Math 10860: Honors Calculus II, Spring 2021
Homework 7

This problem will start with a few intergrals, and then transition to questions about Taylor
polynomials.

1. Some integrands appropriate for partial fractions. Do any two of these.

(a) IM dzr.

3 —3x243z—1
3x24+32+1
(b> f:):3+2$2+2$+1 dx.
C f(a:2+a,’+1

Solution:
(a) This integrand is equal to

2:62+7SC—1_ A N B n C
(z—-13 -1 (z—12 (z—1)3

for some constants A, B, C. Multiplying both sides of the equation by (x — 1)3,
we have 22° + 7z — 1 = A(x — 1)2+ B(x — 1) + C for x # 1. Letting z — 1, we
have C' = 8. The right side is then

A N B N 8§ A+ (B—-2A)x+(A—-B+38)
r—1 (z—12 (x—1)3 (x —1)3 ’

and equating coefficients with the numerator of the original expression, we get
A=2and B—2A=7,s0 B =11. Thus the integral is

/ 202 + Tx — 1 d / 2 n 11 n 8 d
T = x
23 —322+ 3z — 1 r—1 (z—-1)2 (z—-1)3

11 4
=2log |z — 1| — —
x_

(b) The integrand is equal to

3¢ 4+3zx+1 A N Bx +C
(z+D)(22+2+1) z+1 224+z+1

for some constants A, B, C. Multiplying both sides of the equatino by = + 1, we

have % =A+ (z+ 1)351';51 for  # —1. Letting x — —1, we have A = 1.

The right side is then

1 N Bxr+C  (B+1)2*4+(B+C+1)z+(C+1)
r+1 z24+x4+1 (x+ (22 +x2+1)

)



and equation coefficients with the numerator of the original expression, we get
B =2 and C' = 0. Thus the integral is

3x24+3x+1 1 20x
dr = + dx
3+ 222 4+ 20+ 1 r+1 224z2+1

log | +1|+/ v+l L d
= log |z — s
& 24+rx+1 22+x4+1

1
:log|x+1|+log(x2—|—x+1)—/—2 dx.
(#+3)"+3

Letting x —|— f tan 6, so dor = V3 gec2 ) df, the rightmost integral is

2

/%d;ﬁzﬂg/ a6
@rrers

2

— ﬁ@
3

= %arctan (2&: * 1)
3 V3 )

so we have

322 + 31 + 1 2v/3 2r + 1
dr =1 1 +1 2 1) — t '
/x3+2x2+2;p+1 r =log|x + 1| +log(z” + 2 + 1) 3 arctan 73

(c) The integral is equal to

/ 3z da:—§/ 20 +1 das—é/ 1 i
(24 z+1)3 7 2) (2242 +1)3 2) (2+ax+1)3

s T &
CA@ 1) 2 <($+%)2+%>3

3

1
— —9/ dz.
4(@* + 2 +1) (22 +1)*+3)”

In the last integral, let 2z 4+ 1 = v/3tan6, so dr = i c?0 df. The integral is



then

1 V3 1
2 3 dZE e 40
(22 +1)* +3) 54 J sec
_ Vo 4
=1 cos” 6 db
V3
-2 [ 20)?
516 (1+ cos20)° db
V3 )
=315 (1 4+ 2cos26 + cos”260) db
V3 1 + cos 46
A 1+2 2 _—
516 ( + 2cos 20 + 5 ) df
V3 V3 V3
= —4@+ —sin 260 in 40
142" T o1 A T g
o (2l +\/§. o avctan [ 221
= — arctan —sin [ 2arctan
144 V3 216 V3
3 2 1
+ 1\7/2_8 sin (4 arctan ( $\/—g )) .
Thus our integral is equal to
3 24/3 22 + 1 22 + 1

3

(arctan (

A2+ +1)2

V3

)+ sin (zanctan (221

V3
o (rn (251)) ).



2. A pot-pourri with a (slightly non-obvious) trigonometric flavor. Do part (a) and one
of the other two.

(a) [V1—4dx — 222 du.
(b) [coszV9 + 25sin’ x du.
(¢) [e*™V1+ e du.

Solution:

(a) The integral is equal to

/ 1 — 4z — 222 dx:/\/3—2(x+1)2 dx.

Let \/E(m +1)= V/3sin6, so dr = % cosf df. The integral is then

/\/mdx:%/cos29d0

3
= —— 1+ cos26) do
=/ )

3 1.
:—2\/5 (9—}—5811&29)

3 .
:2—\/§(H+Sln90089)

3 . (V2 V2 5
— NG (arcsm <ﬁ(x+ 1)) + ?(x—i— V1 —4dr —2x ) .

(b) Let u = sinz, so du = cosx dz. The integral is then

/cosx\/9+25sin2x dx:/v9+25u2 du.

Let u = gtan 0, so du = %sec2 6 df. The integral equals

/\/9+25u2 du = 2/56039 do.

Integrating by parts, we have

/86039 df = /sec@se020 do

:secetanﬁ—/taneseCGtaHG do
:secétanﬁ—/(seczﬁ—l)sece df
:secﬁtan6’+/se(:9 d@—/secge do

= secf tan 0 + log | sec 6 + tan 0| — /sec39 e,



so moving the adding [ sec®# df to both sides and dividing by 2, we have

1
/sec39 do = i(seCHtanﬁ%—log | sec§ + tan6)),

so our integral is

9
/cosx\/9 + 25sin*z dr = E(sec@tan@ + log | sec 8 + tan 0))

—2 §u 1+§u2+lo >
03"V T &

1 9
= §uv9 + 25u? + 10 log

5 1
§u+§\/9+25u2
ls' 9 + 25sin? +910
= —sinzV/ in“x 4+ —
2 T

)

5 1
gsinx—i-g 9+ 25sin® x| .

(c) Let u = 1+ €**, so du = 2¢* dz. We have e® = €2%e?* = (u — 1)e®®, so the
integral is

1
e V1 + e dy = 3 /(u — 1)V 2e** dx

:%/<ug—u§> du




3. Finally, another pot-pourri. Who knows what methods might be needed? Do any two
of these.

xarctanx
(a) [ e da.

(b) flog\/l + 22 dx.
(¢) [Vtanz dx.

Solution:

(a) Integrating by parts with v = arctanz and dv = m dx, the integral is

/xarctanx d arctan x n 1/ 1 d
- dr =+ — | ——— dx.
(1+ x2)3 41+ 222 4 (1+ 22)3

Letting x = tan @, so dz = sec®§ df, the right integral is

1 1
/(1+x2)3 dx_/sec“@ d0
:/00849 db

1
= é_l/(l + cos 26)* df

1

— Z/(1+2C0829+008229) do

zi/(1+200320+W) do

3 1 1

3 1 1
= —arctanx + — sin(2 arctan z) + — sin(4 arctan z).
8 4 32
Thus our integral is

/ xarctan x arctan x

3 1 1
—(1 e T = ——4(1 gD + — 5 arctan x + 16 sin(2 arctan z) + 158 sin(4 arctan z).

(b) We have log v'1+ 22 = $log(1 + z?). Integrating by parts with u = log(1 + z?)
and dv = 1 dz, the integral is

1 9 2
/log\/1+x2 dxzﬁ(xlog(l—kx )—2/1~|_$2 d:):)

1

2

1+x 1
2
(mlog(1+a¢ )_2/(1+x2_ 1+x2) dx)

1
=3 (zlog(1 4 2*) — 2z + 2 arctan z)

=xlogV1+ 22 — x + arctan x.




¢ et I = tanx dx and let J = cotx dxr. We have [ = ——+—~——=2 50 1f we
(¢) Let I = [+/tanz da and let J = [ v/cota dz. We have [ = UFHDTUD) 1y if
can find I + J and I — J we are done. We have

I+J:/<\/tana:+\/cotx) dx

sinx COsS T
dx
Ccos x sinx
sinx + CcoS T

vV sin x cos x

Notice that (sinx — cosx)? = sin? ¥ — 2sinxcosz + cos’ 7 = 1 — 2sinz cos ¥, 0
+ — 3(sinz — cosz)? = sinx cos z. Thus the integral above is
sinx +cos:n sinx + cosx
‘ =2 dz.
\/smxcosx V/1— (sinz — cos)?

Letting u = sinz — cosz, so du = (sinx + cosx) dx, this is equal to

+cosz 1
f/ sin @ da;:ﬁ/—du
/1 — (sinz — cos )2 V1—u?
= \/iarcsinu

= V2arcsin(sin x — cos ).

Next, we have

]—Jz/(\/tanx—\/cotx) dx

sin x COS T
dx
COS T sin x
sm T — COST

\/sm:ccosac
sinx — cosx
=2 dx.
V(s

1nx+cosx -1

Letting u = sinz + cos x, so du = —(sinx — cosx) dx, this is equal to

— 1
\/—/ sinx — cosx dx:—\/i/ Ju
\/smx—l—cosx —1 Vuz -1

Letting u = secf, so du = secftanf df, this is equal to

1
—ﬁ/ﬁdUZ—\/ﬁ/secede
= —V/2log | sec§ + tand|

= —V2log [u + Vuz — 1]
= —\/§log sinz + cosx + 2Vsinx cos x| .




We conclude that

/ —tanxdx:(IJrJ)jL(I—J)
2

2 2
= g arcsin(sinz — cosx) — g log |sinx 4 cosz + 2Vsinz cos x| .



4. This question concerns the function f defined by f(x) = y/z, and its Taylor polynomial
of degree 3 at a = 4, which we will write Ps4 ;.

(a) Find P3’4,f(l’).
(b) What does the Lagrange form of Taylor’s Theorem say about the remainder

Ry 5(2)?
(c) Use Taylor’s theorem (and the computations of the previous parts) to show that

. 36640—5 3664045
V5 lies between 3. and e

Solution:

(a) First we calculate the first three derivatives:

flz) =1
fla)= gu>
) = o
f/”(x) _ gx—g7
SO
f(4) =2
, B 1
F4) =7
" 4) _i
F14) = -5

From this we get

2 1 1 3
Poag(@) =5+ 7@ =4 — g (@~ 0"+ e =4
1 1 1
C 0z —4) — (2 —4)? + — (2 — 4)3,
L AL S MR =T A )

(b) The fourth derivative is f""(z) = —%x_%. The Lagrange form tells us that the

remainder is given by

15
R3,4,f($) = _1675% Tl (37 - 4)4
5 4
= — T — s
128t%( )

where ¢ is some real number between 4 and x.



(c) When x >4, t >4, s0 % < % = I In this case we then have
t2

13 128
)
R x)| = |— —4)*
Ruas)] = |- a =)
)
7 (37 - 4)4
128t2
< L (x —4)*
1282
5}
= (z—4)~
16384( )
Letting x = 5, we have
Ras(5)] < —
s 16384
Notice that Ps4z(5) =2+ 1 — & + 213 = ===, which implies that
1145
5= ——+R 5)
r1g T ftas(5),

1145 5 1145 5
so V5 € ( 512 163sd 512 T 16384) » 80

36640 — 5 36640 + 5
\/56< + )

16384 ~ 16384



d.

(a) Find the Taylor polynomial of degree 4 of f(x) = 2° + 2® + z at a = 1.

(b) Express the polynomial p(z) = Az® + Bz? + Cx + D as a polynomial in (z — 2)
in two ways:

i.
ii.

Solution:

By explicit algebra and factoring.
Using facts about Taylor polynomials.

(a) We first calculate the first 4 derivatives:

SO

fl(x) =5z +32* + 1
f"(z) = 202° + 62
f"(z) = 602* + 6
/" (x) =120z,
f(1) =3
f(1)=9
f'(1) =26
£7(1) = 66
£7(1) = 120.

We conclude that

(b) i

11.

Piij(r) =349 —1) +13(z — 1)* + 11(x — 1)* + 5(x — 1)~
Let
p(z) =alr —2)> +b(x —2)* + c(x —2) +d
=a(r® — 62+ 122 — 8) + b(z* —dz +4) +c(z —2) +d
= ax® + (b — 6a)x* + (12a — 4b + ¢)z + (4b — 8a — 2¢ + d)
for some constants a,b,c,d. Equating coefficients, we first get a = A, so
b—6A = B, giving b = 6A + B. Then we have 12A —4(6A+ B) +c¢ = C, so

c=12A+ 4B+ C, and finally 4(6A+ B) — 84 —2(12A+4B+C)+d =D,
sod=8A+4B +2C + D. From this we get

p(z) = A(x —2)> + (6A+ B)(z —2)* + (124 + 4B + O)(z — 2) + (8A+ 4B + 2C + D).

It suffices to calculate the degree 3 Taylor polynomial at 2, because the re-
mainder will be 0 since p*) (x) = 0 for all . We have the following derivatives:

p(z) = Az® + Bx* + Cx + D
p'(z) = 342° + 2Bx + C
p"(x) = 6Ax + 2B
p"(z) = 64,



SO

p(2) =8A+4B+2C+ D
p'(2) =12A+4B+C
p"(2) = 12A+ 2B

p///(2) — 6

Thus we have

p(x) = A(x —2)* + (6A + B)(z — 2)* + (12A + 4B + C)(x — 2) + (8A +4B + 2C + D).



6. Let f(z) =log(1+ ).

(a) Find the Taylor polynomial of degree n of f(x) about a = 0, denoted P, o f(z).

(b) Show that for —1 < x < 1 the remainder term R, o s goes to zero as n goes to
infinity. Hint: If you have trouble doing with with the Lagrange form of Taylor’s
theorem, try just starting with the definition:

Todt
log(1+2z) = —.
o 1+t

(¢) Use Taylor polynomials, and your analysis of the remainder term, to find a rational
number that is within £0.1 of log 2.

ow that for z > e remainder term R, o ¢(z) does not go to zero as n goes
d) Show that fi 1 th inder t Ry 05(x) d t got g
to infinity.

(e) Nevertheless, use Taylor polynomials (slightly cleverly) to find a rational number
that is within 0.1 of log 3.

Solution:
(a) We have
1
f/<$) - 1 + .CC"
1 ]'
f(x)__(l—f—C(])Q’
" 2
f (I) - (1 —f-fL')S,
1" 3-2
f (x)__(1+x)47

In general, it is not hard to see that f™(z) = (—1)”_1%

[0 — (—qyn—tsll - CU" gy > 10 Also f(0) = 0. Thus

n:

for n > 1, so

~ (-,
Poos(z) = x
k=1 n
2 1'3 xn
— 7 <. 1 n—1
v 2 + 3 +( ) n



(b) We have

|
::/x(1—t+¢2—t3+-~4—@¢YH1+£:Qﬁ> dt
0 1+t
IQ $3 $4 n

T T yn
—p— T () () dt
T T A + >A 1+t

T tn
= Proglo)+ (1"
0

1+1
s0 Ry o.f(x) = (—1)" Oxf—L dt. For 0 <z <1, we have 1 <1+t for all t € [0, z],
SO Htgl SO

dt,

o) = |1 [ o an

i
<[ ra

"
n+1

since 0 <z <1, we have 0 < 2" < 1,50 0 < 2t < L Since -~ — 0, the
. n+1 n+1 n+1 )
remainder approaches 0 as well.

Now, for —1 < x <0, we have 1 +¢t>1+x > 0, so1

x t?’L
Runl = |07 [ 5
<[l
=), 1T+t
1 x
<y [ b
1+$ 0
‘ZC|”+1
(n+1)(x+1)

Arguing as above, this approaches 0 as n — oo.

(c) Wemust find an integer n such that |R, o ¢(1)| < 75. From the above computation,
since 1 € [0,1] we know that |R, 0 ¢(1)] < 1"+1n+ 1 = = so when n > 9 we

= < 1+:B We then have

|

dt

n+17
have the desired inequality. Thus
T 1 1 1 1 1 1 1
P, HN=l—-=-4+=-—-4-—=4+=-—=—+-—
bo.r(1) 57371757677 89
1879



has the property that

1879 1 1879+ 1
2520 1072520 10/

log2 e <

(d) For x > 1, we have 0 < 14t < 14,50 117 > 135 Thus
tn

= _1T'L
Ru) = |07 [ 5
X tn
= dt
s

1
> /Oxt" dt
1+2x
1 gntt

.

B l+xzn+1

Since x > 1 the final term approaches oo as n — oo, so the remainder does not
approach 0.

(e) We have log3 = —log 3. Letting © = —2, we must find n such that | R, o s(z)| <

%. From the above computations, since —1 < z < 0, we have

9 }_g‘n—kl
fino.s <_§)‘ =0t (-2+1)

2n+1
- 3(n+1)
When n = 4, the last expression is % = % < %, so we must take n > 4. Then

s (-2) - (_; B TG i <—4§>4>

28

27

has the property that

28 1 28 1>

] “©_ 2 2,2
0g3 € (27 10'27 10



7. (a) Prove that if f”(a) exists, then
1) — o £ )+ Fla ) = 270

h—0 h?

Hint: use the Taylor polynomial P, ¢(z) with z = a +h and © = a — h. Of
course, Taylor’s theorem will be important here!

(b) Let
fz) =

—z2 ifx <0.
Show that f”(0) does not exist, but that

L FO R+ 50— B~ 27(0)
h—0 h?

{x2 if x >0,

does exist.
(c) If it exists, we will call the value

L flath)+ fla—h) = 2f(a)
h—0 h?

the Schwarz second derivative of f(x) at x = a. From the previous two parts, we
know that this agrees with the ordinary second derivative if that exists, but that
the Schwarz second derivative can exist even if f”(a) does not exist. Problem:
Prove that if f(x) has a local maximum at x = a and the Schwarz second derivative
at x = a exists, then it is < 0.

(d) Prove that if f"”'(a) exists, then

f"(a) fla+h) = fla—h)—2hf"(a)

3 & |
Solution:
(a) We have
" 2
fla+ ) = fl@) + Flah+ Ry ),
" 2
fla—h) = fla) ~ fh+ Oy (on),

so for h # 0 we have
fla+h)+ fla—h)—=2f(a) 2f(a)+ Roas(h)+ f"(a)h* + Rans(—h) — 2f(a)

12 - 12
Ry, ¢(h Ry o (—h
g Tonslt) | Faas (1)
Roqa,f(=h)

h2

L fath) + flo—B) —2f(a)

h—0 h?

R?,a,f(h)
h2

Since limy,_ = limy,_g =0, we have

= ()



2 x>0
b) We h ! = ’ -
(b) We have f'(z) {_21_7 <0

f"(0) does not exist. However,

= |2z|, and |2z| is not differentiable at 0, so

— —_— 2 —_— 2 —_— .
lim f(O+h)+ f(0O—h)—2f(0) ~ i h—h*—2-0
h—0+ h? h—0t h?
e —h?+h?*—2-0
N h—0~ h?
o 00 70— 1) —27(0)
h—0~ h2

so this limit exists and equals 0.
(c) Since f has a maximum at a, for h sufficiently close to 0, we have f(a+h) < f(a)
and f(a—h) < f(a), so fla+h)+ fla—h) <2f(a), so

fla+h)+ fla—h)—2f(a)
h2

<0

)

which implies that the limit as h — 0 is < 0, which exists by assumption.

(d) Arguing as above, we have

f”(a)h2 N f’”(a)h3

fla+h) = f(a)+ f'(a)h + 5 5 + Rsa,r(h),
fla—n) = @)~y + SO g e,

so for h # 0 we have

fla+h) = fla—h)=2nf(a) _ 2f'(a)h+ L0 4 Ry o (h) = Ry s(—h) — 2hf'(a)

h? h?
_fMa) | Byar(h) _ Rsag(=h)
3 h? h? '
Since limy,_,o R3";L’{(h) = limy,_o R3’“;{3(_h) = 0, we have

L fash) = fla—h) = 2hf'(a) _ f"(a)

h—0 h3 3



