
Math 10860: Honors Calculus II, Spring 2021
Homework 8

1. (a) Use Theorem 1 from Chapter 22 of Spivak (connecting continuity and limits of
sequences) to find, for each fixed a > 0, limn→∞ a

1/n.

(b) Prove a “squeeze theorem” for sequences:

Let (an), (bn) and (cn) be sequences with (an), (cn) → L. If eventually
(for all n > n0, for some finite n0) we have an ≤ bn ≤ cn, then (bn)→ L
also.

(c) Use the results of parts (a) and (b) to compute

lim
n→∞

(
2n2 − 1

3n2 + n+ 2

) 1
n

.

2. Find the following limits:

(a) limn→∞
n

n+1
. (For this one, you must use the definition of sequence limit).

(b) limn→∞
n
√
n2 + n. (For this and the remaining parts, a soft argument is fine,

meaning, you may freely use theorems proven in lectures and/or notes).

(c) limn→∞
(

8
√
n2 + 1− 4

√
n+ 1

)
.

(d) limn→∞
(

n
n+1
− n+1

n

)
.

(e) limn→∞
2n

2

n!
.

(f) limn→∞
(−1)n

√
n sin(nn)

n+1
.

3. A subsequence of a sequence
(a1, a2, a3, . . .)

is a sequence of the form
(an1 , an2 , an3 , . . .)

with n1 < n2 < n3 · · · . In other words, it is a sequence obtained from another sequence
by extracting an infinite subset of the elements of the original sequence, keeping the
elements in the same order as they were in the original sequence.

(a) Consider the sequence(
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)
.

For which numbers α is there a subsequence converging to α?

(b) Now consider the same sequence as in part (a), except remove all duplicated
terms, so that it begins(
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)
.

Now for which numbers α is there a subsequence converging to α?



4. (a) Prove that if 0 < a < 2 then a <
√

2a < 2.

(b) Prove that the sequence

√
2,

√
2
√

2,

√
2

√
2
√

2,

√
2

√
2

√
2
√

2, . . .

converges.

(c) Let an be the nth term of the above sequence, and let ` = limn→∞ an. Carefully
applying a theorem proved in lectures, find `.

5. This question provides a useful estimate on n!: n! ≈ (n/e)n.

(a) Show that if f : [1,∞) is increasing then

f(1) + · · ·+ f(n− 1) <

∫ n

1

f(x)dx < f(2) + · · ·+ f(n).

(b) By taking f = log deduce that

nn

en−1
< n! <

(n+ 1)n+1

en
.

(c) Deduce that1

lim
n→∞

n
√
n!

n
=

1

e
.

6. The Harmonic number Hn is the number Hn =
∑n

k=1
1
k

= 1 + 1
2

+ 1
3

+ · · · + 1
n
. This

exercise gives a very useful estimate on Hn, namely Hn ≈ log n.

(a) Notice that H1 = 1, H2 = 1 + 1
2

and

H4 = 1 +
1

2
+

1

3
+

1

4
≥ 1 +

1

2
+

1

4
+

1

4
= 1 +

2

2
.

Generalize this: prove that for all k ≥ 0, H2k ≥ 1 + k
2

(and so (Hn)∞n=1 diverges
to +∞).

1Note that this only says that for large n, n
√
n! is close to n/e; it does not say that for large n, n! is close

to (n/e)n — it is not. In fact, all we can get out of the bounds in part b) is that

e
(n
e

)n
< n! < e(n+ 1)

(n
e

)n
.

A better, and much more difficult to prove, bound on n! is given by Stirling’s formula:

lim
n→∞

n!√
2πn

(
n
e

)n = 1;

in other words, for all ε > 0 there is n0 such that n > n0 implies

(1− ε)
√

2πn
(n
e

)n
< n! < (1 + ε)

√
2πn

(n
e

)n
.



(b) Prove that for all natural numbers n,

1

n+ 1
< log(n+ 1)− log n <

1

n
.

(c) Deduce from part (b) that the sequence (Hn−log n)∞n=2 is decreasing and bounded
below by 0.

(d) Explain why you can deduce that there is a number γ ≥ 0 such that

lim
n→∞

(Hn − log n) = γ.

(This number is known as the Euler-Mascheroni constant, and is approximately
0.57721. It is not known whether γ is rational or irrational.)


