Math 10860: Honors Calculus II, Spring 2021 Homework 4

1. Differentiate each of the following functions.

(a) $f(x) = \arcsin(\arctan(\arccos(x)))$.

(b)
$$f(x) = \arcsin\left(\frac{1}{\sqrt{1+x^2}}\right)$$
.

2. Find the following limits using l'Hopital's Rule.

(a)
$$\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta}$$
.
(b) $\lim_{\theta \to 0} \frac{\cos(\theta) - 1}{\theta}$.
(c) $\lim_{\theta \to 0} \frac{\sin(\theta) - \theta + \theta^3/6}{\theta^4}$.
(d) $\lim_{\theta \to 0} \left(\frac{1}{\theta} - \frac{1}{\sin(\theta)}\right)$.

- 3. (a) From the addition formulas for $\sin(\theta)$ and $\cos(\theta)$ derive formulas for $\sin(2\theta)$ and $\cos(2\theta)$ and $\sin(3\theta)$ and $\cos(3\theta)$.
 - (b) Using these formulas, prove that the following identities hold:

$$\sin \frac{\pi}{4} = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
$$\tan \frac{\pi}{4} = 1$$
$$\sin \frac{\pi}{6} = \frac{1}{2}$$
$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}.$$

(c) For each integer $n \ge 1$, prove that there exist two-variable polynomials $f_n(x, y)$ and $g_n(x, y)$ such that

$$\sin(n\theta) = f_n(\sin(\theta), \cos(\theta))$$
 and $\cos(n\theta) = g_n(\sin(\theta), \cos(\theta))$

- 4. Let $\operatorname{badsin}(\theta)$ and $\operatorname{badcos}(\theta)$ be exactly like sin and cos, but with the input in degrees instead of radians. Compute the derivatives of $\operatorname{badsin}(\theta)$ and $\operatorname{badcos}(\theta)$.
- 5. Give a rigorous proof that for all points (x, y) with $x^2 + y^2 = 1$, there exists some angle θ with $(x, y) = (\cos(\theta), \sin(\theta))$. In this proof, you are *not* allowed to use the inverse trig functions!
- 6. (a) After all the work involved in the definition of sin(θ), it would be disconcerting to find that sin(θ) is actually a rational function (i.e. a quotient f(θ)/g(θ) for polynomials f and g). Prove that it isn't. Hint: there is a simple property of sin(θ) that a ratioanl function cannot possibly have.

(b) Prove that $\sin(\theta)$ isn't even defined implicitly by an algebraic equation; that is, there do not exist rational functions f_0, \ldots, f_{n-1} such that

$$(\sin(\theta))^n + f_{n-1}(\theta) \cdot (\sin(\theta))^{n-1} + \dots + f_0(\theta) = 0.$$

Hint: Prove that in such an equation $f_0 = 0$, so that $\sin(\theta)$ can be factored out. The remaining factor is 0 except perhaps at multiples of π . But this implies that it is 0 everywhere (why?). You are now set up for a proof by induction.

7. Prove that $|\sin(x) - \sin(y)| < |x - y|$ for all x and y with $x \neq y$. Hint: the same statement with < replaced by \leq is a very straightforward consequence of a well-known theorem (try to figure out which one!). Then play around to replace \leq with <.