Math 10860: Honors Calculus II, Spring 2021 Homework 4

1. Differentiate each of the following functions.
(a) $f(x)=\arcsin (\arctan (\arccos (x)))$.
(b) $f(x)=\arcsin \left(\frac{1}{\sqrt{1+x^{2}}}\right)$.
2. Find the following limits using l'Hopital's Rule.
(a) $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}$.
(b) $\lim _{\theta \rightarrow 0} \frac{\cos (\theta)-1}{\theta}$.
(c) $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)-\theta+\theta^{3} / 6}{\theta^{4}}$.
(d) $\lim _{\theta \rightarrow 0}\left(\frac{1}{\theta}-\frac{1}{\sin (\theta)}\right)$.
3. (a) From the addition formulas for $\sin (\theta)$ and $\cos (\theta)$ derive formulas for $\sin (2 \theta)$ and $\cos (2 \theta)$ and $\sin (3 \theta)$ and $\cos (3 \theta)$.
(b) Using these formulas, prove that the following identities hold:

$$
\begin{aligned}
\sin \frac{\pi}{4} & =\cos \frac{\pi}{4}=\frac{\sqrt{2}}{2} \\
\tan \frac{\pi}{4} & =1 \\
\sin \frac{\pi}{6} & =\frac{1}{2} \\
\cos \frac{\pi}{6} & =\frac{\sqrt{3}}{2}
\end{aligned}
$$

(c) For each integer $n \geq 1$, prove that there exist two-variable polynomials $f_{n}(x, y)$ and $g_{n}(x, y)$ such that

$$
\sin (n \theta)=f_{n}(\sin (\theta), \cos (\theta)) \quad \text { and } \quad \cos (n \theta)=g_{n}(\sin (\theta), \cos (\theta))
$$

4. Let $\operatorname{badsin}(\theta)$ and $\operatorname{badcos}(\theta)$ be exactly like sin and \cos, but with the input in degrees instead of radians. Compute the derivatives of $\operatorname{badsin}(\theta)$ and $\operatorname{badcos}(\theta)$.
5. Give a rigorous proof that for all points (x, y) with $x^{2}+y^{2}=1$, there exists some angle θ with $(x, y)=(\cos (\theta), \sin (\theta))$. In this proof, you are not allowed to use the inverse trig functions!
6. (a) After all the work involved in the definition of $\sin (\theta)$, it would be disconcerting to find that $\sin (\theta)$ is actually a rational function (i.e. a quotient $f(\theta) / g(\theta)$ for polynomials f and g). Prove that it isn't. Hint: there is a simple property of $\sin (\theta)$ that a ratioanl function cannot possibly have.
(b) Prove that $\sin (\theta)$ isn't even defined implicitly by an algebraic equation; that is, there do not exist rational functions f_{0}, \ldots, f_{n-1} such that

$$
(\sin (\theta))^{n}+f_{n-1}(\theta) \cdot(\sin (\theta))^{n-1}+\cdots+f_{0}(\theta)=0
$$

Hint: Prove that in such an equation $f_{0}=0$, so that $\sin (\theta)$ can be factored out. The remaining factor is 0 except perhaps at multiples of π. But this implies that it is 0 everywhere (why?). You are now set up for a proof by induction.
7. Prove that $|\sin (x)-\sin (y)|<|x-y|$ for all x and y with $x \neq y$. Hint: the same statement with $<$ replaced by \leq is a very straightforward consequence of a well-known theorem (try to figure out which one!). Then play around to replace \leq with $<$.

