Homework 6 Key

15.6.1) Let F be a field of characteristic 0. Let f € F[z] and let g be an irreducible
polynomial that divides f and f’. Since g divides f, write f = gh for some
h € F[z]. Applying the product rule,

f'=gl +gh

Since g divides gh’ and g divides f’, it must be the case that g divides
g'h. Since Fx] is a UFD, either g divides ¢’ or g divides h. The former
is impossible since F' has characteristic 0, so h = gp for some p € F|[z].
Thus f = ¢2p, so g? divides f.



15.6.2) (a) Let a € F with F(y/a) a quadratic extension. Then {1, /a} is a basis,
so for each z € F(y/a),z = x + yy/a. then 22 = (22 + y2a) + 22y+/a.
In order to have z? € F we must have 2zy/a = 0,s0 z =0 or y = 0.
Then the square elements are those of the form 2 or y2a for z,y € F.

(b) Since Q has characteristic 0, an extension K is quadratic iff K =
Q(V/a) for some a = & € Q with /a ¢ Q. Notice that | /2 = @, S0
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Q(va) = Q(/pq), and from this we conclude that the only quadratic
extensions of QQ are those of the form Q(\/ﬁ) for d € Z, d not a square.



15.6.3) Let a be a primitive nth root of unity that is in a quadratic extension
Q(v/d). Then the minimal polynomial of has degree at most 2 over Q.
The nth cyclotomic polynomial is irreducible, so ¢(n) < 2, where ¢ is
Euler’s phi function. Then n € {1,2,3,4,6}.

Every quadratic number field contains a root of unity for n = 1,2 since
they all contain 1 and —1.

We also see that Q(v/—1) contains 4, which is a 4th root of unity.

We see that Q(+/—3) contains _H'T“/g %J, primitive 3rd and 6th roots
of unity respectively. Thus n = 1,2, 3,4, 6 all work, and these are all such
n.



15.7.1) IFI is a group with 4 elements, and there are exactly two such groups. IE‘I
is not cyclic since a + a = 0 for each a € FJ, so it must be the case that
FI is isomorphic to the Klein four-group.



15.7.7) Let K be a finite field with ¢ elements, so K is isomorphic to F,. Then
every nonzero element of K is a root of the polynomial 9! — 1, so

z?7l 1= H (z — a).
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Comparing coefficients, we see that —1 = (=1)7" '] .;x a. When ¢
is odd, (—=1)97! = 1, and when ¢ is even, K has characteristic 2, so
(—=1)97t = —1 =1, and we are done.



15.7.8) Let K = Fo(a) and L = Fy(3). We define a homomorphism ¢ : K — L
by a+— £+ 1, is a homomorphism since

pla®+a+1)=B+1>*+(B+1)+1=8+p>+1=0.

This map is an isomorphism because it is invertible. Any isomorphism
must map « to a root of g, and there are three distinct roots of g, so there
are three possible isomorphisms.



15.7.9) Let F =F,.

(a)

Notice that F has order p, so there are p? total monic polynomials
of degree 2 in F[x]. Such a polynomial is reducible if and only if it
is a product of 2 linear factors. There are p was to choose the same
linear factor twice and (’2’) ways to choose two different linear factors,
SO p+ (’2’) such polynomials. Thus there are p? —p — (127) = (’2’
irreducible polynomials of degree 2.

By 15.6.2, K is a field and the residue of z, call it «a is a root of f
in K. o must have degree 2 over F, so K is a quadratic extension,
so [K : F] =2, 50 |K| = p?. Then K has basis {1, a}, meaning the
elements of K are of the form a + ba with a,b € F. The degree of
an element over F' must divide [K : F] = 2, and if b # 0, the element
is not in F, so such an element must have degree 2. Thus such an
element is a root of an irreducible quadratic polynomial in F[z].

) monic

From (b), every element in K \ F is the root of an irreducible poly-

nomial of degree 2 in F[z]. There are p?> — p elements in K \ F, and

p’=p
p)

monic irreducible polynomials of degree in F[x], each of which
accounts for two of these p? — p elements, so every monic irreducible
polynomial of degree 2 has a root in K, and thus every irreudicble
polynomial of degree 2 does as well.

Let g be another irreducible polynomial of degree 2 in F[z], and let
L = Flz]/(g). By part (c), f has aroot 8 in L\ F. Then « and 8
have the same irreducible polynomial over F', so the field extensions
F(«) and F(B) are isomorphic. Since F(a) = K and F[f] = L, we
get that K = L.



15.M.4) (a)

Let p be an odd prime. Then IF\ is a cyclic group with size p—1 with
generator «, so the elements of « are precisely the elements o’ for
0 < a < p—1. Then the square elements are precisely the elements
of the form a?™ for 0 < m < %, because for elements of the form
a?™t1if there were a  with 52 = «, then 8 = aF for some k, so
2k = 2m + 1, a contradiction. Thus 251 elements of IF; are squares,
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which is exactly have of the elements.

Now assume that a, b are non-square elements. Then they are of the
form o™ and o™ respectively, for m,n odd. The product is then
ab = a™t" and m + n is even, so ab is square.

The proof of part (a) holds verbatim if p is replaced by a power of p.

Let ¢ = 2" for n > 1. Then F is a cyclic group of order p — 1 with
generator . Any element of the form a?™ is clearly a square. For
any element of the form a>™+1, notice that (a5 )2 = a2m+1+a-1 =
a?™t1 50 these elemlents are squares as well. Finally, 02 = 0, so 0

is a square.
The irreducible polynomial for v = V2 + /3 over Qis

p(z) = 2* — 1022 + 1.

We show that this is reducible in I, for each prime p. If 2 is a square,
then there is an element @ with a? = 2, so

2t = 1022 +1 = (2% — 1 — 2ax)(2? — 1+ 20x).
If 3 is a square, then there is an element S with 52 = 3, and then
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zt —102* + 1= (2 + 1 —20z) (2" + 1 + 20x).

Finally, if 3 and 2 are not squares, then by part (a), their product 6
must be a square, so there is some § with §2 = 6, and then

2t —102% + 1 = (22 — 5 — 20) (2% — 5 + 20).

In each case, p is reducible.



