
Math 10860: Honors Calculus II, Spring 2021
Homework 4

1. Differentiate each of the following functions.

(a) f(x) = arcsin(arctan(arccos(x))).

Solution: We use Chain Rule here. We have that

d

dx
arcsin( arctan(arccos(x))) =

1√
1− arctan2(arccos(x))

· d
dx

arctan(arccos(x))

=
1√

1− arctan2(arccos(x))
· 1

1 + arccos2(x)
· d
dx

arccos(x)

= − 1
√

1− x2 (arccos2 (x) + 1)
√

1− arctan2 (arccos (x))

2. f(x) = arcsin
(

1√
1+x2

)
.

Solution: We use Chain Rule here and get that

d

dx
arcsin

(
1√

1 + x2

)
=

1√
1−

(
1√

1+x2

)2 · ddx 1√
1 + x2

=
1√

1−
(

1√
1+x2

)2 ·
(
−1

2

)
· (x2 + 1)−

1
2
−1 · d

dx
(x2 + 1)

= − x

(x2 + 1)
3
2

√
1− 1

x2+1

= − x√
x2(x2+1)3

x2+1

= − x√
x2(1 + x2)2

= − x

|x|(1 + x2)

Find the following limits using l’Hopital’s Rule.

1. limθ→0
sin(θ)
θ

.

Solution: Let f(θ) = sin(θ) and g(θ) = θ. Note that limθ→0 f(θ) = limθ→0 g(θ) = 0.
We have then f ′(θ) = cos(θ) and g′(θ) = 1. Using l’Hopital’s Rule, we can then state

lim
θ→0

f(θ)

g(θ)
= lim

θ→0

f ′(θ)

g′(θ)

= lim
θ→0

cos(θ)

= 1



where the last line follows from the continuity of the cosine function.

2. limθ→0
cos(θ)−1

θ
.

Solution: Let f(θ) = cos(θ)− 1 and g(θ) = θ. Note that limθ→0 f(θ) = limθ→0 f(θ) =
0. We have that f ′(θ) = − sin(θ) and g′(θ) = 1. As a result, using l’Hopital’s Rule we
can state

lim
θ→0

f(θ)

g(θ)
= lim

θ→0

f ′(θ)

g′(θ)

= lim
θ→0
− sin(θ)

= 0

where the last line follows from the continuity of the sine function.

3. limθ→0
sin(θ)−θ+θ3/6

θ4
.

Solution: Let f(θ) = sin(θ) − θ + θ3/6 and g(θ) = θ4. Note that limθ→0 f(θ) =
limθ→0 g(θ) = 0. We have that f ′(θ) = cos(θ) − 1 + θ2/2 and g′(θ) = 4θ3. However,
notice that once again we have that limθ→0 f

′(θ) = limθ→0 g
′(θ) = 0, and so we need to

consider the second derivatives. We have that f ′′(θ) = − sin(θ) + θ and g′′(θ) = 12θ2.
But notice yet again that taking the limits of these functions as θ goes to 0 would result
in both of their limits being 0, and the same situation occurs for the third derivatives
f ′′′(θ) = − cos(θ) + 1 and g′′′(θ) = 24θ. But when we take the derivatives of these
functions again, we have that f ′′′′(θ) = sin(θ) and g′′′′(θ) = 24. And so after applying
l’Hopital’s Rule multiple times, we can state that

lim
θ→0

f(θ)

g(θ)
= lim

θ→0

f ′′′′(θ)

g′′′′(θ)

= lim
θ→0

sin(θ)

24
= 0

4. limθ→0

(
1
θ
− 1

sin(θ)

)
.

Solution: First we rewrite the limit as

lim
θ→0

(
1

θ
− 1

sin(θ)

)
= lim

θ→0

(
sin(θ)− θ
θ sin(θ)

)
Just as in the previous question, we will have to use L’Hopital’s Rule multiple times
here. Let f(θ) = sin(θ)− θ and g(θ) = θ sin(θ). Note that limθ→0 f(θ) = limθ→0 g(θ) =
0. We apply L’Hopital’s Rule and consider the first derivatives. Note that f ′(θ) =
cos(θ) − 1 and g′(θ) = sin(θ) + θ cos(θ). But the limits of these functions equal 0 as
θ goes to 0, and so we need to consider the second derivatives, f ′′(θ) = − sin(θ) and
g′′(θ) = 2 cos(θ)− θ sin(θ). After applying l’Hopital’s Rule multiple times, we can now



state

lim
θ→0

f(θ)

g(θ)
= lim

θ→0

f ′′(θ)

g′′(θ)

= lim
θ→0

− sin(θ)

2 cos(θ)− θ sin(θ)

= 0

1. From the addition formulas for sin(θ) and cos(θ) derive formulas for sin(2θ) and cos(2θ)
and sin(3θ) and cos(3θ).

Solution: The addition formulas for sine and cosine are

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

cos(α + β) = cos(α) sin(β)− sin(α) sin(β)

sin(2θ): First we find the value of sin(2θ). If we let α = β = θ, then the first addition
formula becomes

sin(θ + θ) = sin(θ) cos(θ) + cos(θ) sin(θ) = 2 sin(θ) cos(θ)

cos(2θ): Next we find the value of cos(2θ). If we let α = β = θ, then the second
addition formula becomes

cos(θ + θ) = cos(θ) cos(θ)− sin(θ) sin(θ) = cos2(θ)− sin2(θ)

Note that sin2(θ) = 1− cos2(θ) and so we have

cos(θ + θ) = 2 cos2(θ)− 1

sin(3θ): Now we find the value of sin(3θ). Let α = 2θ and β = θ. The first addition
formula and the formulas for sin(2θ) and cos(2θ) gives us

sin(2θ + θ) = sin(2θ) cos(θ) + cos(2θ) sin(θ)

= 2 sin(θ) cos(θ) cos(θ) + (cos2(θ)− sin2(θ) sin(θ)

= 2 sin(θ) cos2(θ) + sin(θ) cos2(θ)− sin3(θ)

= 3 sin(θ) cos2(θ)− sin3(θ)

Recall that cos2(θ) = 1− sin2(θ). Plugging this into our expression gives us

sin(2θ + θ) = 3 sin(θ)(1− sin2(θ))− sin3(θ)

= 3 sin(θ)− 4 sin3(θ)



cos(3θ): Now we find the value of cos(3θ). Let α = 2x and β = x. Using the second
addition formula along with the formulas for sin(2θ) and cos(θ) gives us

cos(2θ + θ) = cos(2θ) cos(θ)− sin(2θ) sin(θ)

= (cos2(θ)− sin2(θ)) cos(θ)− 2 sin2(θ) cos(θ)

= cos3(θ)− sin2(θ) cos(θ)− 2 sin2(θ) cos(θ)

= cos3(θ)− 3 sin2(θ) cos(θ)

Recall that sin2(θ) = 1− cos2(θ) and so we have that

cos(2θ + θ) = cos3(θ)− 3 cos(θ)(1− cos2(θ))

= 4 cos3(θ)− 3 cos(θ)

2. Using these formulas, prove that the following identities hold:

sin
π

4
= cos

π

4
=

√
2

2

tan
π

4
= 1

sin
π

6
=

1

2

cos
π

6
=

√
3

2
.

Solution:

sin π
4

= cos π
4

=
√
2
2
: Let x = π/4. Using the formula for sin(2x), we have that

sin
(π

2

)
= 2 sin

(π
4

)
cos
(π

4

)
= 1⇒ sin

(π
4

)
cos
(π

4

)
=

1

2

The formula for cos(2x) gives us

cos2
π

4
− sin2 π

4
= cos

π

2
= 0⇒ cos

π

4
= sin

π

4

Using our results, we can now state that

sin
π

4
= cos

π

4
= ± 1√

2

But recall that the sine and cosine functions are positive in the first quadrant, and so
we have that

sin
π

4
= cos

π

4
=

1√
2

tan π
4

= 1 : Recall that we have

sin2 π

4
= cos2

π

4



and so we have that

tan
π

4
=

sin(π/4)

cos(π/4)
= 1

sin π
6

= 1
2
: Let x = π

6
. Recall the formula for sin(3x). We have that

3 sin
π

6
− 4 sin3 π

6
= sin

π

2
= 1

Now let y = sinπ/6. Then the above equation can be rewritten as

3y − 4y3 = 1⇒ 4y3 − 3y + 1 = 0

Note that if y = 1/2, then the above equation is satisfied. As a result, the desired
result follows.

cos π
6

: Let x = π
6
. Using the formula for cos(3x), we have that

4 cos3
π

6
− 3 cos

π

6
= cos

π

2
= 0

Let y = cosπ/6 6= 0. The above equation becomes

4y3 − 3y = 0⇒ y =

√
3

2

3. For each integer n ≥ 1, prove that there exist two-variable polynomials fn(x, y) and
gn(x, y) such that

sin(nθ) = fn(sin(θ), cos(θ)) and cos(nθ) = gn(sin(θ), cos(θ)).

Solution: We prove this via induction. Consider the base case n = 1. We see that
f1(sin(θ), cos(θ)) = sin(θ) and g1(sin(θ), cos(θ)) = cos(θ).

Now suppose that there exists fk−1(sin((k − 1)θ), cos((k − 1)θ)) and gk−1(sin((k −
1)θ), cos((k − 1)θ)) such that fk−1(sin((k − 1)θ), cos((k − 1)θ)) = sin((k − 1)θ) and
gk−1(sin((k− 1)θ), cos((k− 1)θ)) = cos((k− 1)θ) for all n ≤ k− 1, where k ≥ 1. Based
upon our previous addition formulas, we can state

sin(kθ) = sin((k − 1)θ) cos(θ) + sin(θ) cos((k − 1)θ)

= fk−1(sin((k − 1)θ), cos((k − 1)θ)) · g1(sin(θ), cos(θ))

+ f1(sin(θ), cos(θ)) · gk−1(sin((k − 1)θ), cos((k − 1)θ))

cos(nθ) = cos((k − 1)θ) cos(θ)− sin((k − 1)θ) sin(θ)

= gk−1(sin((k − 1)θ), cos((k − 1)θ)) · g1(sin(θ), cos(θ))

− fk−1(sin((k − 1)θ), cos((k − 1)θ)) · f1(sin(θ), cos(θ))

and these resulting functions will be a polynomial, and so we are done.



4. Let badsin(θ) and badcos(θ) be exactly like sin and cos, but with the input in degrees
instead of radians. Compute the derivatives of badsin(θ) and badcos(θ).

Solution: Note that

badsin(θ) = sin(πθ/180), badcos(θ) = cos(πθ/180)

Via Chain Rule, we have that

d

dθ
badsin(θ) =

π

180
cos(πθ/180),

d

dθ
badcos(θ) = − π

180
sin(πθ/180)

5. Give a rigorous proof that for all points (x, y) with x2 +y2 = 1, there exists some angle
θ with (x, y) = (cos(θ), sin(θ)). In this proof, you are not allowed to use the inverse
trig functions!

Solution: Note that cos θ is a continuous function on [−1, 1], and so by IVT, for x in
this interval, there exists a θ1 such that cos θ1 = x. In a similar manner, we can state
that for y ∈ [−1, 1], there exists a θ2 such that sin θ2 = y.

Recall that x2 + y2 = 1. We can then state that cos2 θ1 + sin2 θ2 = 1. This can only
occur when θ1 = θ2. Denote this shared value as θ. As a result, for any point (x, y)
that lies on the unit circle, there exists a θ such that (x, y) = (cos θ, sin θ).

6. (a) After all the work involved in the definition of sin(θ), it would be disconcerting
to find that sin(θ) is actually a rational function (i.e. a quotient f(θ)/g(θ) for
polynomials f and g). Prove that it isn’t. Hint: there is a simple property of
sin(θ) that a ratioanl function cannot possibly have.

Solution: By the definition of a rational function, a rational function cannot
have an infinite number of roots unless it is identically 0. Note that the sine
function has an infinite number of roots, but is not the zero function. As a result,
it cannot be a rational function.

(b) Prove that sin(θ) isn’t even defined implicitly by an algebraic equation; that is,
there do not exist rational functions f0, . . . , fn−1 such that

(sin(θ))n + fn−1(θ) · (sin(θ))n−1 + · · ·+ f0(θ) = 0.

Hint: Prove that in such an equation f0 = 0, so that sin(θ) can be factored out.
The remaining factor is 0 except perhaps at multiples of π. But this implies that
it is 0 everywhere (why?). You are now set up for a proof by induction.

Solution: The equation implies that f0(θ) = 0 for when θ is a multiple of 2π,
and so f0(θ) = 0 for all θ since f0 is a rational function. Thus we can simplify our
equation to

sin(θ)(sinn−1(θ) + fn−1 sinn−2(θ) + · · ·+ f1(θ)) = 0

The term that is inside the parenthesis must be continuous and 0 for all θ except
possibly those that aren’t multiples of 2π. However, the term is continuous and



so it must be the case that it is in fact 0 everywhere.We now have established that
if sin(θ) doesn’t even satisfy the implicit equation for n− 1, then it can’t satisfy
it for n. But it doesn’t even satisfy it for the base case n = 1, and so it cannot
satisfy it for any n.

7. Prove that | sin(x) − sin(y)| < |x − y| for all x and y with x 6= y. Hint: the same
statement with < replaced by ≤ is a very straightforward consequence of a well-known
theorem (try to figure out which one!). Then play around to replace ≤ with <.

Solution: Suppose WLOG that x < y. We will use MVT. Applying MVT on the
interval [x, y] gives us

sin(y)− sin(x) = cos(k)(y − x), for some k ∈ (x, y)

Note that | cos(k)| ≤ 1, and so we can state

| sin(y)− sin(x)| = | cos(k)||(y − x)| ≤ |y − x|

and so we have a weak inequality. However, note that we can find a number c such
that x < c < y and (x, c) doesn’t have any numbers that are multiples of 2π. By MVT
we can state

sin(y)− sin(x) = sin(y)− sin(c) + sin(c)− sin(x)

= (y − c) cos(θ1) + (c− x) cos(θ2)

where θ1 ∈ (c, y) and θ2 ∈ (x, c). We can also state that | cos(θ2)| < 1, and so we now have

| sin(y)− sin(x)| = |(y − c) cos(θ1) + (c− x) cos(θ2)|
≤ |y − c|| cos(θ1)|+ |c− x|| cos(θ2)|
< |y − c|+ |c− x|
= |y − x|


