set Y ⊆ H is a δ-approximate (ε, L)-Bohr set if there is
a δ-homomorphism f : H → L such that Y = {x ∈ H : dL(f(x), 1L) < ε}.

Approximate homomorphisms have been studied extensively in the literature,
with a large focus on the question of when an approximate homomorphism is “close”
to an actual homomorphism. For our purposes, this is what is needed to replace
approximate Bohr neighborhoods with actual Bohr neighborhoods. More precisely,
we will start with a definable approximate Bohr neighborhood in G, and transfer
this to find an approximate Bohr neighborhood in a finite group H. At this point,
we will be working with an approximate homomorphism from H to a compact Lie
group, which is a setting where one can always find a Bohr neighborhood inside of
an approximate Bohr neighborhood, with only a negligible loss in size.

Fact 4.4 (Alekseev, Glebskĭı, & Gordon [1, Theorem 5.13]). Let L be a compact
Lie group. Then there is an αL > 0 such that, for any 0 < δ < αL, if H is a
compact group and f : H → L is a δ-homomorphism, then there is a homomorphism
τ : H → L such that dL(f(x), τ(x)) < 2δ for all x ∈ H.

An easy consequence is that, in the setting of compact Lie groups, Bohr neigh-
borhoods can be found inside of approximate Bohr neighborhoods.

Corollary 4.5. Let L be a compact Lie group. Then there is an αL > 0 such
that, if H is a compact group, n ∈ N, and 0 < δ < αL, then every δ-approximate
(3δ, Ln)-Bohr neighborhood in H contains a (δ, Ln)-Bohr neighborhood in H.

Proof. Fix αL > 0 from Fact 4.4. Suppose H is a compact group, and Y ⊆ H
is a δ-approximate (3δ, Ln)-Bohr neighborhood in H, for some n ∈ N and 0 <
δ < αL, witnessed by a δ-homomorphism f : H → Ln. We may assume n ≥ 1.
For 1 ≤ i ≤ n, let fi : H → L be given by fi(x) = f(x)i. Then each fi is a δ-
homomorphism. Given 1 ≤ i ≤ n, Fact 4.4 provides a homomorphism τi : H → L
such that dL(fi(x), τi(x)) < 2δ for all x ∈ H. Let τ : H → Ln be such that
τ(x) = (τ1(x), . . . , τn(x)). Then τ is a homomorphism and dLn(f(x), τ(x)) < 2δ
for all x ∈ H. Now we have BL

n

τ,δ ⊆ Y by the triangle inequality. �

Finally, we will need the following minor generalization of a standard and well-
known exercise, namely, if G is an amenable group and A ⊆ G has positive upper
density then AA-1 is generic (or syndetic).

Proposition 4.6. Suppose G is a group, B is a Boolean algebra of subsets of G,
and ν is a left-invariant, finitely additive probability measure on B. Suppose A ∈ B
is such that ν(A) > 0. Then, for any Z ⊆ G, there is a finite set F ⊆ G\Z such
that |F | ≤ 1

ν(A) and G\Z ⊆ FAA-1.

Proof. We say that X ⊆ G separates A if xA∩ yA = ∅ for all distinct x, y ∈ X. By
the assumptions on ν, if X ⊆ G separates A then |X| ≤ 1

ν(A) . Choose a finite set

F ⊆ G\Z with maximal size among subsets of G\Z that separate A. Fix x ∈ G\Z.
Then there is y ∈ F such that xA∩ yA 6= ∅, and so we may fix z ∈ xA∩ yA. Then
y-1z ∈ A and z-1x ∈ A-1, which means y-1x ∈ AA-1, and so x ∈ FAA-1. �

5. Structure and regularity: the general case

The next goal is a result analogous to Theorem 3.2, but without the assumption
that G/G00

θr is profinite. For this, we need to understand more about families W of
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definable sets such that G00
θr =

⋂
W. The goal is to find properties of the sets in W

which are both interesting algebraically, and are also sufficiently first-order so that
they can be transferred down to to finite groups in arguments with ultraproducts.
In particular, we will use Bohr neighborhoods.

We again let G denote a saturated expansion of a group (in the language L), as
in Section 2.1. The next result shows that type-definable bounded-index subgroups
in G can be approximated by definable sets containing Bohr neighborhoods.

Proposition 5.1. Let θ(x; ȳ) be invariant, and suppose Γ is a θr-countably-definable
bounded-index normal subgroup of G. Then there is a decreasing sequence (Wi)

∞
i=0

of θr-definable subsets of G such that Γ =
⋂∞
i=0Wi and, for all i ∈ N, there are

∗ a θr-definable finite-index normal subgroup Hi ≤ G,
∗ a θr-definable homomorphism πi : Hi → Li, where Li is a compact connected

Lie group, and
∗ a real number εi > 0,

such that BLiπi,εi ⊆Wi ⊆ Hi. Moreover:

(i) if G is pseudofinite then, for each i ∈ N, we may assume Li = Tni for some
ni ∈ N;

(ii) if G/Γ is abelian then, for each i ∈ N, we may assume Hi = G and Li = Tni
for some ni ∈ N.

Proof. Let (Γt)
∞
t=0 and (Ht)

∞
t=0 be as in Lemma 2.6. For each t ∈ N, let Lt = Ht/Γt

and let πt : Ht → Lt be the projection map. Then πt is θr-definable (as G→ G/Γt
is θr-definable).

Let Wt be a countable collection of θr-definable subsets of G such that Γt =⋂
Wt. Since Γt ⊆ Ht, and Ht is θr-definable, we may assume without loss of

generality that Γt ⊆W ⊆ Ht for all W ∈ Wt. Let W =
⋃
t∈NW and let W∗ be the

collection of all finite intersections of elements of W. By construction, and since
(Ht)

∞
t=0 and (Γt)

∞
t=0 are decreasing sequences, we have that for all W ∈ W∗, there

is some t ∈ N such that Γt ⊆ W ⊆ Ht. Since W∗ is countable and closed under
finite intersections, we may assume W∗ = {Wi : i ∈ N} with Wi+1 ⊆ Wi for all
i ∈ N. Note that Γ =

⋂∞
i=0Wi.

Finally, fix i ∈ N and let ti ∈ N be such that Γti ⊆ Wi ⊆ Hti . The set
U = {aΓti ∈ G/Γti : aΓti ⊆ Wi} is an identity neighborhood in Lti (by Fact 2.16
and Remark 2.3(2)) and, by construction, π-1

ti (U) ⊆Wi. So choose εi > 0 such that
U contains the open ball of radius εi around 1Li .

For the moreover statements, note first that if G is pseudofinite then, by Corol-
lary 2.10, we may assume Lt = Tnt for some nt ∈ N. On the other hand, if G/Γ is
abelian, then G/Γt is a compact abelian Lie group, and thus isomorphically embeds
in Tnt for some nt ∈ N (see, e.g., [8, Corollary 3.7]). So we use the same argument
as above, but replace Ht and πt with G and G→ G/Γt ⊆ Tnt . �

One drawback of the previous result is that the Bohr neighborhood BLiπi,εi is not
necessarily definable (it is only co-type-definable). In order to work with definable
objects, we will have to consider approximate Bohr neighborhoods.

Definition 5.2. Let θ(x; ȳ) be a formula, and suppose H ≤ G is θ-definable. Fix
a compact metrizable group L.
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(1) Given δ, ε > 0, we say that Y ⊆ H is a θ-definable δ-approximate
(ε, L)-Bohr neighborhood in H if there is a θ-definable δ-homomorphism
f : H → L such that f(H) is finite and Y = {x ∈ H : dL(f(x), 1L) < ε}.

(2) Given an integer t ≥ 1, we say that a sequence (Ym)∞m=0 of subsets of H is a
(θ, t, L)-approximate Bohr chain in H if Ym+1 ⊆ Ym, for all m ∈ N, and
there is a decreasing sequence (δm)∞m=0 of positive real numbers converging
to 0 such that, for all m ∈ N, Ym is a θ-definable δm-approximate (δmt, L)-
Bohr neighborhood in H.

The parameter t in the previous definition is introduced in order to control
the “radius” ε and the “error” δ in a δ-approximate (ε, L)-Bohr neighborhood.
Specifically, it is desirable to have ε be some constant multiple t of δ, and in the
following results we will choose t arbitrarily. This will eventually be used to find
actual Bohr neighborhoods inside of approximate Bohr neighborhoods, with L = Tn
for some n ∈ N, in which case setting t = 3 will suffice (via Corollary 4.5).

Proposition 5.3. Suppose H ≤ G is θ-definable, L is a compact metrizable group,
and Y ⊆ H is a θ-definable δ-approximate (ε, L)-Bohr neighborhood in H, for some
ε, δ > 0. Then Y is θ-definable.

Proof. By definition, we have a θ-definable map f : H → L with f(H) finite. So H
is partitioned into θ-type-definable fibers f -1(λ) for λ ∈ f(H). Since f(H) is finite
and H is θ-definable, the complement (in H) of each fiber is also θ-type-definable,
and so all fibers are θ-definable by compactness. Now Y is a union of the fibers
f -1(λ) over all λ ∈ f(L) such that d(λ, 1L) < ε. So Y is θ-definable. �

Lemma 5.4. Fix a formula θ(x; ȳ), and let H be a θ-definable subgroup of G. Sup-
pose there is a θ-definable homomorphism π : H → L for some compact metrizable
group L. Then, for any integer t ≥ 1, there is a (θ, t, L)-approximate Bohr chain
(Ym)∞m=0 in H such that kerπ =

⋂∞
m=0 Ym.

Proof. Let d = dL. Given λ ∈ L and ε > 0, let K(λ, ε) ⊆ L and U(λ, ε) ⊆ L be the
closed ball of radius ε around λ and the open ball of radius ε around λ, respectively.

Fix m ≥ 1. Let ε = 1
m , and choose Λ ⊆ L finite such that L =

⋃
λ∈ΛK(λ, ε2 )

and 1L ∈ Λ. For any λ ∈ Λ, since π is θ-definable, there is a θ-definable set
Dλ ⊆ H such that π-1(K(λ, ε2 )) ⊆ Dλ ⊆ π-1(U(λ, ε)) (see Remark 2.5). Enumerate
Λ = {λ1, . . . , λk}, with λ1 = 1L, and, for each 1 ≤ i ≤ k, let Di = Dλi . Define
inductively E1 = D1 and Ei+1 = Di+1\(E1 ∪ . . . ∪ Ei). Then E1, . . . , Ek partition
H into θ-definable sets. This determines a θ-definable function fm : H → Λ such
that fm(x) = λi if and only if x ∈ Ei. For any x ∈ H, we have x ∈ Dfm(x) ⊆
π-1(U(fm(x), ε)), and so d(π(x), fm(x)) < ε. Note that fm(1H) = 1L by definition.
Also, given x, y ∈ H, we have

d(fm(xy), fm(x)fm(y)) ≤ d(fm(xy), π(xy)) + d(π(x)π(y), fm(x)π(y))

+ d(fm(x)π(y), fm(x)fm(y))

= d(fm(xy), π(xy)) + d(π(x), fm(x)) + d(π(y), fm(y))

< 3ε.

Altogether, fm : H → L is a θ-definable 3ε-homomorphism.
Now fix an integer t ≥ 1. For m ∈ N, define

Ym = {x ∈ H : d(fm(x), 1L) < 3εt}.
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Note that D1 ⊆ Ym, and so kerπ ⊆ π-1(K(1L,
1

2m )) ⊆ Ym. We now have a sequence
(Ym)∞m=1 of θ-definable subsets of H, with kerπ ⊆ Ym for all m ∈ N. Note also
that if δm = 3

m , then Ym is a δm-approximate (δmt, L)-Bohr neighborhood in H,
witnessed by fm : H → L. Moreover, for any m ∈ N, if x ∈ Ym then

d(π(x), 1L) ≤ d(π(x), fm(x)) + d(fm(x), 1L) < 3t+1
m .

This implies kerπ =
⋂∞
m=0 Ym. Finally, given m ∈ N, we have π-1(K(1L,

1
2m )) ⊆

Ym ⊆ π-1(U(1L,
3t+1
m )). In particular, if n ≥ (6t + 2)m, then Yn ⊆ Ym. So, after

thinning the sequence, we may assume Ym+1 ⊆ Ym for all m ∈ N. �

We now combine the ingredients above to prove a structure and regularity the-
orem for θr-definable sets in G, in the case that G is pseudofinite and θ(x; ȳ) is an
arbitrary invariant NIP formula.

Theorem 5.5. Assume G is pseudofinite. Let θ(x; ȳ) be invariant and NIP. Fix a
θr-definable set X ⊆ G and some ε > 0. Then there are

∗ a θr-definable finite-index normal subgroup H ≤ G,
∗ a θr-definable homomorphism π : H → Tn, for some n ∈ N, and
∗ a θr-definable set Z ⊆ G, with µ(Z) < ε,

such that, for any integer t ≥ 1, there is

∗ a (θr, t, n)-approximate Bohr chain (Ym)∞m=0 in H, with kerπ =
⋂∞
m=0 Ym,

satisfying the following properties.

(i) (structure) For any m ∈ N, there is D ⊆ G, which is a finite union of
translates of Ym, such that

µ((X 4D)\Z) = 0.

(ii) (regularity) For any m ∈ N and any g ∈ G\Z, either µ(gYm ∩ X) = 0 or
µ(gYm\X) = 0.

Moreover, if G/G00
θr is abelian then we may assume H = G.

Proof. Let X ⊆ G and ε > 0 be fixed, and let {Wi : i ∈ N} be a collection of
θr-definable sets in G satisfying the conditions of Proposition 5.1, with Γ = G00

θr .
By Lemma 3.1, there is θr-definable Z ⊆ G and some i ∈ N such that µ(Z) < ε
and, if W := Wi, then for all g ∈ G\Z, we have µ(gW ∩X) = 0 or µ(gW\X) = 0.
Proposition 5.1 associates to W a θr-definable homomorphism π : H → Tn, where
H ≤ G is θr-definable of finite-index. If G/G00

θr is abelian then we may further
assume H = G. Fix t ≥ 1. By Lemma 5.4, there is a (θ, t, n)-approximate Bohr
chain (Ym)∞m=0 in H such that kerπ =

⋂∞
m=0 Ym. Since kerπ is θr-type-definable

and contained in the θr-definable set W , it follows from compactness that Ym ⊆W
for sufficiently large m. So for sufficiently large m we have that, for any g ∈ G\Z,
either µ(gYm ∩ X) = 0 or µ(gYm\X) = 0. So, after removing some finite initial
segment of (Ym)∞m=0, we have condition (ii).

Toward proving condition (i), fix m ∈ N. Since kerπ is a group, we may use
compactness (similar to as in the proof of Lemma 3.1), to find some r ≥ m such
that YrY

-1
r ⊆ Ym. Since kerπ has bounded index, Yr is generic and so µ(Yr) > 0.

By Proposition 4.6, there is a finite set F ⊆ G\Z such that G\Z ⊆ FYm. Let
I = {g ∈ F : µ(gYm\X) = 0}, and note that if g ∈ F\I then µ(gYm ∩X) = 0. Let
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D =
⋃
g∈I gYm. Since G\Z ⊆ FYm, we have

X 4D ⊆ Z ∪
⋃
g∈I

gYm\X ∪
⋃

g∈F\I

gYm ∩X,

and so µ((X 4D)\Z) = 0. �

In analogy to how we obtained Theorem 3.3 from Theorem 3.2, we now use
Theorem 5.5 to prove the main structure and regularity theorem for NIP sets in
arbitrary finite groups. Roughly speaking, the result states that if A is a k-NIP set
in a finite group G, then there is a normal subgroup H ≤ G, and Bohr neighborhood
B in H, such that almost all translates of B are almost contained in A or almost
disjoint from A. Moreover, A is approximately a union of translates of B, and the
index of H and complexity of B are bounded in terms of k and ε. We first prove
a lemma, which gives a rather flexible version of the regularity aspect, and also
contains the ultraproducts argument necessary to prove Theorem 5.7.

Lemma 5.6. For any k ≥ 1 and ε > 0, and any function γ : (Z+)2 × (0, 1]→ R+,
there is n = n(k, ε, γ) such that the following holds. Suppose G is a finite group
and A ⊆ G is k-NIP. Then there are

∗ a normal subgroup H ≤ G of index m ≤ n,
∗ a (δ, r)-Bohr neighborhood B in H and a δ-approximate (3δ, r)-Bohr neighbor-

hood Y in H, for some r ≤ n and δ ≥ 1
n , and

∗ a set Z ⊆ G, with |Z| < ε|G|,
such that B ⊆ Y ⊆ H and, for any g ∈ G\Z, either |gY ∩ A| < γ(m, r, δ)|B|
or |gY \A| < γ(m, r, δ)|B|. Moreover, H, Y , and Z are in the Boolean algebra
generated by {gAh : g, h ∈ G}, and if G is abelian then we may assume H = G.

Proof. Suppose not. Then we have k ≥ 1, ε > 0 and a fixed function γ : (Z+)2 ×
(0, 1]→ R+ witnessing this. In particular, for any n ∈ N, there is a finite group Gn
and a k-NIP subset An ⊆ Gn such that, for any H,B, Y, Z ⊆ Gn, if

∗ H is a normal subgroup of Gn of index m ≤ n, and H = Gn if Gn is abelian,
∗ B is a (δ, r)-Bohr neighborhood in H and Y is a δ-approximate (3δ, r)-Bohr

neighborhood in H, for some r ≤ n and δ ≥ 1
n ,

∗ |Z| < ε|Gn|, and B ⊆ Y ⊆ H,

then there is g ∈ Gn\Z such that |gY ∩ An| ≥ γ(m, r, δ)|B| and |gY \An| ≥
γ(m, r, δ)|B|.

Let L be the group language together with an extra predicate A, and consider
each (Gn, An) as a finite L-structure. Let G be a sufficiently saturated elementary
extension of a nonprincipal ultraproduct of (Gn, An)n∈N. Let θ(x; y) be the formula
x ∈ y · A, and note that θ(x; y) is invariant and k-NIP (in G). Finally, let α :=
αT1 > 0 be as in Fact 4.4. By Theorem 5.5 (with t = 3), there are θr-definable
Y,Z ⊆ G and a θr-definable finite-index normal subgroup H ≤ G such that:

∗ if G is abelian then H = G,
∗ µ(Z) < ε,
∗ Y is a θr-definable δ-approximate (3δ, r)-Bohr neighborhood in H for some
r ∈ N and 0 < δ < α, and

∗ for any g ∈ G\Z, either µ(gY ∩A) = 0 or µ(gY \A) = 0.

Let m = [G : H], and set ε∗ = γ(m, r, δ)m-1( δ2 )r > 0. Let f : H → Tr be a
θr-definable δ-homomorphism witnessing that Y is a θr-definable δ-approximate
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(3δ, r)-Bohr neighborhood in H. Let Λ = f(H), and note that Λ is finite. Given
λ ∈ Λ, let F (λ) = f -1(λ). Then each F (λ) is θr-definable (as in Proposition 5.3).

Fix θr-formulas φ(x; ȳ), ψ(x; z̄), ζ(x; ū), and ξλ(x; v̄λ), for λ ∈ Λ, (without pa-
rameters) such that H, Y , Z, and F (λ), for λ ∈ Λ, are defined by instances of
ψ(x; z̄), ζ(x; ū), and ξλ(x; v̄λ), respectively. Given n ∈ N, let µn denote the nor-
malized counting measure on Gn. Let d denote dTr . Define I ⊆ N to be the set of
n ∈ N such that, for some tuples ān, b̄n, c̄n, and d̄n,λ, for λ ∈ Λ,

(i) φ(x; ān) defines a normal subgroup Hn of Gn of index m,
(ii) ζ(x; c̄n) defines a subset Zn with µn(Zn) < ε,

(iii) for each λ ∈ Λ, ξλ(x; d̄n,λ) defines a subset Fn(λ) of Hn,
(iv) if fn : Hn → Λ is defined so that fn(x) = λ if and only if x ∈ Fn(λ), then fn

is a δ-homomorphism,
(v) ψ(x; b̄n) defines the set Yn = {x ∈ Hn : d(fn(x), 0) < 3δ}, and

(vi) for all g ∈ Gn\Zn, either µn(gYn ∩An) < ε∗ or µn(gYn\An) < ε∗.

We claim that, by  Loś’s Theorem an elementarity, I ∈ U . In other words, the claim
is that conditions (i) through (vi) are first-order expressible (possibly using the
expanded measure language discussed before Fact 2.14). This is clear for (i), (ii),
(iii), (v), and (vi), and the only subtleties lie in (iv) and (v). In both cases, the
crucial point is that Λ is finite, and so these conditions can be described by finite
first-order sentences (using similar ideas as in Proposition 5.3). For instance, to
express condition (iv), fix some λ ∈ Λ, and let Pλ = {(λ1, λ2) ∈ Λ2 : d(λ, λ1 +λ2) <
δ}. Let σλ be a sentence expressing that, for any x, y, if x ·y ∈ F (λ) then x ∈ F (λ1)
and y ∈ F (λ2) for some (λ1, λ2) ∈ P (λ). Then the conjunction of all such σλ, for
all λ ∈ Λ, expresses precisely that f is a δ-homomorphism. Altogether, by  Loś’s
theorem and elementarity, the set of n for which fn satisfies condition (iv) is in U .
The details for condition (v) are similar and left to the reader.

Since I ∈ U , we may fix n ∈ I such that n ≥ max{m, r, δ-1}. Since 0 <
δ < α and Yn is a δ-approximate (3δ, r)-Bohr neighborhood in Hn, it follows from
Corollary 4.5 that Yn contains a (δ, r)-Bohr neighborhood B in Hn. So, by choice
of (Gn, An), there must be g ∈ Gn\Zn such that µn(gYn ∩ An) ≥ γ(m, r, δ)µn(B)
and µn(gYn\An) ≥ γ(m, r, δ)µn(B). So, to obtain a contradiction, it suffices to
show that ε∗ ≤ γ(m, r, δ)µn(B), i.e. (by choice of ε∗), show m-1( δ2 )r ≤ µn(B). To

see this, note that |B| ≥ ( δ2 )r|Hn| ≥ ( δ2 )rm-1|Gn|, since [G : Hn] = m and by

Proposition 4.2 (applied with L = Tr, and so ` δ
2

= ( δ2 )r). �

We now prove the main result for NIP subsets of arbitrary finite groups.

Theorem 5.7. For any k ≥ 1 and ε > 0 there is n = n(k, ε) such that the following
holds. Suppose G is a finite group and A ⊆ G is k-NIP. Then there are

∗ a normal subgroup H ≤ G of index at most n,
∗ a (δ, r)-Bohr neighborhood B in H, for some r ≤ n and δ ≥ 1

n , and
∗ a subset Z ⊆ G, with |Z| < ε|G|,

satisfying the following properties.

(i) (structure) There is D ⊆ G, which is a union of translates of B, such that

|(A4D)\Z| < ε|B|.

(ii) (regularity) For any g ∈ G\Z, either |gB ∩A| < ε|B| or |gB\A| < ε|B|.
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Moreover, H and Z are in the Boolean algebra generated by {gAh : g, h ∈ G}, and
if G is abelian then we may assume H = G.

Proof. Fix k ≥ 1 and ε > 0. Define γ : (Z+)2 × (0, 1] → R+ such that γ(x, y, z) =
εx-1( z4 )y. Let n = n(k, ε, γ) be given by Lemma 5.6. Fix a finite group G and a
k-NIP subset A ⊆ G. By Lemma 5.6, there are

∗ a normal subgroup H ≤ G of index m ≤ n,
∗ a subset Y ⊆ H,
∗ a (δ, r)-Bohr neighborhood B in H, for some r ≤ n and δ ≥ 1

n , and
∗ a set Z ⊆ G, with |Z| < ε|G|,

such that, B ⊆ Y ⊆ G and, for all g ∈ G\Z, either |gY ∩ A| < γ(m, r, δ)|B| or
|gY \A| < γ(m, r, δ)|B|. Moreover, if G is abelian then we may assume H = G.
Since B ⊆ Y and γ(m, r, δ) ≤ ε, this immediately yields condition (ii).

Say B = Brτ,δ for some homomorphism τ : H → Tr. Let B0 = Brτ,δ/2. By

Proposition 4.2, and since [G : H] = m, we have

|B0| ≥
(
δ
4

)r |H| = m-1
(
δ
4

)r |G| = ε-1γ(m, δ, r)|G|.

So, if ν denotes the normalized counting measure on G, then we have ν(B0) ≥
ε-1γ(m, δ, r) > 0. Note also that B0B

-1
0 ⊆ B since, if x, y ∈ B0 then

d(τ(xy-1), 0Tr ) = d(τ(x), τ(y)) < d(τ(x), 0Tr ) + d(τ(y), 0Tr ) < δ.

Altogether, by Proposition 4.6, we may fix x1, . . . , xt ∈ G\Z, such that t ≤
ε(γ(m, δ, r))-1 and G\Z ⊆

⋃t
i=1 xiB.

Let I = {i ∈ [t] : |xiB\A| < γ(m, r, δ)|B|}, and note that if i 6∈ I then |xiB∩A| <
γ(m, r, δ)|B|. Let D =

⋃
i∈I xiB. Since G\Z ⊆

⋃t
i=1 xiB, we have

A4Y ⊆ Z ∪
⋃
i∈I

xiB\A ∪
⋃
i 6∈I

xiB ∩A, and so

|(A4Y )\Z| ≤
∑
i∈I
|xiB\A|+

∑
i6∈I

|xiB\A| < tγ(m, r, δ)|B| ≤ ε|B|. �

Remark 5.8. Note that Theorem 3.2 can be derived a special case of Theorem
5.5, which then gives Theorem 3.3 as a special case of Theorem 5.7. Indeed, in
the setting of Theorem 5.5, if G/G00

θr is profinite then so is H/ kerπ ∼= Tn, which
implies n = 0 and so H = kerπ. Therefore, in each (θr, t, n)-approximate Bohr
chain, we have Ym = H for all m ∈ N. On the other hand, the proofs of Theorems
3.2 and 3.3 given above are much more direct, and entirely independent from the
machinery involving Bohr neighborhoods.

6. Distal regularity and compact p-adic Lie groups

In this section, we briefly adapt the preceding results to the case of NIP fsg
groups with smooth left-invariant measures (e.g. those definable in distal theories).
In contrast to previous results, where we focused on a single NIP formula θ(x; ȳ),
here we will operate in the setting of an fsg group G definable in (a saturated model
of) an NIP theory, and prove structure and regularity theorems for definable sets
in G. The conclusions for suitable families of finite groups will be routine in light
of the work above, but we will mention explicitly an application to the family of
quotients of a compact p-adic analytic group H by its open normal subgroups.
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For the rest of this section, T is a complete theory and we work in a saturated
model M . Given a model M0 � M and an M0-definable set X in M , a Keisler
measure over M0 is a finitely additive probability measure defined on the Boolean
algebra of M0-definable subsets of X. In the case that M = M0, we call such a
measure a global Keisler measure on X. Recall that, for T NIP, a global Keisler
measure µ on a definable set X is generically stable over a small model M0 if it is
both definable over M0 and finitely satisfiable in M0 (see [36, Section 7.5]).

In the previous sections, we focused on pseudofinite groups because, in addition
to being the right setting for applications to finite groups, the local NIP group
theory developed in [12] is for pseudofinite groups. However, as further discussed
in Remark 6.8 below, the crucial property of the pseudofinite counting measure is
that it is generically stable with respect to certain NIP formulas. So we recall the
following notion (introduced in [24]).

Definition 6.1. (T is NIP.) A definable group G is fsg if it admits a generically
stable left-invariant Keisler measure.

We should remark that this is not the original definition of fsg, but rather the
right characterization for our purposes (see [36, Proposition 8.32]). As indicated
above, we have the following example.

Example 6.2. If T is NIP and G is a definable pseudofinite group, then G is fsg,
namely, the pseudofinite counting measure on G is generically stable. This follows
directly from the VC-Theorem (see, e.g., [36, Example 7.32], [12, Section 2]).

The fsg property for a definable group has strong consequences, for instance
such a group has a unique left-invariant Keisler measure, which is also the unique
right-invariant Keisler measure. Moreover, genericity and positive measure coincide
(as in Fact 2.14). Such groups also satisfy a generic compact domination statement
similar to Fact 2.16 (see [24, 37]), which can be further strengthened in the case
that the unique left-invariant measure is smooth.

Definition 6.3. Let M0 be a small model and fix an M0-definable set X in M . A
Keisler measure on X over M0 is smooth if it has a unique extension to a global
Keisler measure on X. A global Keisler measure µ on X is smooth over M0 if
µ|M0

is smooth (in which case µ is the unique global extension of µ|M0
).

Suppose T is NIP. If a definable group G admits a left-invariant smooth Keisler
measure µ, then µ is generically stable (see [36, Proposition 7.10, Theorem 7.29]),
and so G is fsg. Recall also that if G is a definable group then there is a normal
type-definable subgroup G00 of G, which is the smallest type-definable bounded-
index subgroup of G. In [36, Section 8.4], Simon proves the following consequence
of smoothness, which strengthens generic compact domination to outright compact
domination, and extends compact domination for definably compact groups in o-
minimal theories (after one knows that o-minimal theories are distal, see below).
The reader should compare this statement to Fact 2.16.

Fact 6.4. Assume T is NIP and G is a definable fsg group. Let µ be the unique
left-invariant Keisler measure on G, and assume µ is smooth. Fix a definable set
X ⊆ G, and let FX ⊆ G/G00 be the set of C ∈ G/G00 such that

C ∩X 6= ∅ and C ∩ (G\X) 6= ∅.
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Then FX has Haar measure 0, and so for any ε > 0, there is a definable set Z ⊆ G
such that µ(Z) < ε and {a ∈ G : aG00 ⊆ FX} ⊆ Z.

A place to find smooth measures is in the setting of distal theories, which were
introduced by Simon in [35] to capture the notion of an NIP theory with “no stable
part”. For the purposes of this paper we will take the following characterization
from [35] as a definition of distality.

Definition 6.5. T is distal if it is NIP and every global generically stable Keisler
measure is smooth.

So, in particular, if T is distal and G is a definable fsg group, then the unique
left-invariant Keisler measure on G is smooth.

We now prove an analogue of Theorem 5.5 for an fsg group G, definable in an
NIP theory, such that the unique left-invariant measure on G is smooth. Following
this, we prove an analogue of Theorem 3.2 for the case when G/G00 is profinite
(which will hold in our application to compact p-adic analytic groups). In these
results, the assumptions are stronger in the sense that the whole theory is assumed
to be NIP. Moreover, in the conclusions we have definability of the data, but no
claims about definability in a certain Boolean fragment (see Remark 6.8). On the
other hand, we have outright inclusion or disjointness, rather than up to ε, which
yields stronger structure and regularity statements.

Theorem 6.6. Assume T is NIP. Let G be a definable fsg group, and let µ be
the unique left-invariant Keisler measure on G. Suppose µ is smooth (e.g. if T is
distal). Fix a definable set X ⊆ G and some ε > 0. Then there are

∗ a definable finite-index normal subgroup H of G,
∗ a compact connected Lie group L,
∗ a definable homomorphism π : H → L, and
∗ a definable set Z ⊆ G, with µ(Z) < ε,

such that, for any integer t ≥ 1, there is

∗ a (t, L)-approximate Bohr chain (Ym)∞m=0 in H, where is each Ym definable and
ker(π) =

⋂∞
m=0 Ym,

satisfying the following properties.

(i) (structure) For any m ∈ N, there is D ⊆ G, which is a finite union of
translates of Ym, such that D ⊆ X ⊆ D ∪ Z.

(ii) (regularity) For any m ∈ N and g ∈ G\Z, either gYm ∩X = ∅ or gYm ⊆ X.

Moreover, if G is pseudofinite then we may assume L = Tn for some n ∈ N, and if
G/G00 is abelian then we may assume H = G.

Proof. The proof is similar to that of Theorem 5.5, and so we provide a sketch.
First, we may restrict to a countable language in which G and X are definable and
µ is still smooth (see Lemma 7.8 and the remarks after Proposition 8.38 in [36]).

To prove (i) and (ii), one first finds a definable normal finite-index subgroup H ≤
G, a compact connected Lie group L, a definable homomorphism π : H → L, and
definable sets W ⊆ H and Z ⊆ G, such that kerπ ⊆W and, for any g ∈ G\Z, either
gW ∩X = ∅ or gW ⊆ X. This requires “non-local” applications of Proposition 5.1
and, in turn, Lemma 2.6. Here “non-local” means that we work with all definable
sets, rather than around a fixed formula θ(x; ȳ). The Lie structure associated to
G/G00, described as in Lemma 2.6, remains valid as we assume T is countable. In
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place of Lemma 3.1, one uses the fact that, for any decreasing sequence (Wi)
∞
i=0

of definable sets, with
⋂∞
i=0Wi = G00, there are Z ⊆ G definable and some i ∈ N

such that µ(Z) < ε, and for any g ∈ G\Z, either gWi ∩X = ∅ or gWi ⊆ X (this is
immediate from compactness and Fact 6.4). Finally, we obtain the definable Bohr
chains in W using a non-local analogue of Lemma 5.4, which yields condition (ii).
For condition (i), one mimics the end of the proof of Theorem 5.5 to find D ⊆ G,
which is a finite union of translates of Ym, such that D ⊆ X ⊆ D ∪ Z (simply
replace each instance of µ(X ∩ gYm) = 0 with X ∩ gYm = ∅, and each instance of
µ(X\gYm) = 0 with gYm ⊆ X). �

Next, we give a strengthened version of the previous theorem, under the addi-
tional assumption that G/G00 is profinite.

Theorem 6.7. Assume T is NIP. Let G be a definable fsg group, and let µ be
the unique left-invariant Keisler measure on G. Suppose µ is smooth (e.g. if T is
distal), and G/G00 is profinite. Fix a definable set X ⊆ G and some ε > 0. Then
there are

∗ a definable finite-index normal subgroup H of G, and
∗ a set Z ⊆ G, which is a union of cosets of H with µ(Z) < ε,

satisfying the following properties.

(i) (structure) X\Z is a union of cosets of H.
(ii) (regularity) For any g ∈ G\Z, either gH ∩X = ∅ or gH ⊆ X.

Proof. This can be argued as a special case of Theorem 6.6, since if G/G00 is
profinite then we may take the Lie group L to be trivial, and so Ym = H for any
t ≥ 1 and m ∈ N. Alternatively, as in the proof of Theorem 3.2, one can deduce
condition (ii) directly from compactness and Fact 6.4. In this case, we again assume
T is countable (without loss of generality), in order to write G00 as an intersection
of a countable decreasing sequence of definable subgroups. For condition (i), set
D =

⋃
{g ∈ G : gH ⊆ X and gH ∩ Z = ∅}. Then D is a union of cosets of H, and

D ⊆ X ⊆ D ∪ Z. Since Z is a union of cosets of H, it follows from the definition
of D that D ∩ Z = ∅. So X\Z = D. �

Remark 6.8. Results similar to those above can be shown just for fsg groups
definable in NIP theories, and without the smoothness assumption. In this case,
the results would be nearly identical to Theorems 5.5 and 3.2. Indeed, fsg groups
in NIP theories satisfy generic compact domination just as in Fact 2.16, but with
G00
θr replaced by G00, see [24, 37]. However, as discussed in [12, Remark 1.2], since

the unique left-invariant measure in an NIP fsg group G is generically stable, one
could fix an invariant formula θ(x; ȳ) and construct G00

θr as in Fact 2.16. This yields
structure and regularity theorems as before, but with additional information about
the definability of the data. Precisely:

Assume T is NIP. Suppose G is definable and fsg, and let µ be the unique left-
invariant Keisler measure on G. Fix an invariant formula θ(x; ȳ), where x is in the
sort for G. Then, for any θr-definable X ⊆ G and any ε > 0, we have the conclusion
of Theorem 5.5, except with Tn replaced by some compact connected Lie group L.
If G/G00

θr is profinite, then the conclusion of Theorem 3.2 holds exactly as stated.
It would be interesting to pursue notions of smoothness for local measures, or

“local distality” for formulas, and recover local versions of Theorems 6.6 and 6.7.
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For instance, one might consider an NIP formula φ(x, ȳ) such that every generically
stable global Keisler measure on the Boolean algebra of φ-formulas is smooth.

7. Compact p-adic analytic groups

We give an application of Theorem 6.7 to compact p-adic analytic groups. See
Theorems 7.2 and 7.4 below. In fact, as we point out below, this can also be seen
as a fairly direct application of [32, Proposition 2.8], and an extension of certain
results in that paper.

We assume some familiarity with the p-adic field Qp and p-adic model theory.
The topology on Qp is given by the valuation where open neighborhoods of a point
a are defined by v(x − a) ≥ n for n ∈ Z. The topology on Qnp is the product
topology. A p-adic analytic function is a function f , from some open V ⊆ Qnp to
Qp, such that for every a ∈ V , there is an open neighborhood of a ∈ V in which f
is given by a convergent power series. We obtain the notions of a p-adic analytic
mainfold and a p-adic analytic (or Lie) group.

We let Qan
p denote the expansion of the field (Qp,+, ·) by symbols for all conver-

gent power series in Zp[[X1, . . . , Xn]] for all n. Then any compact p-adic analytic
manifold or group is seen to be naturally definable in the structure Qan

p . (We con-
flate definable and interpretable at this point.) It is well known that Th(Qan

p ) is
distal, and that distality passes to T eq (see Exercise 9.12 of [36]).

Let us fix a compact p-adic analytic group K (so definable in Qan
p ). The open

subgroups of K are definable (in Qan
p ) and of course have finite index. (In fact it is

pointed out in [27] that the family of open normal subgroups of K is even uniformly
definable in Qan

p , although we will not need this additional information.) If M is a
saturated elementary extension of Qan

p then K(M) denotes the group definable in
the structure M by the same formula as the one defining K in Qp.

Fact 7.1.

(i) K(M) is an fsg group.
(ii) The unique left invariant Keisler measure on K(M) is smooth,

(iii) K(M)00 = K(M)0, and so K(M)/K(M)00 is profinite. Moreover, K(M)00

is precisely the group of “infinitesimals” of K(M), and the standard part map
st : K(M)→ K is an isomorphism of topological groups.

Proof. Part (i) is Corollary 2.3(iv) of [32]. Part (ii) follows from distality of
Th(Qan

p ). Part (iii) follows from Section 6 of [22]; see also [32]. �

From Theorem 6.7 and its proof, as well as restricting to sets X defined over the
standard model, we obtain the following:

Theorem 7.2. Let K be a compact p-adic analytic group (definable, as mentioned
above, in the structure Qan

p ). Let µ be its unique normalized Haar measure. Let
X ⊆ K be definable in Qan

p , and let ε > 0. Then there are

∗ an open (so finite-index) normal subgroup H of K, and
∗ a set Z ⊆ K, which is a union of cosets of H with µ(Z) < ε,

satisfying the following properties.

(i) (structure) X \ Z is a union of cosets of H.
(ii) (regularity) For any g ∈ K\Z, either gH ∩X = ∅, or gH ⊆ X.

Remark 7.3.
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(1) Proposition 2.8 of [32] states that K(M) is compactly dominated via the
map K(M) → K(M)/K(M)00. So we could also have deduced Theorem
1.2 from this result, together with the standard methods.

(2) We have received suggestions that Theorem 7.2 (and so 7.4 below) can be
obtained directly from the cell decomposition results of Denef and others,
at least when K is Znp (some n).

We obtain easily from Theorem 7.2 the following statement about the family of
quotients of K by open normal subgroups.

Theorem 7.4. Let K be as above. Let (Gi)i∈I be the family of finite groups ob-
tained as quotients of K by open normal subgroups. Let A ⊆ K be definable in Qan

p

and for i ∈ I, let Ai ⊆ Gi be the image of A under the quotient map. Then, for
any ε > 0, there is some n ≥ 1 such that for any i ∈ I, there are

∗ a normal subgroup Hi ≤ Gi of index at most n, and
∗ a set Zi ⊆ Gi, which is a union of cosets of Hi with |Zi| < ε|Gi|,

satisfying the following properties.

(i) (structure) Ai\Zi is a union of cosets of Zi.
(ii) (regularity) For any g ∈ Gi\Zi, either gHi ∩Ai = ∅ or gHi ⊆ Ai.
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