
Math 10860: Honors Calculus II, Spring 2021
Homework 1

1. Directly from the definitions, prove that
∫ b
0
x3 dx = b4/4. You can use the formula∑n

k=1 n
3 = 1

4
n4 + 1

2
n3 + 1

4
n2.

Solution: Let f : [0, b]→ R be given by f(x) = x3. Let Pn = {0, b
n
, 2 · b

n
, · · · , n · b

n
} be

a partition of [0, b]. Since f is increasing on [0, b], we have mi = (i−1)3b3
n3 and Mi = i3b3

n3 ,
where mi,Mi are defined as usual. So the upper and lower sums are
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,
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From these equations it is clear that L(f, Pn) ≤ b4

4
≤ U(f, Pn) for all n. We can also

see that

U(f, Pn)− L(f, Pn) =
b4

4
· 4n

n2

=
b4

n
,

so we can make this difference arbitrarily small by choosing n large enough, so f is
integrable on [0, b]. We must have L(f, Pn) ≤

∫ b
0
x3 dx ≤ U(f, Pn) for each n, and

since the above difference can be made as small as desired, there is only one number
with that property, which is b4

4
, so we must have

∫ b
0
x3 dx = b4

4
.



2. Without doing any serious computations, evaluate the following integrals. You can
be informal here; I’m not looking for a watertight ε-δ justification, but rather an
explanation that shows me that you know what is going on with the integral, and its
interpretation as an area. We have not proved the fundamental theorem of calculus,
so you can’t use it.

(a)
∫ 1

−1 x
3
√

1− x2 dx

(b)
∫ 1

−1(x
5 + 3)

√
1− x2 dx.

Solution:

(a) The integrand is an odd function, so the negative values on the interval [−1, 0]

exactly cancel the positive values on the interval [0, 1]. Thus
∫ 1

−1 x
3
√

1− x2 dx =
0.

(b) This integral is equal to
∫ 1

−1 x
5
√

1− x2 dx + 3
∫ 1

−1

√
1− x2 dx. By the same

reasoning as part (a), the first integral is 0. The second is 3 times the area of a
half circle of radius 1, so the whole integral is equal to 3π

2
.



3. Let f, g : [a, b]→ R both be bounded, and let m,mf and mg be given by

• m = inf{f(x) + g(x) | x ∈ [a, b]}
• mf = inf{f(x) | x ∈ [a, b]}
• mg = inf{g(x) | x ∈ [a, b]}

(a) Show that mf +mg ≤ m.

(b) Show, by way of an example, that it is possible to have mf +mg < m.

Solution:

(a) For all x ∈ [a, b], we have mf ≤ f(x) and mg ≤ g(x), so mf +mg ≤ f(x) + g(x).
So mf +mg is a lower bound for f + g, but m is the greatest lower bound. Thus
mf +mg ≤ m.

(b) Let f, g : [0, 1]→ R be given by f(x) = 1− x and g(x) = x. Then mf = mg = 0,
so mf +mg = 0, but f(x) + g(x) = 1 for all x ∈ [0, 1], so m = 1.



4. (a) Which functions f : [a, b] → R have the property that every lower sum L(f, P )
equals every upper sum U(f,Q)?

(b) Which functions f : [a, b] → R have the property that there is some lower sum
L(f, P ) that equals some upper sum U(f,Q)?

(c) Which continuous functions f : [a, b] → R have the property that all lower sums
L(f, P ) are equal?

Solution: It is clear that constant functions satisfy each of these properties, and in fact
they are the only functions that satisfy any of them.

(a) Consider the partition P = Q = {a, b}. Since L(f, P ) = U(f,Q), we have
m = inf{f(x) : x ∈ [a, b]} = sup{f(x) : x ∈ [a, b]} = M . Now let x ∈ [a, b]. Then
m ≤ f(x) ≤ M by definition of m and M, so f(x) = m = M , and since x is
arbitrary and m = M is fixed, f must be constant.

(b) Let S = P∪Q. Then L(f, P ) ≤ L(f, S) ≤ U(f, S) ≤ U(f,Q), and since L(f, P ) =
U(f,Q), we have L(f, S) = U(f, S). Let S = {a = t0, t1, · · · , tn−1, tn = b}. Let
mi,Mi be defined as usual. Then

∑n
i=1mi(ti − ti−1) =

∑n
i=1Mi(ti − ti−1), so∑n

i=1(Mi − mi)(ti − ti−1) = 0, and since ti − ti−1 > 0 and Mi − mi ≥ 0 for all
i, we must have Mi = mi for all i. The same argument as (a) gives that f is
constant on each interval [ti−1, ti], but since each adjacent pair of intervals shares
an endpoint, f must be constant everywhere.

(c) Assume for a contradiction that a non constant continuous function has all lower
sums L(f, P ) equal. Let m be the minimum of f on [a, b] (a minimum does in fact
exist since f is continuous on a closed interval). Since f is not constant and m is
the minimum, there exists x0 ∈ [a, b] such that f(x0) > m. Since f is continuous,
there is an interval [a0, b0] around x0 completely contained in [a, b] with a0 > a
and b0 < b such that f(x) > m for all x ∈ [a0, b0]. Consider the partitions
P = {a, b} and Q = {a, a0, b0, b}. Let mi be defined as usual for Q, so the above
gives that m2 > m. We have L(f,Q) = m1(a0 − a) +m2(b0 − a0) +m3(b− b0) >
m(a0 − a) +m(b0 − a0) +m(b− b0) = m(b− a) = L(f, P ), contradicting that all
lower sums are equal.



5. (a) Suppose f is bounded and integrable on [a, b], and that m is a lower bound for f
on [a, b] and M an upper bound. Show that

m(b− a) ≤
∫ b

a

f ≤M(b− a).

(b) With the same hypotheses as for the last part, show that there exists a number
µ, satisfying m ≤ µ ≤M , such that∫ b

a

f(x) dx = µ(b− a).

(c) Show that if f is integrable on [a, b], and if f(x) ≥ 0 for all x ∈ [a, b], then∫ b
a
f ≥ 0.

(d) Prove that if f and g are both integrable on [a, b], and if f(x) ≥ g(x) for all

x ∈ [a, b], then
∫ b
a
f ≥

∫ b
a
g.

Solution:

(a) Let m∗ = inf{f(x) : x ∈ [a, b]} and M∗ = sup{f(x) : x ∈ [a, b]}, so m ≤ m∗ and
M ≥ M∗. Consider the partition P = {a, b}. We have L(f, P ) = m∗(b − a) ≥
m(b−a) and U(f, P ) = M∗(b−a) ≤M(b−a). We have L(f, P ) ≤

∫ b
a
f ≤ U(f, P ),

so m(b− a) ≤
∫ b
a
f ≤M(b− a).

(b) Let µ = 1
b−a

∫ b
a
f, so µ(b− a) =

∫ b
a
f. Since b− a = 0, we have m ≤ µ ≤M if and

only if m(b− a) ≤ µ(b− a) ≤M(b− a), i.e. m(b− a) ≤
∫ b
a
f ≤M(b− a), which

we showed in part (a).

(c) Consider the partition P = {a, b}. Since f(x) ≥ 0 for all x ∈ [a, b], we have

L(f, P ) ≥ 0(b− a) = 0, and since
∫ b
a
f ≥ L(f, P ), we have

∫ b
a
f ≥ 0.

(d) Let h : [a, b] → R be given by h(x) = f(x) − g(x), so h(x) ≥ 0 for all x ∈ [a, b].
As a difference of integrable functions, h is integrable on [a, b], so we can apply

(c) to get
∫ b
a
h =

∫ b
a
(f − g) =

∫ b
a
f −

∫ b
a
g ≥ 0, so

∫ b
a
f ≥

∫ b
a
g.



6. Suppose that f is weakly increasing (a.k.a non-decreasing) on [a, b]. The aim of this
question is to show that f is integrable on [a, b] without making any assumption on the
continuity or otherwise of f .

(a) Prove that f is bounded on [a, b].

(b) If P = {t0 < t1 < · · · < tn} is a partition of [a, b], what are L(f, P ) and U(f, P )?

(c) Suppose that Pn is the equipartition of [a, b] into n subintervals, i.e.

P = {t0 < t1 < · · · < tn} with t1 − t0 = t2 − t1 = t3 − t2 = · · · = tn − tn−1.

Calculate U(f, P )− L(f, P ) as a short, explicit expression, involving n, a and b,
that doesn’t involve a summation.

(d) Prove that f is integrable on [a, b].

(e) Give an example of a bounded weakly increasing function on [0, 1] which is dis-
continuous at infinitely many points (such a function is still integrable, by the
last part of the question).

Solution:

(a) We have f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b] so f is bounded below by f(a) and
above by f(b).

(b) We have inf{f(x) : x ∈ [ti−1, ti]} = f(ti−1) and sup{f(x) : x ∈ [ti−1, ti]} = f(ti),
so

L(f, P ) =
n∑
i=1

f(ti−1)(ti − ti−1),

U(f, P ) =
n∑
i=1

f(ti)(ti − ti−1).

(c) For each i, we have ti − ti−1 = b−a
n

, so

U(f, P )− L(f, P ) =
b− a
n

n∑
i=1

(f(ti)− f(ti−1))

=
b− a
n

(f(t1)− f(t0) + f(t2)− f(t1) + · · ·+ f(tn)− f(tn−1)

=
b− a
n

(f(tn)− f(t0))

=
(b− a)(f(b)− f(a))

n
.

(d) Let ε > 0 be arbitrary. Assume f(b) > f(a), because otherwise f is constant and



the result is trivial. Let n > (b−a)(f(b)−f(a))
ε

be an integer. Then

U(f, P )− L(f, P ) =
(b− a)(f(b)− f(a))

n

<
(b− a)(f(b)− f(a))

(b−a)(f(b)−f(a))
ε

= ε.

(e) Let f : [0, 1]→ R be given by f(x) =

{
1
b 1
x
c , x 6= 0

0, x = 0
. This function is discontinu-

ous at 1
n

for each n ∈ N, and it is weakly increasing and bounded.



7. Recall the “stars over Babylon” function s : [0, 1]→ R defined by

s(x) =

{
0 if x = 0, 1, or if x is irrational,

1/q if x ∈ Q and x = p/q in lowest terms.

Is s integrable on [0, 1]? If it is, calculate its integral. Carefully justify your answer!

Solution: s is integrable on [0, 1], with
∫ 1

0
s = 0. To see this, let ε > 0 be arbitrary

and let N > 4
3ε

. Let S be the set of rational numbers p
q

in [0, 1] with gcd(p, q) = 1

and with q ≤ N . In particular, S is finite. Let P = {0 = t0, t1, · · · , tn = b} be a
partition of [0, 1] with ti − ti−1 <

ε
4|S| for each i. There are at most 2|S| intervals

[ti−1, ti] that include a member of S (2|S| because it is possible that each element of S
is at the endpoint between two intervals, and that no interval has two elements of S
in it). These intervals contribute at most 2|S| · ε

4|S| ·
1
2

= ε
4

to U(s, P ). For the rest of

the intervals, we have 0 ≤ f(x) ≤ 1
N

for each x in the interval, so these contribute at
most 1

N
< 3ε

4
to the sum. Thus U(s, P ) < ε

4
+ 3ε

4
= ε. It is clear that L(s, P ) = 0 since

the irrationals are dense. Thus U(s, P )− L(s, P ) < ε, so s is integrable on [0, 1], and

since U(s, P ) can be made arbitrarily close to 0, and L(s, P ) = 0, we have
∫ 1

0
s = 0.


