
Math 10860: Honors Calculus II, Spring 2021
Homework 8

1. (a) Use Theorem 1 from Chapter 22 of Spivak (connecting continuity and limits of
sequences) to find, for each fixed a > 0, limn→∞ a

1/n.

Solution: Note that a1/n = e
ln(a)
n , and we also have that ln(a)/n→ 0 as n→∞.

Thus, by the continuity of the exponential function, we have that limn→∞ a
1/n = 1.

(b) Prove a “squeeze theorem” for sequences:

Let (an), (bn) and (cn) be sequences with (an), (cn) → L. If eventually
(for all n > n0, for some finite n0) we have an ≤ bn ≤ cn, then (bn)→ L
also.

Solution: Let ε > 0. Since (an) → L, there exists a na such that |an − L| < ε
for n > na. Similarly, there exists a nc such that |cn − L| < ε for n > nc. Let
nb = max{n0, na, nc}. If n > nb, then

−ε < an − L ≤ bn − L ≤ cn − L < ε

and so we have that |bn − L| < ε for n > nb.

(c) Use the results of parts (a) and (b) to compute

lim
n→∞

(
2n2 − 1

3n2 + n+ 2

) 1
n

.

Solution Consider the sequence

an =
2n2 − 1

3n2 + n+ 2

We first show that this is an increasing sequence. Consider the analogous function

f(x) =
2x2 − 1

3x2 + x+ 2
, f : R>0 → R

Note that its derivative is

f ′(x) =
18x2 + 126x+ 9

(9x2 + 3x+ 6)2
> 0, ∀x > 0

and so an is increasing because f(n) = an for all natural numbers n.

Now, note that a1 = 1/6, and via L’Hopital

lim
n→∞

2n2 − 1

3n2 + n+ 2
=

2

3

Because an is increasing, this implies

1

6
≤ 2n2 − 1

3n2 + n+ 2
≤ 2

3
=⇒

(
1

6

)1/n

≤
(

2n2 − 1

3n2 + n+ 2

)1/n

≤
(

2

3

)1/n



By part a, we have that (1/6)1/n and (2/3)1/n go to 1 as n→∞, and so by part
b, we have that

lim
n→∞

(
2n2 − 1

3n2 + n+ 2

)1/n

= 1

2. Find the following limits:

(a) limn→∞
n

n+1
. (For this one, you must use the definition of sequence limit).

Solution: We claim that this limit is 1. We will now show this. Given ε > 0,
we need to find a n0 such that n > n0 implies that |n/(n + 1) − 1| < ε. This is
equivalent to | − 1/(n + 1)| < ε, which is equivalent to n > (1/ε)− 1, and so we
let n0 = (1/ε)− 1.

(b) limn→∞
n
√
n2 + n. (For this and the remaining parts, a soft argument is fine,

meaning, you may freely use theorems proven in lectures and/or notes).

Solution: We claim that the limit is 1. Note that we have

n
√
n2 + n = e(ln(n

2+n)/n)

and so by continuity of the exponential function, it suffices to show that ln(n2 +
n)/n → 0 as n → ∞. To show this, it suffices to show that ln(x2 + x)/x → 0 as
x→∞, and we do this via L’Hopital

lim
x→∞

ln(x2 + x)

x
= lim

x→∞

2x+ 1

x2 + x
= 0

(c) limn→∞
(

8
√
n2 + 1− 4

√
n+ 1

)
.

Solution: We claim the limit is 0. First, note that

lim
n→∞

(
8
√
n2 + 1− 4

√
n+ 1

)
= − lim

n→∞

(
4
√
n+ 1− 8

√
n2 + 1

)
and so it suffices to find the value of the right hand side. Note that 4

√
n+ 1 =

(n+ 1)1/4 = (n2 + 1 + 2n)1/8. By mean value theorem, we have

0 ≤ (n2 + 1 + 2n)1/8 − (n2 + 1)1/8 =
1

8
c−7/8n · 2n =

n

4
c−7/8n

where cn ∈ (n2 + 1, n2 + 2n+ 1). It follows that

n

4
c−7/8n ≤ n

4
(n2)−7/8 ≤ n

4
n−7/4 =

1

4
n−3/4

and so by squeeze theorem, our result follows.

(d) limn→∞
(

n
n+1
− n+1

n

)
.

Solution: We claim the limit is 0. We have

n

n+ 1
− n+ 1

n
=
n2 − (n+ 1)2

n(n+ 1)
=
−2n+ 1

n(n+ 1)
→ 0 as n→∞



(e) limn→∞
2n

2

n!
.

Solution: We claim the limit is ∞. Note that n! < nn and so

2n2

n!
>

2n2

nn
= 2n2

/2n log2(n) = 2n2−n log2(n)

Note that n2 − n log2(n)→∞ as n→∞, and so our result follows.

(f) limn→∞
(−1)n

√
n sin(nn)

n+1
.

Solution: We have that

(−1)n+1
√
n

n+ 1
≤ (−1)n

√
n sin(nn)

n+ 1
≤ (−1)n

√
n

n+ 1

and so by squeeze theorem, our result follows.

3. A subsequence of a sequence
(a1, a2, a3, . . .)

is a sequence of the form
(an1 , an2 , an3 , . . .)

with n1 < n2 < n3 · · · . In other words, it is a sequence obtained from another sequence
by extracting an infinite subset of the elements of the original sequence, keeping the
elements in the same order as they were in the original sequence.

(a) Consider the sequence(
1

2
,
1

3
,
2

3
,
1

4
,
2

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
, · · ·

)
.

For which numbers α is there a subsequence converging to α?

Solution: We claim that there is a subsequence converging to α if and only if
0 ≤ α ≤ 1.

Naturally, if a < 0 or α > 1 then there is no subsequence that goes to α. For
α = 0. consider the subsequence (1/2, 1/3, 1/4, ...). Similarly, for α = 1, consider
the subsequence (1/2, 2/3, 3/4, ...).

So consider 0 < α < 1. Note that the rationals are dense in (0, α) and so we
can find a sequence of rationals (x1, x2, ...) where ri ∈ (0, α) for all i, and where
(ri) → α. We can actually explicitly do this by letting r1 be in (0, α), r2 in
(α/2, α), r3 in (3α/4, α), and so on.

Now, note that every rational in (0, 1) appears infinitely in the sequence defined
in the question, and so r1 can be found in the sequence, and r2 can be found
later, and r3 even later, and so on and so forth, and so we have thus constructed
a subsequence that converges to α.

(b) Now consider the same sequence as in part (a), except remove all duplicated
terms, so that it begins(

1

2
,
1

3
,
2

3
,
1

4
,
3

4
,
1

5
,
2

5
,
3

5
,
4

5
,
1

6
,
5

6
,
1

7
, · · ·

)
.

Now for which numbers α is there a subsequence converging to α?



Solution: Deleting repeated values would not change the fact that the rationals are
dense in the reals, and so the same argument above applies. So again, α ∈ [0, 1].

4. (a) Prove that if 0 < a < 2 then a <
√

2a < 2.

Solution: For positive a, we have the following chain of equivalences

a < 2⇐⇒ a2 < 2a⇐⇒ a <
√

2a

and
a < 2⇐⇒ 2a < 4⇐⇒

√
2a < 2

(b) Prove that the sequence

√
2,

√
2
√

2,

√
2

√
2
√

2,

√
2

√
2

√
2
√

2, . . .

converges.

Solution: Rewrite this sequence as

a1 =
√

2 = 21/2, an+1 =
√

2an = 21− 1
2n

Note that an < 2 for all n and so it is bounded. Also, note that we have

1

2n
>

1

2n+1

=⇒ 1− 1

2n
< 1− 1

2n+1

=⇒ 21− 1
2n < 21− 1

2n+1

⇐⇒ an < an+1

and so since the sequence is bounded and increasing, then it must be convergent.

(c) Let an be the nth term of the above sequence, and let ` = limn→∞ an. Carefully
applying a theorem proved in lectures, find `.

Solution: Recall that an = 21− 1
2n . Note that 1 − 1

2n
→ 1 as n → ∞, and so

limn→∞ an = 21 = 2.

5. This question provides a useful estimate on n!: n! ≈ (n/e)n.

(a) Show that if f : [1,∞) is increasing then

f(1) + · · ·+ f(n− 1) <

∫ n

1

f(x)dx < f(2) + · · ·+ f(n).

Solution: Consider the interval [i, i + 1]. Because f is an increasing function,
then sup{f(x) : x ∈ [i, i + 1]} = f(i + 1) and inf{f(x) : x ∈ [i, i + 1]} = f(i).



Using Homework 1, Question 5a, we have that

f(i) <

∫ i+1

i

< f(i+ 1)

=⇒
n−1∑
i=1

f(i) <
n−1∑
i=1

∫ i+1

i

< f(i+ 1) <
n−1∑
i=1

f(i+ 1)

⇐⇒ f(1) + · · ·+ f(n− 1) <

∫ 2

1

f(x) dx+ · · ·+
∫ n

n−1
f(x) dx < f(2) + · · ·+ f(n)

⇐⇒ f(1) + · · ·+ f(n− 1) <

∫ n

1

f(x) dx < f(2) + · · ·+ f(n)

(b) By taking f = log deduce that

nn

en−1
< n! <

(n+ 1)n+1

en
.

Solution: Note that
∫

ln(x) dx = x ln(x)−x and so
∫ n

1
ln(x) dx = n ln(n)−n+1.

We also see that ln(1)+· · ·+ln(n−1) = ln((n−1)!) and ln(2)+· · ·+ln(n) = ln(n!).
Since ln is an increasing function, using part a, we have the upper bound

n ln(n)− n+ 1 ≤ ln(n!) =⇒ nn

en−1
< n!

and similarly, performing an index change from n to n+ 1 gives us a lower bound
of

ln(n!) < (n+ 1) ln(n+ 1)− n =⇒ n! <
(n+ 1)n+1

en

(c) Deduce that1

lim
n→∞

n
√
n!

n
=

1

e
.

Solution: From the lower bound in part b, we have that

1

e
· e1/n >

n
√
n!

n

1Note that this only says that for large n, n
√
n! is close to n/e; it does not say that for large n, n! is close

to (n/e)n — it is not. In fact, all we can get out of the bounds in part b) is that

e
(n
e

)n
< n! < e(n+ 1)

(n
e

)n
.

A better, and much more difficult to prove, bound on n! is given by Stirling’s formula:

lim
n→∞

n!√
2πn

(
n
e

)n = 1;

in other words, for all ε > 0 there is n0 such that n > n0 implies

(1− ε)
√

2πn
(n
e

)n
< n! < (1 + ε)

√
2πn

(n
e

)n
.



From the upper bound, we have

n
√
n!

n
<

1

e
· n
√
n+ 1

(
1 +

1

n

)
Because both e1/n and n

√
n+ 1

(
1 + 1

n

)
go to 1 as nto∞, then our desired result

follows by squeeze theorem.

6. The Harmonic number Hn is the number Hn =
∑n

k=1
1
k

= 1 + 1
2

+ 1
3

+ · · · + 1
n
. This

exercise gives a very useful estimate on Hn, namely Hn ≈ log n.

(a) Notice that H1 = 1, H2 = 1 + 1
2

and

H4 = 1 +
1

2
+

1

3
+

1

4
≥ 1 +

1

2
+

1

4
+

1

4
= 1 +

2

2
.

Generalize this: prove that for all k ≥ 0, H2k ≥ 1 + k
2

(and so (Hn)∞n=1 diverges
to +∞).

Solution: We use induction. Consider the base cases k = 1 and k = 2. From the
question we see that H21 = 1 + 1

2
and H4 = 1 + 2

2
and so the base cases hold.

Now, suppose that H2k−1 ≥ 1 + k−1
2

. Consider H2k . We have that

H2k = H2k−1 +
1

2k−1 + 1
+

1

2k−1 + 2
+ · · ·+ 1

2k

≥ H2k−1 +
1

2k
+

1

2k
+ · · ·+ 1

2k

≥ 1 +
k − 1

2
+

1

2

= 1 +
k

2

(b) Prove that for all natural numbers n,

1

n+ 1
< log(n+ 1)− log n <

1

n
.

Solution: By definition, we have that

ln

(
n+ 1

n

)
=

∫ n+1
n

1

1

t
dt

and we also have that

1 < t <
n+ 1

n
=⇒ n

n+ 1
<

1

t
<

1

n

and this gives us

n

n+ 1

∫ n+1
n

1

dt <

∫ n+1
n

1

1

t
dt <

1

n

∫ n+1
n

1

dt

Computing the definite integrals gives us

1

n+ 1
< ln

(
n+ 1

n

)
<

1

n



(c) Deduce from part (b) that the sequence (Hn−log n)∞n=2 is decreasing and bounded
below by 0.

Solution: First we show that the sequence is decreasing. Note that

Hn+1 − ln(n+ 1) < Hn − ln(n)

if and only if

Hn+1 −Hn =
1

n+ 1
< ln(n+ 1)− ln(n)

which follows from part b.

Now we show that it is bounded below by 0. We have that

Hn =
n∑

k=1

>

∫ n+1

1

1

t
dt = ln(n+ 1) > ln(n)

where the inequality is valid because the sum is simply a left-hand endpoint
Riemann sum for the integral, and 1/t is a decreasing function.

(d) Explain why you can deduce that there is a number γ ≥ 0 such that

lim
n→∞

(Hn − log n) = γ.

(This number is known as the Euler-Mascheroni constant, and is approximately
0.57721. It is not known whether γ is rational or irrational.)

Solution: By the Monotone Convergence Theorem (Theorem 2 in the textbook),
because Hn− ln(n) is non-increasing and bounded below by 0, then the sequence
must converge to some value, and we can denote this value as γ, where γ ≥ 0.


