12.3.1)

(a)

Homework 2 Key

First notice that 1 + v/2 is a root of the polynomial 22 — 2z — 1,
so (22 — 22 — 1) C ker . To see the reverse inclusion, suppose that
f(z) € ker . Since this polynomial is monic, we can find polynomials
q(z),r(z) € Z[z] with degr(x) < deg(z? — 2z — 1) = 2 such that

f(z) = q(z)(z? — 22 — 1) + 7(z).

Plugging in 1 + v/2, we see that r(1 4+ v/2) = 0. Since r € Z[z] must
be linear or constant and since 1 4+ /2 is irrational, we get that 7
is the constant polynomial 0. Thus f(z) = ¢(x)(2? — 22 — 1), so by
definition, f € (2% — 2z — 1). We conclude that ker ¢ is a principal
ideal generated by 22 — 2z — 1.

First notice that % + /2 is a root of the polynomial 422 — 4z — 7, so
(4% — 42 — 7) C ker . Now let f € ker . Since Q[z] is a Euclidean
domain, viewing f as a polynomial with rational coefficients, we can
find g(z),r(x) € Q[z] such that r has degree 0 or 1, and

f(z) = q(x)(42® — 4o — 7) + r(2).

Plugging in % + /2, we see that r(% + \/?) = 0, and by the same
reasoning as above, r is identically 0. Then f(x) = q(z)(42% —4x—7).
Since 42? — 4x — 7 is a primitive polynomial that divides f in Q[z],
q(x) is actually in Z[z]. We conclude that ker ¢ is a principal ideal
generated by 4x? —4x — 7.



12.3.2) = Assume two integer polynomials f, g are relatively prime elements of
Q[z]. Then there are a,b € Q[x] such that af + bg = 1. Multiply by
some integer N to clear the denominators of the coefficients of a and
bto get (Na)f + (Nb)g = N. Then Na,Nb € Z[z],s0 N € (f,g).

<= Assume that f, g are integer polynomials such that the ideal (f,g) C
Z[z] contains an integer N. Then N = af + bg for some integer
polynomials a, b. Dividing by N, we get - f+ %g =1, where +, % €
Q[z]. Thus f, g are relatively prime elements of Q|z].



12.3.4) Assume xy — zw = fg for some f,g € Clz,y, z, w]. Then without loss of
generality, f must have x-degree 1 and g has z-degree 0, so f = ax + b for
a,b € Cly, z,w] and g € Cly, z, w]. We then get

xy — zw = agx + by,

so ag = y and bg = —zw, forcing one of a, g to have y-degree 1 and the
other to have y-degree 0. If g has y-degree 1, then bg has y-degree at
least 1, a contradiction, so g has y-degree 0. Similarly, g has z-degree
and w-degree 0, so g is a nonzero constant in C, and thus is a unit. We
conclude that zy — zw is irreducible in Clz, y, z, w].



12.3.5)

()

It is clear that if f(z,y) € Clx,y], then p(t) = f(t2,t3) = ¥(f) is a
polynomial with %(0) = 0, as the coefficient of ¢ in p is 0.

. . c1d

Now assume that p(t) is a polynomial with Z2(0) = 0. Let p(t) =
po + pat? + pstd + - - + pipt®, where we have not written pit since
p1 = %(0) = 0. Construct

f= Zaijﬂiiyj € Clz,y]

as follows: Let agp = po. For 2 < ¢ <k, let a;; = p, precisely when
2i+3j =/ for i, j nonnegative and i as small as possible. We cannot
find such a pair 4, when ¢ = 1, but we are not considering ¢ = 1
here. For ¢ > 2, we can see that this is always possible with a quick
induction argument:

e When ¢ =2, let ¢ = 1,j = 0, which is the best we can do.

e Assume for some fixed £ > 2 that we have ¢ = 2 + 35 for non-
negative integers ¢,j. If ¢ = 0, then j > 1 so that £ > 2. Then
0=3j,500+1=3(j—1)4+2-2 = 35"+ 2¢ for i/, j/ nonnegative.
Otherwise, ¢ > 1, so

C+1=200-1)+3G+1)=2i+3j

where 7/, j' are nonnegative integers. Since such a pair exists,
there must be a smallest such nonnegative i/. We conclude by
induction that this is always possible for ¢ > 2.

Next, let a;; = 0 for all other ¢,j. Then
k
G(f) = pet’ =p(t).
£=0

We conclude that the image of v is the set of polynomials p(t) such
that 22.(0) = 0.

It is simple to check that g(x,y) = 2% — y? + 2y € Clx,y] is in the
kernel of . I claim that this generates the kernel: Let f € ker .
Viewing f as a polynomial in y with coefficients in C[z], since the
leading y-coefficient of g is a unit, we can find ¢, r € Clz,y] with

f(.’l?, y) = q(x,y)g(ﬂc,y) + T(l‘,y)

where r(x,y) = h(z)y + c(z) for h(z),c(z) € Clz]. Applying ¢, we
see that 7(t2 —t,13 —t2) = 0, so

t2(t — Dh(tt — 1)) +c(t(t — 1)) = 0.

Assume h has degree i and ¢ has degree j. If either of ¢, j is > 1, then
the other must be as well so that the highest coefficients can cancel



out. Then t2(t — 1)h(t(t — 1)) has degree 2i + 3, and c(¢(t — 1)) has
degree 2j, so 2i+3 = 2j, a contradiction since the left side is odd and
the right side is even. Thus ¢ = j = 0, so h, c are constants. Then
in order for the above polynomial to be 0, we must have h = ¢ = 0.
Thus f = qg, so f € (g), and we conclude that g(x,y) generates
ker .

Now, if f(z,y) € C[z,y], then

() = f(t* = 1,87 — %) = p(t),

so we see that p(0) = f(0,0) = p(1). Now, assume p(0) = p(1) for a
polynomial p(t) € C[t]. Then p(t) = t(t — 1)q(t) + ¢ for some con-
stant ¢. In a way similar to part (a), we can construct a polynomial
f(z,y) € Clz,y] such that p(f) = f(t? —t,t> —t*) = p(t). We con-
clude that the image of ¢ is the set of polynomials p(t) such that
p(0) = p(1).

An intuitive explanation is that thinking of z,y as parametrizing a
curve in C2, we have (x(t),y(t)) = (t> — t,#3 — ?), so y = tz, so
Y =¢ Thenz =t>—t = (%) - £ and multiplying across by 27, we
get 23 —y? +zy = 0.



12.4.1) (a) We immediately get 2% —x = x(x—1)(x+1)(22+1)(2*+1), and since
2* + 1 has no roots in Fs, if it factors it must factor into a product
of quadratics. We can find that 2% +1 = (22 +z + 2) (2% + 22+ 2), so

) —r =2 D@+ + 1)@ +2+2) (2 +22+2)

in F3[z].

Using the Frobenius automorphism (a + b)? = a” + bP in a ring of
characteristic p, we get

2 1=+ (1) =013 =(-1)°

in Fs[x].

(b) We immediately get 216 — 2 = (2 — 1)(1 + 2 + - -- + 2'*). Applying
the sieve of Eratosthenes, we see

l+z+- 4= +2+1)@2+22+25+23+1)
=@ 4+t v+ D@t + 22+ D)t + 22+ 22 2+ 1),

which are irreducible, so
2 —r =z -1+ + D) e+ D@+ B3+ D@ 2P 42t 1)

in Falx].



12.4.4) e In Fy[z]: This polynomial is 2% + 2% + 2 + 1, which has 1 as a root, so
can be written as (z — 1)(z* + 23 + 1), each of which are irreducible.

e In F3[x]: This polynomial is 2° + 22* + 2, which has —1 as a root, so
can be written as (z+1)(2*+23+222+2+2). The term on the right
also has —1 as a root, so we can write this as (z + 1)%(2? + 2z + 2),
and these terms are each irreducible.

e In Q[z]: —1is a root, so we can write this polynomial as (x+1)(z* +
23 + 222 — 22+ 5). For the term on the right, reduce modulo 2 to
get the polynomial 2* + 23 + 1, which is irreducible in Fy[z]. Since
the original polynomial is monic, we conclude that it is irreducible in
Q[z] as well, so we cannot factor this polynomial any further.



12.4.6) e In Q[z]: By Eistenstein’s criterion with the prime p = 5, 2° + 5z +5
is irreucible in Q[x]

e In Fy[z]: This polynomial is #° + x + 1 in F3[z]. Since there are no
roots in o, any factorization must involve a quadratic and a cubic,
and indeed we can find

P rr+l=>+22 + 1) (22 +x+1).



12.4.13)

(a) Let

n
L T — Q;
p(l‘) T | I ap — aia

i=1

which has degree n. It is immediately clear that p(a;) = 0 for 1 <
i <nand p(ag) = 1.

(b) e Uniqueness: Assume f,g are each polynomials of degree < d
such that f(a;) = g(a;) = b; for 0 < i < d. Then f —gis a
polynomial of degree < d that is zero at the d+ 1 distinct points
ag, - - .,aq, S0 f — g must be identically 0. Thus f = g.

e Existence: Let

r — a;
g(l’) = blll jla
i

a; —a
i=0 i J

which has degree at most d. We immediately see that g(a;) = b;
for 0 <i <d.



12.4.16) Suppose for a contradiction that x4 4+ 8213 + 3 = fg, where f,g € Q[x]

and
f=a+ - +aa,
g=by+---+ 514_7&‘1477"
for some r =1, ...,13. Reducing modulo 3, we get

mlB(x +2) = fg.

Since F3[z] is a UFD, without loss of generality we have f = x* and
g =23z +2) for some k=0,...,13. If k =0, then g = 2'* + 223, s0
g has degree 14, contradicting that degg < 13. Thus 1 < k£ < 13. Since
apbg = 3, we have either ag = +3 and by = +1 or ag = +1 and by = 3.
Thus one of f,g should have constant term 41, but each has constant
term 0, a contradiction. Thus z'* 4+ 823 + 3 is irreducible in Q[z].

10



