
Math 10860: Honors Calculus II, Spring 2021
Homework 3

1. Some questions on uniform continuity.

(a) Recall that we argued in class that the function f : (0, 1]→ R given by f(x) = 1/x
is continuous but not uniformly continuous, and we further argued that the issue
was what was happening near 0 (the function is “blowing up”, with unboundedly
increasing slope). Find a function f : (0, 1] → R that is continuous but not
uniformly continuous, and is bounded on (0, 1].

(b) Show that if f, g : A → R are both uniformly continuous on A (some interval in
R), and both bounded, then fg is uniformly continuous on A.

(c) Give an example of an interval A, and functions f, g : A → R that are both
uniformly continuous on A, with f not bounded on A, g bounded on A, such that
fg is not uniformly continuous on A.

Solution:

(a) Let f(x) = sin
(
1
x

)
. This is clearly continuous on (0, 1], and it is bounded since

|sin(c)| ≤ 1 for all c ∈ R. Let ε = 1
2
. Let δ > 0 be arbitrary. Let n ∈ N be such

that n2 + n
2
> 1

2πδ
. Let x = 1

πn
and let y = 1

πn+π
2
. Then

|x− y| =
∣∣∣∣ 1

πn
− 1

πn+ π
2

∣∣∣∣
=

∣∣∣∣ 1

2π(n2 + n
2
)

∣∣∣∣
<

2πδ

2π
= δ.

However,

|f(x)− f(y)| = |sin(πn)− sin(πn+
π

2
)|

= 1

> ε,

so f is continuous and bounded, but not uniformly continuous.

(b) Let ε > 0 be arbitrary. Let |f(x)| < Cf and |g(x)| < Cg for all x and for some
Cf , Cg > 0. Let C = max{Cf , Cg}. Since f, g are uniformly continuous, there are
δf , δg > 0 such that for all x, y ∈ A, if |x− y| < δf , then |f(x)− f(y)| < ε

2c
, and

if |x− y| < δg, then |g(x)− g(y)| < ε
2c

. Let δ = min{δf , δg}. Then if |x− y| < δ,



we have

|f(x)g(x)− f(y)g(y)| = |f(x)g(x)− f(x)g(y) + f(x)g(y)− f(y)g(y)|
≤ |f(x)g(x)− f(x)g(y)|+ |f(x)g(y)− f(y)g(y)|
= |f(x)| · |g(x)− g(y)|+ |g(y)| · |f(x)− f(y)|

< c · ε
2c

+ c · ε
2c

= ε,

and we are done.

(c) Let f, g : R → R be given by f(x) = x and g(x) = sin(x). Then f is uniformly
continuous and not bounded, while g is uniformly continuous and bounded. The
product h = fg is not uniformly continuous on R. Let ε = 1 and let δ > 0

be arbitrary. Let δ′ =

{
bδc, δ ≥ 1

δ, δ < 1
. Let x = 2nπ and y = 2nπ + δ′

2
. Then

|x− y| = δ′

2
< δ, but

|h(x)− h(y)| =
∣∣∣∣2πn sin(2πn)−

(
2πn+

δ′

2

)
sin

(
2πn+

δ′

2

)∣∣∣∣
=

∣∣∣∣(2πn+
δ′

2

)
sin

(
δ′

2

)∣∣∣∣ .
By choosing n large enough, and noting that δ′

2
is never an integer multiple of

π, we can make this expression arbitrarily large, and in particular greater than
1 = ε. Thus this function is not uniformly continuous on R.



2. Consider the function f : [0, 2]→ R defined by

f(x) =

{
0 if x 6= 1,

1 if x = 1.

Prove that there does not exist a function g : [0, 2]→ R with the property that g′ = f .

Solution: Assume for a contradiction that there is such a function g. Since f is identical
to the zero function except at a single point, we have

∫ b
a
f = 0 for any a, b ∈ [0, 2]. By

the fundamental theorem of calculus, we have 0 =
∫ b
a
f = g(a)−g(b), so g(a) = g(b), so

g is a constant function since a and b were arbitrary. But the derivative of a constant
function is 0 everywhere, contradicting that g′ = f , so there is no such function g.



3. Find the derivatives of the following functions.

(a) F (x) =
∫ x3
a

sin3 t dt

(b) F (x) =
∫ 15

x

(∫ y
8

dt
1+t2+sin t

)
dy

(c) F (x) =
∫ b
a

x dt
1+t2+sin2 t

Solution:

(a) F ′(x) = 3x2 sin3(x3)

(b) F ′(x) = −
∫ x
8

dt
1+t2+sin2 t

(c) F ′(x) =
∫ b
a

dt
1+t2+sin2 t



4. For each of the following functions f , consider F (x) =
∫ x
0
f , and determine at which

points x is F ′(x) = f(x). Caution: there may be some x for which F ′(x) = f(x) even
though the hypotheses of the obvious theorem do not apply.

(a) f(x) =

{
0 if x ≤ 1,

1 if x > 1.

(b) f(x) =

{
0 if x 6= 1,

1 if x = 1.

(c) f(x) =

{
0 if x ≤ 0,

x if x ≥ 0.

Solution:

(a) F (x) =

{
0, x ≤ 1

x− 1, x > 1
, and this function is differentiable at all x 6= 1 with

derivative equal to f , but it is not differentiable at x = 1.

(b) By the same reasoning as question 2, F (x) = 0 for all x. Thus F ′(x) = f(x) for
all x 6= 1.

(c) f is continuous everywhere, so the fundamental theorem of calculus guarantees
that F ′(x) = f(x) everywhere.



5. Let f be integrable on [a, b], let c be in (a, b) and let

F (x) =

∫ x

a

f (a ≤ x ≤ b).

For each of the following statements, either give a proof or a counter-example.

(a) If f is differentiable at c then F is differentiable at c.

(b) If f is differentiable at c then F ′ is continuous at c.

(c) If f ′ is continuous at c, then F ′ is continuous at c.

Solution:

(a) This is true. Since f is differentiable at c, it is also continuous at c, so the
fundamental theorem of calculus ensures that F is differentiable at c.

(b) This is not necessarily true. Let c = 0 and let f : [−1, 1]→ R be given by

f(x) =



1, |x| = 1
1
4
, 1

2
≤ |x| < 1

1
9
, 1

3
≤ |x| < 1

2
...

...
1
n2 ,

1
n
≤ |x| < 1

n−1
...

...

0, x = 0.

.

First, f is differentiable at 0 with f ′(0) = 0. We must show that limx→0
f(x)−f(0)

x−0 =

limx→0
f(x)
x

exists and equals 0. Let g : [−1, 1]→ R be given by g(x) =

{
f(x)
x
, x 6= 0

0, x = 0
.

We have f(x) ≤ x2 for all x ∈ [−1, 1], so |g(x)| ≤ |x|. By a problem from last
semester, this ensures that g is continuous at 0, which means limx→0 g(x) = 0,

but limx→0 g(x) = limx→0
f(x)
x
, so f ′(0) = 0.

However, in any neighborhood of 0, there are points where F ′ is not defined,
particularly at all x = 1

n
. Since F ′ is not defined everywhere in any neighborhood

of 0, it cannot be the case that F ′ is continuous at 0.

(c) This is true. since f ′ is continuous at c, f ′ is defined in a neighborhood near c,
so f is continuous in a neighborhood of c. The fundamental theorem of calculus
then ensures that F ′ = f for all points in that neighborhood, so F ′ is continuous
in the neighborhood, and thus is continuous at c.



6. Two unrelated, but hopefully quick, parts.

(a) Show that, as x ranges over the interval (0,∞), the value of the following expres-
sion does not depend on x: ∫ x

0

dt

1 + t2
+

∫ 1/x

0

dt

1 + t2
,

and then (using this fact, or otherwise) deduce that∫ 1

0

dt

1 + t2
=

∫ ∞
1

dt

1 + t2
.

(b) Find F ′(x) if F (x) =
∫ x
0
xf(t) dt. Hint: the answer is not xf(x).

Solution:

(a) Let F (x) =
∫ x
0

dt
1+t2

+
∫ 1/x

0
dt

1+t2
. By the fundamental theorem of calculus, F ′(x) =

1
1+x2

+ 1

1+( 1
x)

2 · − 1
x2

= 0, so F (x) = c for some constant c, meaning the above

expression does not depend on x.

Now, letting x = 1, we have c = 2
∫ 1

0
dt

1+t2
. Letting x→ 0+, we have∫ 0

0

dt

1 + t2
+

∫ ∞
0

dt

1 + t2
=

∫ ∞
0

dt

1 + t2

=

∫ 1

0

dt

1 + t2
+

∫ ∞
1

dt

1 + t2

= c.

Substituting the above value of c, we have∫ 1

0

dt

1 + t2
+

∫ ∞
1

dt

1 + t2
= 2

∫ 1

0

dt

1 + t2
,

so ∫ ∞
1

dt

1 + t2
=

∫ 1

0

dt

1 + t2
.

(b) We have F (x) = x
∫ x
0
f(t) dt, so using the product rule and the fundamental

theorem of calculus, we have F ′(x) = xf(x) +
∫ x
0
f(t) dt.



7. Define F (x) =
∫ x
1
dt
t

and G(x) =
∫ bx
b

dt
t

(for b ≥ 1).

(a) Find F ′(x) and G′(x).

(b) Use the result of the last part to prove that for a, b ≥ 1,∫ a

1

dt

t
+

∫ b

1

dt

t
=

∫ ab

1

dt

t
.

Solution:

(a) We have F ′(x) = 1
x

and G′(x) = 1
bx
· b = 1

x
.

(b) Let H(x) = F (x) − G(x), so the above gives H ′(x) = 0, so H(x) = c for some
constant c. We have H(1) = F (1)−G(1) = 0−0 = 0, so c = 0. Thus F (x) = G(x)
for all x. Thus F (a) = G(a), so∫ a

1

dt

t
=

∫ ab

b

dt

t

=

∫ ab

1

dt

t
−
∫ b

1

dt

t
.

Rearranging this gives ∫ a

1

dt

t
+

∫ b

1

dt

t
=

∫ ab

1

dt

t
.



8. Prove that if h is continuous, f and g are differentiable, and

F (x) =

∫ g(x)

f(x)

h(t) dt

then
F ′(x) = h(g(x))g′(x)− h(f(x))f ′(x).

Solution: We can rewrite this as

F (x) =

∫ c

f(x)

h(t) dt+

∫ g(x)

c

h(t) dt

= −
∫ f(x)

c

h(t) dt+

∫ g(x)

c

h(t) dt.

for some constant c. Then the fundamental theorem of calculus and the chain rule give

F ′(x) = −h(f(x))f ′(x) + h(g(x))g′(x).



• An extra credit problem: Let I, J and K be intervals. Suppose that g : I → J
and f : J → K are both integrable (f on J and g on I). What can you say about the
composition function f ◦ g : I → K?. Note that it will be one of three things: exactly
one of

A f ◦ g is integrable (on I)

B f ◦ g is not integrable

C f ◦ g is sometimes integrable, sometimes not, depending on the specific choices of f
and g

is true. Which one? If A or B, give a proof; if C, give examples to show that both
behaviors are possible.

Solution: The correct answer is C. Let I = J = K = [−1, 1]. First let g : I → J and
f : J → K be given by f(x) = g(x) = 0. f and g are both certainly integrable, and their
composition is also the zero function, which is also integrable.

Now, let g : I → J and f : J → K be given by

f(x) =

{
1, x 6= 0

0, x = 0

and

g(x) =

{
1
q
, x = p

q
with gcd{p, q} = 1

0, otherwise.

f and g are both integrable, but their composition is

(f ◦ g)(x) =

{
1, x ∈ Q
0, x 6∈ Q

,

which is not integrable.


