Math 10860: Honors Calculus II, Spring 2021 Homework 4

1. Differentiate each of the following functions.
(a) $f(x)=\arcsin (\arctan (\arccos (x)))$.

Solution: We use Chain Rule here. We have that

$$
\begin{aligned}
& \frac{d}{d x} \arcsin (\arctan (\arccos (x)))=\frac{1}{\sqrt{1-\arctan ^{2}(\arccos (x))}} \cdot \frac{d}{d x} \arctan (\arccos (x)) \\
& \quad=\frac{1}{\sqrt{1-\arctan ^{2}(\arccos (x))}} \cdot \frac{1}{1+\arccos ^{2}(x)} \cdot \frac{d}{d x} \arccos (x) \\
& =-\frac{1}{\sqrt{1-x^{2}}\left(\arccos ^{2}(x)+1\right) \sqrt{1-\arctan ^{2}(\arccos (x))}}
\end{aligned}
$$

2. $f(x)=\arcsin \left(\frac{1}{\sqrt{1+x^{2}}}\right)$.

Solution: We use Chain Rule here and get that

$$
\begin{aligned}
\frac{d}{d x} \arcsin \left(\frac{1}{\sqrt{1+x^{2}}}\right) & =\frac{1}{\sqrt{1-\left(\frac{1}{\sqrt{1+x^{2}}}\right)^{2}}} \cdot \frac{d}{d x} \frac{1}{\sqrt{1+x^{2}}} \\
& =\frac{1}{\sqrt{1-\left(\frac{1}{\left.\sqrt{1+x^{2}}\right)^{2}}\right.}} \cdot\left(-\frac{1}{2}\right) \cdot\left(x^{2}+1\right)^{-\frac{1}{2}-1} \cdot \frac{d}{d x}\left(x^{2}+1\right) \\
& =-\frac{x}{\left(x^{2}+1\right)^{\frac{3}{2}} \sqrt{1-\frac{1}{x^{2}+1}}} \\
& =-\frac{x}{\sqrt{\frac{x^{2}\left(x^{2}+1\right)^{3}}{x^{2}+1}}} \\
& =-\frac{x}{\sqrt{x^{2}\left(1+x^{2}\right)^{2}}} \\
& =-\frac{x}{|x|\left(1+x^{2}\right)}
\end{aligned}
$$

Find the following limits using l'Hopital's Rule.

1. $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}$.

Solution: Let $f(\theta)=\sin (\theta)$ and $g(\theta)=\theta$. Note that $\lim _{\theta \rightarrow 0} f(\theta)=\lim _{\theta \rightarrow 0} g(\theta)=0$. We have then $f^{\prime}(\theta)=\cos (\theta)$ and $g^{\prime}(\theta)=1$. Using l'Hopital's Rule, we can then state

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{f(\theta)}{g(\theta)} & =\lim _{\theta \rightarrow 0} \frac{f^{\prime}(\theta)}{g^{\prime}(\theta)} \\
& =\lim _{\theta \rightarrow 0} \cos (\theta) \\
& =1
\end{aligned}
$$

where the last line follows from the continuity of the cosine function.
2. $\lim _{\theta \rightarrow 0} \frac{\cos (\theta)-1}{\theta}$.

Solution: Let $f(\theta)=\cos (\theta)-1$ and $g(\theta)=\theta$. Note that $\lim _{\theta \rightarrow 0} f(\theta)=\lim _{\theta \rightarrow 0} f(\theta)=$ 0 . We have that $f^{\prime}(\theta)=-\sin (\theta)$ and $g^{\prime}(\theta)=1$. As a result, using l'Hopital's Rule we can state

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{f(\theta)}{g(\theta)} & =\lim _{\theta \rightarrow 0} \frac{f^{\prime}(\theta)}{g^{\prime}(\theta)} \\
& =\lim _{\theta \rightarrow 0}-\sin (\theta) \\
& =0
\end{aligned}
$$

where the last line follows from the continuity of the sine function.
3. $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)-\theta+\theta^{3} / 6}{\theta^{4}}$.

Solution: Let $f(\theta)=\sin (\theta)-\theta+\theta^{3} / 6$ and $g(\theta)=\theta^{4}$. Note that $\lim _{\theta \rightarrow 0} f(\theta)=$ $\lim _{\theta \rightarrow 0} g(\theta)=0$. We have that $f^{\prime}(\theta)=\cos (\theta)-1+\theta^{2} / 2$ and $g^{\prime}(\theta)=4 \theta^{3}$. However, notice that once again we have that $\lim _{\theta \rightarrow 0} f^{\prime}(\theta)=\lim _{\theta \rightarrow 0} g^{\prime}(\theta)=0$, and so we need to consider the second derivatives. We have that $f^{\prime \prime}(\theta)=-\sin (\theta)+\theta$ and $g^{\prime \prime}(\theta)=12 \theta^{2}$. But notice yet again that taking the limits of these functions as θ goes to 0 would result in both of their limits being 0 , and the same situation occurs for the third derivatives $f^{\prime \prime \prime}(\theta)=-\cos (\theta)+1$ and $g^{\prime \prime \prime}(\theta)=24 \theta$. But when we take the derivatives of these functions again, we have that $f^{\prime \prime \prime \prime}(\theta)=\sin (\theta)$ and $g^{\prime \prime \prime \prime}(\theta)=24$. And so after applying l'Hopital's Rule multiple times, we can state that

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{f(\theta)}{g(\theta)} & =\lim _{\theta \rightarrow 0} \frac{f^{\prime \prime \prime \prime}(\theta)}{g^{\prime \prime \prime \prime}(\theta)} \\
& =\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{24} \\
& =0
\end{aligned}
$$

4. $\lim _{\theta \rightarrow 0}\left(\frac{1}{\theta}-\frac{1}{\sin (\theta)}\right)$.

Solution: First we rewrite the limit as

$$
\lim _{\theta \rightarrow 0}\left(\frac{1}{\theta}-\frac{1}{\sin (\theta)}\right)=\lim _{\theta \rightarrow 0}\left(\frac{\sin (\theta)-\theta}{\theta \sin (\theta)}\right)
$$

Just as in the previous question, we will have to use L'Hopital's Rule multiple times here. Let $f(\theta)=\sin (\theta)-\theta$ and $g(\theta)=\theta \sin (\theta)$. Note that $\lim _{\theta \rightarrow 0} f(\theta)=\lim _{\theta \rightarrow 0} g(\theta)=$ 0 . We apply L'Hopital's Rule and consider the first derivatives. Note that $f^{\prime}(\theta)=$ $\cos (\theta)-1$ and $g^{\prime}(\theta)=\sin (\theta)+\theta \cos (\theta)$. But the limits of these functions equal 0 as θ goes to 0 , and so we need to consider the second derivatives, $f^{\prime \prime}(\theta)=-\sin (\theta)$ and $g^{\prime \prime}(\theta)=2 \cos (\theta)-\theta \sin (\theta)$. After applying l'Hopital's Rule multiple times, we can now
state

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{f(\theta)}{g(\theta)} & =\lim _{\theta \rightarrow 0} \frac{f^{\prime \prime}(\theta)}{g^{\prime \prime}(\theta)} \\
& =\lim _{\theta \rightarrow 0} \frac{-\sin (\theta)}{2 \cos (\theta)-\theta \sin (\theta)} \\
& =0
\end{aligned}
$$

1. From the addition formulas for $\sin (\theta)$ and $\cos (\theta)$ derive formulas for $\sin (2 \theta)$ and $\cos (2 \theta)$ and $\sin (3 \theta)$ and $\cos (3 \theta)$.
Solution: The addition formulas for sine and cosine are

$$
\begin{aligned}
& \sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \\
& \cos (\alpha+\beta)=\cos (\alpha) \sin (\beta)-\sin (\alpha) \sin (\beta)
\end{aligned}
$$

$\sin (2 \theta)$: First we find the value of $\sin (2 \theta)$. If we let $\alpha=\beta=\theta$, then the first addition formula becomes

$$
\sin (\theta+\theta)=\sin (\theta) \cos (\theta)+\cos (\theta) \sin (\theta)=2 \sin (\theta) \cos (\theta)
$$

$\cos (2 \theta)$: Next we find the value of $\cos (2 \theta)$. If we let $\alpha=\beta=\theta$, then the second addition formula becomes

$$
\cos (\theta+\theta)=\cos (\theta) \cos (\theta)-\sin (\theta) \sin (\theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)
$$

Note that $\sin ^{2}(\theta)=1-\cos ^{2}(\theta)$ and so we have

$$
\cos (\theta+\theta)=2 \cos ^{2}(\theta)-1
$$

$\sin (3 \theta)$: Now we find the value of $\sin (3 \theta)$. Let $\alpha=2 \theta$ and $\beta=\theta$. The first addition formula and the formulas for $\sin (2 \theta)$ and $\cos (2 \theta)$ gives us

$$
\begin{aligned}
\sin (2 \theta+\theta) & =\sin (2 \theta) \cos (\theta)+\cos (2 \theta) \sin (\theta) \\
& =2 \sin (\theta) \cos (\theta) \cos (\theta)+\left(\cos ^{2}(\theta)-\sin ^{2}(\theta) \sin (\theta)\right. \\
& =2 \sin (\theta) \cos ^{2}(\theta)+\sin (\theta) \cos ^{2}(\theta)-\sin ^{3}(\theta) \\
& =3 \sin (\theta) \cos ^{2}(\theta)-\sin ^{3}(\theta)
\end{aligned}
$$

Recall that $\cos ^{2}(\theta)=1-\sin ^{2}(\theta)$. Plugging this into our expression gives us

$$
\begin{aligned}
\sin (2 \theta+\theta) & =3 \sin (\theta)\left(1-\sin ^{2}(\theta)\right)-\sin ^{3}(\theta) \\
& =3 \sin (\theta)-4 \sin ^{3}(\theta)
\end{aligned}
$$

$\cos (3 \theta)$: Now we find the value of $\cos (3 \theta)$. Let $\alpha=2 x$ and $\beta=x$. Using the second addition formula along with the formulas for $\sin (2 \theta)$ and $\cos (\theta)$ gives us

$$
\begin{aligned}
\cos (2 \theta+\theta) & =\cos (2 \theta) \cos (\theta)-\sin (2 \theta) \sin (\theta) \\
& =\left(\cos ^{2}(\theta)-\sin ^{2}(\theta)\right) \cos (\theta)-2 \sin ^{2}(\theta) \cos (\theta) \\
& =\cos ^{3}(\theta)-\sin ^{2}(\theta) \cos (\theta)-2 \sin ^{2}(\theta) \cos (\theta) \\
& =\cos ^{3}(\theta)-3 \sin ^{2}(\theta) \cos (\theta)
\end{aligned}
$$

Recall that $\sin ^{2}(\theta)=1-\cos ^{2}(\theta)$ and so we have that

$$
\begin{aligned}
\cos (2 \theta+\theta) & =\cos ^{3}(\theta)-3 \cos (\theta)\left(1-\cos ^{2}(\theta)\right) \\
& =4 \cos ^{3}(\theta)-3 \cos (\theta)
\end{aligned}
$$

2. Using these formulas, prove that the following identities hold:

$$
\begin{aligned}
\sin \frac{\pi}{4} & =\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2} \\
\tan \frac{\pi}{4} & =1 \\
\sin \frac{\pi}{6} & =\frac{1}{2} \\
\cos \frac{\pi}{6} & =\frac{\sqrt{3}}{2}
\end{aligned}
$$

Solution:

$\sin \frac{\pi}{4}=\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2}$: Let $x=\pi / 4$. Using the formula for $\sin (2 x)$, we have that

$$
\sin \left(\frac{\pi}{2}\right)=2 \sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)=1 \Rightarrow \sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{4}\right)=\frac{1}{2}
$$

The formula for $\cos (2 x)$ gives us

$$
\cos ^{2} \frac{\pi}{4}-\sin ^{2} \frac{\pi}{4}=\cos \frac{\pi}{2}=0 \Rightarrow \cos \frac{\pi}{4}=\sin \frac{\pi}{4}
$$

Using our results, we can now state that

$$
\sin \frac{\pi}{4}=\cos \frac{\pi}{4}= \pm \frac{1}{\sqrt{2}}
$$

But recall that the sine and cosine functions are positive in the first quadrant, and so we have that

$$
\sin \frac{\pi}{4}=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}
$$

$\tan \frac{\pi}{4}=1:$ Recall that we have

$$
\sin ^{2} \frac{\pi}{4}=\cos ^{2} \frac{\pi}{4}
$$

and so we have that

$$
\tan \frac{\pi}{4}=\frac{\sin (\pi / 4)}{\cos (\pi / 4)}=1
$$

$\sin \frac{\pi}{6}=\frac{1}{2}$: Let $x=\frac{\pi}{6}$. Recall the formula for $\sin (3 x)$. We have that

$$
3 \sin \frac{\pi}{6}-4 \sin ^{3} \frac{\pi}{6}=\sin \frac{\pi}{2}=1
$$

Now let $y=\sin \pi / 6$. Then the above equation can be rewritten as

$$
3 y-4 y^{3}=1 \Rightarrow 4 y^{3}-3 y+1=0
$$

Note that if $y=1 / 2$, then the above equation is satisfied. As a result, the desired result follows.
$\cos \frac{\pi}{6}$: Let $x=\frac{\pi}{6}$. Using the formula for $\cos (3 x)$, we have that

$$
4 \cos ^{3} \frac{\pi}{6}-3 \cos \frac{\pi}{6}=\cos \frac{\pi}{2}=0
$$

Let $y=\cos \pi / 6 \neq 0$. The above equation becomes

$$
4 y^{3}-3 y=0 \Rightarrow y=\frac{\sqrt{3}}{2}
$$

3. For each integer $n \geq 1$, prove that there exist two-variable polynomials $f_{n}(x, y)$ and $g_{n}(x, y)$ such that

$$
\sin (n \theta)=f_{n}(\sin (\theta), \cos (\theta)) \quad \text { and } \quad \cos (n \theta)=g_{n}(\sin (\theta), \cos (\theta))
$$

Solution: We prove this via induction. Consider the base case $n=1$. We see that $f_{1}(\sin (\theta), \cos (\theta))=\sin (\theta)$ and $g_{1}(\sin (\theta), \cos (\theta))=\cos (\theta)$.
Now suppose that there exists $f_{k-1}(\sin ((k-1) \theta), \cos ((k-1) \theta))$ and $g_{k-1}(\sin ((k-$ $1) \theta), \cos ((k-1) \theta))$ such that $f_{k-1}(\sin ((k-1) \theta), \cos ((k-1) \theta))=\sin ((k-1) \theta)$ and $g_{k-1}(\sin ((k-1) \theta), \cos ((k-1) \theta))=\cos ((k-1) \theta)$ for all $n \leq k-1$, where $k \geq 1$. Based upon our previous addition formulas, we can state

$$
\begin{aligned}
\sin (k \theta) & =\sin ((k-1) \theta) \cos (\theta)+\sin (\theta) \cos ((k-1) \theta) \\
& =f_{k-1}(\sin ((k-1) \theta), \cos ((k-1) \theta)) \cdot g_{1}(\sin (\theta), \cos (\theta)) \\
& +f_{1}(\sin (\theta), \cos (\theta)) \cdot g_{k-1}(\sin ((k-1) \theta), \cos ((k-1) \theta)) \\
\cos (n \theta) & =\cos ((k-1) \theta) \cos (\theta)-\sin ((k-1) \theta) \sin (\theta) \\
& =g_{k-1}(\sin ((k-1) \theta), \cos ((k-1) \theta)) \cdot g_{1}(\sin (\theta), \cos (\theta)) \\
& -f_{k-1}(\sin ((k-1) \theta), \cos ((k-1) \theta)) \cdot f_{1}(\sin (\theta), \cos (\theta))
\end{aligned}
$$

and these resulting functions will be a polynomial, and so we are done.
4. Let $\operatorname{badsin}(\theta)$ and $\operatorname{badcos}(\theta)$ be exactly like sin and \cos, but with the input in degrees instead of radians. Compute the derivatives of $\operatorname{badsin}(\theta)$ and $\operatorname{badcos}(\theta)$.
Solution: Note that

$$
\operatorname{badsin}(\theta)=\sin (\pi \theta / 180), \quad \operatorname{badcos}(\theta)=\cos (\pi \theta / 180)
$$

Via Chain Rule, we have that

$$
\frac{d}{d \theta} \operatorname{badsin}(\theta)=\frac{\pi}{180} \cos (\pi \theta / 180), \quad \frac{d}{d \theta} \operatorname{badcos}(\theta)=-\frac{\pi}{180} \sin (\pi \theta / 180)
$$

5. Give a rigorous proof that for all points (x, y) with $x^{2}+y^{2}=1$, there exists some angle θ with $(x, y)=(\cos (\theta), \sin (\theta))$. In this proof, you are not allowed to use the inverse trig functions!
Solution: Note that $\cos \theta$ is a continuous function on $[-1,1]$, and so by IVT, for x in this interval, there exists a θ_{1} such that $\cos \theta_{1}=x$. In a similar manner, we can state that for $y \in[-1,1]$, there exists a θ_{2} such that $\sin \theta_{2}=y$.
Recall that $x^{2}+y^{2}=1$. We can then state that $\cos ^{2} \theta_{1}+\sin ^{2} \theta_{2}=1$. This can only occur when $\theta_{1}=\theta_{2}$. Denote this shared value as θ. As a result, for any point (x, y) that lies on the unit circle, there exists a θ such that $(x, y)=(\cos \theta, \sin \theta)$.
6. (a) After all the work involved in the definition of $\sin (\theta)$, it would be disconcerting to find that $\sin (\theta)$ is actually a rational function (i.e. a quotient $f(\theta) / g(\theta)$ for polynomials f and g). Prove that it isn't. Hint: there is a simple property of $\sin (\theta)$ that a ratioanl function cannot possibly have.
Solution: By the definition of a rational function, a rational function cannot have an infinite number of roots unless it is identically 0 . Note that the sine function has an infinite number of roots, but is not the zero function. As a result, it cannot be a rational function.
(b) Prove that $\sin (\theta)$ isn't even defined implicitly by an algebraic equation; that is, there do not exist rational functions f_{0}, \ldots, f_{n-1} such that

$$
(\sin (\theta))^{n}+f_{n-1}(\theta) \cdot(\sin (\theta))^{n-1}+\cdots+f_{0}(\theta)=0
$$

Hint: Prove that in such an equation $f_{0}=0$, so that $\sin (\theta)$ can be factored out. The remaining factor is 0 except perhaps at multiples of π. But this implies that it is 0 everywhere (why?). You are now set up for a proof by induction.
Solution: The equation implies that $f_{0}(\theta)=0$ for when θ is a multiple of 2π, and so $f_{0}(\theta)=0$ for all θ since f_{0} is a rational function. Thus we can simplify our equation to

$$
\sin (\theta)\left(\sin ^{n-1}(\theta)+f_{n-1} \sin ^{n-2}(\theta)+\cdots+f_{1}(\theta)\right)=0
$$

The term that is inside the parenthesis must be continuous and 0 for all θ except possibly those that aren't multiples of 2π. However, the term is continuous and
so it must be the case that it is in fact 0 everywhere. We now have established that if $\sin (\theta)$ doesn't even satisfy the implicit equation for $n-1$, then it can't satisfy it for n. But it doesn't even satisfy it for the base case $n=1$, and so it cannot satisfy it for any n.
7. Prove that $|\sin (x)-\sin (y)|<|x-y|$ for all x and y with $x \neq y$. Hint: the same statement with $<$ replaced by \leq is a very straightforward consequence of a well-known theorem (try to figure out which one!). Then play around to replace \leq with $<$.
Solution: Suppose WLOG that $x<y$. We will use MVT. Applying MVT on the interval $[x, y]$ gives us

$$
\sin (y)-\sin (x)=\cos (k)(y-x), \quad \text { for some } k \in(x, y)
$$

Note that $|\cos (k)| \leq 1$, and so we can state

$$
|\sin (y)-\sin (x)|=|\cos (k)||(y-x)| \leq|y-x|
$$

and so we have a weak inequality. However, note that we can find a number c such that $x<c<y$ and (x, c) doesn't have any numbers that are multiples of 2π. By MVT we can state

$$
\begin{aligned}
\sin (y)-\sin (x) & =\sin (y)-\sin (c)+\sin (c)-\sin (x) \\
& =(y-c) \cos \left(\theta_{1}\right)+(c-x) \cos \left(\theta_{2}\right)
\end{aligned}
$$

where $\theta_{1} \in(c, y)$ and $\theta_{2} \in(x, c)$. We can also state that $\left|\cos \left(\theta_{2}\right)\right|<1$, and so we now have

$$
\begin{aligned}
|\sin (y)-\sin (x)| & =\left|(y-c) \cos \left(\theta_{1}\right)+(c-x) \cos \left(\theta_{2}\right)\right| \\
& \leq|y-c|\left|\cos \left(\theta_{1}\right)\right|+|c-x|\left|\cos \left(\theta_{2}\right)\right| \\
& <|y-c|+|c-x| \\
& =|y-x|
\end{aligned}
$$

