Math 10860: Honors Calculus II, Spring 2021 Homework 3

1. Some questions on uniform continuity.
(a) Recall that we argued in class that the function $f:(0,1] \rightarrow \mathbb{R}$ given by $f(x)=1 / x$ is continuous but not uniformly continuous, and we further argued that the issue was what was happening near 0 (the function is "blowing up", with unboundedly increasing slope). Find a function $f:(0,1] \rightarrow \mathbb{R}$ that is continuous but not uniformly continuous, and is bounded on $(0,1]$.
(b) Show that if $f, g: A \rightarrow \mathbb{R}$ are both uniformly continuous on A (some interval in \mathbb{R}), and both bounded, then $f g$ is uniformly continuous on A.
(c) Give an example of an interval A, and functions $f, g: A \rightarrow \mathbb{R}$ that are both uniformly continuous on A, with f not bounded on A, g bounded on A, such that $f g$ is not uniformly continuous on A.
2. Consider the function $f:[0,2] \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}0 & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{cases}
$$

Prove that there does not exist a function $g:[0,2] \rightarrow \mathbb{R}$ with the property that $g^{\prime}=f$.
3. Find the derivatives of the following functions.
(a) $F(x)=\int_{a}^{x^{3}} \sin ^{3} t d t$
(b) $F(x)=\int_{x}^{15}\left(\int_{8}^{y} \frac{d t}{1+t^{2}+\sin t}\right) d y$
(c) $F(x)=\int_{a}^{b} \frac{x d t}{1+t^{2}+\sin ^{2} t}$
4. For each of the following functions f, consider $F(x)=\int_{0}^{x} f$, and determine at which points x is $F^{\prime}(x)=f(x)$. Caution: there may be some x for which $F^{\prime}(x)=f(x)$ even though the hypotheses of the obvious theorem do not apply.
(a) $f(x)= \begin{cases}0 & \text { if } x \leq 1, \\ 1 & \text { if } x>1 .\end{cases}$
(b) $f(x)= \begin{cases}0 & \text { if } x \neq 1, \\ 1 & \text { if } x=1 .\end{cases}$
(c) $f(x)= \begin{cases}0 & \text { if } x \leq 0, \\ x & \text { if } x \geq 0 .\end{cases}$
5. Let f be integrable on $[a, b]$, let c be in (a, b) and let

$$
F(x)=\int_{a}^{x} f \quad(a \leq x \leq b)
$$

For each of the following statements, either give a proof or a counter-example.
(a) If f is differentiable at c then F is differentiable at c.
(b) If f is differentiable at c then F^{\prime} is continuous at c.
(c) If f^{\prime} is continuous at c, then F^{\prime} is continuous at c.
6. Two unrelated, but hopefully quick, parts.
(a) Show that, as x ranges over the interval $(0, \infty)$, the value of the following expression does not depend on x :

$$
\int_{0}^{x} \frac{d t}{1+t^{2}}+\int_{0}^{1 / x} \frac{d t}{1+t^{2}}
$$

and then (using this fact, or otherwise) deduce that

$$
\int_{0}^{1} \frac{d t}{1+t^{2}}=\int_{1}^{\infty} \frac{d t}{1+t^{2}}
$$

(b) Find $F^{\prime}(x)$ if $F(x)=\int_{0}^{x} x f(t) d t$. Hint: the answer is not $x f(x)$.
7. Define $F(x)=\int_{1}^{x} \frac{d t}{t}$ and $G(x)=\int_{b}^{b x} \frac{d t}{t}$ (for $b \geq 1$).
(a) Find $F^{\prime}(x)$ and $G^{\prime}(x)$.
(b) Use the result of the last part to prove that for $a, b \geq 1$,

$$
\int_{1}^{a} \frac{d t}{t}+\int_{1}^{b} \frac{d t}{t}=\int_{1}^{a b} \frac{d t}{t}
$$

8. Prove that if h is continuous, f and g are differentiable, and

$$
F(x)=\int_{f(x)}^{g(x)} h(t) d t
$$

then

$$
F^{\prime}(x)=h(g(x)) g^{\prime}(x)-h(f(x)) f^{\prime}(x)
$$

- An extra credit problem: Let I, J and K be intervals. Suppose that $g: I \rightarrow J$ and $f: J \rightarrow K$ are both integrable (f on J and g on I). What can you say about the composition function $f \circ g: I \rightarrow K$?. Note that it will be one of three things: exactly one of

A $f \circ g$ is integrable (on I)
B $f \circ g$ is not integrable
C $f \circ g$ is sometimes integrable, sometimes not, depending on the specific choices of f and g
is true. Which one? If \mathbf{A} or \mathbf{B}, give a proof; if \mathbf{C}, give examples to show that both behaviors are possible.

