Math 10860: Honors Calculus II, Spring 2021
Homework 3

1. Some questions on uniform continuity.

(a) Recall that we argued in class that the function f: (0,1] — R given by f(z) = 1/z
is continuous but not uniformly continuous, and we further argued that the issue
was what was happening near 0 (the function is “blowing up”, with unboundedly
increasing slope). Find a function f: (0,1] — R that is continuous but not
uniformly continuous, and is bounded on (0, 1].

(b) Show that if f,g: A — R are both uniformly continuous on A (some interval in
R), and both bounded, then fg is uniformly continuous on A.

(c) Give an example of an interval A, and functions f,g: A — R that are both
uniformly continuous on A, with f not bounded on A, g bounded on A, such that
fg is not uniformly continuous on A.

Solution:

(a) Let f(z) = sin(%). This is clearly continuous on (0,1], and it is bounded since
[sin(c)| <1 for all c e R. Let e = 5. Let 6 > 0 be arbitrary. Let n € N be such
that n? + 2 > o= Let 2 = & and let y = mig
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However,
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/() — F(w)] = Isin(mn) — sin(en + )
=1
> e,

so f is continuous and bounded, but not uniformly continuous.

(b) Let € > 0 be arbitrary. Let |f(z)| < Cy and |g(x)| < C, for all x and for some
Ct,Cy > 0. Let C' = max{C}, C,}. Since f, g are uniformly continuous, there are
d¢,04 > 0 such that for all z,y € A, if |z — y| < 0, then |f(z) — f(y)| < £, and

2c’
if |2 —y| < 4y, then [g(z) — g(y)| < . Let 6 = min{dy,d,}. Then if |z —y| <6,



we have

y) — f(v)g(y)]
(y) = f(y)g(y)|
| f(x) = fy)]

and we are done.

Let f,g : R — R be given by f(x) = z and g(x) = sin(x). Then f is uniformly
continuous and not bounded, while g is uniformly continuous and bounded. The

product h = fg is not uniformly continuous on R. Let ¢ = 1 and let § > 0
0], d>1

be arbitrary. Let §' =
J, <1

. Let x = 2nm and y = 2nm + %’. Then

lx —y| =% <4, but

|h(z) — h(y)| = |2mnsin(2mn) — (27rn + %) sin (27rn + %) ‘

—2+5—/in£/
= |2+ 5 )sin{ 5]

By choosing n large enough, and noting that %/ is never an integer multiple of
m, we can make this expression arbitrarily large, and in particular greater than
1 = e. Thus this function is not uniformly continuous on R.




2. Consider the function f: [0,2] — R defined by

0 ifz£l
f(x):{l ifiili

Prove that there does not exist a function g: [0, 2] — R with the property that ¢’ = f.

Solution: Assume for a contradiction that there is such a function g. Since f is identical
to the zero function except at a single point, we have f; f =0 for any a,b € [0,2]. By
the fundamental theorem of calculus, we have 0 = f: f=gla)—g(b),so g(a) = g(b), so
g is a constant function since a and b were arbitrary. But the derivative of a constant
function is 0 everywhere, contradicting that ¢’ = f, so there is no such function g.



3. Find the derivatives of the following functions.
(a) F(z) = faz3 sin®t dt
15
() Fx) = ;" (F eteme)
b T
(¢) F(z) = [, oy
Solution:
(a) F'(x) = 32%sin®(2%)
(b) F'(x) = = [§ sratam

b
() F'(@) = [, mats



4. For each of the following functions f, consider F(x) = fox f, and determine at which
points z is F'(x) = f(z). Caution: there may be some x for which F'(z) = f(z) even
though the hypotheses of the obvious theorem do not apply.

0 ifzx<1,
(8) flo) = {1 if z > 1.
0 ifx#1
‘b — Y
(b) f(z) {1 if v =1.
0 ifz <0,
(c) flz) = {x if x> 0.
Solution:
0, r<1 ) L. . .
(a) F(x) = , and this function is differentiable at all = # 1 with

zr—1, z>1
derivative equal to f, but it is not differentiable at x = 1.

(b) By the same reasoning as question 2, F(z) = 0 for all x. Thus F'(x) = f(z) for
all x # 1.

(c) f is continuous everywhere, so the fundamental theorem of calculus guarantees
that F'(x) = f(z) everywhere.



5. Let f be integrable on [a,b], let ¢ be in (a, b) and let

F(a:):/xf (a <z <b).

For each of the following statements, either give a proof or a counter-example.

(a) If f is differentiable at ¢ then F' is differentiable at c.
(b) If f is differentiable at ¢ then F” is continuous at c.

(c) If f’ is continuous at ¢, then F” is continuous at c.
Solution:

(a) This is true. Since f is differentiable at ¢, it is also continuous at ¢, so the
fundamental theorem of calculus ensures that F' is differentiable at c.

(b) This is not necessarily true. Let ¢ = 0 and let f: [—1,1] — R be given by

.

1, |z|=1
5, <]zl <1
5 5 <lel<j
fl@)=q¢:
R R
0, x=0.
\
First, f is differentiable at 0 with f'(0) = 0. We must show that lim,_,o f(mg:g(o) =
&) p 20
lim, o @ exists and equals 0. Let g : [—1, 1] — R be given by g(x) = 09” ’ 0
; r =

We have f(z) < z? for all z € [—1,1], so |g(z)| < |z|. By a problem from last
semester, this ensures that ¢ is continuous at 0, which means lim, o g(z) = 0,
but lim, ¢ g(z) = lim,_o @, so f(0) = 0.

However, in any neighborhood of 0, there are points where F’ is not defined,
particularly at all x = % Since F” is not defined everywhere in any neighborhood
of 0, it cannot be the case that F” is continuous at 0.

(c) This is true. since f’is continuous at ¢, f’ is defined in a neighborhood near c,
so f is continuous in a neighborhood of ¢. The fundamental theorem of calculus
then ensures that F’' = f for all points in that neighborhood, so F” is continuous
in the neighborhood, and thus is continuous at c.



6. Two unrelated, but hopefully quick, parts.

(a) Show that, as x ranges over the interval (0, 00), the value of the following expres-
sion does not depend on x:

/m dt /W dt
+ —,
o 1+82  Jo 141t

and then (using this fact, or otherwise) deduce that

/1 dt _/°° dt
o 1482 ), 14+t

(b) Find F'(z) if F(x) = [ «f(t) dt. Hint: the answer is not x f(z).

Solution:
(a) Let F(x . lftQ Ik 1/ ;. By the fundamental theorem of calculus, F'(x) =
sz + W . —l, = 0, so F(z) = ¢ for some constant ¢, meaning the above

expression does not depend on z.

Now, letting o = 1, we have ¢ = 2 fl l_ﬁg Letting © — 0T, we have

/0 dt +/°0 dt _/°° dt
o 1482 Jy 142 J, 141¢2
/1 dt /°° dt

= +
o L+22  f) 14122

= C.

Substituting the above value of ¢, we have

Lodt > dt Lodt
2 T ;=2 1o

o L+t L 14t o 141
/°° dt _/1 dt
T A

(b) We have F(z) = x fo ) dt, so using the product rule and the fundamental
theorem of calculus we have F’ (x) = xf(x)+ [y f(

SO




7. Define F(z) = [T and G(z) = [ 4 (for b> 1).

(a) Find F'(z) and G'(z).
(b) Use the result of the last part to prove that for a,b > 1,

/Qﬁ_}_/bﬂ_/&b@
vttt

(a) We have F'(z) =1 and G'(z) = = - b=

(b) Let H(z) = F(x) — G(x), so the above gives H'(xz) = 0, so H(x) = ¢ for some
constant c. We have H(1) = F(1)-G(1) =0—0=0,s0c= 0. Thus F(z) = G(z)
for all z. Thus F(a) = G(a), so

/a @ B /ab ﬁ
1
/ab dt

/a@_‘_/bﬂ_/ab@
vttt

Solution:

b

Rearranging this gives



8. Prove that if h is continuous, f and g are differentiable, and

then

Solution: We can rewrite this as

ﬂ@:ﬂcmwm+/m%@ﬁ

()

f(z) 9(x)
:—/ h@ﬁ+/ h(t) dt.

for some constant c¢. Then the fundamental theorem of calculus and the chain rule give

F'(z) = =h(f () f'(z) + h(g(x))g'(x)-



e An extra credit problem: Let I, J and K be intervals. Suppose that g: I — J
and f: J — K are both integrable (f on J and g on I). What can you say about the
composition function fog: I — K?7. Note that it will be one of three things: exactly
one of
A fogis integrable (on I)

B f o g is not integrable
C fog is sometimes integrable, sometimes not, depending on the specific choices of f

and g

is true. Which one? If A or B, give a proof; if C, give examples to show that both
behaviors are possible.

Solution: The correct answer is C. Let [ = J = K = [-1,1]. First let ¢ : I — J and

f:J — K be given by f(x) = g(z) = 0. f and g are both certainly integrable, and their
composition is also the zero function, which is also integrable.

Now, let g : I — J and f: J — K be given by

and

0, otherwise.

1 _ : _
o(z) = {E’ T = § with ged{p,q} =1

f and g are both integrable, but their composition is

1, z€Q

(fog)x) = {07 Ty

which is not integrable.



