Math 10860: Honors Calculus II, Spring 2021 Homework 7

This problem will start with a few intergrals, and then transition to questions about Taylor polynomials.

1. Some integrands appropriate for partial fractions. Do any two of these.
(a) $\int \frac{2 x^{2}+7 x-1}{x^{3}-3 x^{2}+3 x-1} d x$.
(b) $\int \frac{3 x^{2}+3 x+1}{x^{3}+2 x^{2}+2 x+1} d x$.
(c) $\int \frac{3 x}{\left(x^{2}+x+1\right)^{3}} d x$.
2. A pot-pourri with a (slightly non-obvious) trigonometric flavor. Do part (a) and one of the other two.
(a) $\int \sqrt{1-4 x-2 x^{2}} d x$.
(b) $\int \cos x \sqrt{9+25 \sin ^{2} x} d x$.
(c) $\int e^{4 x} \sqrt{1+e^{2 x}} d x$.
3. Finally, another pot-pourri. Who knows what methods might be needed? Do any two of these.
(a) $\int \frac{x \arctan x}{\left(1+x^{2}\right)^{3}} d x$.
(b) $\int \log \sqrt{1+x^{2}} d x$.
(c) $\int \sqrt{\tan x} d x$.
4. This question concerns the function f defined by $f(x)=\sqrt{x}$, and its Taylor polynomial of degree 3 at $a=4$, which we will write $P_{3,4, f}$.
(a) Find $P_{3,4, f}(x)$.
(b) What does the Lagrange form of Taylor's Theorem say about the remainder $R_{3,4, f}(x)$?
(c) Use Taylor's theorem (and the computations of the previous parts) to show that $\sqrt{5}$ lies between $\frac{36640-5}{16384}$ and $\frac{36640+5}{16384}$
5. (a) Find the Taylor polynomial of degree 4 of $f(x)=x^{5}+x^{3}+x$ at $a=1$.
(b) Express the polynomial $p(x)=A x^{3}+B x^{2}+C x+D$ as a polynomial in $(x-2)$ in two ways:
i. By explicit algebra and factoring.
ii. Using facts about Taylor polynomials.
6. Let $f(x)=\log (1+x)$.
(a) Find the Taylor polynomial of degree n of $f(x)$ about $a=0$, denoted $P_{n, 0, f}(x)$.
(b) Show that for $-1<x \leq 1$ the remainder term $R_{n, 0, f}$ goes to zero as n goes to infinity. Hint: If you have trouble doing with with the Lagrange form of Taylor's theorem, try just starting with the definition:

$$
\log (1+x)=\int_{0}^{x} \frac{d t}{1+t}
$$

(c) Use Taylor polynomials, and your analysis of the remainder term, to find a rational number that is within ± 0.1 of $\log 2$.
(d) Show that for $x>1$ the remainder term $R_{n, 0, f}(x)$ does not go to zero as n goes to infinity.
(e) Nevertheless, use Taylor polynomials (slightly cleverly) to find a rational number that is within ± 0.1 of $\log 3$.
7. (a) Prove that if $f^{\prime \prime}(a)$ exists, then

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}
$$

Hint: use the Taylor polynomial $P_{2, a, f}(x)$ with $x=a+h$ and $x=a-h$. Of course, Taylor's theorem will be important here!
(b) Let

$$
f(x)= \begin{cases}x^{2} & \text { if } x \geq 0 \\ -x^{2} & \text { if } x \leq 0\end{cases}
$$

Show that $f^{\prime \prime}(0)$ does not exist, but that

$$
\lim _{h \rightarrow 0} \frac{f(0+h)+f(0-h)-2 f(0)}{h^{2}}
$$

does exist.
(c) If it exists, we will call the value

$$
\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}
$$

the Schwarz second derivative of $f(x)$ at $x=a$. From the previous two parts, we know that this agrees with the ordinary second derivative if that exists, but that the Schwarz second deriviative can exist even if $f^{\prime \prime}(a)$ does not exist. Problem: Prove that if $f(x)$ has a local maximum at $x=a$ and the Schwarz second derivative at $x=a$ exists, then it is ≤ 0.
(d) Prove that if $f^{\prime \prime \prime}(a)$ exists, then

$$
\frac{f^{\prime \prime \prime}(a)}{3}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)-2 h f^{\prime}(a)}{h^{3}}
$$

