Math 60440: Basic Topology II Problem Set 3

1. Compute the homology of the following chain complex:

$$0 \to \mathbb{Z} < U, L > \stackrel{d_2}{\to} \mathbb{Z} < a, b, c > \stackrel{d_1}{\to} \mathbb{Z} < v, w > \to 0,$$

where

$$d_2(U) = -a + b + c$$
$$d_2(L) = a - b + c$$

and

$$d_1(a) = w - v$$
$$d_1(b) = w - v$$
$$d_1(c) = 0.$$

2. For each $k \ge 1$, define a chain complex D^k_{\bullet} by letting

$$D_n^k = \begin{cases} \mathbb{Z} & \text{if } n = k, k - 1, \\ 0 & \text{otherwise} \end{cases}$$

and letting the differential $D_k^k \to D_{k-1}^k$ be the identity (and all other differentials be 0).

- (a) Calculate $H_n(D^k_{\bullet})$.
- (b) Prove that for all chain complexes C_{\bullet} , the set of chain complex maps $D_{\bullet}^k \to C_{\bullet}$ is in bijection with C_k .
- 3. Let $f: (C_{\bullet}, d_{\bullet}) \to (C'_{\bullet}, d'_{\bullet})$ be a homomorphism between chain complexes. Define $(\operatorname{Con}(f)_{\bullet}, e_{\bullet})$ (the mapping cone of f) via the formulas

$$\operatorname{Con}(f)_n = C_{n-1} \oplus C'_n$$

and

$$e_n: \operatorname{Con}(f)_n \to \operatorname{Con}(f)_{n-1}$$
 is $e_n(x,y) = (-d_{n-1}(x), f(x) + d'_n(y)).$

Prove the following:

- (a) $(\operatorname{Con}(f)_{\bullet}, e_{\bullet})$ is a chain complex.
- (b) The natural inclusion $(C'_{\bullet}, d'_{\bullet}) \to (\operatorname{Con}(f)_{\bullet}, e_{\bullet})$ is a homomorphism of chain complexes.
- 4. Let A_0, A_1, A_2, \ldots be a sequence of finitely generated abelian groups. Construct a chain complex C_{\bullet} with the following properties:

- Each C_n is a finitely generated free abelian group, i.e. $C_n \cong \mathbb{Z}^{k_n}$ for some $k_n \ge 0$, and $C_n = 0$ for n < 0.
- $\operatorname{H}_n(C_{\bullet}) \cong A_n$ for all $n \ge 0$.
- 5. Let X be a topological space. Identify S^n with the boundary $\partial \Delta^{n+1}$ of an (n+1)-dimensional simplex $\Delta^{n+1} = [v_0, \ldots, v_{n+1}]$. For every continuous map $f: S^n \to X$, define $\theta_f \in C_n(X)$ to equal

$$\sum_{i=0}^{n+1} (-1)^i f|_{[v_0,\dots,\widehat{v_i},\dots,n+1]}.$$

Prove the following facts:

- (a) $\theta_f \in Z_n(X)$, so we have an associated element $[\theta_f] \in H_n(X)$.
- (b) If $f, g: S^n \to X$ are homotopic, we have $[\theta_f] = [\theta_g]$.
- (c) Fixing a basepoint $x_0 \in X$, the map $\pi_n(X, x_0) \to H_n(X)$ taking the homotopy class of $f: S^n \to X$ to $[\theta_f]$ is a homomorphism. By the way, this homomorphism $\pi_n(X, x_0) \to H_n(X)$ is called the *Hurewicz map*.

We remark that this is a slight variant of what we did for π_1 , where to make things a little easier technically we used maps $I \to X$ taking the endpoints to the same place rather than maps $S^1 \to X$.