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Introduction

What follows started as notes for the Freshman Honors Calculus course at the University
of Notre Dame. The word “calculus” is a misnomer since this course was intended to be
an introduction to real analysis or, if you like, “calculus with proofs”.

For most students this class is the first encounter with mathematical rigor and it can
be a bit disconcerting. In my view the best way to overcome this is to confront rigor head
on and adopt it as standard operating procedure early on. This makes for a bumpy early
going, but with a rewarding payoff.

A proof is an argument that uses the basic rules of Aristotelian logic and relies on facts
everyone agrees to be true. The course is based on these basic rules of the mathematical
discourse. It starts from a meagre collection of obvious facts (postulates) and ends up
constructing the main contours of the impressive edifice called real analysis.

No prior knowledge of calculus is assumed, but being comfortable performing algebraic
manipulations is something that will make this journey more rewarding.

In writing these notes I have benefitted immensely from the students who took the
Honors Calc Course during the academic years 2013-2016. Their questions and reactions
in class, and their expert editing have improved the original product. I asked a lot of
them and I got a lot in return. I want to thank them for their hard work, curiosity and
enthusiasm which made my job so much more enjoyable.

The first 9 chapters correspond to subjects covered in the Freshman course. I rarely
was able to complete the brief Chapter 10 on complex numbers. Chapters 11 and above
deal with several variables calculus topics, corresponding to the sophomore Honors Cal-
culus offered at the University of Notre Dame.

This is probably not the final form of the notes, but close to final. I will probably
adjust them here and there, taking into account the feedback from future students.
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The Greek Alphabet iii

The Greek Alphabet

A α Alpha
B β Beta
Γ γ Gamma
∆ δ Delta
E ε Epsilon
Z ζ Zeta
H η Eta
Θ θ Theta
I ι Iota
K κ Kappa
Λ λ Lambda
M µ Mu

N ν Nu
Ξ ξ Xi
O o Omicron
Π π Pi
P ρ Rho
Σ σ Sigma
T τ Tau
Υ υ Upsilon
Φ ϕ Phi
X χ Chi
Ψ ψ Psi
Ω ω Omega





Contents

Introduction i

The Greek Alphabet iii

Chapter 1. The basics of mathematical reasoning 1

§1.1. Statements and predicates 1

§1.2. Quantifiers 5

§1.3. Sets 7

§1.4. Functions 10

§1.5. Exercises 15

§1.6. Exercises for extra-credit 17

Chapter 2. The Real Number System 19

§2.1. The algebraic axioms of the real numbers 20

§2.2. The order axiom of the real numbers 23

§2.3. The completeness axiom 27

§2.4. Visualizing the real numbers 29

§2.5. Exercises 32

Chapter 3. Special classes of real numbers 35

§3.1. The natural numbers and the induction principle 35

§3.2. Applications of the induction principle 40

§3.3. Archimedes’ Principle 44

§3.4. Rational and irrational numbers 46

§3.5. Exercises 52

v



vi Contents

§3.6. Exercises for extra-credit 55

Chapter 4. Limits of sequences 59

§4.1. Sequences 59

§4.2. Convergent sequences 61

§4.3. The arithmetic of limits 66

§4.4. Convergence of monotone sequences 71

§4.5. Fundamental sequences and Cauchy’s characterization of convergence 76

§4.6. Series 78

§4.7. Power series 89

§4.8. Some fundamental sequences and series 91

§4.9. Exercises 92

§4.10. Exercises for extra-credit 99

Chapter 5. Limits of functions 105

§5.1. Definition and basic properties 105

§5.2. Exponentials and logarithms 109

§5.3. Limits involving infinities 118

§5.4. One-sided limits 121

§5.5. Some fundamental limits 123

§5.6. Trigonometric functions: a less than completely rigorous definition 125

§5.7. Useful trig identities. 132

§5.8. Landau’s notation 132

§5.9. Exercises 134

§5.10. Exercises for extra credit 137

Chapter 6. Continuity 139

§6.1. Definition and examples 139

§6.2. Fundamental properties of continuous functions 143

§6.3. Uniform continuity 152

§6.4. Exercises 155

§6.5. Exercises for extra-credit 157

Chapter 7. Differential calculus 161

§7.1. Linear approximation and derivative 161

§7.2. Fundamental examples 166

§7.3. The basic rules of differential calculus 170

§7.4. Fundamental properties of differentiable functions 179



Contents vii

§7.5. Table of derivatives 189

§7.6. Exercises 190

§7.7. Exercises for extra-credit 195

Chapter 8. Applications of differential calculus 199

§8.1. Taylor approximations 199
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Chapter 1

The basics of
mathematical
reasoning

1.1. Statements and predicates

Mathematics deals in statements. These are sentences that have a definite truth value.
What does this mean? The classical text [13] does a marvelous job explaining this point
of view. I will not even attempt a rigorous or exhaustive explanation. Instead, I will try
to suggest it to you through examples.

Example 1.1. (a) Consider the following sentence: “if you walk in the rain without an
umbrella, you will get wet”. This is a true sentence and we say that its truth value is
TRUE or T . This is an example of a statement.

(b) Consider the sentence: “the number x is bigger than the number y” or, in math-
ematical notation, x > y. This sentence could be TRUE or FALSE (F ), depending on
the choice of x and y. This is not a statement because it does not have a definitive truth
value. It is a type of sentence called predicate that is encountered often in mathematics.

A predicate or formula is a sentence that depends on some parameters (or variables).
In the above example the parameters were x and y. For some choices of parameters (or
variables) it becomes a TRUE statement, while for other values it could be FALSE.

When expressed in everyday language, statements and predicates must contain a verb.

Often a predicate comes in the guise of a property. For example the property “the
integer n is even” stands for the predicate “the integer n is twice an integer m”.

(c) Consider the following sentence: “ This sentence is false.” Is this sentence true?
Clearly it cannot be true because if it were, then we would conclude that the sentence is

1



2 1. The basics of mathematical reasoning

false. Thus the sentence is false so the opposite must be true, i.e., the sentence is true.
Something is obviously amiss. This type of sentence is not a statement because it does
not have a truth value, and it is also not a predicate. It is a paradox. Paradoxes are to be
avoided in mathematics. ut

- Notation. It is time to explain the usage of the notation :=. For example an expression
such as

x := bla-bla-bla

reads “x is defined to be bla-bla-bla”, or “x is short-hand for bla-bla-bla”.

The manipulations of statements and predicates are governed by the rules of Aris-
totelian logic. This and the following section will provide you with a very sparse introduc-
tion to logic. For more details and examples I refer to [19].

All the predicates used in mathematics are obtained from simpler ones called atomic
predicates using the following logical operators.

• NEGATION ¬ (read as not).

• CONJUNCTION ∧ (read as and).

• DISJUNCTION ∨ (read as or).

• IMPLICATION ⇒ (read as implies).

To describe the effect of these operations we need to look Table 1.1 describing the
truth tables of these operations.

p T F

¬p F T

p q p ∧ q
T T T

T F F

F T F

F F F

p q p ∨ q
T T T

T F T

F T T

F F F

p q p⇒ q

T T T

T F F

F T T

F F T
Table 1.1. The truth tables of ¬,∧,∨,⇒

Here is is how one reads Table 1.1. When p is true (T ), then ¬p must be false (F ),
and when p is false, then ¬p is true. To put it in simpler terms

¬T = F, ¬F = T.

The truth table for ∧ can be presented in the simplified form

T ∧ T = T, T ∧ F = F ∧ T = F ∧ F = F.

Observe that the predicate p∨ q is true when at least one of the predicates p and q is true.
It is NOT an exclusive OR. Another way of saying this is

T ∨ T = T ∨ F = F ∨ T = T, F ∨ F = F.
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The equivalence ⇔ is the operation

p⇔ q := (p⇒ q) ∧ (q ⇒ p).

Its truth table is described in Table 1.2

p q p⇔ q

T T T

T F F

F T F

F F T
Table 1.2. The truth table of ⇔

Remark 1.2. (a) In everyday language, when we say that p implies q we mean that the
statement p⇒ q is true. This signifies that either both p and q are true, or that p is false.
Often we express this in the conditional form if p, then q.

If the implication p⇒ q is true, then we say that q is a necessary condition for p and
that p is a sufficient condition for q. In everyday language the implications are the if
bla-bla, then bla-bla statements.

The truth table for⇒ hides certain subtleties best illustrated by the following example.
Consider the statement

s := if an elephant can fly, then it can also drive a car.

This statement is composed of two simpler statements

p := an elephant can fly, q := an elephant can drive a car.

We note that the statement s coincides with the implication p ⇒ q. Obviously, both
statements p and q are false, but according to the truth table for ⇒, the implication
p ⇒ q is true, and thus s is true as well. This conclusion is rather unsettling. It may be
easier to accept it if we rephrase s as follows:

if you can show me a flying elephant, then I can show you that it can
also drive a car .

(b) In everyday language when we say that p is equivalent to q we mean that the statement
p ⇔ q is true. This signifies that either both p and q are true, or both are false. If p is
equivalent to q, we say that q is a necessary and sufficient condition for p and that p is a
necessary and sufficient condition for q.

We often express this in one of the following forms: p if and only if q. The mathe-
maticians’ abbreviation for the oft encountered construct “if and only if ” is iff. ut
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Figure 1.1. The elusive flying elephant.

Example 1.3. Consider the following predicate.

s := if you do not clean your room, then you will not go to the movies.

This is composed of two simpler predicates

• p := you do not clean the room.

• q := you do not go to the movies.

Observe that s is the compound predicate p ⇒ q. For s to be true, one of the following
two mutually exclusive situations must happen

• either you do not clean your room AND you do not go to the movies A

• or you clean the room.

Note that there is no implied guarantee that if you clean your room, then you go to
the movies. ut

Example 1.4. Consider the following true statement: mathematicians like to be precise.

First, let us phrase this in a less ambiguous way. The above statement can be equiva-
lently rephrased as: if you are a mathematician, then you are precise. To put it in symbolic
terms

you are a mathematician︸ ︷︷ ︸
p

⇒ you are precise︸ ︷︷ ︸
q

.

Thus, to be a mathematician it is necessary to be precise and to be precise it suffices to
be a mathematician. However, to be precise it is not necessary to be a mathematician. ut

A tautology is a compound predicate which is true no matter what the truth values of
its atoms are.

Example 1.5. The predicate p ∨ ¬p is a tautology. In other words, in mathematics, a
statement is either true, or false. There is no in-between. ut
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Two compound predicates P and Q are called equivalent, and we indicate this with
the notation P←→Q, if they have identical truth tables. In other words, P and Q are
equivalent if the compound predicate P⇐⇒Q is a tautology.

Example 1.6. Let us observe that the compound predicate p ⇒ q is equivalent to the
compound statement (¬p) ∨ q, i.e.

p⇒ q ←→ (¬p) ∨ q. (1.1)

Indeed if p is false then p⇒ q and ¬p are true, no matter what q. In particular (¬p) ∨ q
is also true, no matter what q. If p is true, then ¬p is false, and we deduce that p ⇒ q
and (¬p) ∨ q are either simultaneously true, or simultaneously false. ut

1.2. Quantifiers

Example 1.7. Consider the following property of a person x

x is at least 6ft tall.

This does not have a definite truth value because the truth value depends on the person
x. However the claims

C1 := there exists a person x that is at least 6ft tall,

and

C2 := any person x is at least 6ft tall

have definite truth values. The claim C1 is true, while the claim C2 is false. ut

Example 1.8. Consider the following property involving the numbers x, y

x > y.

This does not have a definite truth value. However, we can modify it to obtain statements
that have definite truth values. Here are several possible modifications. (Below and in the
sequel the abbreviation s.t. stands for such that)

S1 := For any x, for any y, x > y.

S2 := For any x, there exists y s.t. x > y.

S3 := There exists y s.t. for any x, x > y.

Observe that the statements S1 and S3 are false, while S2 is a true statement. Notice
a very important fact. The statement S3 is obtained from S2 by a seemingly innocuous
transformation: we changed the order of some words. However, in doing so, we have
dramatically altered the meaning of the statement. Let this be a warning! ut
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The expressions for any, for all, there exists, for some appear very frequently in
mathematical communications and for this reason they were given a name, and special
abbreviations. These expressions are called quantifiers and they are abbreviated as follows.

∀ := for any, for all,

∃ := there exists, there exist, for some.

The symbol ∀ is also called the universal quantifier, while the symbol ∃ is called the
existential quantifier. There is another quantifier encountered quite frequently namely

∃! := there exists a unique.

The above examples illustrate the roles of the quantifiers: they are used to convert pred-
icates, which have no definite truth value, to statements which have definite truth value.
To achieve this, we need to attach a quantifier to each variable in the predicate. In Ex-
ample 1.8 we used a quantifier for the variable x and a quantifier for the variable y. We
cannot overemphasize the following fact.

+ The meaning of a statement is sensitive to the order of the quantifiers
in that statement!

Example 1.9. Let us put to work the above simple principles in a concrete situation.
Consider the statement:

S := there is a person in this class such that, if he or she gets an A in the final, then
everyone will get an A in the final.

Is this a true statement or a false statement? There are two ways to decide this. The
fastest way is to think of the persons who get the lowest grade in the final. If those persons
get A’s, then, obviously, everybody else will get A’s.

We can use a more formal way of deciding the truth value of the above statement.
Consider the predicate P (x) :=the person x gets an A in the final. The quantified form
of S is then

∃x :
(
P (x)⇒ ∀yP (y)

)
.

As we know, an implication p ⇒ q is equivalent to the disjunction ¬p ∨ q; see (1.1). We
can rewrite the above statement as

∃x :
(
¬P (x) ∨ ∀yP (y)

)
.

In everyday language the above statement says that either there is a person who did not
get an A or everybody gets an A. This is a Duh! statement or, as mathematicians like to
call it, a tautology. ut

Let us discuss how to concretely describe the negation of a statement involving quan-
tifiers. Take for example the statements S1, S2, S3 in Example 1.8. Their opposites are

¬S1 := There exists x, there exists y s.t. x ≤ y,
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¬S2 := There exists x s.t. for any y: x ≤ y
,

¬S3 := For any y, there exists x s.t. x ≤ y.

Observe that all the opposites were obtained by using the following simple operations.

• Globally replacing the existential quantifier ∃ with its opposite ∀.
• Globally replace the universal quantifier ∀ with its opposite, ∃.
• Replace the predicate x > y with its opposite, x ≤ y.

When dealing with more complex statements it is very useful to remember the above rules.
We summarize them below.

+ The opposite of a statement that contains quantifiers is obtained by
replacing each quantifier with its opposite, and each predicate with its opposite.

Example 1.10. Consider the following portion of a famous Abraham Lincoln quote: you
can fool all of the people some of the time. There are two conceivable ways of phrasing
this rigorously.

1. For any person y there exists a moment of time t when y can be fooled by you at time
t.

2. There exists a moment of time t such that any person y there can be fooled by you at
time t.

We can now easily transform these into quantified statements.

1. S1 := ∀ person y, ∃ moment t, s.t., y can be fooled by you at time t.

2. S2 := ∃ moment t, s.t, ∀ person y, y can be fooled by you at time t.

Note that the two statements carry different meanings. Which do you think was meant
by Lincoln? Observe also

¬S1 := ∃ person y s.t. ∀ moment t: y cannot be fooled by you at time t.

In plain English this reads: some people cannot be fooled at any time. ut

1.3. Sets

Now that we have learned a bit about the language of mathematics, let us mention a few
fundamental concepts that appear in all the mathematical discourses. The most important
concept is that of set.

Any attempt at a rigorous definition of the concept of set unavoidably leads to treach-
erous logical and philosophical marshes.1 A more productive approach is not to define
what a set is, but agree on a list of “uncontroversial” properties (or axioms) our intuition

1For more details on the possible traps; see Wikipedia’s article on set theory.

http://en.wikipedia.org/wiki/Set_theory
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tells us the sets ought to satisfy. 2 Once these axioms are adopted, then the entire edifice
of mathematics should be built on them. I refer to [14] for a detailed description of this
point of view.

The axiomatic approach mentioned above is very labor intensive, and would send us
far astray. Our goal for now is a bit more modest. We will adopt a more elementary
(or naive) approach relying on the intuition of a set X as a collection of objects, usually
referred to as the elements of X. In mathematics, a set is described by the “list” of its
elements enclosed by brackets. In this list, no two objects are identical. For example, the
set

{winter, spring, summer, fall}
is the set of seasons in a temperate region such as in Indiana. However, the list

{winter, winter, spring},

is not a set.

We will use the notation x ∈ X (or X 3 x) to indicate that the object x belongs to
the set X, i.e., the object x is an element of X. The notation x 6∈ X indicates that x
is not an element of X. Two sets A and B are considered identical if they consist of the
same elements, i.e., the following (quantified) statement is true

∀x
(
x ∈ A⇐⇒x ∈ B

)
.

In words, an object belongs to A iff it also belongs to B. For example, we have the equality
of sets

{winter, spring, summer, fall} = {spring, summer, fall, winter}.

There exists a distinguished set, called the empty set and denoted by ∅. Intuitively, ∅
is the set with no elements.

Remark 1.11. The nature of the elements of a set is not important in set theory. In fact,
the elements of a set can have varied natures. For example we have the set{

1, ∅, apple
}

which consists of three elements: of the number 1, the empty set, and the word apple.
Another more subtle example is the set {∅} which consists of the single element, the empty
set ∅. Let us observe that ∅ 6= {∅}. ut

We say that a set A is a subset of B, and we write this A ⊂ B, if any element of A is
also an element of B. In other words, A ⊂ B signifies that the following statement is true

∀x
(
x ∈ A⇒ x ∈ B

)
.

A proper subset of B is a subset A ⊂ B such that A 6= B. We will use the notation A ( B
to indicate that A is a proper subset of B.

2See the above footnote.
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The union of two sets A,B is a new set denoted by A ∪B. More precisely,

x ∈ A ∪B ⇐⇒ (x ∈ A) ∨ (x ∈ B).

The intersection of two sets A,B is a new set denoted by A ∩B. More precisely,

x ∈ A ∩B ⇐⇒ (x ∈ A) ∧ (x ∈ B).

The sets A and B are said to be disjoint if A ∩B = ∅.
More generally, if (Ai)i∈I is a collection of sets, then we can define their union⋃

i∈I
Ai :=

{
x; ∃i ∈ I : x ∈ Ai

}
,

and their intersection ⋂
i∈I

Ai :=
{
x; ∀i ∈ I; x ∈ Ai

}
.

The difference between a set A and a set B is a new set A \B defined by

x ∈ A \B ⇐⇒ (x ∈ A) ∧ (x 6∈ B).

If A is a subset of X, then we will use the alternative notation CXA when referring to the
difference X \A. The set CXA is called the complement of A in X. Observe that

CX
(
CXA

)
= A.

It is sometimes convenient to visualize sets using Venn diagrams. A Venn diagram iden-
tifies a set with a region in the plane.

A

A

B

X\A

B\AA\B

A   B

U

X

Figure 1.2. Venn diagrams.

Proposition 1.12 (De Morgan Laws). If A,B are subsets of a set X then

CX(A ∪B) = (CXA) ∩ (CXB), CX(A ∩B) = (CXA) ∪ (CXB). ut

Given two sets A and B we can form a new set A × B which consists of all ordered
pairs of objects (a, b) where a ∈ A and b ∈ B. The set A × B is called the Cartesian
product of A and B.
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Remark 1.13. As a curiosity, and to give you a sense of the intricacies of the axiomatic
set theory, let us point out that above the concept of ordered pair, while intuitively clear,
it is not rigorous. One rigorous definition of an ordered pair is due to Norbert Wiener who
defined the ordered pair (a, b) to be the set consisting of two elements that are themselves
sets: one element is the set {a, ∅} and the other element is the set { {b} }, i.e.,

(a, b) :=
{
{a, ∅}, { {b} }

}
. ut

Most of the time sets are defined by properties. For example, the interval [0, 1] consists
of the real numbers x satisfying the property

P (x) := (x ≥ 0) ∧ (x ≤ 1).

As we discussed in the previous section, a synonym for the term property is the term
predicate. Proving that an object satisfying a property P also satisfies a property Q is
tantamount to showing that the set of objects satisfying property P is contained in the
set of objects satisfying property Q.

Remark 1.14. To prove that two sets A and B are equal one has to prove two inclusions:
A ⊂ B and B ⊂ A. In other words one has to prove two facts:

• If x is in A, then x is also in B.

• If x is in B, then x is also in A.

ut

1.4. Functions

Suppose that we are given two sets X, Y . Intuitively, a function f from X to Y is a
“device” that feeds on elements of X. Once we feed this machine an element x ∈ X it
spits out an element of Y denoted by f(x). The elements of X are called inputs, and those
of Y , outputs. In Figure 1.3 we have depicted such a device. Each arrow starts at some
input and its head indicates the resulting output when we feed that input to the function
f .

The above definition may not sound too academic, but at least it gives an idea of what
a function is supposed to do. Mathematically, a function is described by listing its effect
on each and every one of the inputs x ∈ X. The result is a list G which consists of pairs
(x, y) ∈ X × Y , where the appearance of a pair (x, y) in the list indicates the fact that
when the device is fed the input x, the output will be y. Note that the list G is a subset
of X × Y and has two properties.

• For any x ∈ X there exists y ∈ Y such that (x, y) ∈ G. Symbolically

∀x ∈ X ∃y ∈ Y : (x, y) ∈ G. (F1)
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X Y

Figure 1.3. A Venn diagram depiction of a function from X to Y .

• For any x ∈ X and any y1, y2 ∈ Y , if (x, y1), (x, y2) ∈ G, then y1 = y2. Symbol-
ically

∀x ∈ X, ∀y1, y2 ∈ Y,
(

(x, y1) ∈ G ∧ (x, y2) ∈ G
)
⇒ (y1 = y2). (F2)

Property F1 states that to any input there corresponds at least one output, while
property F2 states that each input has at most one output.

We can use any symbol to name functions. The notation f : X → Y indicates that f

is a function from X to Y . Often we will use the alternate notation X
f→ Y to indicate

that f is a function from X to Y . In mathematics there are many synonyms for the term
function. They are also called maps, mappings, operators, or transformations.

Given a function f : X → Y we will refer to the set of inputs X as the domain of the
function. The set Y is called the codomain of f . The result of feeding f the input x ∈ X
is denoted by f(x). By definition f(x) ∈ Y . We say that x is mapped to f(x) by f . The
set

Gf :=
{

(x, f(x)); x ∈ X
}
⊂ X × Y

lists the effect of f on each possible input x ∈ X, and it is usually referred to as the graph
of f .

The range or image of a function f : X → Y is the set of all outputs of f . More
precisely, it is the subset f(X) of F defined by

f(X) :=
{
y ∈ Y ; ∃x ∈ X : y = f(x)

}
.

The range of f is also denoted by R(f). More generally, for any subset A ⊂ X we define

f(A) =
{
y ∈ Y ; ∃a ∈ A; f(a) = y

}
⊂ Y. (1.2)

The set f(A) is called the image of A via f .

For a subset S ⊂ Y , we define the preimage of S via f to be the set of all inputs that
are mapped by f to an element in S. More precisely the preimage of S is the set

f−1(S) :=
{
x ∈ X; f(x) ∈ S

}
⊂ X. (1.3)
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When S consists of a single point, S = {y0} we use the simpler notation f−1(y0) to denote
the preimage of {y0} via f . The set f−1(y0) is a subset of X called the fiber of f over y0.

A function f : X → Y is called surjective, or onto, if f(X) = Y . Using the visual
description of a function given in Figure 1.3 we see that a function is onto if any element
in Y is hit by an arrow originating at some element x ∈ X. Symbolically

f : X → Y is surjective⇐⇒ ∀y ∈ Y, ∃x ∈ X : y = f(x).

A function f : X → Y is called injective, or one-to-one, if different inputs have different
outputs under f . More precisely

f : X → Y is injective⇐⇒ ∀x1, x2 ∈ X : x1 6= x2 ⇒ f(x1) 6= f(x2)

⇐⇒ ∀x1, x2 ∈ X : f(x1) = f(x2)⇒ x1 = x2.

A function f : X → Y is called bijective if it is both injective and surjective. We see that

f : X → Y is bijective⇐⇒ ∀y ∈ Y ∃! x ∈ X : y = f(x).

Example 1.15. (a) For any set X we denote by 1X or by eX the function X → X which
maps any x ∈ X to itself. The function 1X is called the identity map. The identity map
is clearly injective.

(b) Suppose that X,Y are two sets. We denote πX the mapping X × Y → X which
sends a pair (x, y) to x. We say that πX is the natural projection of X × Y onto X.

(c) Given a function f : X → Y and a subset A ⊂ X we can construct a new function
f |A : A→ Y called the restriction of f to A and defined in the obvious way

f |A(a) = f(a), ∀a ∈ A.

(d) If X is a set and A ⊂ X, then we denote by iA the function A→ X defined as the
restriction of 1X to A. More precisely

iA(a) = a, ∀a ∈ A.

The function iA is called the natural inclusion map associated to the subset A ⊂ X. ut

Given two functions

X
f→ Y, Y

g→ Z

we can form their composition which is a function g ◦ f : X → Z defined by

g ◦ f(x) := g
(
f(x) ).

Intuitively, the action of g ◦ f on an input x can be described by the diagram

x
f7→ f(x)

g7→ g
(
f(x)

)
.

In words, this means the following: take an input x ∈ X and drop it in the device
f : X → Y ; out comes f(x), which is an element of Y . Use the output f(x) as an input
for the device g : Y → Z. This yields the output g

(
f(x)

)
.
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Proposition 1.16. Let f : X → Y be a function. The following statements are equivalent.

(i) The function f is bijective.

(ii) There exists a function g : Y → X such that

f ◦ g = 1Y , g ◦ f = 1X . (1.4)

(iii) There exists a unique function g : Y → X satisfying (1.4).

Proof. (i) ⇒ (ii) Assume (i), so that f is bijective. Hence, for any y ∈ Y there exists a
unique x ∈ X such that f(x) = y. This unique x depends on y and we will denote it by
g(y); see Figure 1.4.

x

y=f(x)
x=g(y)

f

g

X Y

Figure 1.4. Constructing the inverse of a bijective function X → Y .

The correspondence y 7→ g(y) defines a function g : Y → X. By construction, if
x = g(y), then

y = f(x) = f
(
g(y) ) = f ◦ g(y) ∀y ∈ Y

so that f ◦ g = 1Y . Also, if y = f(x), then

x = g(y) = g
(
f(x)

)
= g ◦ f(x), ∀x ∈ X.

Hence g ◦ f = 1X . This proves the implication (i) ⇒ (ii)

(ii) ⇒ (iii) Assume (i). We need to show that if g1, g2 : Y → X are two functions
satisfying (1.4), then g1 = g2, i.e., g1(y) = g2(y), ∀y ∈ Y .

Let y ∈ Y . Set x1 = g1(y). Then

f(x1) = f
(
g1(y)

)
= f ◦ g1(y)

(1.4)
= y.

On the other hand,

g2(y) = g2

(
f(x1)

)
= g2 ◦ f(x1)

(1.4)
= x1 = g1(y).

This proves the implication (ii) ⇒ (iii).
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(iii) ⇒ (i). We assume that there exists a function g : Y → X satisfying (1.4) and we
will show that f is bijective. We first prove that f is injective, i.e.,

∀x1, x2 ∈ X : f(x1) = f(x2)⇒ x1 = x2.

Indeed, if f(x1) = f(x2), then

x1
(1.4)
= g ◦ f(x1) = g

(
f(x1)

)
= g
(
f(x2)

)
= g ◦ f(x2)

(1.4)
= x2.

To prove surjectivity we need to show that for any y ∈ Y , there exists x ∈ X such that
f(x) = y. Let y ∈ Y . Set x = g(y). Then

y
(1.4)
= f ◦ g(y) = f

(
g(y)

)
= f(x).

This proves the surjectivity of f and completes the proof of Proposition 1.16. ut

Definition 1.17. Let f : X → Y be a bijective function. The inverse of f is the unique
function g : Y → X satisfying (1.4). The inverse of a bijective function f is denoted by
f−1. ut
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1.5. Exercises

Exercise 1.1. Show that

¬(p ∨ q)←→(¬p ∧ ¬q), ¬(p ∧ q)←→¬p ∨ ¬q. ut

Exercise 1.2. (a) Show that

(p⇒ q)←→(¬q ⇒ ¬p), ¬(p⇒ q)←→(p ∧ ¬q).
(b) Consider the predicates

p := the elephant x can fly, q := the elephant x can drive.

Let us stipulate that p is false. Show that the predicate p⇒ q is true by showing that its
negation ¬(p⇒ q) is false. ut

Exercise 1.3. Consider the exclusive-OR operation ∨∗ with truth table

p q p ∨∗ q
T T F

T F T

F T T

F F F
Table 1.3. The truth table of “∨∗”

Show that

(p ∨∗ q)←→ (p ∧ ¬q) ∨ (¬p ∧ q)←→ (p⇐⇒¬q)←→(p⇒ ¬q) ∧ (¬p⇒ q). ut

Exercise 1.4 (Modus ponens). Show that the compound predicate(
(p⇒ q) ∧ p

)
⇒ q

is a tautology. ut

Exercise 1.5 (Modus tollens). Show that the compound predicate(
(p⇒ q) ∧ ¬q

)
⇒ ¬p

is a tautology. ut

Exercise 1.6. Translate each of the following propositions into a quantified statement in
standard form, write its symbolic negation, and then state its negation in words. (Use
Example 1.10 as guide.)

(i) You can fool some of the people all of the time.

(ii) Everybody loves somebody sometime.

(iii) You cannot teach an old dog new tricks.
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(iv) When it rains, it pours.

ut

Exercise 1.7. Consider the following predicates.

P := I will attend your party.

Q := I go to a movie.

Rephrase the predicate

I will attend your party unless I go to a movie

using the predicates P,Q and the logical operators ¬,∨,∧,⇒. ut

Exercise 1.8. Give an example of three sets A,B,C satisfying the following properties

A ∩B 6= ∅, B ∩ C 6= ∅, C ∩A 6= ∅, A ∩B ∩ C = ∅. ut

Exercise 1.9. Suppose that A,B,C are three arbitrary sets. Show that

A ∩
(
B ∪ C

)
=
(
A ∩B

)
∪
(
A ∩ C

)
,

A ∪
(
B ∩ C

)
=
(
A ∪B

)
∩
(
A ∪ C

)
,

and
A \

(
B ∪ C

)
=
(
A \B

)
∩
(
A \ C

)
.

(In the above equalities it should be understood that the operations enclosed by paren-
theses are to be performed first.)

Hint. Use Remark 1.14. ut

Exercise 1.10. Suppose that f : X → Y is a function and A,B ⊂ Y are subsets of the
codomain. Prove that

f−1(A ∪B) = f−1(A) ∪ f−1(B), f−1(A ∩B) = f−1(A) ∩ f−1(B).

Hint. Take into account (1.3) and Remark 1.14. ut

Exercise 1.11. Let f : X → Y be a map between the sets X,Y . Prove that f is
one-to-one if and only if for any subsets A,B ⊂ X we have

f(A ∩B) = f(A) ∩ f(B). ut

Exercise 1.12. Suppose A,B are sets and f : A→ B is a map.3 Define the maps

ϕ : A→ A×B, ρ : A×B → B

by setting
ϕ(a) :=

(
a, f(a)

)
, ∀a ∈ A, ρ(a, b) := b, ∀(a, b) ∈ A×B.

Prove that the following hold.

3Recall that a map is a function.
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(i) The map ϕ is injective.

(ii) The map ρ is surjective.

(iii) f = ρ ◦ ϕ.

ut

Exercise 1.13. Suppose that f : X → Y and g : Y → Z are two bijective maps. Prove
that the composition g ◦ f is also bijective and

(g ◦ f)−1 = f−1 ◦ g−1. ut

Exercise 1.14. Suppose that f : X → Y is a function. Prove that the following state-
ments are equivalent.

(i) The function f is injective.

(ii) There exists a function g : Y → X such that g ◦ f = 1X .

Exercise 1.15. Suppose that f : X → Y is a function. Prove that the following state-
ments are equivalent.

(i) The function f is surjective.

(ii) There exists a function g : Y → X such that f ◦ g = 1Y .

ut

1.6. Exercises for extra-credit

Exercise* 1.1. Two old ladies left from A to B and from B to A at dawn heading towards
one another along the same road. They met at noon, but did not stop, each carried on
walking with the same speed as before they met. The first lady arrives at B at 4 pm, and
the second lady arrives at A at 9 pm. What time was the dawn that day? ut

Exercise* 1.2. A farmer must take a wolf, a goat and a cabbage across a river in a boat.
However the boat is so small that he is able to take only one of the three on board with
him. How should he transport all three across the river? (The wolf cannot be left alone
with the goat, and the goat cannot be left alone with the cabbage.) ut





Chapter 2

The Real Number
System

Any attempt to define the concept of number is fraught with perils of a logical kind: we
will eventually end up chasing our tails. Instead of trying to explain what numbers are it
is more productive to explain what numbers do, and how they interact with each other.

In this section we gather in a coherent way some of the basic properties our intuition
tells us that real numbers1 ought to satisfy. We will formulate them precisely and we will
declare, by fiat, that these are true statements. We will refer to these as the axioms of the
real number system. (Things are a bit more subtle, but that’s the gist of our approach.)
All the other properties of the real numbers follow from these axioms. Such deductible
properties are known in mathematics as Propositions or Theorems. The term Theorem is
used sparingly and it is reserved to the more remarkable properties.

The process of deducing new properties from the already established ones is called a
mathematical proof. Intuitively, a proof is a complete, precise and coherent explanation
of a fact. In this course we will prove all of the calculus facts you are familiar with, and
much more.

The first thing that we observe is that the real numbers, whatever their nature, form
a set. We will encounter this set so often in our mathematical discourse that it deserves a
short name and symbol. We will denote the set of real numbers by R. More importantly
this set of mysterious objects called numbers satisfy certain properties that we use every
day. We take them for granted, and do not bother to prove them. These are the axioms
of the real numbers and they are of three types.

• Algebraic axioms.

1You may know them as decimal numbers or decimals.

19
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• Order axioms.

• The completeness axiom.

In this chapter we discuss these axiom in some details and then we show some of their
immediate consequences.

Remark 2.1. There is one rather delicate issue that we do not address in these notes. We introduce a set of objects

whose nature we do not explain and then we take for granted that they satisfy certain properties.

Naturally, one should ask if such things exist, because, for all we know, we might be investigating the set of

flying elephants. This is a rather subtle question, and answering it would force us to dig deep at the foundations of

mathematics. Historically, this question was settled relatively recently during the twentieth century but, mercifully,
science progressed for two millennia before people thought of formulating and addressing this issue. To cut to the

chase, no, we are not investigating flying elephants. ut

2.1. The algebraic axioms of the real numbers

Another thing we know from experience is that we can operate with numbers. More
precisely we can add, subtract, multiply and divide real numbers. Of these four operations,
the addition and the multiplication are the fundamental ones. These are special instances
of a more general mathematical concept, that of binary operation.

A binary operation on a set S is, by definition, a function S×S → S. Loosely, a binary
operation is a gizmo that feeds on ordered pairs of elements of S, processes such a pair in
some fashion, and produces a single element of S. We list the first axioms describing the
set of real numbers.

Axiom 1. The set R of real numbers R is equipped with two binary operations,

• addition

+ : R× R→ R, (x, y) 7→ x+ y,

• and multiplication

· : R× R→ R, (x, y) 7→ x · y.

ut

The operation of multiplication is sometimes denoted by the symbol ×.

Axiom 2. The addition is associative, i.e.,

∀x, y, z ∈ R; (x+ y) + z = x+ (y + z). ut
The usage of parentheses ( − ) indicates that we first perform the operation enclosed by
them.

Axiom 3. The addition is commutative, i.e.,

∀x, y ∈ R : x+ y = y + x. ut
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Axiom 4. An additive identity element exists. This means that there exists at least one
real number u such that

x+ u = u+ x = x, ∀x ∈ R. (2.1)

ut

Before we proceed to our next axiom, let us observe that there exists precisely one
additive identity element.

Proposition 2.2. If u0, û0 ∈ R are additive identity elements, then u0 = û0.

Proof. Since u0 is an identity element, if we choose x = û0 in (2.1) we deduce that

û0 + u0 = u0 + û0 = û0.

On the other hand, û0 is also an identity element and if we let x = u0 in (2.1) we conclude
that

u0 + û0 = û0 + u0 = u0.

Thus u0 = û0. ut

Definition 2.3. The unique additive identity element of R is denoted by 0. ut

Axiom 5. Additive inverses exist. More precisely, this means that for any x ∈ R there
exists at least one real number y ∈ R such that

x+ y = y + x = 0. ut
We have the following result whose proof is left to you as an exercise.

Proposition 2.4. Additive inverses are unique. This means that if x, y, y′ are real num-
bers such that

x+ y = y + x = 0 = x+ y′ = y′ + x,

then y = y′. ut

Definition 2.5. The unique additive inverse of a real number x is denoted by −x. Thus

x+ (−x) = (−x) + x = 0, ∀x ∈ R. ut

Axiom 6. The multiplication is associative, i.e.,

∀x, y, z ∈ R; (x · y) · z = x · (y · z). ut

Axiom 7. The multiplication is commutative, i.e.,

∀x, y ∈ R : x · y = y · x. ut
Axiom 8. A multiplicative identity element exists. This means that there exists at least
one nonzero real number u such that

x · u = u · x = x, ∀x ∈ R. (2.2)
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ut

Arguing as in the proof of Proposition 2.2 we deduce that there exists precisely one
multiplicative identity element. We denote it by 1. We define

2 := 1 + 1, x2 := x · x, ∀x ∈ R. (.)

Axiom 9. Multiplicative inverses exist. More precisely, this means that for any x ∈ R,
x 6= 0, there exists at least one real number y ∈ R such that

x · y = y · x = 1. ut

Proposition 2.4 has a multiplicative counterpart that states that multiplicative inverses
are unique. The multiplicative inverse of the nonzero real number x is denoted by x−1,
or 1/x, or 1

x . Also, we will frequently use the notation

x

y
:= x · y−1, y 6= 0.

+ The real number zero does not have an inverse. For this reason division
by zero is an illegal and very dangerous operation. NEVER DIVIDE BY
ZERO!

Axiom 10. Distributivity.

∀x, y, z ∈ R : x · (y + z) = x · y + x · z. ut

- To save energy and time we agree to replace the notation x · y with the simpler one,
xy, whenever no confusion is possible.

Definition 2.6. A set satisfying Axioms 1 through 10 is called a field. ut

The above axioms have a number of “obvious” consequences.

Proposition 2.7. (i) ∀x ∈ R, x · 0 = 0

(ii) ∀x, y ∈ R, (xy = 0)⇒ (x = 0) ∨ (y = 0).

(iii) ∀x ∈ R, −x = (−1) · x.

(iv) ∀x ∈ R, (−1) · (−x) = x.

(v) ∀x, y ∈ R, (−x) · (−y) = xy.

Proof. We will prove only part (i). The rest are left as exercises. Since 0 is the additive
identity element we have 0 + 0 = 0 and

x · 0 = x · (0 + 0) = x · 0 + x · 0.

If we add −(x · 0) to both sides of the equality x · 0 = x · 0 + x · 0 we deduce 0 = x · 0. ut
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2.2. The order axiom of the real numbers

Experience tells us that we can compare two real numbers, i.e., given two real numbers
we can decide which is smaller than the other. In particular, we can decide whether a
number is positive or not. In more technical terms we say that we can order the set of
real numbers. The next axiom formalizes this intuition.

Axiom 11. There exists a subset P ⊂ R called the subset of positive real numbers
satisfying the following two conditions.

(i) If x and y are in P , then so are their sum and product, x+ y ∈ P and xy ∈ P .

(ii) If x ∈ R, then exactly one of the following statements is true:

x ∈ P , or x = 0, or −x ∈ P . ut

Definition 2.8. Let x, y ∈ R.

(i) We say that x is negative if −x ∈ P .

(ii) We say that x is greater than y, and we write this x > y if x− y is positive. We
say that x is less than y, written x < y, if y is greater than x.

(iii) We say that x is greater than or equal to y, and we write this x ≥ y, if x > y
or x = y. We say that x is less than or equal to y, and we write this x ≤ y, if
y ≥ x.

(iv) A real number x is called nonnegative if x ≥ 0.

ut

Observe that x > 0 signifies that x ∈ P .

Proposition 2.9. (i) 1 > 0, i.e. 1 ∈ P .

(ii) If x > y and y > z, then x > z, x, y, z ∈ R.

(iii) If x > y, then for any z ∈ R, x+ z > y + z.

(iv) If x > y and z > 0, then xz > yz.

(v) If x > y and z < 0, then xz < yz.

Proof. We will prove only (i) and (ii). The proofs of the other statements are left to you
as exercises. To prove (i) we argue by contradiction. Thus we assume that 1 6∈ P . By
Axiom 8, 1 6= 0, so Axiom 11 implies that −1 ∈ P and (−1) ·(−1) ∈ P . Using Proposition
2.7(v) we deduce that

1 = (−1) · (−1) ∈ P .
We have reached a contradiction which proves (i).

To prove (ii) observe that

x > y ⇒ x− y ∈ P , y > z ⇒ y − z ∈ P
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so that

x− z = (x− y) + (y − z) ∈ P ⇒ x > z.

ut

Definition 2.10 (Intervals). Let a, b ∈ R. We define the following sets.

(i) (a, b) =]a, b[:=
{
x ∈ R; a < x < b

}
.

(ii) (a, b] =]a, b] :=
{
x ∈ R; a < x ≤ b

}
.

(iii) [a, b) = [a, b[:=
{
x ∈ R; a ≤ x < b

}
.

(iv) [a, b] :=
{
x ∈ R; a ≤ x ≤ b

}
.

(v) [a,∞) = [a,∞[:=
{
x ∈ R; a ≤ x

}
.

(vi) (a,∞) =]a,∞[:=
{
x ∈ R; a < x

}
.

(vii) (−∞, a) =]−∞, a[:=
{
x ∈ R; x < a

}
.

(viii) (−∞, a] =]−∞, a] :=
{
x ∈ R; x ≤ a

}
.

The above sets are generically called intervals. The intervals of the form [a, b], [a,∞),
or (−∞, a] are called closed, while the intervals of the form (a, b), (a,∞), or (−∞, a) are
called open. ut

I would like to emphasize that in the above definition we made no claim that any or
some of the intervals are nonempty. This is indeed the case, but this fact requires a proof.

Definition 2.11. For any x ∈ R we define the absolute value of x to be the quantity

|x| :=

{
x if x ≥ 0,

−x if x < 0.
ut

Proposition 2.12. (i) Let ε > 0. Then |x| < ε if and only if −ε < x < ε, i.e.,

(−ε, ε) =
{
x ∈ R; |x| < ε

}
.

(ii) x ≤ |x|, ∀x ∈ R.

(iii) |xy| = |x| · |y|, ∀x, y ∈ R. In particular, | − x| = |x|
(iv) |x+ y| ≤ |x|+ |y|, ∀x, y ∈ R.

Proof. We prove only (i) leaving the other parts as an exercise. We have to prove two
things,

|x| < ε⇒ −ε < x < ε, (2.3)

and

− ε < x < ε⇒ |x| < ε. (2.4)

To prove (2.3) let us assume that |x| < ε. We distinguish two cases. If x ≥ 0, then |x| = x
and we conclude that −ε < 0 ≤ x < ε. If x < 0, then |x| = −x and thus 0 < −x = |x| < ε.
This implies −ε < −(−x) = x < 0 < ε.
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Conversely, let us assume that −ε < x < ε. Multiplying this inequality by −1 we
deduce that −ε < −x < ε. If 0 ≤ x, then |x| = x < ε. If x < 0 then |x| = −x < ε. ut

Definition 2.13. The distance between two real numbers x, y is the nonnegative number
dist(x, y) defined by

dist(x, y) := |x− y|. ut

Very often in calculus we need to solve inequalities. The following examples describe
some simple ways of doing this.

Example 2.14. (a) Suppose that we want to find all the real numbers x such that

(x− 1)(x− 2) > 0.

To solve this inequality we rely on the following simple principle: the product of two real
numbers is positive if and only if both numbers are positive or both numbers are negative;
see Exercise 2.8. In this case the answer is simple: the numbers (x − 1) and (x − 2) are
both positive iff x > 2 and they are both negative iff x < 1. Hence

(x− 1)(x− 2) > 0 ⇐⇒ x ∈ (−∞, 1) ∪ (2,∞).

(b) Consider the more complicated problem: find all the real numbers x such that

(x− 1)(x− 2)(x− 3) > 0.

The answer to this question is also decided by the multiplicative rule of signs, but it is
convenient to organize or work in a table. In each of row we read the sign of the quantity

x −∞ 1 2 3 ∞
(x− 1) −∞ −−−− 0 + + + + + + + + + + + ∞
(x− 2) −∞ −−−− − −−− 0 + + + + + + + ∞
(x− 3) −∞ −−−− − −−− − −−− 0 + + + ∞

(x− 1)(x− 2)(x− 3) −∞ −−−− 0 + + + 0 −−− 0 + + + ∞

listed at the beginning of the row. The signs in the bottom row are obtained by multiplying
the signs in the column above them. We read

(x− 1)(x− 2)(x− 3) > 0 ⇐⇒ x ∈ (1, 2) ∪ (3,∞).

(c) Consider the related problem: find all the real numbers x such that

(x− 1)

(x− 2)(x− 3)
≥ 0.

Before we proceed we need to eliminate the numbers x = 2 and x = 3 from our consid-
erations because the denominator of the above fraction vanishes for these values of x and
the division by 0 is an illegal operation . We obtain a similar table
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x −∞ 1 2 3 ∞
(x− 1) −∞ −−−− 0 + + + + + + + + + + + ∞
(x− 2) −∞ −−−− − −−− 0 + + + + + + + ∞
(x− 3) −∞ −−−− − −−− − −−− 0 + + + ∞

(x−1)
(x−2)(x−3) −∞ −−−− 0 + + + ! −−− ! + + + ∞

The exclamation signs at the bottom row are warning us that for the corresponding
values of x the fraction has no meaning. We read

(x− 1)

(x− 2)(x− 3)
≥ 0 ⇐⇒ x ∈ [1, 2) ∪ (3,∞). ut

Example 2.15. We want to discuss a question involving inequalities frequently encoun-
tered in real analysis. Consider the statement

P (M) : ∀x ∈ R, x > M ⇒
∣∣∣∣ x2

x2 + x− 2
− 1

∣∣∣∣ < 1

10
.

We want to show that there exists at least one positive number M such that P (M) is
true, i.e., we want to prove that the statement

∃M > 0 such that, ∀x ∈ R, x > M ⇒
∣∣∣∣ x2

x2 + x− 2
− 1

∣∣∣∣ < 1

10
.

Let us observe that if P (M) is true and M ′ ≥M , then P (M ′) is also true. Thus, once we
find one M such that P (M) is true, then P (M ′) is true for all M ′ ∈ [M,∞).

We are content with finding only one M such that P (M) is true and the above obser-
vation shows that in our search we can assume that M is very large. This is a bit vague,
so let us see how this works in our special case.

First, we need to make sure that our algebraic expression is well defined so we need
to require that the denominator x2 + x− 2 = (x− 1)(x+ 2) is not zero. Thus we need to
assume that x 6= 1,−2. In particular, we will restrict our search for M to numbers larger
than 1. We have∣∣∣∣ x2

x2 + x− 2
− 1

∣∣∣∣ =

∣∣∣∣x2 − (x2 + x− 2)

x2 + x− 2

∣∣∣∣ =

∣∣∣∣ −x+ 2

x2 + x− 2

∣∣∣∣ =

∣∣∣∣ x− 2

x2 + x− 2

∣∣∣∣ .
Since we are investigating the properties of the last expression for x > M > 1 we deduce
that for x > 2 both quantities x− 2 and (x− 1)(x+ 2) are positive and thus∣∣∣∣ x− 2

x2 + x− 2

∣∣∣∣ =
x− 2

x2 + x− 2
.

We want this fraction to be small, smaller than 1
10 . Note that for x > 2 we have

x− 2

x2 + x− 2
≤ x− 1

x2 + x− 2
=

x− 1

(x− 1)(x+ 2)
=

1

x+ 2
,
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and

x > 2 ∧ 1

x+ 2
<

1

10
⇐⇒ x+ 2 > 10⇐⇒x > 8 .

We deduce that if x > 8, then

1

10
>

1

x+ 2
>

∣∣∣∣ x2

x2 + x− 2
− 1

∣∣∣∣ .
Hence P (8) is true. ut

2.3. The completeness axiom

Definition 2.16. Let X ⊂ R be a nonempty set of real numbers.

(i) A real number M is called an upper bound for X if

∀x ∈ X : x ≤M. (2.5)

(ii) The set X is said to be bounded above if it admits an upper bound.

(iii) A real number m is called a lower bound for X if

∀x ∈ X : x ≥ m. (2.6)

(iv) The set X is said to be bounded below if it admits a lower bound.

(v) The set X is said to be bounded if it is bounded both above and below.

ut

Example 2.17. (a) The interval (−∞, 0) is bounded above, but not below. The interval
(0,∞) is bounded below, but not above, while the interval (0, 1) is bounded. ut

(b) Consider the set R consisting of positive real numbers x such that x2 < 2. This set is
not empty because 12 = 1 < 2 so that 1 ∈ R. Let us show that this set is bounded above.
More precisely, we will prove that

x2 < 2⇒ x ≤ 2.

We argue by contradiction. Suppose that x ∈ R yet x > 2. Then

x2 − 22 = (x− 2)(x+ 2) > 0.

Hence x2 > 22 > 2 which shows that x 6∈ R. This contradiction proves that 2 is an upper
bound for R. ut

Definition 2.18. Let X ⊂ R be a nonempty set of real numbers.

(i) A least upper bound for X is an upper bound M with the following additional
property: if M ′ is another upper bound of X, then M ≤M ′.

(ii) A greatest lower bound for X is a lower bound m with the following additional
property: if m′ is another lower bound of X, then m ≥ m′.
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ut

Thus, M is a least upper bound for X if

• ∀x ∈ X, x ≤M , and

• if M ′ ∈ R is such that ∀x ∈ X, x ≤M ′, then M ≤M ′.

Proposition 2.19. Any nonempty set X ⊂ R admits at most one least upper bound, and
at most one greatest lower bound.

Proof. We prove only the statement concerning upper bounds. Suppose that M1,M2 are
two least upper bounds. Since M1 is a least upper bound, and M2 is an upper bound we
have M1 ≤ M2. Similarly, since M2 is a least upper bound we deduce M2 ≤ M1. Hence
M1 ≤M2 and M2 ≤M1 so that M1 = M2. ut

Definition 2.20. Let X ⊂ R be a nonempty set of real numbers.

(i) The least upper bound of X, when it exists, is called the supremum of X and it
is denoted by supX.

(ii) The greatest lower bound of X, when it exists, is called the infimum of X and
it is denoted by inf X.

ut

Example 2.21. Suppose that X = [0, 1). Then supX = 1 and inf X = 0. Note that
supX is not an element of X. ut

Proposition 2.22. Let X ⊂ R be a nonempty set of real numbers and M ∈ R. The
following statements are equivalent.

(i) M = supX.

(ii) The number M is an upper bound for X and for any ε > 0 there exists x ∈ X
such that x > M − ε.

Proof. (i) ⇒ (ii) Assume that M is the least upper bound of X. Then clearly M is an
upper bound and we have to show that for any ε > 0 we can find a number x ∈ X such
that x > M − ε.

Because M is the least upper bound and M − ε < M , we deduce that M − ε is not an
upper bound for X. In other words, the opposite of (2.5) must be true, i.e., there must
exist x ∈ X such that x is not less or equal to M − ε.

(ii)⇒ (i) We have to show that if M ′ is another upper bound then M ≤M ′. We argue
by contradiction. Suppose that M ′ < M . Then M ′ = M − ε for some positive number ε.
The assumption (ii) implies that x > M − ε for some number x ∈ X so that M ′ = M − ε
is not an upper bound. We reached a contradiction which completes the proof. ut
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The Completeness Axiom. Any nonempty set of real numbers that is bounded above
admits a least upper bound. ut

From the completeness axiom we deduce the following result whose proof is left to you
as Exercise 2.22.

Proposition 2.23. If the nonempty set X ⊂ R is bounded below, then it admits a greatest
lower bound. ut

Definition 2.24. Let X ⊂ R be a nonempty subset.

(i) We say that X admits a maximal element if X is bounded above and supX ∈ X.
In this case we say that supX is the maximum of X and it is denoted by maxX.

(ii) We say that X admits a minimal element if X is bounded below and inf X ∈ X.
In this case we say that inf X is called the minimum of X and it is denoted by
minX.

ut

Note that the interval I = [0, 1) has no maximal element, but it has a minimal element

min I = 0.

2.4. Visualizing the real numbers

The approach we have adopted in introducing the real numbers differs from the historical
course of things. For centuries scientists did not bother to ask what are the real numbers,
often relying on intuition to prove things. This lead to various contradictory conclusions
which prompted mathematicians to think more carefully about the concept of number and
to treat the intuition more carefully.

This does not mean that the intuition stopped playing an important part in the modern
mathematical thinking. On the contrary, intuition is still the first guide, but it always
needs to be checked and backed by rigorous arguments.

For example, you learned to visualize the numbers as points on a line called the real
line. We will not even attempt to explain what a line is. Instead we will rely on our
physical intuition of this geometric concept. The real line is more than just a line, it is a
line enriched with several attributes.

• It has a distinguished point called the origin which should be thought of as the
real number 0.

• It is equipped with an orientation, i.e., a direction of running along the line
visually indicated by an arrowhead at one end of the line; see Figure 2.1. Equiv-
alently, the origin splits the line into two sides, and choosing an orientation is
equivalent to declaring one side to be the positive side and the other side to be
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the negative side. Traditionally the above arrowhead points towards the positive
side; see Figure 2.1

• There is a way of measuring the distance between two points on the line.

0

the positive sidethe negative side

-2 1

Figure 2.1. The real line.

For example, the number −2 can be visualized as the point on the negative side
situated at distance 2 from the origin; see Figure 2.1.

Now that we have identified the set R of real numbers with the set of points on a line,
we can visualize the Cartesian product R2 := R × R with the set of points in a plane,
called the Cartesian plane; see the top of Figure 2.2.

-1 3 x

x

y

y

O

O

P

Figure 2.2. The real line.

Just like the real line, the Cartesian plane is more than a plane: it is a plane enriched
by several attributes.
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• It contains a distinguished point, called the origin and denoted by O.

• It contains two distinguished perpendicular lines intersecting at O. These lines
are called the axes of the Cartesian plane. One of the axes is declared to be
horizontal and the other is declared to be vertical.

• Each of these two axes is a real line, i.e., it has the additional attributes of a
real line: each has a distinguished point, O, each has an orientation, and each
is equipped with a way measuring distances along that respective line. The
horizontal axis is also known as the x-axis, while the vertical one is also known
as the y-axis.

The position of a point P in that plane is determined by a pair of real numbers called
the Cartesian coordinates of that point. These two numbers are obtained by intersecting
the two axes with the lines through P which are perpendicular to the axes.

An interval of the real line can be visualized as a segment on the real line, possibly
with one or both endpoints removed. If I is an interval of the real line and f : I → R is a
function, then its graph looks typically like a curve in the Cartesian plane. For example,
the bottom of Figure 2.2 depicts the graph of a function f : [−1, 3]→ R.
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2.5. Exercises

Exercise 2.1. (a) Prove Proposition 2.4.

(b) State and prove the multiplicative counterpart of Proposition 2.2. ut

Exercise 2.2. Prove parts (ii)-(v) of Proposition 2.7. ut

Exercise 2.3. (a) Prove that

(x+ y) + (z + t) =
(

(x+ y) + z
)

+ t, ∀x, y, z, t ∈ R.
(b) Prove that for any x, y, z, t,∈ R the sum x + y + z + t is independent of the manner
in which parentheses are inserted. ut

Exercise 2.4. Prove parts (iii)-(v) of Proposition 2.9. ut

Exercise 2.5. Show that for any real numbers x, y, z such that y, z 6= 0, we have
xz

yz
=
x

y
. ut

Exercise 2.6. (a) Show that for any real numbers x, y, z, t such that y, t 6= 0 we have the
equality

x

y
+
z

t
=
xt+ yz

yt
.

(b) Prove that for any real numbers x, y we have

x2 − y2 = (x− y)(x+ y).

(c) Prove that the function f : (0,∞)→ R, f(x) = x2, is injective but not surjective. ut

Exercise 2.7. Prove that if x ≤ y and y ≤ x, then x = y. ut

Exercise 2.8. (a) Prove that if xy > 0, then either x > 0 and y > 0, or x < 0 and y < 0.ut

(b) Prove that if x > 0, then 1/x > 0.

(c) Let x > 0. Show that x > 1 if and only if 1/x < 1.

(d) Prove that if y > x ≥ 1, then

x+
1

x
< y +

1

y
. ut

Exercise 2.9. (a) Prove that x2 > 0 for any x ∈ R, x 6= 0.

(b) Consider the functions

f, g : R→ R, f(x) = x2 + 1, g(x) = 2x+ 1.

Decide if any of these two functions is injective or surjective.

(c) With f and g as above, describe the functions f ◦ g and g ◦ f . ut
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Exercise 2.10. Using the technique described in Example 2.14 find all the real numbers
x such that

x2

(x− 1)(x+ 2)
≤ 1. ut

Exercise 2.11. (a) Find a positive number M with the following property:

∀x : x > M ⇒ x2

x+ 1
> 105.

(b) Find a positive number M with the following property:

∀x : x > M ⇒ x2

x− 1
> 106.

(c) Find a real number M with the following property:

∀x : x > M ⇒
∣∣∣∣ x2

(x− 1)(x− 2)
− 1

∣∣∣∣ < 1

100
. ut

Exercise 2.12. Let a < b. Show that

a <
1

2
(a+ b) < b,

where 2 is the real number 2 := 1 + 1. Conclude that the interval (a, b) is nonempty. ut

Exercise 2.13. Prove that x2 + y2 ≥ 2xy, for any x, y ∈ R. Use this inequality to prove
that

x2 + y2 + z2 ≥ xy + yz + zx, ∀x, y, z ∈ R. ut

Exercise 2.14. Prove that if 0 ≤ x ≤ ε, ∀ε > 0, then x = 0. (The Greek letter ε (read
epsilon) is ubiquitous in analysis and it is almost exclusively used to denote quantities
that are extremely small.) ut

Exercise 2.15. (a) Consider the function f : [0, 2]→ R given by

f(x) =

{
0, x ∈ [0, 1],

1, x ∈ (1, 2].

Decide which of the following statements is true.

(i) ∃L > 0 such that ∀x1, x2 ∈ [0, 2] we have |f(x1)− f(x2)| ≤ L|x1 − x2|.
(ii) ∀x1, x2 ∈ [0, 2] , ∃L > 0 such that |f(x1)− f(x2)| ≤ L|x1 − x2|.

(b) Same question, when we change the definition of f to f(x) = x2, for all x ∈ [0, 2]. ut

Exercise 2.16. Show that for any δ > 0 and any a ∈ R we have

(a− δ, a+ δ) =
{
x ∈ R; |x− a| < δ

}
. ut
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Exercise 2.17. Prove the statements (ii)-(iv) of Proposition 2.12. ut

Exercise 2.18. Prove that for any real numbers a, b, c we have

dist(a, c) ≤ dist(a, b) + dist(b, c). ut

Exercise 2.19. Prove that a set X ⊂ R is bounded if and only if there exists C > 0 such
that |x| ≤ C, ∀x ∈ X. ut

Exercise 2.20. Fix two real numbers a, b such that a < b. Prove that for any x, y ∈ [a, b]
we have

|x− y| ≤ b− a. ut

Exercise 2.21. State and prove the version of Proposition 2.22 involving the infimum of
a bounded below set X ⊂ R. ut

Exercise 2.22. Let X ⊂ R be a nonempty set of real numbers. For c ∈ R define

cX :=
{
cx; x ∈ X

}
⊂ R.

(i) Show that if c > 0 and X is bounded above, then cX is bounded above and

sup cX = c supX.

(ii) Show that if c < 0 and X is bounded above, then cX is bounded below and

inf cX = c supX.

ut

Exercise 2.23. (a) Let

A :=
{ a

a+ 1
; a > 0

}
.

Compute inf A and supA.

(b) Let

B :=
{ b

b+ 1
; b ∈ R \ {−1}

}
.

Prove that the set B is not bounded below or above. ut



Chapter 3

Special classes of real
numbers

3.1. The natural numbers and the induction
principle

The numbers of the form

1, 1 + 1, (1 + 1) + 1

and so forth are denoted respectively by 1, 2, 3, . . . and are called natural numbers. The
term and so forth is rather ambiguous and its rigorous justification is provided by the
principle of mathematical induction.

Definition 3.1. A set X ⊂ R is called inductive if

∀x : (x ∈ X ⇒ x+ 1 ∈ X).

ut

Example 3.2. The set R is inductive and so is any interval (a,∞) If (Xa)a∈A is a collection
of inductive sets, then so is their intersection⋂

a∈A
Xa. ut

Definition 3.3. The set of natural numbers is the smallest inductive set containing 1,
i.e., the intersection of all inductive sets that contain 1. The set of natural numbers is
denoted by N. ut

To unravel the above definition, the set N is the subset of R uniquely characterized by
the following requirements.

35
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• The set N is inductive and 1 ∈ N.

• If S ⊂ R is an inductive set that contains 1, then N ⊂ S.

The set N consists of the numbers

1, 2 := 1 + 1, 3 := 2 + 1, 4 := 3 + 1, . . . .

Note that 0 6∈ N. Indeed, the interval [1,∞) is an inductive set, containing 1 and thus
must contain N. On the other hand, this interval does not contain 0. The above argument
proves that N ⊂ [1,∞), i.e.,

n ≥ 1, ∀n ∈ N. (3.1)

We set

N0 := {0} ∪ N =
{

0, 1, 2, , 3, . . . ,
}
.

P The Principle of Mathematical Induction. If E is an inductive subset of the set
of natural numbers such that 1 ∈ E, then E = N.

In applications the set E consists of the natural numbers n satisfying a property P (n).
To prove that any natural number n satisfies the property P (n) it suffices to prove two
things.

• Prove P (1). This is called the initial step.

• Prove that if P (n) is true, then so is P (n+ 1). This is called the inductive step.

Sometimes we need an alternate version of the induction principle.

P The Principle of Mathematical Induction: alternate version. Suppose that for
any natural number n we are given a statement P (n) and we know the following.

• The statement P (1) is true.

• For any n ∈ N, if P (k) is true for any k < n, then P (n) is true as well.

Then P (n) is true for any n ∈ N. ut

We will spend the rest of this section presenting various instances of the induction
principle at work.

Proposition 3.4. The sum and the product of two natural numbers are also natural
numbers.

Proof. 1 Fix a natural number m. For each n ∈ N consider the statement

P (n) := m+ n is a natural number.

1The proof can be omitted.
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We have to prove that P (n) is true for any n ∈ N. We will achieve this using the principle of induction. We first

need to check that P (1) is true, i.e., that m+ 1 is a natural number. This follows from the fact that m ∈ N and N
is an inductive set.

To complete the inductive step assume that P (n) is true, i.e., m+ n ∈ N. Thus (m+ n) + 1 ∈ N and

m+ (n+ 1) = (m+ n) + 1 ∈ N.

This shows that P (n+ 1) is also true. ut

Lemma 3.5. ∀n ∈ N, (n 6= 1)⇒ (n− 1) ∈ N.

Proof. For n ∈ N consider the statement

P (n) := n 6= 1⇒ (n− 1) ∈ N.

We want to prove that this statement is true for any n ∈ N. The initial step is obvious since for n = 1 the statement
n 6= 1 is false and thus the implication is true.

For the inductive step assume that the statement P (n) is true and we prove that P (n+1) is also true. Observe
that n+ 1 6= 1 because n ∈ N and thus n 6= 0. Clearly (n+ 1)− 1 = n ∈ N. ut

Lemma 3.6. The set

I1 =
{
x ∈ N; x > 1

}
admits a minimal element and min I1 = 2.

Proof. Consider the set

E :=
{
x ∈ N; x = 1 ∨ x ≥ 2

}
⊂ N.

We will prove by induction that

E = N. (3.2)

Thus we need to show that 1 ∈ E and x ∈ E ⇒ x+ 1 ∈ E. Clearly 1 ∈ E.

If x ∈ E, then

• either x = 1 so that x+ 1 = 2 ≥ 2 so that x+ 1 ∈ E,

• or x ≥ 2 which implies x+ 1 ≥ 2 and thus x+ 1 ∈ E.

The equality E = N implies that a natural number n is either equal to 1, or it is ≥ 2. Thus

x ∈ N ∧ x > 1⇒ x ≥ 2.

This shows that

x ≥ 2, ∀x ∈ I1.

Clearly 2 ∈ I1 so that 2 = min I. ut
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Corollary 3.7. For any n ≥ 1 the set

Hn =
{
x ∈ N; x > n

}
admits a minimal element and

minHn = n+ 1.

Proof. We will prove that for any n ∈ N the statement

P (n) : minHn = n+ 1

is true. Lemma 3.6 shows that P (1) is true.

Let us show that P (n) ⇒ P (n + 1). Since n + 2 ∈ Hn+1 it suffices to show that x ≥ n + 2, ∀x ∈ Hn+1. Let

x ∈ Hn+1. Lemma 3.5 implies that x − 1 ∈ N and x − 1 > n so that x − 1 ∈ Hn. Since P (n) is true, we deduce
x− 1 ≥ n+ 1, i.e., x ≥ n+ 2.

ut

Corollary 3.8. Suppose that n is a natural number. Any natural number x such that
x > n satisfies x ≥ n+ 1. ut

Corollary 3.9. For any natural number n, the open interval (n, n+1) contains no natural
number.

Proof. From Corollary 3.8 we deduce that if x is a natural number such that x > n, then
x ≥ n+ 1. Thus there cannot exist any natural number x such that n < x < n+ 1. ut

The above results imply the following important theorem.

Theorem 3.10 (Well Ordering Principle). Any set of natural numbers S ⊂ N has a
minimal element. ut

For a proof of this theorem we refer to [22, §2.2.1].

Definition 3.11. For any n ∈ N we denote by In the set

In :=
{
x ∈ N; 1 ≤ x ≤ n

}
= [1, n] ∩ N. ut

Definition 3.12. We say two sets X and Y are said to have the same cardinality, and
we write this X ∼ Y , if and only if there exists a bijection f : X → Y . A set X is called
finite if there exists a natural number n such that X ∼ In. ut
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Let us observe that if X,Y, Z are three sets such that X ∼ Y and Y ∼ Z, then X ∼ Z;
see Exercise 3.1. This implies that any set X equivalent to a finite set Y is also finite.
Indeed, if X ∼ Y and Y ∼ In, then X ∼ In.

At this point we want to invoke (without proof) the following result.

Proposition 3.13. For any m,n ∈ N we have

In ∼ Im⇐⇒m = n. ut

The above result implies that if X is a finite set, then there exists a unique natural
number n such that X ∼ In. This unique natural number is called the cardinality of X
and it is denoted by |X| or #X. You should think of the cardinality of a finite set as the
number of elements in that set.

An infinite set is a set that is not finite. We have the following highly nontrivial result.
Its proof is too complex to present here.

Theorem 3.14. A set X is infinite if and only if it is equivalent to one of its proper2

subsets. ut

Theorem 3.15. The set of natural numbers N is infinite.

Proof. Consider the proper subset

H :=
{
n ∈ N; n > 1

}
⊂ N.

Lemma 3.5 implies that if n ∈ H, then (n− 1) ∈ N. Consider the map

f : H → N, f(n) = n− 1.

Observe that this map is injective. Indeed, if f(n1) = f(n2), then n1 − 1 = n2 − 1
so that n1 = n2. This map is also surjective. Indeed, if m ∈ N. Then, according to
(3.1) the natural number n := m + 1 is greater than 1 so it belongs to H. Clearly
f(n) = (m+ 1)− 1 = m which proves that f is also surjective. ut

Definition 3.16. A set X is called countable if it is equivalent with the set of natural
numbers. ut

Example 3.17. The set N×N is countable. To see this arrange the elements of N×N in
a sequence as follows:

(1, 1), (2, 1), (2, 2)︸ ︷︷ ︸
S2

, (3, 1), (3, 2), (3, 3)︸ ︷︷ ︸
S3

, (4, 1), (4, 2), (4, 3), (4, 4)︸ ︷︷ ︸
S4

,

Now denote by φ(m,n) the location of the pair (m,n) in the above string. For example,
φ(1, 1) = 1 since (1, 1) is the first term in the above sequence. Note that

φ(4, 2) = 1 + 2 + 3 + 2 = 8,

2We recall that a subset S ⊂ X is called proper if S 6= X.
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i.e., (4, 2) occupies the 8-th position in the above string. More precisely φ is the function

φ : N× N→ N, φ(m,n) = #S1 + · · ·#Sm−1 + n.

It should be clear that φ is bijective proving that N× N has the same cardinality as N.ut

3.2. Applications of the induction principle

In this section we discuss some traditional applications of the induction principle. This
serves two purposes: first, it familiarizes you with the usage of this principle, and second,
some of the results we will discuss here will be needed later on in this class.

First let us introduce some notations. If n is a natural number, n > 1, and we are
given n real numbers a1, . . . , an, then define inductively

a1 + · · ·+ an := (a1 + · · ·+ an−1) + an,

a1 · · · an = (a1 · · · an−1)an.

We will use the following notations for the sum and products of a string of real numbers.
Thus

n∑
k=1

ak := a1 + · · ·+ an,
n∏
k=1

ak := a1 · · · an.

Similarly, given real numbers a0, a1, . . . , an we define
n∑
k=0

ak = a0 + a1 + · · ·+ an,
n∏
k=0

ak := a0 · · · an.

For any natural number n and any real number x we define inductively

xn :=

{
x if n = 1

(xn−1) · x if n > 1.

Intuitively

xn = x · x · · ·x︸ ︷︷ ︸
n

.

If x is a nonzero real number we set

x0 := 1.

Let us observe that for any natural numbers m,n and any real number x we have the
equality

xm+n = (xm) · (xn).

Exercise 3.2 asks you to prove this fact.

Example 3.18. Let us prove that
n∑
k=1

k =
n(n+ 1)

2
, ∀n ∈ N. (3.3)
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The expanded form of the last equality is

1 + 2 + · · ·+ n =
n(n+ 1)

2
, ∀n ∈ N.

Let us denote by Sn the sum 1 + 2 + · · · + n. We argue by induction. The initial case
n = 1 is trivial since

1 · (1 + 1)

2
= 1 = S1.

For the inductive case we assume that

Sn =
n(n+ 1)

2
,

and we have to prove that

Sn+1 =
(n+ 1)( (n+ 1) + 1)

2
=

(n+ 1)(n+ 2)

2
.

Indeed we have

Sn+1 = Sn + (n+ 1) =
n(n+ 1)

2
+ n+ 1 =

n(n+ 1)

2
+

2(n+ 1)

2
=
n(n+ 1) + 2(n+ 1)

2

(factor out (n+ 1))

=
(n+ 1)(n+ 2)

2
. ut

Example 3.19 (Bernoulli’s inequality). We want to prove a simple but very versatile
inequality that goes by the name of Bernoulli’s inequality. More precisely it states that
inequality

∀x ≥ −1, ∀n ∈ N : (1 + x)n ≥ 1 + nx. (3.4)

We argue by induction. Clearly, the inequality is obviously true when n = 1 and the initial
case is true. For the inductive case, we assume that

(1 + x)n ≥ 1 + nx, ∀x ≥ −1 (3.5)

and we have to prove that

(1 + x)n+1 ≥ 1 + (n+ 1)x, ∀x ≥ −1.

Since x ≥ −1 we deduce 1 + x ≥ 0. Multiplying both sides of (3.5) with the nonnegative
number 1 + x we deduce

(1 + x)n+1 ≥ (1 + x)(1 + nx) = 1 + nx+ x+ nx2 ≥ 1 + nx+ x = 1 + (n+ 1)x. ut

Example 3.20 (Newton’s Binomial Formula). Before we state this very impor-
tant formula we need to introduce several notations widely used in mathematics. For
n ∈ N ∪ {0} we define n! (read n factorial) as follows

0! := 1, 1! := 1, 2! = 1 · 2, 3! = 1 · 2 · 3, · · ·n! = 1 · 2 · · ·n.
Given k, n ∈ N ∪ {0}, k ≤ n we define the binomial coefficient

(
n
k

)
(read n choose k)(

n

k

)
:=

n!

k! · (n− k)!
.
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We record below the values of these binomial coefficients for small values of n(
0

0

)
= 1,

(
1

0

)
=

(
1

1

)
= 1,(

2

0

)
=

2!

(0!)(2!)
= 1,

(
2

1

)
=

2!

(1!)(1!)
= 2,

(
2

2

)
=

2!

(2!)(0!)
= 1,(

3

0

)
=

3!

(0!)(3!)
=

(
3

3

)
= 1,

(
3

1

)
=

(3!)

(1!)(2!)
=

3!

(2!)(1!)
=

(
3

2

)
= 3.

Here is a more involved example(
7

3

)
=

7!

(3!)(4!)
=

7 · 6 · 5 · 4 · 3 · 2 · 1
(3!)1 · 2 · 3 · 4

=
7 · 6 · 5

3!
=

7 · 6 · 5
6

= 35.

The binomial coefficients can be conveniently arranged in the so called Pascal triangle(
0
k

)
: 1(

1
k

)
: 1 1(

2
k

)
: 1 2 1(

3
k

)
: 1 3 3 1(

4
k

)
: 1 4 6 4 1

...
...

...
...

...
...

...
...

...
...

Observe that each entry in the Pascal triangle is the sum of the closest neighbors above
it.

The binomial coefficients play an important role in mathematics. One reason behind
their usefulness is Newton’s binomial formula which states that, for any natural number
n, and any real numbers x, y, we have the equality below

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn

=
n∑
k=0

(
n

k

)
xn−kyk.

(3.6)

We will prove this equality by induction on n. For n = 1 we have

(x+ y)1 = x+ y =

(
1

0

)
x+

(
1

1

)
y,

which shows that the case n = 1 of (3.6) is true.

As for the inductive steps, we assume that (3.6) is true for n and we prove that it is
true for n+ 1. We have

(x+ y)n+1 = (x+ y)(x+ y)n
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(use the inductive assumption)

= (x+ y)

((
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn
)

= x

((
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn
)

+y

((
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn
)

=

(
n

0

)
xn+1 +

(
n

1

)
xny +

(
n

2

)
xn−1y2 + · · ·+

(
n

n− 1

)
x2yn−1 +

(
n

n

)
xyn

+

(
n

0

)
xny +

(
n

1

)
xn−1y2 +

(
n

2

)
xn−2y3 + · · ·+

(
n

n− 1

)
xyn +

(
n

n

)
yn+1

=

(
n

0

)
xn+1 +

((
n

1

)
+

(
n

0

))
xny +

((
n

2

)
+

(
n

1

))
xn−1y2 + · · ·

+

((
n

k

)
+

(
n

k − 1

))
xn+1−kyk + · · ·+

((
n

n

)
+

(
n

n− 1

))
xyn +

(
n

n

)
yn+1.

Clearly (
n

0

)
= 1 =

(
n+ 1

0

)
,

(
n

n

)
= 1 =

(
n+ 1

n+ 1

)
.

We want to show 1 ≤ k ≤ n we have the Pascal’s formula(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
. (3.7)

Indeed, we have (
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!

=
n!

k(k − 1)!(n− k)!
+

n!

(k − 1)!(n− k)!(n− k + 1)

=
n!

(k − 1)!(n− k)!

(
1

k
+

1

n− k + 1

)
=

n!

(k − 1)!(n− k)!
·
(

(n− k + 1)

k(n− k + 1)
+

k

k(n− k + 1)

)
=

n!

(k − 1)!(n− k)!
· n+ 1

k(n− k + 1)

=
(n+ 1)n!

( k(k − 1)! ) · ( (n− k + 1)(n− k)! )
=

(n+ 1)!

k!(n+ 1− k)!
=

(
n+ 1

k

)
.

This completes the inductive step. ut
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3.3. Archimedes’ Principle

We begin with a simple but fundamental observation.

Proposition 3.21. Suppose that the nonempty subset E ⊂ N is bounded above. Then E
has a maximal element n0, i.e., n0 ∈ E and n ≤ n0, ∀n ∈ E.

Proof. From the completeness axiom we deduce that E has a least upper boundM = supE ∈ R.
We want to prove that M ∈ E. We argue by contradiction. Suppose that M 6∈ E. In
particular, this means that any number in E is strictly smaller than M .

From the definition of the least upper bound we deduce that there must exist n0 ∈ E
such that

M − 1 < n0 ≤M.

On the other hand, any natural number n greater than n0 must be greater than or equal
to n0 + 1, n ≥ n0 + 1. Observing that n0 + 1 > M , we deduce that any natural number
> n0 is also > M . Since M 6∈ E, then n0 < M , and the above discussion show that the
interval (n0,M) contains no natural numbers, thus no elements of E. Hence, any real
number in (n0,M) will be an upper bound for E, contradicting that M is the least upper
bound. ut

Theorem 3.22 (Archimedes’ Principle). Let ε be a positive real number. Then for any
x > 0 there exists n ∈ N such that nε > x. 3

Proof. Consider the set

E :=
{
n ∈ N; nε ≤ x

}
.

If E = ∅, then this means that nε > x for any n ∈ N and the conclusion of the theorem is
guaranteed. Suppose that E 6= ∅. Observe that

n ≤ x

ε
, ∀n ∈ E.

Hence, the set E is bounded above, and the previous proposition shows that it has a
maximal element n0. Then n0 + 1 6∈ E, so that (n0 + 1)ε > x. ut

Definition 3.23. The set of integers is the subset Z ⊂ R consisting of the natural num-
bers, the negatives of natural numbers and 0. ut

The proof of the following results are left to you as an exercise.

Proposition 3.24. If m,n ∈ Z, then m+ n,mn ∈ Z. ut

Proposition 3.25. For any real number x the interval (x − 1, x] contains exactly one
integer. ut

3A popular formulation of Archimedes’ principle reads: one can fill an ocean with grains of sand.
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Corollary 3.26. For any real number x there exists a unique integer n such that

n ≤ x < n+ 1.

This integer is called the integer part of x and it is denoted by bxc.

Proof. Observe that the inequalities n ≤ x < n+ 1 are equivalent to the inequalities

x− 1 < n ≤ x.
By Proposition 3.25, the interval (x − 1, x] contains exactly one integer. This proves the
existence and uniqueness of the integer with the postulated properties. ut

Observe for example that ⌊
1

2

⌋
= 0,

⌊
−1

2

⌋
= −1,

Theorem 3.27 (Division with remainder). Let m,n ∈ Z, n > 0. There exists a unique
pair of integers (q, r) ∈ Z× Z satisfying the following properties.

(i) m = qn+ r.

(ii) 0 ≤ r < n.

Proof. Uniqueness. Suppose that there exist two pairs of integers (q1, r1) and (q2, r2) satisfying (i) and (ii). Then

nq1 + r1 = m = nq2 + r2,

so that,
nq1 − nq2 = r2 − r1 ⇒ n(q1 − q2) = r2 − r1 ⇒ n · |q1 − q2| = |r2 − r1|.

The natural numbers r1, r2 satisfy 0 ≤ r1, r2 < |n| so that r1, r2 ∈ [0, n − 1]. Using Exercise 2.20 we deduce
|r2 − r1| ≤ n− 1. Hence n · |q1 − q2| ≤ n− 1 which implies

|q1 − q2| ≤
n− 1

n
< 1.

The quantity |q1 − q2| is a nonnegative integer < 1 so that it must equal 0. This implies q1 = 2 and

r2 − r1 = n(q1 − q2) = 0.

This proves the uniqueness.

Existence. Let

q :=
⌊m
n

⌋
∈ Z.

Then

q ≤
m

n
< q + 1⇒ nq ≤ m < n(q + 1) = nq + n⇒ 0 ≤ m− nq < n.

We set r := m− nq and we observe that the pair (q, r) satisfies all the required properties. ut

Definition 3.28. (a) Let m,n ∈ Z, m 6= 0. We say that m divides n, and we write this
m|n if there exists an integer k such that n = km. When m divides n we also say that m
is a divisor of n, or that n is a multiple of m, or that n is divisible by m.

(b) A prime number is a natural number p > 1 whose only divisors are ±1 and ±p. ut
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Observe that if d is a divisor of m, then −d is also a divisor of m. An even integer is
an integer divisible by 2. An odd integer is an integer not divisible by 2.

Given two integers m,n consider the set of common positive divisors of m and n, i.e.,
the set

Dm,n :=
{
d ∈ N; d|m ∧ d|n

}
.

This set is not empty because 1 is a common positive divisor. This is bounded above
because any divisor of m is ≤ |m|. Thus the set Dm,n has a maximal element called the
greatest common divisor of m and n and denoted by gcd(m,n). Two integers are called
coprime if gcd(m,n) = 1, i.e., 1 is their only positive common divisor.

The next result describes on the most important property of the set Z of integers. We
will not include its rather elaborate and tricky proof. The curious reader can find the
proof in any of the books [2, 3, 16].

Theorem 3.29 (Fundamental Theorem of Arithmetic). (a) If p is a prime number that
divides a product of integers mn, then p|m or p|n.

(b) Any natural number n can be written in a unique fashion as a product

n = pα1
1 · · · p

αk
k ,

where p1 < p2 < · · · < pk are prime numbers and α1, . . . , αk are natural numbers. ut

3.4. Rational and irrational numbers

We want to isolate another important subclasses of real numbers.

Definition 3.30. The set of rationals (or rational numbers) is the subset Q ⊂ R consisting
of real numbers of the form m/n where m,n ∈ Z, n 6= 0. ut

If q is a rational number, then it can be written as a fraction of the form q = m
n , n 6= 0.

We denote by d the gcd(m,n). Thus there exist integers m1 and n1 such that

m = dm1, n = dn1.

Clearly the numbers m1, n1 are coprime, and we have

q =
dm1

dn1
=
m1

n1
.

We have thus proved the following result.

Proposition 3.31. Every rational number is the ratio of two coprime integers. ut

The proof of the following result is left to you as an exercise.

Proposition 3.32. If q, r ∈ Q, then q + r, qr ∈ Q. ut
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We have a sequence of inclusions

N ⊂ Z ⊂ Q ⊂ R.

Clearly N 6= Z because −1 ∈ Z, but −1 6∈ N. Note however that, although Z contains N,
the set of integers Z is countable, i.e., it has the same cardinality as N.

Next observe that Z 6= Q. Indeed, the rational number 1/2 is not an integer, because
it is positive and smaller than any natural number.

Similarly, although Q strictly contains Z, these two sets have the same cardinality:
they are both countable. However, the following very important result shows that,
loosely speaking, there are “many more rational numbers”.

Proposition 3.33 (Density of rationals). Any open interval (a, b) ⊂ R, no matter how
small, contains at least one rational number.

Proof. From Archimedes’ principle we deduce that there exists at least one natural num-
ber n such that n > 1

b−a . Observe that (b − a) is the length of the interval (a, b). This
inequality is obviously equivalent to the inequality

1

n
< b− a⇐⇒n(b− a) > 1

(This last equality codifies a rather intuitive fact: one can divide a stick of length one into
many equal parts so that the subparts are as small as we please.)

We will show that we can find an integer m such that m
n ∈ (a, b). Observe that

a <
m

n
< b⇐⇒ na < m < nb⇐⇒ m ∈ (na, nb).

This shows that the interval (a, b) contains a rational number if the interval (na, nb)
contains an integer.

Since n(b− a) > 1, we deduce nb > na+ 1. In particular, this shows that the interval
(na, na + 1] is contained in the interval (na, nb). From Proposition 3.25 we deduce that
the interval (na, na+ 1] contains an integer m. ut

This abundance of rational numbers lead people to believe for quite a long while that
all real numbers must be rational. Then the ancient Greeks showed that there must
exist real numbers that cannot be rational. These numbers were called irrational. In the
remainder of this section we will describe how one can produce a large supply of irrational
numbers. We start with a baby case.

Proposition 3.34. There exists a unique positive number r such that r2 = 2. This num-

ber is called the square root of 2 and it is denoted by
√

2

Proof. We begin by observing the following useful fact :

∀x, y > 0 : x < y⇐⇒x2 < y2. (3.8)
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Indeed
y2 − x2 > 0⇐⇒(y − x)(y + x) > 0⇐⇒y > x.

This useful fact takes care of the uniqueness because, if r1, r2 are two positive real numbers
such that r2

1 = r2
2 = 2, then r1 = r2⇐⇒r2

1 = r2
2.

To establish the existence of a positive r such that r2 = 2 consider as in Example
2.17(b) the set

R =
{
x > 0; x2 < 2

}
.

We have seen that this set is bounded above and thus it admits a least upper bound

r := supR.

We want to prove that r2 = 2. We argue by contradiction and we assume that r2 6= 2.
Thus, either r2 < 2 or r2 > 2.

Case 1. r2 < 2. We will show that there exists ε0 such that (r + ε0)2 < 2. This would
imply that r + ε0 ∈ R and would contradict the fact that r is an upper bound for R
because r would be smaller than the element r + ε0 of R.

Set δ := 2− r2. For any ε ∈ (0, 1) we have

(r + ε)2 − r2 =
(

(r + ε)− r
)(

(r + ε) + r
)

= ε(2r + ε) < ε(2r + 1).

Now choose a number ε0 ∈ (0, 1) such that

ε0 <
δ

2r + 1
.

Then
(r + ε0)2 − r2 < ε0(2r + 1) < δ

⇒ (r + ε0)2 < r2 + δ = r2 + 2− r2 = 2⇒ r + ε0 ∈ R.

Case 2. r2 > 2. We will prove that under this assumption

∃ε0 ∈ (0, 1) such that r − ε0 > 0 and (r − ε0)2 > 2. (3.9)

Let us observe that (3.9) leads to a contradiction. Indeed, observe that (r − ε0) is an
upper bound for R. Indeed, if x ∈ R, then

x2 < 2 < (r − ε0)2 (3.8)⇒ x < r0 − ε.
Thus, r − ε0 is an upper bound of R and this upper bound is obviously strictly smaller
than r, the least upper bound of R. This is a contradiction which shows that the situation
r2 > 2 is also not possible. Let us now prove (3.9).

Denote by δ the difference δ = r2 − 2 > 0. For any ε ∈ (0, r) we have

r2 − (r − ε)2 =
(
r − (r − ε)

)(
r + (r − ε)

)
= ε(2r − ε) < 2rε.

We have thus shown that for any ε ∈ (0, r) we have (r − ε) > 0 and

r2 − (r − ε)2 ≤ 2rε⇐⇒(r − ε)2 ≥ r2 − 2rε.
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Now choose ε0 ∈ (0, r) small enough so that ε0 <
δ
2r . Hence 2rε0 < δ so that −2rε0 > −δ

and

(r − ε0)2 > r2 − 2rε0 > r2 − δ = r2 − (r2 − 2) = 2.

We deduce again that the situation r2 > 2 is not possible so that r2 = 2.

ut

The result we have just proved can be considerably generalized.

Theorem 3.35. Fix a natural number n ≥ 2. Then for any positive real number a there
exists a unique, positive real number r such that rn = a.

Proof. Existence. Consider the set

S :=
{
s ∈ R; s ≥ 0 ∧ sn ≤ a

}
.

Observe that this is a nonempty set since 0 ∈ S. We want to prove that S is also bounded.
To achieve this we need a few auxiliary results.

Lemma 3.36 (A very handy identity). For any real numbers x, y and any natural
number n we have the equality

xn − yn =
(
x− y

)
·
(
xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

)
(3.10)

Proof. We have (
x− y

)
·
(
xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

)
= x

(
xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

)
− y
(
xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

)
= xn + xn−1y + xn−2y2 + · · ·+ x2yn−2 + xyn−1

− xn−1y − xn−2y2 − · · · − x2yn−2 − xyn−1 − yn

= xn − yn.

ut

Here is an immediate useful consequence of this identity.

∀n ∈ N, ∀x, y > 0 : x < y⇐⇒xn < yn. (3.11)

Indeed

yn − xn > 0⇐⇒(y − x)
(
yn−1 + yn−2x+ · · ·+ xn−1

)
> 0⇐⇒y − x > 0.

Lemma 3.37. Any positive real number x such that xn ≥ a is an upper bound for S. In
particular, any natural number k > a is an upper bound for S so that S is a bounded set.
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Proof. Let x be a positive real number such that xn ≥ a. We want to prove that x ≥ s
for any s ∈ S. Indeed

s ∈ S ⇒ sn ≤ a ≤ xn (3.11)⇒ s ≤ x.
This proves the first part of the lemma.

Suppose now that k is a natural number such that k > a. Observe first that

kn > kn−1 > · · · > k > a.

From the first part of the lemma we deduce that k is an upper bound for S. ut

The nonempty set S is bounded above. The Completeness Axiom implies that it
admits a least upper bound

r := supS.

We will show that rn = a. We argue by contradiction and we assume that rn 6= a. Thus,
either rn < a, or rn > a.

Case 1. rn < a. We will show that we can find ε0 ∈ (0, 1) such that (r + ε0)n < a. This
would imply that r+ ε0 ∈ S and it would contradict the fact that r is an upper bound for
S because r is less than the number r + ε0 ∈ S.

Denote by δ the difference δ := a− rn > 0. For any ε ∈ (0, 1) we have

(r + ε)n − rn =
(

(r + ε)− r
)(

(r + ε)n−1 + (r + ε)n−2r2 + · · ·+ rn−1
)

(r + ε < r + 1)

≤ ε
(

(r + 1)n−1 + (r + 1)n−2r + · · ·+ rn−1
)

︸ ︷︷ ︸
=:q

We have thus proved that

(r + ε)n ≤ rn + εq, ∀ε ∈ (0, 1).

Choose ε0 ∈ (0, 1) small enough so that

ε0 <
δ

q
⇐⇒ε0q < δ.

Then

(r + ε0)n ≤ rn + ε0q < rn + δ = a⇒ r + ε0 ∈ S.

This contradicts the fact that r is an upper bound for S and shows that the inequality rn < a is impossible.

Case 2. rn > a. We will prove that under this assumption

∃ε0 ∈ (0, 1) such that r − ε0 > 0 and (r − ε0)n > a. (3.12)

Let us observe that (3.12) leads to a contradiction. Indeed, Lemma 3.37 implies that r−ε0

is an upper bound of S and this upper bound is obviously strictly smaller than r, the least
upper bound of S. This is a contradiction which shows that the situation bn > a is also
not possible. Let us now prove (3.12).
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Denote by δ the difference δ = rn − a > 0. For any ε ∈ (0, r) we have

rn − (r − ε)n =
(
r − (r − ε)

)(
rn−1 + rn−2(r − ε) + · · ·+ · · ·+ (r − ε)n−1

)
((r − ε) < b)

≤ ε (rn−1 + rn−2r + · · ·+ rn−1)︸ ︷︷ ︸
=:q

.

We have thus shown that for any ε ∈ (0, r) we have (r − ε) > 0 and

rn − (r − ε)n ≤ εq⇐⇒(r − ε)n ≥ rn − εq.

Now choose ε0 ∈ (0, c) small enough so that ε0 <
δ
q

. Hence ε0q < δ so that −ε0q > −δ and

(r − ε0)n > rn − ε0q > rn − δ = rn − (rn − a) = a.

We deduce again that the situation rn > a is not possible so that rn = a. This completes the existence part of the

proof.

Uniqueness. Suppose that r1, r2 are two positive numbers such that rn1 = rn2 = a. Using
(]3.11) we deduce that r1 = r2.This completes the proof of Theorem 3.35. ut

The above result leads to the following important concept.

Definition 3.38. Let a be a positive real number and n ∈ N. The n-th root of a, denoted

by a
1
n or n

√
a is the unique positive real number r such that rn = a. ut

Theorem 3.39. The positive number
√

2 is not rational.

Proof. We argue by contradiction and we assume that
√

2 is rational. It can therefore be
represented as a fraction,

√
2 =

m

n
, m, n ∈ N, gcd(m,n) = 1.

Thus 2 = m2

n2 and we deduce

2n2 = m2. (3.13)

Since 2 is a prime number and 2|m2 we deduce that 2|m, i.e., m = 2m1 for some natural
number m1. Using this last equality in (3.13) we deduce

2n2 = (2m1)2 = 4m2
1 ⇒ n2 = 2m2

1.

Thus 2|n2, and arguing as above we deduce that 2|n. Hence 2 is a common divisor of both
m and n. This contradicts the starting assumption that gcd(m,n) = 1 and proves that√

2 cannot be rational. ut

Now that we know that there exist irrational numbers, we can ask, how many there
are. It turns out that most real numbers are irrational, but we will not prove this fact
now.
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3.5. Exercises

Exercise 3.1. (a) Suppose that X,Y are two sets such that X ∼ Y . Prove that Y ∼ X.

(b) Prove that if X,Y, Z are sets such that X ∼ Y and Y ∼ Z, then X ∼ Z. ut

Exercise 3.2. Prove by induction that for any natural numbers m,n and any real number
x we have the equality

xm+n = (xm) · (xn). ut

Exercise 3.3. (a) Prove that for any natural number n and any real numbers

a1, a2, . . . , an, b1, . . . , bn, c

we have the equalities

n∑
k=1

(ak + bk) =

n∑
i=1

ai +

n∑
j=1

bj ,

n∑
k=1

(cak) = c

(
n∑
k=1

ak

)
. ut

(b) Using (a) and (3.3) prove that for any natural number n and any real numbers a, r we
have the equality

n∑
k=0

(a+ kr) = a+ (a+ r) + (a+ 2r) · · ·+ (a+ nr) = (n+ 1)a+
rn(n+ 1)

2
.

(c) Use (b) to compute

3 + 7 + 11 + 15 + 19 + · · ·+ 999, 999.

Express the above using the symbol
∑

.

(d) Prove that for any natural number n we have the equality

1 + 3 + 5 + · · ·+ (2n− 1) = n2. ut

Exercise 3.4. Prove that for any natural number n and any positive real numbers x, y
such that x < 1 < y we have

xn ≤ x, y ≤ yn. ut

Exercise 3.5. Prove that if 0 < a < b, and n ≥ 2, then

n
√
a <

n
√
b, a <

√
ab <

a+ b

2
< b. ut

Exercise 3.6. Find a natural number N0 with the following property: for any n > N0

we have

0 <
n

n2 + 1
<

1

106
=

1

1, 000, 000
. ut
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Exercise 3.7. Prove that for any natural number n and any real number x 6= 1 we have
the equality.

1− xn

1− x
= 1 + x+ x2 + · · ·+ xn−1. ut

Exercise 3.8. (a) Compute(
11

2

)
,

(
11

3

)
,

(
11

8

)
,

(
15

4

)
,

(
15

11

)
.

(b) Show that for any n, k ∈ N ∪ {0}, k ≤ n we have(
n

k

)
=

(
n

n− k

)
.

(c) Use Newton’s binomial formula to show that for any natural number n we have the
equalities (

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n,(

n

0

)
−
(
n

1

)
+

(
n

2

)
+ · · ·+ (−1)n

(
n

n

)
= 0.

Deduce that (
n

0

)
+

(
n

2

)
+

(
n

4

)
+ · · · = 2n−1. ut

Exercise 3.9. Show that for any real number x, the interval (x − 1, x] contains exactly
one integer.

Hint: For uniqueness use the Corollaries 3.8 and 3.9. To prove existence consider
separately the cases

• x ∈ Z.

• (x ∈ R \ Z) ∧ (x > 0).

• (x ∈ R \ Z) ∧ (x < 0).

ut

Exercise 3.10. Let a, b, c be real numbers, a 6= 0.

(a) Show that

ax2 + bx+ c = a

(
x+

b

2a

)2

−
(
b2 − 4ac

4a

)
, ∀x ∈ R.

(b) Prove that the following statements are equivalent.

(i) There exist r1, r2 ∈ R such that

ax2 + bx+ c = a(x− r1)(x− r2).
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(ii) There exists r ∈ R such that ar2 + br + c = 0.

(iii) b2 − 4ac ≥ 0.

ut

Exercise 3.11. Find the ranges of the functions

f : (−∞, 5)→ R, f(x) =
x+ 1

x− 5
,

and

g : R→ R, g(x) =
x

x2 + 1
. ut

Exercise 3.12. (a) Show that the equation x2 − x − 1 = 0 has two solutions r1, r2 ∈ R
and then prove that r1, r2 satisfy the equalities

r1 + r2 = 1, r1r2 = −1.

(b) For any nonnegative integer n we set

Fn =
rn+1

1 − rn+1
2

r1 − r2
,

where r1, r2 are as in (a). Compute F0, F1, F2.

(c) Prove by induction that for any nonnegative integer n we have

rn+2
1 = rn+1

1 + rn1 , rn+2
2 = rn+1

2 + rn2 ,

and

Fn+2 = Fn+1 + Fn.

(d) Use the above equality to compute F3, . . . , F9. ut

Exercise 3.13. Prove Propositions 3.24 and 3.32 . ut

Exercise 3.14. (a) Verify that for any a, b > 0 and any m,n ∈ N we have the equalities

(ab)
1
n = a

1
n · b

1
n ,
(
a

1
n
) 1
m = a

1
mn ,

(am)
1
n =

(
a

1
n
)m

=: a
m
n ,

a
km
kn = a

m
n , ∀k ∈ N.

(a
m
n )−1 =

(
a−1

)m
n =: a−

m
n .

a−
km
kn = a−

m
n , ∀k ∈ N.

+ Recall that an expression of the form “bla-bla-bla =: x” signifies that the quantity x is
defined to be whatever bla-bla-bla means. In particular the notation(

a
1
n
)m

=: a
m
n

indicates that the quantity a
m
n is defined to be the m-th power of the n-th root of a.
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(b) Prove that if a > 0, then for any m,m′ ∈ Z and n, n′ ∈ N such that

m

n
=
m′

n′
,

then

a
m
n = a

m′
n′

Any rational number r admits a nonunique representation as a fraction

r =
m

n
, m ∈ Z, n ∈ N.

Part (b) allows us to give a well defined meaning to ar, > 0, r ∈ Q.

(c) Show that for all r1, r2 ∈ Q and any a > 0 we have

ar1 · ar2 = ar1+r2 .

(d) Suppose that a > b > 0. Prove that for any rational number r > 0 we have

ar > br.

(e) Suppose that a > 1. Prove that for any rational numbers r1, r2 such that r1 < r2 we
have

ar1 < ar2 .

(f) Suppose that a ∈ (0, 1). Prove that for any rational numbers r1, r2 such that r1 < r2

we have
ar1 > ar2 . ut

3.6. Exercises for extra-credit

Exercise* 3.1. There are 5 heads and 14 legs in a family. How many people and how
many dogs are in the family? . ut

Exercise* 3.2. You have two vessels of volumes 5 liters and 3 litters respectively. Measure
one liter, producing it in one of the vessels. ut

Exercise* 3.3. Each number from from 1 to 1010 is written out in formal English (e.g.,
“two hundred eleven”, “one thousand forty-two”) and then listed in alphabetical order (as
in a dictionary, where spaces and hyphens are ignored). What is the first odd number in
the list? ut

Exercise* 3.4. Consider the map f : N→ Z defined by

f(n) = (−1)n+1
⌊n

2

⌋
.

(i) Compute f(1), f(2), f(3), f(4), f(5), f(6), f(7).

(ii) Given a natural number k, compute f(2k) and f(2k − 1).

(iii) Prove that f is a bijection.
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ut

Exercise* 3.5. (a) Let p be a prime number and n a natural number > 1. Prove that
n
√
p is irrational.

(b) Let m,n be natural numbers and p, q prime numbers. Prove that

p1/m = q1/n ⇐⇒ (p = q) ∧ (m = n). ut

Exercise* 3.6. Start with the natural numbers 1, 2, . . . , 999 and change it as follows:
select any two numbers, and then replace them by a single number, their difference. After
998 such changes you are left with a single number. Show that this number must be even.ut

Exercise* 3.7. Let S ⊂ [0, 1] be a set satisfying the following two properties.

(i) 0, 1 ∈ S.

(ii) For any n ∈ N and any pairwise distinct numbers s1, . . . , sn ∈ S we have

s1 + · · ·+ sn
n

∈ S.

Show that S = Q ∩ [0, 1]. ut

Exercise* 3.8. Given 25 positive real numbers, prove that you can choose two of them
x, y so none of the remaining numbers is equal to the sum x+ y or the differences x− y,
y − x. ut

Exercise* 3.9. At a stockholders’ meeting, the board presents the month-by-month profit
(or losses) since the last meeting. “Note” says the CEO, “that we made a profit over every
consecutive eight-month period.”

“Maybe so”, a shareholder complains, “but I also see that we lost over every consec-
utive five-month period!”

What is the maximum number of months that could have passed since the last meeting?
ut

Exercise* 3.10 (Erdös-Szekeres). Suppose we are given an injection f : {1, . . . , 10001} → R.
Prove that there exists a subset I ⊂ {1, . . . , 10001} of cardinality 101 such that, either

f(i1) < f(i2), ∀i1, i2 ∈ I, i1 < i2,

or

f(i1) > f(i2), ∀i1, i2 ∈ I, i1 < i2. ut

Exercise* 3.11 (Chebyshev). Suppose that p1, . . . , pn are positive numbers such that

p1 + · · ·+ pn = 1.

Prove that if x1, . . . , xn and y1, . . . , yn are real numbers such that

x1 ≤ x2 ≤ · · · ≤ xn and y1 ≤ y2 ≤ · · · ≤ yn,
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then
n∑
k=1

xkykpk ≥

(
n∑
i=1

xipi

) n∑
j=1

yjpj

 . ut

Exercise* 3.12. Let k ∈ N. We are given k pairwise disjoint intervals I1, . . . , Ik ⊂ [0, 1].
Denote by S their union. We know that for any d ∈ [0, 1] there exist two points p, q ∈ S
such that dist(p, q) = d. Prove that

length (I1) + · · ·+ length (Ik) ≥
1

k
. ut





Chapter 4

Limits of sequences

The concept of limit is the central concept of this course. This chapter deals with the
simplest incarnation of this concept namely, the notion of limit of a sequence of real
numbers.

4.1. Sequences

Formally, a sequence of real numbers is a function x : N → R. We typically describe
a sequence x : N → R as a list (xn)n∈N consisting of one real number for each natural
number n,

x1, x2, x3, . . . , xn, . . . .

Often we will allow lists that start at time 0, (xn)n≥0,

x0, x1, x2, . . . .

If we use our intuition of a real number as corresponding to a point on a line, we can
think of a sequence (xn)n≥1 as describing the motion of an object along the line, where
xn describes the position of that object at time n.

Example 4.1. (a) The natural numbers form a sequence (n)n∈N,

1, 2, 3, . . . .

(b) The arithmetic progression with initial term a ∈ R and ratio r ∈ R is the sequence

a, a+ r, a+ 2r, a+ 3r, . . . .

For example, the sequence

3, 7, 11, 15, 19, · · ·
is an arithmetic progression with initial term 3 and ratio 4. The constant sequence

a, a, a, . . . ,

59
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is an arithmetic progression with initial term a and ratio 0.

(c) The geometric progression with initial term a ∈ R and ratio r ∈ R is the sequence

a, ar, ar2, ar3, . . . .

For example, the sequence

1,−1, 1,−1,

is the geometric progression with initial term 1 and ratio −1.

(d) The Fibonacci sequence is the sequence F0, F1, F2, . . . given by the initial condition

F0 = F1 = 1,

and the recurrence relation

Fn+2 = Fn+1 + Fn, ∀n ≥ 0.

For example

F2 = 1 + 1 = 2, F3 = 2 + 1 = 3, F4 = 3 + 2 = 5, F5 = 5 + 3 = 8, . . . .

In Exercise 3.12 we gave an alternate description to the Fibonacci sequence. ut

Definition 4.2. Let (xn)n∈N be a sequence of real numbers.

(i) The sequence (xn)n∈N is called increasing if

xn < xn+1, ∀n ∈ N.

(ii) The sequence (xn)n∈N is called decreasing if

xn > xn+1, ∀n ∈ N.

(iii) The sequence (xn)n∈N is called nonincreasing if

xn ≥ xn+1, ∀n ∈ N.

(iv) The sequence (xn)n∈N is called nondecreasing if

xn ≤ xn+1, ∀n ∈ N.

(v) A sequence (xn)n∈N is called monotone if it is either nondecreasing, or nonin-
creasing. It is called strictly monotone if it is either increasing, or decreasing.

(vi) The sequence (xn)n∈N is called bounded if there exist real numbers m,M such
that

m ≤ xn ≤M, ∀n ∈ N. ut

Note that an arithmetic progression is increasing if and only if its ratio is positive,
while a geometric progression with positive initial term and positive ratio is monotone: it
is increasing if the ratio is > 1, decreasing if the ratio < 1 and constant if the ratio is = 1.
A geometric progression is bounded if and only if its ratio r satisfies |r| ≤ 1.



4.2. Convergent sequences 61

A subsequence of a sequence x : N→ R is a restriction of x to an infinite subset S ⊂ N.
An infinite subset S ⊂ N can itself be viewed as an increasing sequence of natural numbers

n1 < n2 < n3 < . . . ,

where

n1 := minS, n2 := minS \ {n1}, . . . , nk+1 := minS \ {n1, . . . , nk}, . . . .

Thus a subsequence of a sequence (xn)n∈N can be described as a sequence (xnk)k∈N, where
(nk)k∈N is an increasing sequence of natural numbers.

4.2. Convergent sequences

Definition 4.3. We say that the sequence of real numbers (xn) converges to the number
x ∈ R if

∀ε > 0 : ∃N = N(ε) ∈ N such that ∀n > N(ε) we have |xn − x| < ε. (4.1)

A sequence (xn) is called convergent if it converges to some number x. More precisely,
this means

∃x ∈ R, ∀ε > 0 : ∃N = N(ε) ∈ N such that ∀n > N(ε) we have |xn − x| < ε. (4.2)

The number x is called a limit of the sequence (an). A sequence is called divergent if it is
not convergent. ut

Observe that condition (4.1) can be rephrased as follows

∀ε > 0 : ∃N = N(ε) ∈ N such that ∀n > N(ε) we have dist(xn, x) < ε. (4.3)

Before we proceed further, let us observe the following simple fact.

Proposition 4.4. Given a sequence (xn) there exists at most one real number x satisfying
the convergence property (4.1).

Proof. Suppose that x, x′ are two real numbers satisfying (4.1). Thus,

∀ε > 0 : ∃N = N(ε) ∈ N such that ∀n > N we have |xn − x| < ε,

and

∀ε > 0 : ∃N ′ = N ′(ε) ∈ N such that ∀n > N ′, we have |xn − x′| < ε.

Thus, if n > N0(ε) := max(N(ε), N ′(ε) ) then

|xn − x|, |xn − x′| < ε.

We observe that if n > N0(ε), then

|x− x′| = |(x− xn) + (xn − x′)| ≤ |x− xn|+ |xn − x′| < 2ε.

In other words

∀ε > 0 : |x− x′| < 2ε, ∀n > N0(ε).
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In the above statement the variable n really plays no role: if |x−x′| < 2ε for some n, then
clearly |x− x′| < 2ε for any n. We conclude that

∀ε > 0 : |x− x′| < 2ε.

In other words, the distance dist(x, x′) = |x − x′| between x and x′ is smaller than any
positive real number, so that this distance must be zero (Exercise 2.14) and hence x = x′.

ut

Definition 4.5. Given a convergent sequence (xn), the unique real number x satisfying
the convergence condition (4.1) is called the limit of the sequence (xn) and we will indicate
this using the notations

x = lim
n→∞

xn or x = lim
n
xn.

We will also say that (xn) tends (or converges) to x as n goes to ∞. ut

Observe that
lim
n→∞

xn = x⇐⇒ lim
n→∞

|xn − x| = 0. (4.4)

The next example shows that convergent sequences do exist.

Example 4.6. (a) If (xn) is the constant sequence, xn = x, for all n, then (xn) is
convergent and its limit is x.

(b) We want to show that

lim
n→∞

C

n
= 0, ∀C > 0 . (4.5)

Let ε > 0 and set N(ε) :=
⌊
C
ε

⌋
+ 1 ∈ N. We deduce

N(ε) >
C

ε
, i.e.,

N(ε)

C
>

1

ε
.

For any n > N(ε) we have
n

C
>
N(ε)

C
>

1

ε
⇒ C

n
< ε.

Hence for any n > N(ε) we have

|xn| =
C

n
< ε. ut

Definition 4.7. (a) A neighborhood of a real number x is defined to be an open interval (α, β) that contains x,

i.e., x ∈ (α, β).

(b) A neighborhood of ∞ is an interval of the form (M,∞), while a neighborhood of −∞ is an interval of the form

(−∞,M). ut

We have the following equivalent description of convergence. Its proof is left to you as an exercise.

Proposition 4.8. Let (xn) be a sequence of real numbers. Prove that the following statements are equivalent.
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(i) The sequence (xn) converges to x ∈ R as n→∞.

(ii) For any neighborhood U of x there exists a natural number N such that

∀n
(
n > N ⇒ xn ∈ U

)
. ut

The proof of the following result is left to you as an exercise.

Proposition 4.9. Suppose that (xn)n∈N is a convergent sequence and x = limn→∞ xn.

(i) If (xnk)k≥1 is a subsequence of (xn), then

lim
k→∞

xnk = x.

(ii) Suppose that (x′n)n∈N is another sequence with the following property

∃N0 ∈ N : ∀n > N0 x′n = xn.

Then

lim
n→∞

x′n = x. ut

Part (ii) of the above proposition shows that the convergence or divergence of a se-
quence is not affected if we modify only finitely many of its terms. The next result is very
intuitive.

Proposition 4.10 (Squeezing Principle). Let (an) (xn), (yn) be sequences such that

∃N0 ∈ N : ∀n > N0, xn ≤ an ≤ yn.
If

lim
n→∞

xn = lim
n→∞

yn = a,

then

lim
n→∞

an = a.

Proof. We have

dist(an, a) ≤ dist(an, xn) + dist(xn, a).

Since an lies in the interval [xn, yn] for n > N0 we deduce that

dist(an, xn) ≤ dist(yn, xn), ∀n > N0,

so that

dist(an, a) ≤ dist(yn, xn) + dist(xn, a), ∀n > N0.

Now observe that

dist(yn, xn) ≤ dist(yn, a) + dist(a, xn).

Hence,

dist(an, a) ≤ dist(yn, a) + dist(a, xn) + dist(xn, a)

= dist(yn, a) + 2 dist(xn, a), ∀n > N0.
(4.6)
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Let ε > 0. Since xn → a there exists Nx(ε) ∈ N such that

∀n > Nx(ε) : dist(xn, a) <
ε

3
.

Since yn → a there exists Ny(ε) ∈ N such that

∀n > Ny(ε) : dist(yn, a) <
ε

3
.

Set N(ε) := max{N0, Nx(ε), Ny(ε)}. For n > N(ε) we have

dist(xn, a) <
ε

3
, dist(yn, a) <

ε

3

and thus

dist(yn, a) + 2 dist(xn, a) < ε.

Using this in (4.6) we conclude that

∀n > N(ε) dist(an, a) < ε.

This proves that an → a as n→∞. ut

Corollary 4.11. Suppose that a ∈ R and (an), (xn) are sequences of real numbers such
that

|an − a| ≤ xn ∀n, lim
n→∞

xn = 0.

Then

lim
n→∞

an = a.

Proof. We have squeezed the sequence |an − a| between the sequences (xn) and the
constant sequence 0, both converging to 0. Hence |an − a| → 0 and, in view of (4.4), we
deduce that also an → a. ut

Example 4.12. We want to show that

∀M > 0, ∀r ∈ (−1, 1) lim
n→∞

Mrn = 0 . (4.7)

Clearly, it suffices to show that M |r|n → 0. This is clearly the case if r = 0. Assume
r 6= 0. Set

R :=
1

|r|
.

Then R > 1 so that R = 1 + δ, δ > 0. Bernoulli’s inequality (3.4) implies that ∀n ∈ N we
have Rn ≥ 1 + nδ so that

M |r|n =
M

Rn
≤ M

1 + nδ
≤ M

nδ
=
C

n
, C :=

M

δ
.

From Example 4.6 (b) we deduce that

lim
n

C

n
= 0.
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The desired conclusion now follows from the Squeezing Principle. ut

Example 4.13. We want to prove that

lim
n

rn

n!
= 0, ∀r ∈ R . (4.8)

We will rely again on the Squeezing Principle. Fix N0 ∈ N such that N0 > 2|r|. Then for
any n > N0 we have∣∣∣∣rnn!

∣∣∣∣ =
|r|n

n!
=

|r|N0rn−N0

1 · 2 · · ·N0 · (N0 + 1)(N0 + 2) · · ·n

=
|r|N0

N0!︸ ︷︷ ︸
=:C0

· |r|
N0 + 1

· |r|
N0 + 2

· · · |r|
n︸ ︷︷ ︸

(n−N0) terms

.

Now observe that
|r|

N0 + 1
,
|r|

N0 + 2
, . . . ,

|r|
n
<
|r|
N0

<
1

2
,

and we deduce ∣∣∣∣rnn!

∣∣∣∣ < C0

(
1

2

)n−N0

= C0

(
1

2

)−N0
(

1

2

)n
= 2N0C02−n.

If we denote by M the constant 2N0C0 and we set xn := M2−n, n ∈ N, we deduce that

∀n > N0 :

∣∣∣∣rnn!

∣∣∣∣ < xn.

Example 4.12 shows that xn → 0 and the conclusion (4.8) now follows from the Squeezing
Principle. ut

Proposition 4.14. Any convergent sequence of real numbers is bounded.

Proof. Suppose that (an)n≥1 is a convergent sequence

a = lim
n→∞

an.

There exists N ∈ N such that, for any n > N we have

|an − a| < 1.

Thus, for any n > N we have an ∈ (a− 1, a+ 1). Now set

m := min
{
a1, a2, . . . , aN , a− 1

}
, M := max

{
a1, a2, . . . , aN , a+ 1

}
.

Then for any n ≥ 1 we have

m ≤ an ≤M,

i.e., the sequence (an) is bounded.

ut
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4.3. The arithmetic of limits

This section describes a few simple yet basic techniques that reduce the study of the
convergence of a sequence to a similar study of potentially simpler sequences. Thus, we
will prove that the sum of two convergent sequences is a convergent sequence etc.

Proposition 4.15 (Passage to the limit). Suppose that (an)n≥1 and (bn)n≥1 are two
convergent sequences,

a := lim
n→∞

an, b = lim
n→∞

bn.

The following hold.

(i) The sequence (an + bn)n≥1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = a+ b.

(ii) If λ ∈ R then
lim
n→∞

(λan) = λ lim
n→∞

an = λa.

(iii)
lim
n→∞

(an · bn) =
(

lim
n→∞

an
)
·
(

lim
n→∞

bn
)

= ab.

(iv) Suppose that b 6= 0. Then there exists N0 > 0 such that bn 6= 0, ∀N > N0 and

lim
n→∞

an
bn

=
a

b
.

(v) Suppose that m,M are real numbers such that m ≤ an ≤M , ∀n. Then

m ≤ lim
n→∞

an = a ≤M.

Proof. (i) Because (an) and (bn) are convergent, for any ε > 0 there existNa(ε), Nb(ε) ∈ N
such that

|an − a| <
ε

2
, ∀n > Na(ε), (4.9a)

|bn − b| <
ε

2
, ∀n > Nb(ε). (4.9b)

Let
N(ε) := max

{
Na(ε), Nb(ε)

}
.

Then for any n > N(ε) we have n > Na(ε) and n > Nb(ε) and∣∣ (an + bn)− (a+ b)
∣∣ =

∣∣ (an − a) + (bn − b)
∣∣ ≤ |an − a|+ |bn − b|

(4.9a),(4.9b)
<

ε

2
+
ε

2
= ε.

This proves that limn→∞(an + bn) = a+ b.

(ii) If λ = 0, then the sequence (λan) is the constant sequence 0, 0, 0, . . . and the
conclusion is obvious. Assume that λ 6= 0. The sequence (an) is convergent so for any
ε > 0 there exists N = N(ε) ∈ N such that

|an − a| <
ε

|λ|
, ∀n > N(ε).
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Hence for any n > N(ε) we have

|λan − λa| = |λ| · |an − a| < |λ| ·
ε

|λ|
= ε.

(iii) The sequences (an), (bn) are convergent and thus, according to Proposition 4.14 they
are bounded so that

∃M > 0 : |an|, |bn| ≤M, ∀n.
We have

|anbn − ab| = |(anbn − abn) + (abn − ab)| ≤ |anbn − abn|+ |abn − ab|

= |bn| · |an − a|+ |a| · |bn − b| ≤M |an − a|+ |a| · |bn − b|.
Part (ii) coupled with the convergence of (an) and (bn) show that

lim
n→∞

M |an − a| = lim
n→∞

|a| · |bn − b| = 0.

Using (i) we deduce

lim
n→∞

(
M |an − a|+ |a| · |bn − b|

)
= 0.

The squeezing principle shows that |anbn − ab| → 0.

(iv) Let us first show that if b 6= 0, then bn 6= 0 for n sufficiently large. Since bn → b there
exists N0 ∈ N such that

∀n > N0 |bn − b| <
|b|
2
.

Thus, for any n > N0, we have

dist(bn, b) = |bn − b| <
1

2
|b| = 1

2
dist(b, 0).

This shows that for n > N0 we cannot have bn = 0. In fact

|bn| >
|b|
2
, ∀n > N0. (4.10)

Thus, the ratio bn
bn

is well defined at least for n > N0. We have∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ =
|bn − b|
|bn| · |b|

.

The inequality (4.10) implies
1

|bn|
<

2

|b|
, ∀n > N0.

Hence, for n > N0 we have ∣∣∣∣ 1

bn
− 1

b

∣∣∣∣ < 2

|b|2
|bn − b| → 0.

This implies

lim
n→∞

1

bn
=

1

b
.
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Thus

lim
n→∞

an
bn

= lim
n→∞

an · lim
n→∞

1

bn
=
a

b
.

(v) We argue by contradiction. Suppose that a > M or a < m. We discuss what happens
if a > M , the other situation being entirely similar. Then δ = a −M = dist(a,M) > 0.
Since an → a, there exists N ∈ N such that if n > N , then

dist(an, a) = |an − a| <
δ

2
.

Thus, for n > N0 we have

a− δ

2
< an < a+

δ

2
.

Clearly M = a− δ < a− δ
2 and thus, a fortiori, an > M for n > N0. Contradiction! ut

Corollary 4.16. Suppose that (an) and (bn) are convergent sequences such that an ≥ bn,
∀n. Then

lim
n→∞

an ≥ lim
n→∞

bn.

Proof. Let cn = an − bn. Then cn ≥ 0 ∀n and thus

lim
n→∞

an − lim
n→∞

bn = lim
n→∞

cn ≥ 0.

ut

Let us see how the above simple principles work in practice.

Example 4.17. We already know that

lim
n→∞

1

n
= 0.

We deduce that for any k ∈ N we have

lim
n→∞

1

nk
= 0.

Consider the sequence

an :=
5n2 + 3n+ 2

3n2 − 2n+ 1
We have

an =
n2(5 + 3

n + 2
n2 )

n2(3− 2
n + 1

n2 )
=

(5 + 3
n + 2

n2 )

(3− 2
n + 1

n2 )
.

Now observe that as n→∞

5 +
3

n
+

2

n2
→ 5, 3− 2

n
+

1

n2
→ 3,

so that

lim
n→∞

an =
5

3
.
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More generally, given k ∈ N and real numbers a0, b0, . . . , ak, bk such that bk 6= 0 then

lim
n→∞

akn
k + · · ·+ a1n+ a0

bknk + · · ·+ b1n+ b0
=
ak
bk

. (4.11)

The proof is left to you as an exercise. ut

Example 4.18. We want to show that

∀r > 1 lim
n

n

rn
= 0 . (4.12)

We plan to use the Squeezing Principle and construct a sequence (xn)n≥1 of positive
numbers such that

n

rn
≤ xn ∀n ≥ 2,

and

lim
n
xn = 0.

Observe that since r > 1, we have r− 1 > 0. Set a := r− 1 so that r = 1 + a. Then, using
Newton’s binomial formula we deduce that if n ≥ 2 then

rn = (1 + a)n = 1 +

(
n

1

)
a+

(
n

2

)
a2 + · · · ≥ 1 +

(
n

1

)
a+

(
n

2

)
a2

= 1 + na+
n(n− 1)

2
a2 = 1 + na+

a2

2
(n2 − n).

Hence for n ≥ 2 we have
1

rn
≤ 1

1
2(n2 − n)a2 + na+ 1

so that
n

rn
≤ n

a2

2 (n2 − n) + na+ 1
=: xn.

Now observe that

xn =
n

n2
(
a2

2 (1− 1
n) + a

n + 1
n2

) =
1
n

a2

2 (1− 1
n) + a

n + 1
n2

n→∞−→ 0. ut

Example 4.19. We want to show that

lim
n

n
√
n = 1 . (4.13)

Let ε > 0. The number rε = 1 + ε is > 1. Since n
rnε
→ 0 we deduce that there exists

N = N(ε) ∈ N such that
n

rnε
< 1, ∀n > N(ε).

This translates into the inequality

n < rnε = (1 + ε)n, ∀n > N(ε).
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In particular

1 ≤ n
√
n < n

√
(1 + ε)n = 1 + ε.

We have thus proved that for any ε > 0 we can find N = N(ε) ∈ N so that, as soon as
n > N(ε) we have

1 ≤ n
√
n < 1 + ε.

Clearly this proves the equality (4.13). ut

Definition 4.20 (Infinite limits). Let (an)n∈N be a sequence of real numbers.

(i) We say that an tends to ∞ as n→∞, and we write this

lim
n→∞

an =∞

if
∀C > 0 ∃N = N(C) ∈ N : ∀n(n > N ⇒ an > C).

(ii) We say that an tends to −∞ as n→∞, and we write this

lim
n→∞

an = −∞

if
∀C > 0 ∃N = N(C) ∈ N : ∀n(n > N ⇒ an < −C). ut

Proposition 4.15 continues to hold if one or both of limits a, b are ±∞ provided we
use the following conventions

∞+∞ =∞ ·∞ =∞, C

∞
= 0, ∀C ∈ R ,

C · ∞ =


∞, C > 0

−∞, C < 0

undefined, C = 0,

∞−∞ = undefined, 0 · ∞ = undefined,
∞
∞

= undefined.

Example 4.21. (a) If we let an = n and bn = 1
n , then Archimedes’ Principle shows that

an →∞ and bn → 0. We observe that anbn = 1→ 1. In this case ∞· 0 = 1. On the other
hand, if we let

an = n, bn =
1

2n

then an →∞, bn → 0 and (4.12) shows that anbn → 0. In this case ∞ · 0 = 0.

(b) Consider the sequences an = n, bn = 2n, cn = 3n, ∀n ∈ N. Observe that

lim
n→∞

an = lim
n→∞

bn = lim
n→∞

cn =∞.

However

lim
n→∞

an
bn

=
∞
∞

=
1

2
, lim
n→∞

an
cn

=
∞
∞

=
1

3
. ut
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* Important Warning! When investigating limits of sequences you should keep in
mind that the following arithmetic operations are treacherous and should be dealt with
using extreme care.

anything

0
, 0 · ∞, ∞−∞, ∞

∞
.

ut

4.4. Convergence of monotone sequences

The definition of convergence has one drawback: to verify that a sequence is convergent
using the definition we need to a priori know its limit. In most cases this is a nearly
impossible job. In this section and the next we will discuss techniques for proving the
convergence of a sequence without knowing the precise value of its limit.

Theorem 4.22 (Weierstrass). 1Any bounded and monotone sequence is convergent.

Proof. Suppose that (an) is a bounded and monotone sequence, i.e., it is either non-
decreasing, or non-increasing. We investigate only the case when (an) is nondecreasing,
i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · .
The situation when (an) is nonincreasing is completely similar.

The set of real numbers

A :=
{
an; n ≥ 1

}
is bounded because the sequence (an) is bounded. The Completeness Axiom implies it
has a least upper bound

a := supA.

We will prove that

lim
n→∞

an = a. (4.14)

Since a is an upper bound for the sequence we have

an ≤ a, ∀n. (4.15)

Since a is the least upper bound of A we deduce that for any ε > 0 the number a − ε
cannot be an upper bound of A. Hence, for any ε > 0 there exists N(ε) ∈ N such that

a− ε < aN(ε).

Since (an) is nondecreasing we deduce that

a− ε < aN(ε) ≤ an, ∀n > N(ε) (4.16)

Putting together (4.15) and (4.16) we deduce that

∀ε > 0 ∃N = N(ε) ∈ N : ∀n (n > N(ε)⇒ a− ε < an ≤ a).

1Karl Weierstrass (1815-1897) was a German mathematician often cited as the “father of modern analysis”;
see Wikipedia .

https://en.wikipedia.org/wiki/Karl_Weierstrass 
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This implies the claimed convergence (4.14) because a− ε < an ≤ a⇒ |an − a| < ε. ut

We will spend the rest of this section presenting applications of the above very impor-
tant theorem.

Example 4.23 (L. Euler). Consider the sequence of positive numbers

xn =

(
1 +

1

n

)n
, n ∈ N.

We will prove that this sequence is convergent. Its limit is called the Euler2 number e.

We plan to use Weierstrass’ theorem applied to a new sequence of positive numbers

yn =

(
1 +

1

n

)n+1

, n ∈ N.

Note that

yn =

(
n+ 1

n

)n+1

and for n ≥ 2 we have

yn−1

yn
=

(
n
n−1

)n
(
n+1
n

)n+1 =

(
n

n− 1

)n
·
(

n

n+ 1

)n+1

=
n2n+1

(n− 1)n(n+ 1)n · (n+ 1)
=

n2n

(n2 − 1)n
· n

n+ 1

=

(
n2

n2 − 1

)n
· n

n+ 1
=

(
1 +

1

n2 − 1

)n
︸ ︷︷ ︸

=:qn

· n

n+ 1
.

Bernoulli’s inequality implies that

qn :=

(
1 +

1

n2 − 1

)n
≥ 1 +

n

n2 − 1
> 1 +

n

n2
= 1 +

1

n
=
n+ 1

n
.

Hence
yn−1

yn
= qn ·

n

n+ 1
>
n+ 1

n
· n

n+ 1
= 1.

Hence yn−1 > yn ∀n ≥ 2, i.e., the sequence (yn) is decreasing. Since it is bounded below
by 1 we deduce that the sequence (yn) is convergent.

Now observe that yn = xn ·
(
1 + 1

n

)
= xn · n+1

n so that

xn = yn ·
n

n+ 1
.

2Leonhard Euler (1707-1783) was a Swiss mathematician, physicist, astronomer, logician and engineer who

made important and influential discoveries in many branches of mathematics, He is also widely considered to be the
most prolific mathematician of all time; see Wikipedia.

https://en.wikipedia.org/wiki/Leonhard_Euler
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Since

lim
n

n

n+ 1
= 1

we deduce that (xn) is convergent and has the same limit as the sequence (yn). ut

Definition 4.24. The Euler number, denoted e is defined to be

e := lim
n→∞

(
1 +

1

n

)n
. ut

The arguments in Example 4.23 show that

4 = y1 ≥ e ≥ 2.

Using more sophisticated methods one can show that

e = 2.71828182845905 . . . .

Example 4.25 (Babylonians and I. Newton). Consider the sequence (xn)n∈N defined
recursively by the requirements

x1 = 1, xn+1 =
1

2

(
xn +

2

xn

)
, ∀n ∈ N.

Thus

x2 =
1

2

(
1 +

2

1

)
=

3

2
,

x3 =
1

2

(
3

2
+

2
3
2

)
=

1

2

(
3

2
+

4

3

)
=

17

12
etc.

We want to prove that this sequence converges to
√

2. We proceed gradually.

Lemma 4.26.

xn ≥
√

2, ∀n ≥ 2. (4.17)

Proof. Multiplying with 2xn both sides of the equality

xn+1 =
1

2

(
xn +

2

xn

)
we deduce 2xnxn+1 = x2

n + 2, or equivalently

x2
n − 2xn+1xn + 2 = 0. (4.18)

This shows that the quadratic equation

t2 − 2xn+1t+ 2 = 0

has at least one real solution, t = xn+1 so that (see Exercise 3.10)

∆ = 4x2
n+1 − 8 ≥ 0,

i.e., x2
n+1 ≥ 2, or xn+1 ≥

√
2, ∀n ∈ N. ut
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Lemma 4.27. For any n ≥ 2 we have

xn+1 ≤ xn.

Proof. Let n ≥ 2. We have

xn − xn+1 = xn −
1

2

(
xn +

2

xn

)
=

1

2

x2
n − 2

xn

(4.17)

≥ 0.

ut

Thus the sequence (xn)n≥2 is decreasing and bounded below and thus it is convergent.

Denote by x the limit. The inequality (4.17) implies that x≥
√

2. Letting n→∞ in (4.18)
we deduce

x2 − 2x2 + 2 = 0⇒ 2 = x2 ⇒ x=
√

2.

For example

x2 = 1.5, x3 = 1.4166..., x4 := 1.4142..., x5 := 1.4142....

Note that

(1.4142)2 = 1.99996164. ut

Theorem 4.28 (Nested Intervals Theorem). Consider a nested sequence of closed in-
tervals [an, bn], n ∈ N, i.e.,

[a1, b1] ⊃ [a2, b2] ⊃ [a3, b3] ⊃ · · · .

Then there exists x ∈ R that belongs to all the intervals, i.e.,⋂
n∈N

[an, bn] 6= ∅.

Proof. The nesting condition implies that for any n ∈ N we have

an ≤ an+1 ≤ bn+1 ≤ bn.

This shows that the sequence (an) is nondecreasing and bounded while the sequence (bn)
is non-increasing. Therefore, these sequences are convergent and we set

a := lim
n
an, b := lim

n
bn

the condition an ≤ bn, ∀n implies that

an ≤ a ≤ b ≤ bn, ∀n.

Hence [a, b] ⊂ [an, bn], ∀n. ut
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Theorem 4.29 (Bolzano-Weierstrass). Any bounded sequence has a convergent subse-
quence.

Proof. Let (xn) be a bounded sequence of real numbers. Thus, there exist real numbers
a1, b1 such that xn ∈ [a1, b1], for all n. We set

n1 := 1.

Divide the interval [a1, b1] into two intervals of equal length. At least one of these intervals
will contain infinitely many terms of the sequence (xn). Pick such an interval and denote
it by [a2, b2]. Thus

[a1, b1] ⊃ [a2, b2], b2 − a2 =
1

2
(b1 − a1).

Choose n2 > 1 such that xn2 ∈ [a2, b2]. We now proceed inductively.

Suppose that we have produced the intervals

[a1, b1] ⊃ [a2, b2] ⊃ · · · ⊃ [ak, bk]

and the natural numbers n1 < n2 < · · · < nk such that

b2 − a2 =
1

2
(b1 − a1), b3 − a3 =

1

2
(b2 − a2), bk − ak =

1

2
(bk−1 − ak−1),

xn1 ∈ [a1, b1], xn2 ∈ [a2, b2], · · ·xnk ∈ [ak, bk],

and the interval [ak, bk] contains infinitely many terms of the sequence (xn). We then
divide [ak, bk] into two intervals of equal lengths. One of them will contain infinitely many
terms of (xn). Denote that interval by [ak+1, bk+1]. We can then find a natural number
nk+1 > nk such that xnk+1

∈ [ak+1, bk+1]. By construction

bk+1 − ak+1 =
1

2
(bk − ak) = · · · = 1

2k
(a1 − b1).

We have thus produced sequences (ak), (bk) (xnk) with the properties

a1 ≤ a2 ≤ · · · ≤ ak ≤ xnk ≤ bk ≤ · · · ≤ b2 ≤ b1, (4.19a)

bk − ak =
1

2k−1
(b1 − a1). (4.19b)

The inequalities (4.19a) show that the sequences (ak) and (bk) are monotone and bounded,
and thus have limits which we denote by a and b respectively. By letting k →∞ in (4.19b)
we deduce that a = b.

The subsequence (xnk) is squeezed between two sequences converging to the same limit
so the squeezing theorem implies that it is convergent. ut

Definition 4.30. A limit point of a sequence of real numbers (xn) is a real number which
is the limit of some subsequence of the original sequence (xn). ut
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Example 4.31. Consider the sequence

xn = (−1)n +
1

n
, n ∈ N.

Thus

x2n = 1 +
1

2n
, x2n+1 = −1 +

1

2n+ 1
.

Then the numbers 1 and −1 are limit points of this sequence because

lim
n→∞

x2n = lim
n→∞

(
1 +

1

2n

)
= 1,

lim
n→∞

x2n+1 = lim
n→∞

(
−1 +

1

2n+ 1

)
= −1. ut

4.5. Fundamental sequences and Cauchy’s
characterization of convergence

We know that any convergent sequence is bounded. In other words, , so boundedness is
a necessary condition for a sequence to be convergent. However, it is not also a sufficient
condition. For example, the sequence

1,−1, 1,−1, . . . ,

is bounded, but it is not convergent.

Weierstrass’s theorem on bounded monotone sequences shows that monotonicity is a
sufficient condition for a bounded sequence to be convergent. However, monotonicity is
not a necessary condition for convergence. Indeed, the sequence

xn =
(−1)n

n
, n ∈ N

converges to zero, yet it is not monotone because the even order terms are positive while the
odd order terms are negative. In this subsection we will present a fundamental necessary
and sufficient condition for a sequence to be convergent that makes no reference to the
precise value of the limit. We begin by defining a very important concept.

Definition 4.32. A sequence of real numbers (an)n∈N is called fundamental (or Cauchy3.
) if the following holds:

∀ε > 0 ∃N = N(ε) ∈ N such that ∀m,n > N(ε) : |am − an| < ε. (4.20)

ut

Theorem 4.33 (Cauchy). Let (an)n∈N be a sequence of real numbers. Then the following
statements are equivalent.

3Named after August-Louis Cauchy (1789-1857), French mathematician, reputed as a pioneer of analysis. He

was one of the first to state and prove theorems of calculus rigorously, rejecting the heuristic principle of the
generality of algebra of earlier authors; see Wikipedia.

https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
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(i) The sequence (an) is convergent.

(ii) The sequence (an) is fundamental.

Proof. (i) ⇒ (ii). We know that there exists a ∈ R such that

∀ε > 0 ∃N = N(ε) ∈ N : ∀n > N(ε) |an − a| < ε.

Observe that for any m,n > N(ε/2) we have

|am − an| ≤ |am − a|+ |a− an| <
ε

2
+
ε

2
= ε.

This proves that (an) is fundamental.

(ii)⇒ (i) This is the “meatier” part of the theorem. We will reach the conclusion in three
conceptually distinct steps.

1. Using the fact that the sequence (an) is fundamental we will prove that it is
bounded.

2. Since (an) is bounded, the Bolzano-Weierstrass theorem implies that it has a
subsequence that converges to a real number a.

3. Using the fact that the sequence (an) is fundamental we will prove that it con-
verges to the real number a found above.

Here are the details. Since (an) is fundamental, there exists n1 > 0 such that, for any
m,n ≥ n1 we have |am − an| < 1. Hence if we let m = n1 we deduce that for any n ≥ n1

we have

|an1 − an| < 1⇒ an1 − 1 < an < an1 + 1, ∀n ≥ n1.

Now let

m := min{a1, a2, . . . , an1−1, an1 − 1}, M := max{a1, a2, . . . , an1−1, an1 + 1}.

Clearly

m ≤ an ≤M, ∀n ∈ N
so that the sequence (an) is bounded.

Invoking the Bolzano-Weierstrass theorem we deduce that there exists a subsequence
(ank)k≥1 and a real number a such that

lim
k→∞

ank = a.

Let ε > 0. Since ank → a as k →∞ we deduce that

∃K = K(ε) ∈ N such that ∀k > K(ε) : |ank − a| <
ε

2
.

On the other hand, the sequence (an)n∈N is fundamental so that

∃N ′ = N ′(ε) ∈ N such that ∀m,n > N ′(ε) : |am − an| <
ε

2
.
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Now choose a natural number k0(ε) > K(ε) such that nk0(ε) > N ′(ε). Define

N(ε) = nk0(ε).

If n > N(ε) then n, nk0 > N ′(ε) and thus

|an − ank0
| < ε

2
.

On the other hand, since k0(ε) > K(ε) we deduce that

|ank0
− a| < ε

2
.

Hence, for any n > N(ε) we have

|an − a| ≤ |an − ank0
|+ |ank0

− a| < ε

2
+
ε

2
< ε.

Since ε was arbitrary we conclude that (an) converges to a. ut

4.6. Series

Often one has to deal with sums of infinitely many terms. Such a sum is called a series.
Here is the precise definition.

Definition 4.34. The series associated to a sequence (an)n≥0 of real numbers is the new
sequence (sn)n≥0 defined by the partial sums

s0 = a0, s1 = a0 + a1, s2 = a0 + a1 + a2, . . . , sn = a0 + a1 + · · ·+ an =

n∑
i=0

ai, . . . .

The series associated to the sequence (an)n≥0 is denoted by the symbol
∞∑
n=0

an or
∑
n≥0

an.

The series is called convergent if the sequence of partial sums (sn)n≥0 is convergent. The
limit limn→∞ sn is called the sum series. We will use the notation∑

n≥0

an = S

to indicate that the series is convergent and its sum is the real number S. ut

Example 4.35 (Geometric series. Part 1). Let r ∈ (−1, 1). The geometric series
∞∑
n=0

rn = 1 + r + r2 + · · ·

is convergent and we have the following very useful equality

∞∑
n=0

rn =
1

1− r
. (4.21)
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Indeed, the n-th partial sum of this series is

sn = 1 + r + · · ·+ rn =
1− rn+1

1− r
.

Example 4.12 shows that when |r| < 1 we have limn r
n+1 = 0 so that

∞∑
n=0

rn = lim
n
sn =

1

1− r
.

Observe that if we set r = 1
2 in (4.21) we deduce

∞∑
n=0

1

2n
= 2. ut

The proof of the following result is left to you as an exercise.

Proposition 4.36. Consider two series∑
n≥0

an and
∑
n≥0

a′n

such that there exists N0 > 0 with the property

an = a′n ∀n > N0.

Then ∑
n≥0

an is convergent⇐⇒
∑
n≥0

a′n is convergent. ut

Proposition 4.37. If the series
∑∞

n=0 an is convergent, then

lim
n→∞

an = 0.

Proof. Observe that for n ≥ 1

sn = a0 + a1 + · · ·+ an−1 + an = sn−1 + an.

Hence

an = sn − sn−1.

The sequences (sn)n≥1 and (sn−1)n≥1 converge to the same finite limit so that

lim
n
an = lim

n
sn − lim

n
sn−1 = 0.

ut
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Example 4.38 (Geometric series. Part 2). Let |r| ≥ 1. Then the geometric series

1 + r + r2 + · · ·+ rn + · · · =
∞∑
n=0

rn

is divergent. Indeed, if it were convergent, then the above proposition would imply that
rn → 0 as n→∞. This is not the case when |r| ≥ 1. ut

Proposition 4.39. A series of positive numbers∑
n≥0

an, an > 0 ∀n

is convergent if and only if the sequence of partial sums

sn = a0 + · · ·+ an

is bounded.

Proof. Observe that the sequence of partial sums is increasing since

sn+1 − sn = an+1 > 0, ∀n.

If the sequence (sn) is also bounded, then Weierstrass’ Theorem on monotone sequences
implies that it must be convergent.

Conversely, if the sequence (sn) is convergent, then Proposition 4.14 shows that it
must also be bounded. ut

Example 4.40. (a) The harmonic series
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · · .

is divergent. Here is why.

This is a series with positive terms. Observe that

s1 = 1 ≥ 1, s2 = 1 +
1

2
≥ 1 +

1

2
,

s22 = s4 = s2 +
1

3
+

1

4
> s2 +

1

4
+

1

4
= s2 +

1

2
= 1 +

2

2

s23 = s8 = s4 +
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
4 terms

> 1 +
2

2
+

1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
4 terms

> 1 +
2

2
+

1

8
+

1

8
+

1

8
+

1

8︸ ︷︷ ︸
4 terms

= 1 +
3

2
.

Thus

s23 > 1 +
3

2
.
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We want to prove that

s2n > 1 +
n

2
, ∀n ≥ 2. (4.22)

We have shown this for n = 2 and n = 3. The general case follows inductively. Observe
that 2n+1 = 2 · 2n = 2n + 2n and thus

s2n+1 = s2n +
1

2n + 1
+ · · ·+ 1

2n+1︸ ︷︷ ︸
2n-terms

> s2n +
1

2n+1
+ · · ·+ 1

2n+1︸ ︷︷ ︸
2n-terms

= s2n +
2n

2n+1
= s2n +

1

2

(use the inductive assumption)

> 1 +
n

2
+

1

2
.

This proves that (4.22) which shows that the sequence s2n is not bounded. Invoking
Proposition 4.39 we conclude that the harmonic series is not convergent.

(b) Let r > 1 be a rational number and consider the series

∞∑
n=1

1

nr
.

We want to show that this series is convergent.

We have

s2 = 1 +
1

2r
,

s4 = s2 +
1

3r
+

1

4r
< s2 +

1

2r
+

1

2r
< s2 +

2

2r
=

1

2r
+ 1 +

1

2(r−1)
,

s23 = s8 = s4 +
1

5r
+

1

6r
+

1

7r
+

1

8r
< s4 +

4

4r
=

1

2r
+ 1 +

1

2(r−1)
+

1

22(r−1)
.

We claim that for any n ≥ 1 we have

s2n+1 <
1

2r
+ 1 +

1

2(r−1)
+

1

22(r−1)
+ · · ·+ 1

2n(r−1)
. (4.23)

We argue inductively. The result is clearly true for n = 1, 2. We assume it is true for n
and we prove it is true for n+ 1. We have

s2n+1 = s2n +
1

(2n + 1)r
+

1

(2n + 2)r
+ · · ·+ 1

(2n+1)r︸ ︷︷ ︸
2n terms

< s2n +
1

(2n)r
+

1

(2n)r
+ · · ·+ 1

(2n)r︸ ︷︷ ︸
2n terms

= s2n +
1

2n(r−1)
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(use the induction assumption)

<
1

2r
+ 1 +

1

2(r−1)
+

1

22(r−1)
+ · · ·+ 1

2(n−1)(r−1)
+

1

2n(r−1)
.

If we set

q :=
1

2r−1
=

(
1

2

)r−1

,

then we observe that the condition r > 1 implies q ∈ (0, 1) and we can rewrite (4.23) as

s2n+1 <
1

2r
+ 1 + q + · · ·+ qn <

1

2r
+

1

1− q
, ∀n ∈ N.

This implies that the sequence (s2n) is bounded and thus the series

∞∑
n=1

1

nr

is convergent. Its sum is denoted by ζ(r) and it is called Riemann zeta function For most
r’s, the actual value ζ(r) is not known. However, L. Euler has computed the values ζ(r)
when r is an even natural number. For example

ζ(2) =

∞∑
n=1

1

n2
=
π2

6
.

All the known proofs of the above equality are very ingenious. ut

Theorem 4.41 (Comparison principle). Suppose that∑
n≥0

an and
∑
n≥0

bn

are two series of positive real numbers such that

∃N0 ∈ N such that ∀n > N0 : an < bn.

Then the following hold.

(a)
∑

n≥0 an divergent ⇒
∑

n≥0 bn divergent.

(b)
∑

n≥0 bn convergent ⇒
∑

n≥0 an convergent.

Proof. We set

sn(a) =
n∑
k=0

an, sn(b) =
n∑
k=1

bn.

In view of Proposition 4.36 the convergence or divergence of a series is not affected if we
modify finitely many of its terms. Thus, we may assume that

an ≤ bn, ∀n ≥ 0.
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In particular, we have

sn(a) ≤ sn(b), ∀n ≥ 0. (4.24)

Note that since the terms an are positive∑
n≥0

an divergent⇒ sn(a)→∞⇒ sn(b)→∞⇒
∑
n≥0

bn divergent

and ∑
n≥0

bn convergent⇒ sn(b) bounded⇒ sn(a) bounded⇒
∑
n≥0

an convergent.

ut

The above result has an immediate and very useful consequence whose proof is left to
you as an exercise.

Corollary 4.42. Suppose that ∑
n≥0

an and
∑
n≥0

bn

are two series with positive terms.

(a) If the sequence (anbn )n≥0 is convergent and the series
∑

n≥0 bn is convergent, then the

series
∑

n≥0 an is also convergent.

(b) If the sequence (anbn )n≥0 has a limit r which is either positive, r > 0, or r =∞ and the

series
∑

n≥0 bn is divergent, then the series
∑

n≥0 an is also divergent. ut

Example 4.43 (L. Euler). Consider the series

∞∑
n=0

1

n!
= 1 +

1

1!
+

1

2!
+

1

3!
+ · · · . (4.25)

Observe that if n ≥ 2, then

1

n!
=

1

2
· 1

3
· · · 1

n
≤ 1

2
· · · 1

2︸ ︷︷ ︸
(n−1)−times

=
1

2n−1
=

2

2n
.

Since the series ∑
n≥0

2

2n

is convergent we deduce from the Comparison Principle that the series (4.25) is also
convergent. Its sum is the Euler number

∞∑
n=0

1

n!
= e = lim

n

(
1 +

1

n

)n
. (4.26)



84 4. Limits of sequences

This is a nontrivial result. We will describe a more conceptual proof in Corollary 8.8.
However, that proof relies on the full strength of differential calculus.

Here is an elementary proof. We set

en :=

(
1 +

1

n

)n
, sn = 1 +

1

1!
+

1

2!
+ · · ·+

1

n!
, ∀n ∈ N,

We will prove two things.

en < sn, ∀n ≥ 1 (4.27a)

sk ≤ e, ∀k ≥ 1. (4.27b)

Assuming the validity of the above inequalities, we observe that by letting n→∞ in (4.27a) we deduce that

e ≤ lim
n
sn.

On the other hand, if we let k →∞ in (4.27b), then we conclude that

lim
k
sk ≤ e.

Hence (4.27a, 4.27b) imply that

e = lim
n
sn =

∞∑
n=0

1

n!
.

Proof of (4.27a). Using Newton’s binomial formula we deduce

en =

(
1 +

1

n

)n
= 1 +

(n
1

) 1

n
+
(n

2

) 1

n2
+ · · ·+

(n
n

) 1

nn

= 1 +
n

1!

1

n
+
n(n− 1)

2!

1

n2
+
n(n− 1)(n− 2)

3!

1

n3
+ · · ·+

n(n− 1) · · · 1
n!

1

nn

= 1 +
n

n

1

1!
+
n(n− 1)

n2︸ ︷︷ ︸
<1

·
1

2!
+
n(n− 1)(n− 2)

n3︸ ︷︷ ︸
<1

·
1

3!
+ · · ·+

n(n− 1) · · · 1
nn︸ ︷︷ ︸
<1

·
1

n!

< 1 +
1

1!
+

1

2!
+

1

3!
+ · · ·+

1

n!
= sn.

Proof of (4.27b). Fix k ∈ N. Then from the same formula above we deduce that if k ≤ n, then

en = 1 +
n

1!

1

n
+
n(n− 1)

2!

1

n2
+
n(n− 1)(n− 2)

3!

1

n3
+ · · ·+

n(n− 1) · · · 1
n!

1

nn

(neglect the terms containing the powers 1
nj

, j > k)

> 1 +
n

1!

1

n
+
n(n− 1)

2!

1

n2
+
n(n− 1)(n− 2)

3!

1

n3
+ · · ·+

n(n− 1) · · · (n− k + 1)

k!

1

nk

= 1 +
1

1!
+
n− 1

n

1

2!
+
n− 1

n

n− 2

n
·

1

3!
+ · · ·+

n− 1

n
· · ·

n− k + 1

n
·

1

k!

= 1 +
1

1!
+

(
1−

1

n

)
1

2!
+

(
1−

1

n

)(
1−

2

n

)
1

3!
+ · · ·+

(
1−

1

n

)(
1−

2

n

)
· · ·
(

1−
k − 1

n

)
1

k!
.

If we let n→∞, while keeping k fixed we deduce

e = lim
n→∞

en

≥ 1 +
1

1!
+ lim
n→∞

(
1−

1

n

)
1

2!
+ lim
n→∞

(
1−

1

n

)(
1−

2

n

)
1

3!
+ · · ·

· · ·+ lim
n→∞

(
1−

1

n

)(
1−

2

n

)
· · ·
(

1−
k − 1

n

)
1

k!
= sk.

Let us now estimate the error

εn = e− sn =

(
1 +

1

1!
+

1

2!
+ · · ·

)
−
(

1 +
1

1!
+

1

2!
+ · · ·+

1

n!

)
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=
1

(n+ 1)!
+

1

(n+ 2)!
+ · · · .

Clearly εn > 0 and

εn =
1

(n+ 1)!

(
1 +

1

n+ 2
+

1

(n+ 2)(n+ 3)
+ · · ·

)

<
1

(n+ 1)!

(
1 +

1

n+ 2
+

1

(n+ 2)2
+

1

(n+ 2)3
+ · · ·

)
=

1

(n+ 1)!
·

1

1− 1
n+2

=
1

(n+ 1)!
·
n+ 2

n+ 1
.

For example, if we let n = 6, then we deduce that

0 < ε6 <
8

7 · 6!
=

8

7 · 720
≈ 0.0002 . . . .

This shows that s5 computes e with a 2-decimal precision. We have

s5 = 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
= 2.71 . . . ,

so that

e = 2.71 . . . ut

Given a series
∑∞

n=0 an and natural numbers m < n we have

sn − sm = (am+1 + am+1 + · · ·+ an) =
n∑

k=m+1

ak.

Cauchy’s Theorem 4.33 implies the following useful result.

Theorem 4.44 (Cauchy). Let
∑∞

n=0 an be a series of real numbers. Then the following
statements are equivalent.

(i) The series
∑∞

n=0 an is convergent.

(ii)

∀ε > 0 ∃N = N(ε) ∈ N such that ∀n > m > N(ε) |am+1 + · · ·+ an| < ε.

ut

Definition 4.45. The series of real numbers∑
n≥0

an

is called absolutely convergent if the series of absolute values∑
n≥0

|an|

is convergent. ut



86 4. Limits of sequences

Theorem 4.46 (Absolute Convergence Theorem). If the series∑
n≥0

an

is absolutely convergent, then it is also convergent.

Proof. Since ∑
n≥0

|an|

is convergent, then Theorem 4.44 implies that

∀ε > 0 ∃N = N(ε) ∈ N : ∀n > m > N(ε) : |am+1|+ · · ·+ |an| < ε.

On the other hand, we observe that

|am+1 + · · ·+ an| ≤ |am+1|+ · · ·+ |an|
so that

∀ε > 0 ∃N = N(ε) ∈ N : ∀n > m > N(ε) : |am+1 + · · ·+ an| < ε.

Invoking Theorem 4.44 again we deduce that the series
∑

n≥0 an is convergent as well. ut

The Comparison Principle has the following immediate consequence.

Corollary 4.47 (Weierstrass M -test). Consider two series∑
n≥0

an,
∑
n≥0

bn

such that bn > 0 for any n and there exists N0 ∈ N such that

|an| < bn, ∀n > N0.

If the series
∑

n≥0 bn is convergent, then the series
∑

n≥0 an converges absolutely. ut

The Weierstrass M -test leads to a simple but very useful convergence test, called the
d’Alembert test or the ratio test.

Corollary 4.48 (Ratio Test). Let ∑
n≥0

an

be a series such that an 6= 0 ∀n and the limit

L = lim
n→∞

|an+1|
|an|

≥ 0

exists, but it could also be infinite. Then the following hold.

(i) If L < 1, then the series
∑

n≥0 an is absolutely convergent.

(ii) If L > 1 then the series
∑

n≥0 an is not convergent.
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Proof. (i) We know that L < 1. Choose r such that L < r < 1. Since

|an+1|
|an|

→ L

there exists N0 ∈ N such that

|an+1|
|an|

≤ r, ∀n > N0 ⇐⇒ |an+1| ≤ |an|r, ∀n > N0.

We deduce that
|aN0+1| ≤ |aN0 |r, |aN0+2| ≤ |aN0+1|r ≤ |aN0 |r2,

and, inductively
|aN0+k| ≤ rk|aN0 |, ∀k ∈ N.

If we set n = N0 +k so that k = n−N0, then we conclude from above that for any, n > N0

we have

|an| ≤ |aN0 | rn−N0 =
|aN0 |
rN0︸ ︷︷ ︸
=:C

rn.

In other words
|an| ≤ Crn, ∀n ≥ N0.

The geometric series
∑

n≥0 bn, bn = Crn, is convergent for r ∈ (0, 1) and we deduce from

Weierstrass’ Test that the series
∑

n≥0 |an| is also convergent.

(ii) We argue by contradiction and assume that the series
∑

n≥0 |an| is convergent. Since
L > 1 we deduce that there exists a N0 ∈ N such that

|an+1|
|an|

> 1, ∀n > N0 ⇐⇒ |an+1| > |an|, ∀n > N0.

Since the series
∑

n≥0 we deduce that limn an = 0. On the other hand, |an| > |aN0 | for
n > N0 so that

0 = lim
n
|an| ≥ |aN0 | > 0.

This contradiction shows that the series
∑

n≥0 |an| cannot be convergent. ut

Example 4.49. (a) Consider the series∑
n≥1

(−1)n
n2

2n
.

Then

|an+1|
|an|

=

(n+1)2

2n+1

n2

2n

=
1

2

(
n+ 1

n

)2

→ 1

2
→ 1

2
as n→∞.

The Ratio Test implies that the series is absolutely convergent.

(b) Consider the series ∑
n≥1

1√
n(n+ 1)

.
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We observe that
1√

n(n+1)

1
n

=
n√

n(n+ 1)
=

n√
n2(1 + 1

n)
=

1√
1 + 1

n

.

Hence

lim
n→∞

1√
n(n+1)

1
n

= 1

so that there exists N0 > 0 such that
1√

n(n+1)

1
n

>
1

2
∀n > N0,

i.e.,
1√

n(n+ 1)
>

1

2n
, ∀n > N0.

In Example 4.40(a) we have shown that the series
∑

n≥1
1

2n is divergent. Invoking the

comparison principle we deduce that the series
∑

n≥1
1√

n(n+1)
is also divergent. ut

Definition 4.50. A series is called conditionally convergent if it is convergent, but not
absolutely convergent. ut

Example 4.51. Consider the series∑
n≥0

(−1)n

n+ 1
= 1− 1

2
+

1

3
− 1

4
+ · · · .

Example 4.40(a) shows that this series is not absolutely convergent. However, it is a
convergent series. To see this observe first that

s0 = 1, s2 = s0 −
1

2
+

1

3
= s0 −

(
1

2
− 1

3

)
< s0,

s2n+2 = s2n −
1

(2n+ 2)
+

1

2n+ 3
= s2n −

(
1

2n+ 2
− 1

2n+ 3

)
< s2n.

Thus the subsequence s0, s2, s4, . . . , is decreasing.

Next observe that

s1 = 1− 1

2
> 0, s3 = s1 +

1

3
− 1

4
> s1,

s2n+3 = s2n+1 +
1

2n+ 3
− 1

2n+ 4
> s2n+1.

Thus, the subsequence s1, s3, s5, . . . , is increasing. Now observe that

s2n+2 − s2n+1 =
1

2n+ 3
> 0.
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Hence

s0 > s2n+2 > s2n+1 ≥ s1.

This proves that the increasing subsequence (s2n+1) is also bounded above and the de-
creasing sequence (s2n+2) is bounded below. Hence these two subsequences are convergent
and since

lim
n

(s2n+2 − s2n+1) = lim
n

1

2n+ 3
= 0

we deduce that they converge to the same real number. This implies that the full sequence
(sn)n≥0 converges to the same number; see Exercise 4.23.

The sum of this alternating series is ln 2, but the proof of this fact is more involved an
requires the full strength of the calculus techniques; see Example 9.52. ut

4.7. Power series

Definition 4.52. A power series in the variable x and real coefficients a0, a1, a2, . . . is a
series of the form

s(x) = a0 + a1x+ a2x
2 + · · · .

The domain of convergence of the power series is the set of real numbers x such that the
corresponding series s(x) is convergent. ut

Example 4.53. (a) The geometric series

1 + x+ x2 + · · ·
is a power series. It converges for |x| < 1 and diverges for |x| ≥ 1.

(b) Consider the power series ∑
n≥1

xn

n
= x+

x2

2
+
x3

3
+ · · · .

Note that ∣∣∣∣∣ x
n+1

n+1
xn

n

∣∣∣∣∣ = |x| n

n+ 1
→ |x| as n→∞.

The Ratio Test shows that this series converges absolutely for |x| < 1 and diverges for
|x| > 1.

When x = 1 the series becomes the harmonic series

1 +
1

2
+

1

3
+ · · ·

which is divergent. When x = −1 the series becomes the alternating series

−1 +
1

2
− 1

3
+ · · · = −

∑
n≥1

(−1)n

n
.

As explained in Example 4.51, this series is convergent.
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(c) Consider the power series ∑
n≥0

xn

n!
= 1 +

x

1!
+
x2

2!
+ · · · .

Note that ∣∣∣∣∣∣
xn+1

(n+1)!
xn

n!

∣∣∣∣∣∣ =
|x|
n+ 1

→ 0 as n→∞.

The Ratio Test implies that this series converges absolutely for any x ∈ R. ut

Proposition 4.54. Consider a power series in the variable x with real coefficients

s(x) = a0 + a1x+ a2x
2 + · · · .

Suppose that the nonzero real number x0 is in the domain of convergence of the series.
Then for any real number x such that |x| < |x0| the series s(x) is absolutely convergent.

Proof. Since the series

a0 + a1x0 + a2x
2
0 + · · ·

is convergent, the sequence (anx
n
0 ) converges to zero. In particular, this sequence is

bounded and thus there exists a positive constant C such that

|anxn0 | < C, ∀n = 0, 1, 2, . . . .

We set

r :=
|x|
|x0|

and we observe that 0 ≤ r < 1. Next we notice that

|anxn| = |anxn0 |
|x|n

|x0|n
= |anxn0 |rn < Crn, ∀n.

Since 0 ≤ r < 1 we deduce that the positive geometric series

C + Cr + Cr2 + · · ·

is convergent. The comparison principle then implies that the series

|a0|+ |a1x|+ |a2x
2|+ · · ·

is also convergent. ut

The above result has a very important consequence whose proof is left to you as an
exercise.

Corollary 4.55. Consider a power series in the variable x and real coefficients

s(x) = a0 + a1x+ a2x
2 + · · · .
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We denote by D the domain of convergence of the series. We set

R :=

{
supD, if D is bounded above,

∞, if D is not bounded above.
(4.28)

Then the following hold.

(i) R ≥ 0.

(ii) If x is a real number such that |x| < R, then the series s(x) is absolutely con-
vergent.

(iii) If x is a real number such that |x| > R, then the series s(x) is divergent.

ut

Definition 4.56. The quantity R defined in (4.28) is called the radius of convergence of
the power series s(x). ut

Example 4.57. The power series in Example 4.53(a),(b) have radii of convergence 1,
while the power series in Example 4.53(c) has radius of convergence ∞. ut

4.8. Some fundamental sequences and series

lim
n→∞

C

n
= 0, ∀C > 0.

lim
n→∞

Cn =∞, ∀C > 0.

lim
n→∞

rn = lim
n→∞

1

an
= 0, ∀r ∈ (0, 1), ∀a > 1.

lim
n→∞

n

rn
= 0, ∀r > 1.

lim
n→∞

r
1
n = 1, ∀r > 0.

lim
n→∞

n
1
n = 1.

lim
n→∞

rn

n!
= 0, ∀r ∈ R.

lim
n→∞

(
1 +

1

n

)n
= e.

1 + r + r2 + · · ·+ rn + · · · = 1

1− r
, ∀|r| < 1.

1 +
1

1!
+

1

2!
+

1

3!
+ · · · = e.∑

n≥1

1

ns
=

{
convergent, s > 1

divergent, s ≤ 1.
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4.9. Exercises

Exercise 4.1. Prove, using the definition, the following equalities.

lim
n→∞

n

n2 + 1
= 0, (a)

lim
n→∞

3n+ 1

2n+ 5
=

3

2
, (b)

lim
n→∞

1√
n

= 0. (c)

Exercise 4.2. Prove Proposition 4.8. ut

Exercise 4.3. Prove Proposition 4.9. ut

Exercise 4.4. Let (xn)n≥0 be a sequence of real numbers and x ∈ R. Consider the
following statements.

(i) ∀ε > 0, ∃N ∈ N such that, n > N ⇒ |xn − x| < ε.

(ii) ∃N ∈ N such that, ∀ε > 0, n > N ⇒ |xn − x| < ε.

Prove that (ii) ⇒ (i) and construct an example of sequence (xn)n≥1 and real number
x satisfying (i) but not (ii). ut

Exercise 4.5. (a) Prove that for any real numbers a, b we have∣∣ |a| − |b| ∣∣ ≤ |a− b|.
(b) Let (xn)n≥0 be a sequence of real numbers that converges to x ∈ R. Prove that

lim
n→∞

|xn| = |x|. ut

Exercise 4.6. Compute

lim
n→∞

(
1

2
+

1

22
+ · · ·+ 1

2n

)
.

Hint. Observe that
1

2
+

1

22
+ · · ·+

1

2n
=

1

2

(
1 +

1

2
+ · · ·+

1

2n−1

)
.

At this point you might want to use Exercise 3.7. ut

Exercise 4.7. Compute

lim
n→∞

21 + 23 + 25 + · · ·+ 22n+1

22n+3
.

Hint. Use Exercise 3.7. ut

Exercise 4.8. Let X ⊂ R be a bounded above set of real numbers. Denote by x∗

the supremum of X. (The existence of the least upper bound of X is guaranteed by
the Completeness Axiom.) Prove that there exists a sequence of real numbers (xn)n∈N
satisfying the following properties.
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(i) xn ∈ X, ∀n ∈ N.

(ii) limn→∞ xn = x∗.

Hint. Use Proposition 2.22 and Corollary 4.11. ut

Exercise 4.9. Prove the equality (4.11). ut

Exercise 4.10. Let 0 < a < b. Compute

lim
n→∞

an+1 + bn+1

an + bn
. ut

Exercise 4.11. (a) Let (an) be a sequence of positive real numbers such that limn an = 1.
Prove that

lim
n

√
an = 1.

(b) Compute

lim
n→∞

√
n
(√

n+ 1−
√
n
)
.

Hint. Prove first that
√
x+ 1−

√
x =

1
√
x+ 1 +

√
x
, ∀x > 0.

ut

Exercise 4.12. Prove that if a > 0, then

lim
n→∞

a
1
n = 1.

Hint. Consider first the case a > 1. Write a
1
n = 1 + εn and then use Bernoulli’s inequality. Show that the case

a < 1 follows from the case a > 1. ut

Exercise 4.13. Prove that for any real number x there exists an increasing sequence of
rational numbers that converges to x and also a decreasing sequence of rational numbers
that converges to x.

Hint. Use Proposition 3.33. ut

Exercise 4.14. Let (an)n∈N be a sequence of positive numbers that converges to a positive
number a. Prove that

∃c > 0 such that ∀n ∈ N an > c.

Hint. Argue by contradiction. ut

Exercise 4.15. Let k ∈ N and suppose that (an)n∈N is a sequence of positive numbers
that converges to a positive number a.

(a) Using Exercise 4.14 prove that there exists r > 0 such that an > r, ∀n, so that a
1
k
n > r

1
k ,

∀n.
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(b) Prove that there exists a constant M > 0 such that∣∣∣∣a 1
k
n − a

1
k

∣∣∣∣ ≤M |an − a|, ∀n ∈ N.

Hint. Set bn := a
1
k
n , b := a

1
k and use the equality (3.10) to deduce.

an − a = bkn − bk = (bn − b)(bk−1
n + bk−2

n b+ · · ·+ bnb
k−2 + bk−1)

which implies

|bn − b| =
|an − a|

bk−1
n + bk−2

n b+ · · ·+ bnbk−2 + bk−1
.

Now use part (a).

(c) Show that

lim
n
a

1
k
n = a

1
k .

(d) Show that if r ∈ Q, then

lim
n
arn = ar. ut

Exercise 4.16. Let r > 1 and k ∈ N. Prove that

lim
n→∞

rn =∞.

and

lim
n→∞

nk

rn
= 0.

Hint. Let a = r
1
k . Then

nk

rn
=
( n
an

)k
.

ut

Exercise 4.17. Compute

lim
n→∞

(
1 +

1

2n

)n
. ut

Exercise 4.18. (a) Using Example 4.23 as inspiration prove that the sequence

xn =

(
1 +

1

n

)n
is increasing.

(b) Prove that the Euler number e satisfies the inequalities(
1 +

1

n

)n
< e <

(
1 +

1

n

)n+1

, ∀n ∈ N.

Deduce from the above inequalities that 2 < e < 3. ut
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Exercise 4.19. Consider the sequence (xn) defined by the recurrence

x1 =
√

2, xn+1 =
√

2 + xn, ∀n ∈ N.

Thus

x2 =

√
2 +
√

2, x3 =

√
2 +

√
2 +
√

2, x4 =

√
2 +

√
2 +

√
2 +
√

2, . . . .

(a) Prove by induction that the sequence (xn) is increasing.

(b) Prove by induction that xn <
√

2 + 1, ∀n ∈ N.

(c) Find limn→∞ xn.

Hint. Consider the function f : (0,∞)→ (0,∞), f(x) =
√

2 + x and prove that

0 < x < y ⇒ f(x) < f(y) and x > 0 ∧ x = f(x)⇐⇒x = 2.

ut

Exercise 4.20. Fix a > 0, a 6= 1 and define f : (0,∞)→ (0,∞) by

f(x) =
1

2

(
x+

a

x

)
=
x2 + a

2x
.

Consider the sequence of positive real numbers (xn)n≥1 defined by the recurrence

x1 = 1, xn+1 = f(xn), ∀n ∈ N.

Use the strategy employed in Example 4.25 to show that

lim
n→∞

xn =
√
a. ut

Exercise 4.21 (Gauss). Let a0, b0 be two real numbers such that

0 < a0 < b0.

Define inductively

a1 :=
√
a0b0, b1 =

a0 + b0
2

,

an+1 =
√
anbn, bn+1 =

an + bn
2

.

(a) Prove by induction that

a1 ≤ a2 ≤ · · · ≤ an ≤ bn ≤ · · · ≤ b2 ≤ b1.

(b) Prove that the sequences (an) and (bn) are convergent and

lim
n→∞

an = lim
n→∞

bn.

Hint: For part (a) use Exercise 3.5. For part (b) use Weierstrass’ Theorem on the convergence of bounded

monotone sequences, Theorem 4.22. ut
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Exercise 4.22. Establish the convergence or divergence of the sequence

an =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
, n ∈ N. ut

Exercise 4.23. Let (an) be a sequence of real numbers. For each n ∈ N we set

bn := a2n−1, cn := a2n.

Prove that the following statements are equivalent.

(i) The sequence (an) is convergent and its limit is a ∈ R.

(ii) The subsequences (bn)n∈N and (cn)n∈N converge to the same limit a.

ut

Exercise 4.24. Suppose (an)n∈N is a contractive sequence of real numbers, i.e., there
exists r ∈ (0, 1) such that

|an − an+1| < r|an − an−1|, ∀n ∈ N, n ≥ 2.

Prove that the sequence (an)n∈N is convergent.

Hint. Set x1 := a1, x2 := a2 − a1, x3 := a3 − a2, . . . . Observe that x1 + x2 + · · ·+ xn = an, ∀n ∈ N so that the

sequence (an)n∈N is the sequence of partial sums of the series

x1 + x2 + x3 + · · ·

Use the Comparison Principle to show that this series is absolutely convergent. ut

Exercise 4.25. Consider the sequence of positive real numbers (xn)n≥1 defined by the
recurrence

x1 = 1, xn+1 = 1 +
1

xn
, ∀n ∈ N.

Thus

x2 = 1 + 1, x3 = 1 +
1

1 + 1
=

3

2
, x4 = 1 +

1

1 + 1
1+1

= 1 +
2

3
=

5

3
,

x5 = 1 +
1

1 +
1

1 + 1
1+1

, x6 = 1 +
1

1 +
1

1 +
1

1 + 1
1+1

. . .

(a) Prove that

x1 < x3 < · · · < x2n+1 < x2n+2 < x2n < · · · < x2, ∀n ≥ 1.

(b) Prove that for n ≥ 3 we have

|xn+1 − xn| =
|xn − xn−1|
xnxn−1

≤ 4

9
|xn − xn−1|.
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(c) Conclude that the sequence (xn) is convergent and find its limit. (Hint: Use Exercise
4.24.) ut

Exercise 4.26. If a1 < a2

an+2 =
1

2

(
an+1 + an

)
, ∀n ∈ N

show that the sequence (an)n∈N is convergent.

Hint. Use Exercise 4.24. ut

Exercise 4.27. Consider a sequence of positive numbers (xn)n≥1 satisfying the recurrence
relation

xn+1 =
1

2 + xn
, ∀n ∈ N.

Show that (xn)n∈N is a contractive sequence (Exercise 4.24) and then compute its limit.ut

Exercise 4.28. Find all the limit points (see Definition 4.30) of the sequence

an = (−1)n
n− 1

n
. ut

Exercise 4.29. Let (an)n∈N be a bounded sequence of real numbers, i.e.,

∃C ∈ R : |an| ≤ C, ∀n.

For any k ∈ N we set

bk := sup{an; n ≥ k }.
(a) Show that the sequence (bk)k∈N is nonincreasing and conclude that it is convergent.
Denote by b its limit.

(b) Show that b is a limit point of the sequence (an)n∈N, i.e., there exists a subsequence
(ank)k≥1 of (an)n≥1 such that

lim
k→∞

ank = b.

(c) Show that if α is a limit point of the sequence (an), then α ≤ b.

The number b is called the superior limit of the sequence (an) and it is denoted by
lim supn an. The above exercise shows that the superior limit is the largest limit point of
a bounded sequence. ut

Exercise 4.30. Prove Proposition 4.36. ut

Exercise 4.31. Prove that if
∑

n≥0 an and
∑

n≥0 bn are convergent series of real numbers

and α, β ∈ R, then the series
∑

n≥0(αan + βbn) is convergent and∑
n≥0

(αan + βbn) = α
∑
n≥0

an + β
∑
n≥0

bn. ut
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Exercise 4.32. Can you give an example of convergent series
∑

n≥0 an and a divergent

series
∑

n≥0 bn such that
∑

n≥0(an + bn) is convergent? Explain. ut

Exercise 4.33. Prove Corollary 4.42. ut

Exercise 4.34. Consider the sequence

an =
n3 + 2n2 + 2n+ 4

n5 + n4 + 7n2 + 1
, n ≥ 0.

Prove that the series ∑
n≥0

an

is absolutely convergent.

Hint. Example 4.40(b) and Corollary 4.42. ut

Exercise 4.35 (Leibniz). Suppose that (an) is a decreasing sequence of positive real
numbers such that

lim
n→∞

an = 0.

Prove that the series ∑
n≥0

(−1)nan

is convergent.

Hint. Imitate the strategy in Example 4.51. ut

Exercise 4.36 (Cauchy). Suppose that (an)n≥0 is a decreasing sequence of positive num-
bers that converges to 0. Prove that the series∑

n≥0

an

converges if and only if the series

∞∑
k=0

2ka2k = a1 + 2a2 + 4a4 + 8a8 + 16a16 + · · ·

converges.

Hint. Imitate the strategy employed in Example 4.40. ut

Exercise 4.37. We consider the power series∑
n≥0

anx
n = a0 + a1x+ a2x

2 + · · · .
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Suppose that there exists C > 0 such that |an| ≤ C, ∀n. Show that the radius of
convergence of the series ∑

n≥0

anx
n

is ≥ 1. ut

Exercise 4.38. Suppose that (an)n∈N is a sequence of integers such that 0 ≤ an ≤ 9 for
any n ∈ N, i.e.,

an ∈ {0, 1, 2, . . . , 9}, ∀n ∈ N.

Show that the series ∑
n≥1

an10−n =
a1

10
+

a2

102
+ · · ·

is convergent.

(b) Compute the sum of the above series in the two special special cases

an = 7, ∀n ∈ N,

and

an =

{
1, n is odd

2, n, is even.

In each case, express the sum in decimal form.

(c) Prove that for any x ∈ [0, 1] there exists a sequence of real numbers (an)n∈N such that

an ∈ {0, 1, 2, . . . , 9}, ∀n ∈ N,

and

x =
∑
n≥1

an10−n. ut

Exercise 4.39. Prove Corollary 4.55. ut

4.10. Exercises for extra-credit

Exercise* 4.1. Fix rational numbers a, b such that 1 < a < b.

(a) Prove that

lim
n→∞

(2n)b

(2n+ 1)a
=∞.

(b) Prove that the series

1

1a
+

1

2b
+

1

3a
+

1

4b
+ · · ·

is convergent. ut
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Exercise* 4.2. Consider two series of real numbers
∑

n≥0 an and
∑

n≥0 bn. For each
nonnegative integer n define

cn := a0bn + a1bn−1 + · · ·+ anb0 =
n∑
k=0

akbn−k

Prove that the if the series
∑

n≥0 an and
∑

n≥0 bn are absolutely convergent, then the series∑
n≥0

cn

is absolutely convergent and its sum is the product of the sums of the series
∑

n≥0 an and∑
n≥0 bn, i.e.,

lim
n→∞

n∑
k=0

cn =

 lim
n→∞

n∑
j=0

aj

 ·( lim
n→∞

n∑
k=0

bk

)
.

The series
∑

n≥0 cn constructed above is called the Cauchy product of the series
∑

n≥0 an
and

∑
n≥0 bn.

Hint: Consider first the special case an, bn ≥ 0, ∀n. Set

An :=
n∑
j=0

aj , Bn :=
n∑
k=0

bk, Cn =
n∑
`=0

c`.

Prove that

lim
n→∞

(Cn −AnBn) = 0.

ut

Exercise* 4.3. Let (an)n≥0 and (bn)n≥0 be two sequences of real numbers. For any
nonnegative integer n we set

Bn := b0 + b1 + · · ·+ bn, Cn = a0b0 + a1b1 + · · ·+ anbn.

(a)(Abel’s trick) Show that, for any n ∈ N, we have

Cn = anBn −
n−1∑
k=1

(ak+1 − ak)Bk. (4.29)

(b) Show that if the series ∑
n≥0

bn

is convergent and the sequence (an)n≥0 is monotone and bounded, then the series∑
n≥0

anbn

is convergent. ut
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Exercise* 4.4. Let (an) be a convergent sequence of real numbers. Form the new sequence
(cn) defined by the rule

cn :=
a1 + · · ·+ an

n
Show that (cn) is convergent and

lim
n→∞

cn = lim
n→∞

an. ut

Exercise* 4.5. Let the two given sequences

a0, a1, a2, . . . ,

b0, b1, b2, . . .

satisfy the conditions

bn > 0, ∀n ≥ 0, (4.30a)

b0 + b1 + b2 + · · ·+ bn + · · · =∞, (4.30b)

lim
n→∞

an
bn

= s. (4.30c)

Prove that

lim
n→∞

a0 + a1 + · · ·+ an
b0 + b1 + · · ·+ bn

= s. ut

Exercise* 4.6. Suppose that (pn)n≥1 is a sequence of positive real numbers, and (xn)n≥1

is a sequence of real numbers. For n ∈ N we set

bn := p1 + · · ·+ pn, sn := x1 + · · ·+ xn.

Suppose that

lim
n→∞

bn =∞.

Prove that if the series ∑
n≥1

xn
bn

is convergent, then

lim
n→∞

sn
bn

= 0. ut

Exercise* 4.7 (Doob). Let (xn)n∈N be a sequence of real numbers. To any real numbers
a, b such that a < b we associate the sequences (Sk(a, b))k∈N and (Tk(a, b))k∈N in N∪{∞}
defined inductively as follows

S1(a, b) := inf
{
n ≥ 1; xn ≤ a

}
, T1(a, b) := inf

{
n ≥ S1(a, b); xn ≥ b

}
,

Sk+1(a, b) := inf
{
n ≥ Tk(a, b); xn ≤ a

}
, Tk+1(a, b) := inf

{
n ≥ Sk(a, b); xn ≥ b

}
,

where we set inf ∅ =∞. We set

Un(a, b) := #
{
k ≤ n; Tk(a, b) ≤ n

}
.

(a) Prove that for any a, b ∈ R, a < b, the sequence (Un(a, b))n∈bN is nondecreasing. Set

U∞(a, b) := lim
n→∞

Un(a, b).
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(b) Prove that the following statements are equivalent.

(i) The sequence (xn) has a limit as n→∞.

(ii) For any a, b ∈ Q such that a, b we have U∞(a, b) <∞.

ut

Exercise* 4.8 (Fekete). Suppose that the sequence of real numbers (an)n∈N satisfies the
subadditivity condition

am+n ≤ am + an, ∀m,n ∈ N.
Prove that

lim
n→∞

an
n

= inf
n∈N

an
n
. ut

Exercise* 4.9. Let (xn)n≥0 be a sequence of nonzero real numbers such that

x2
n − xn+1xn−1 = 1, ∀n ∈ N.

Prove that there exists a ∈ R such that

xn+1 = axn − xn−1, ∀n ∈ N. ut

Exercise* 4.10. Suppose that a sequence of real numbers (an)n∈N satisfies

0 < an < a2n + a2n+1, ∀n ∈ N.

Prove that the series
∑

n≥1 an is divergent. ut

Exercise* 4.11. Suppose that (xn)n∈N is a sequence of positive real numbers such that
the series ∑

n∈N
xn

is convergent and its sum is S. Prove that for any bijection ϕ : N→ N the series∑
n∈N

xϕ(n)

is also convergent and its sum is also S. ut

Exercise* 4.12. Suppose that the series of real numbers∑
n∈N

xn

is convergent, but not absolutely convergent. Prove that for any real number S there exists
a bijection ϕ : N→ N such that the series∑

n∈N
xϕ(n)

is convergent and its sum is S. ut
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Exercise* 4.13. Suppose that (an)n≥1 is a decreasing sequence of positive real numbers
that converges to 0 and satisfies the inequalities

an ≤ an+1 + an2 , ∀n ≥ 1.

Prove that the series ∑
n≥1

an

is divergent. ut





Chapter 5

Limits of functions

5.1. Definition and basic properties

Let X be a nonempty subset of R. A real number c is called a cluster point of X if there
exists a sequence (xn) of real numbers with the following properties.

(i) xn ∈ X, ∀n ∈ N.

(ii) xn 6= c, ∀n ∈ N.

(iii) limn xn = c.

Example 5.1. (a) If A = (0, 1), then 0 and 1 are cluster points of A, although they are
not in A. Indeed, the sequence an = 1

n+1 , n ∈ N consists of elements of (0, 1) and an → 0.

Similarly, the sequence bn = 1− 1
n+1 consists of points in (0, 1) and bn → 1. Observe that

every point in (0, 1) is also a cluster point of (0, 1).

(b) Any real number is a cluster point of the set Q of rational numbers. ut

Definition 5.2. Let X ⊂ R. Suppose that c is a cluster point of X and f : X → R is a
real valued function defined on X. We say that the limit of f at c is the real number A,
and we write this

lim
x→c

f(x) = A,

if the following holds:

∀ε > 0 ∃δ = δ(ε) > 0 : ∀x ∈ X : 0 < |x− c| < δ ⇒ |f(x)−A| < ε. (5.1)

ut

An alternate viewpoint. Recall that a neighborhood of a point a is an open interval that contains a inside.

For example, the open interval (0, 3) is a neighborhood of 1. We denote by Na the collection of all neighborhoods

105
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of a. Thus, a statement of the form U ∈ Na signifies that U is an open interval that contains a. A symmetric

neighborhood of a is a neighborhood of the form (a− δ, a+ δ), where δ is some positive number. Observe that

x ∈ (a− δ, a+ δ)⇐⇒dist(a, x) < δ⇐⇒|x− a| < δ.

Thus, to describe a symmetric neighborhood of a, it suffices to indicate a positive real number δ, and then the
symmetric neighborhood is described by the condition dist(x, a) < δ. We denote by SNa the collection of symmetric

neighborhoods of a. Clearly, any symmetric neighborhood of a is also a neighborhood of a so that

SNa ⊂ Na.

A deleted neighborhood of a is a set obtained from a neighborhood of a by removing the point a. For example

(0, 2) \ {1} = (0, 1) ∪ (1, 2)

is a deleted neighborhood of 1. We denote by N∗a the collection of all deleted neighborhoods of a. A symmetric
deleted neighborhood of a is a deleted neighborhood of the form

(a− r, a+ r) \ {a} = (a− r, a) ∪ (a, a+ r).

We denote by SN∗a the collection of deleted symmetric neighborhoods of a. Clearly

SN∗a ⊂ S∗a.

Observe that the definition (5.1) is equivalent with the following statement

∀U ∈ SNa ∃V ∈ SN∗c ∀x ∈ X : x ∈ V ⇒ f(x) ∈ U. (5.2)

Indeed, we can rephrase (5.1) in the following equivalent way: for any symmetric neighborhood U of A of the form
(A − ε,A + ε), there exists a deleted symmetric neighborhood V of c of the form (c − δ, c + δ) \ {c} such that for

any x ∈ V we have f(x) ∈ U . That is precisely the content of (5.2).

The proof of the next result is left to you as an exercise.

Proposition 5.3. Let f : X → R be a function defined on a set X ⊂ R and c a cluster point of X. Then the

following statements are equivalent.

(i) limx→c f(x) = A, i.e., f satisfies (5.1) or (5.2).

(ii)

∀U ∈ NA, ∃V ∈ N∗c such that ∀x ∈ X : x ∈ V ⇒ f(x) ∈ U. (5.3)

ut

The following very useful result reduces the study of limits of functions to the study
of a concept we are already familiar with, namely the concept of limits of sequences.

Theorem 5.4. Let c be a cluster point of the set X ⊂ R and f : X → R a real valued
function on X. The following statements are equivalent.

(i) limx→c f(x) = A ∈ R.

(ii) For any sequence (xn)n∈N in X \{c} such that xn → c, we have limn f(xn) = A.

Proof. (i) ⇒ (ii). We know that limx→c f(x) = A and we have to show that if (xn) is
a sequence in X \ {c} that converges to c then the sequence ( f(xn) ) converges to A. In
other words, given the above sequence (xn) we have to show that

∀ε > 0 ∃N = N(ε) ∀n ∈ N : n > N(ε)⇒ |f(xn)−A| < ε.
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Let ε > 0. We deduce from (5.1) that there exists δ(ε) > 0 such that

∀x ∈ X : 0 < |x− c| < δ ⇒ |f(x)−A| < ε. (5.4)

Since xn → c, there exists N = N(δ(ε)) such that

0 < |xn − c| < δ, ∀n > N.

Using (5.4) we deduce that for any n > N(δ(ε)) we have |f(xn)−A| < ε. This proves the
implication (i) ⇒ (ii).

(ii)⇒ (i) We know that for any sequence (xn) in X \{c} that converges to c, the sequence
( f(xn) ) converges to A and we have to prove (5.1), i.e.,

∀ε > 0 ∃δ = δ(ε) > 0 : ∀x ∈ X : 0 < |x− c| < δ ⇒ |f(x)−A| < ε. (5.5)

We argue by contradiction and we assume that (5.5) is false, so that its opposite is true,
i.e.,

∃ε0 > 0 : ∀δ > 0, ∃x = x(δ) ∈ X, 0 < |x(δ)− c| < δ and |f(x(δ) )−A| ≥ ε0. (5.6)

From (5.6) we deduce that for any δ of the form δ = 1
n , n ∈ N, there exists xn = x(1/n) ∈ X

such that

0 < |xn − c| <
1

n
∧ |f(xn )−A| ≥ ε0.

We have thus produced a sequence (xn) in X such that

0 < dist(xn, c) <
1

n
∧ dist(f(xn), A) ≥ ε0.

Thus, (xn) is a sequence in X \ {c} that converges to c, but the sequence ( f(xn) ) does
not converge to A. ut

Using Proposition 4.15 we obtain the following immediate consequence.

Corollary 5.5. Let f, g : X → R be two functions defined on the same subset X ⊂ R and
c a cluster point of X. Suppose additionally that

lim
x→c

f(x) = A and lim
x→c

g(x) = B.

Then the following hold.

(i)
lim
x→c

(
f(x) + g(x)

)
= A+B, lim

x→c
λf(x) = λA, ∀λ ∈ R.

(ii)
lim
x→c

f(x)g(x) = AB.

(iii) If B 6= 0 and g(x) 6= 0, ∀x ∈ X, then

lim
x→c

f(x)

g(x)
=
A

B
.

ut
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Example 5.6. (a) Let f : R→ R, f(x) = x. Then for any c ∈ R we have

lim
x→c

f(x) = lim
x→c

x = c.

(b) Let m ∈ N and define f : R→ R, f(x) = xm. Corollary 5.5 implies that

lim
x→c

f(x) = lim
x→c

xm = cm.

Thus,

lim
x→3

x2 = 32 = 9.

(c) Let m ∈ N and define f : (0,∞) → R, f(x) = x−m = 1
xm . Corollary 5.5 implies that

for any c > 0 we have

lim
x→c

x−m = lim
x→c

1

xm
= c−m.

(d) Let m, k ∈ N and define f : (0,∞) → R, f(x) = x
m
k . We want to show that for any

c > 0 we have

lim
x→c

x
m
k = c

m
k . (5.7)

We rely on Theorem 5.4. Suppose that (xn) is a sequence of positive numbers such that
xn → c and xn 6= c, ∀n. We have to show that

lim
n
x
m
k
n = c

m
k .

Using Exercise 4.15, we deduce that

lim
n
x

1
k
n = c

1
k .

Thus,

lim
n
x
m
k
n = lim

n

(
x

1
k
n

)m
=
(
c

1
k
)m

= c
m
k .

Thus,

lim
x→c

xr = cr, ∀r ∈ Q, r > 0.

The above equality obviously holds if r = 0. If r < 0, then x−r = 1
xr and we deduce

lim
x→c

xr = cr, ∀c > 0, r ∈ Q. (5.8)

ut

Proposition 5.7. Let f, g : X → R be two functions defined on the same subset X ⊂ R.
Suppose that c is a cluster point of X and

lim
x→c

f(x) = A, lim
x→c

g(x) = B and A < B.

Then there exists a δ0 > 0 such that f(x) < g(x), ∀x ∈ X, 0 < |x− c| < δ0.
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Proof. Fix a positive number ε such that 3ε < B − A. In other words, ε is smaller than
one third of the distance from A to B. In particular, A+ ε < B − ε because

B − ε− (A+ ε) = B −A− 2ε > 3ε− 2ε > 0.

Since limx→c f(x) = A, there exists δ = δf (ε) > 0 such that

∀x ∈ X : 0 < |x− c| < δf ⇒ A− ε < f(x) < A+ ε.

Since limx→c g(x) = B, there exists δ = δg(ε) > 0 such that

∀x ∈ X : 0 < |x− c| < δg ⇒ B − ε < f(x) < B + ε.

Let δ0 < min{δf , δg} and define

U := (c− δ0, c+ δ0).

If x ∈ U ∩X, x 6= c, then

0 < |x− c| < δ0 < min{δf , δg} ⇒ f(x) < A+ ε < B − ε < g(x).

ut

5.2. Exponentials and logarithms

In this section we want to give a meaning to the exponential ax where a is a positive real
number and x is an arbitrary real number. The case a = 1 is trivial: we define 1x = 1,
∀x ∈ R.

We consider next the case a > 1. In Exercise 3.14 we defined ar for any r ∈ Q and we
showed that

ar1+r2 = ar1 · ar2 , ar1−r2 =
ar1

ar2
, (ar1

)r2= ar1r2 , ∀r1, r2 ∈ Q. (5.9)

We will use these facts to define ax for any x ∈ R. This will require several auxiliary
results.

Lemma 5.8. If a > 1, then for any rational numbers r1, r2 we have

r1 < r2 ⇒ ar1 < ar2 .

Proof. We will use the fact that if x, y > 0 and n ∈ N, then

x < y⇐⇒xn < yn.

Since a > 1 we deduce that a
1
n > 1 because (

a
1
n
)n

= a > 1 = 1n.

Thus,

a
m
n > 1, ∀m,n ∈ N

that is,

ar > 1, ∀r ∈ Q, r > 0.
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Suppose that r1 < r2. Then the above inequality implies that

ar2

ar1

(5.9)
= ar2−r1 > 1

because r = r2 − r1 is a positive rational number. ut

Lemma 5.9. Let a > 1 and r0 ∈ Q. Then

lim
Q3r→r0

ar = ar0 .

Proof. We first consider the case r0 = 0, i.e., we first prove that

lim
Q3r→0

ar = 1. (5.10)

We have to prove that, given ε > 0, we can find δ = δ(ε) > 0 such that

0 < |r| < δ and r ∈ Q⇒ |ar − 1| < ε.

Observe first that Exercise 4.12 implies that

lim
n→∞

a
1
n = lim

n→∞
a−

1
n = 1.

In particular, this implies that there exists n0 = n0(ε) > 0 such that, for all n ≥ n0, we have

1− ε < a−
1
n < a

1
n < 1 + ε.

We set δ(ε) = 1
n0(ε)

. If 0 < |r| < δ(ε) and r ∈ Q, then − 1
n0(ε)

< r < 1
n0(ε)

and we deduce from Lemma 5.8 that

1− ε < a
− 1
n0(ε) < ar < a

1
n0(ε) < 1 + ε⇒ 1− ε < ar < 1 + ε⇒ |ar − 1| < ε.

This proves (5.10). To deal with the general case, let r0 ∈ Q. If rn is a sequence of rational numbers rn → r0, then

arn = ar0arn−r0 .

Since rn − r0 → 0, we deduce from (5.10) that arn−r0 → 1 and thus, arn = ar0arn−r0 → ar0 . The conclusion now
follows from Theorem 5.4. ut

Proposition 5.10. Let a > 1 and x ∈ R. We set

Q<x :=
{
r ∈ Q, r < x

}
, Q>x :=

{
r ∈ Q, r > x

}
sx = sup

r∈Q<x
ar, ix = inf

r∈Q>x
ar.

Then sx = ix. Moreover, if x is rational, then sx = ix = ax.
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Proof. Observe first that the set {ar; r ∈ Q<x} is bounded above. Indeed, if we choose a rational number R > x,

then Lemma 5.8 implies that ar < aR for any rational number r < x. A similar argument shows that the set

{ar; r ∈ Q>x} is bounded below and we have

sx ≤ ix.

Observe that for any rational numbers r1, r2 such that r1 < x < r2, we have

ar1 ≤ sx ≤ ix ≤ ar2 .

Hence,

1 ≤
ix

sx
≤
ar2

sx
≤
ar2

ar1
= ar2−r1 .

Now choose two sequences (r′n) ⊂ Q<x and (r′′n) ⊂ Q>x such that r′n → x and r′′n → x.1 Then

1 ≤
sx

ix
≤ ar

′′
n−r

′
n .

If we let n→∞ and observe that r′′n − r′n → 0, we deduce from Lemma 5.9 that

1 ≤
sx

ix
≤ lim
n→∞

ar
′′
n−r

′
n = 1⇒ sx = ix.

If x ∈ Q, then the sequences r′n and r′′nabove converge to x. Invoking Lemma 5.9 we deduce

sx = lim
n
ar
′
n = ax = lim

n
ar
′′
n = ix.

ut

Definition 5.11. For any a > 1 and x ∈ R we set

ax := sup
{
ar; r ∈ Q, r < x

}
= inf

{
ar; r ∈ Q, r > x

}
.

If b ∈ (0, 1), then 1
b > 1 and we set

bx :=

(
1

b

)−x
. ut

Lemma 5.12. Let a > 1. If x < y, then ax < ay.

Proof. We can find rational numbers r1, r2 such that

x < r1 < r2 < y.

Then r1 ∈ Q>x and r2 ∈ Q<y so that

ax ≤ ar1 < ar2 ≤ ay .

ut

Lemma 5.13. Let a > 1 and x ∈ R. If the sequence (rn) ⊂ Q<x converges to x, then

lim
n→∞

arn → ax.

1The existence of such sequences was left to you as Exercise 4.13.
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Proof. We have

ax = sup
r∈Q<x

ar.

Thus, for any ε > 0, there exists rε ∈ Q<x such that

ax − ε < arε ≤ ax.

Since rn → x and rn ∈ Q<x, we deduce that there exists N = N(ε) such that, ∀n > N(ε) we have rε < rn < x.

We deduce that for all n > N(ε), we have

ax − ε < arε < arn < ax.

ut

Lemma 5.14. Let a > 0 and x, y > 0. Then

ax · ay = ax+y .

Proof. Choose sequences (r′n) ⊂ Q<x and (r′′n) ⊂ Q<y such that r′n → x and r′′n → y. Lemma 5.13 implies that

ar
′
n → ax ∧ ar

′′
n → ay .

Hence,

lim
n
ar
′
n+r′′n = lim

n

(
ar
′
n · ar

′′
n
)

=
(

lim
n
ar
′
n
)
·
(

lim
n
ar
′′
n
)

= ax · ay .

Now observe that r′n + r′′n ∈ Q<x+y and r′n + r′′n → x+ y. Lemma 5.13 implies

lim
n
ar
′
n+r′′n = ax+y .

ut

The proofs of our next two results are left to you as an exercise.

Lemma 5.15. Let a > 0 and x ∈ R. Then for any sequence of real numbers (xn) such that xn → x we have

lim
n→∞

axn = ax. ut

Lemma 5.16. Suppose that a, b > 0. Then for any x ∈ R we have

ax · bx = (ab)x. (5.11)

ut

Definition 5.17. Let X ⊂ R and f : X → R be a real valued function defined on X.

(i) The function f is called increasing if

∀x1, x2 ∈ X (x1 < x2)⇒
(
f(x1) < f(x2)

)
.

(ii) The function f is called decreasing if

∀x1, x2 ∈ X (x1 < x2)⇒
(
f(x1) > f(x2)

)
.

(iii) The function f is called nondecreasing if

∀x1, x2 ∈ X (x1 < x2)⇒
(
f(x1) ≤ f(x2)

)
.
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(iv) The function f is called nonincreasing if

∀x1, x2 ∈ X (x1 < x2)⇒
(
f(x1) ≥ f(x2)

)
.

(v) The function is called strictly monotone if it is either increasing or decreasing.
It is called monotone if it is either nondecreasing or nonincreasing.

ut

Theorem 5.18. Let a > 0, a 6= 1. Consider the function fa : R → (0,∞) given by
f(x) = ax. Then the following hold.

(i) ax+y = ax · ay, ∀x, y ∈ R.

(ii) (ax)y = axy, ∀x, y ∈ R.

(iii) The function fa is increasing if a > 1, and decreasing if a < 1.

(iv) The function f is bijective.

(v) For any sequence of real numbers (xn) such that xn → x we have

lim
n→∞

axn = ax.

Proof. Part (v) above is Lemma 5.15. We thus have to prove (i)-(iv). We consider first the case a > 1. The

equality (i) is Lemma 5.14. The statement (iii) follows from Lemma 5.12.

We first prove (ii) in the special case y ∈ Q. Choose a sequence rn ∈ Q such that rn → x, rn 6= x. Then (5.9)

implies

(arn )y = arny .

Clearly rny → xy and Lemma 5.15 implies that

lim
n
arny = axy .

On the other hand, y is rational and arn → ax and using (5.8) we deduce that

lim
n

(
arn

)y
=
(
ax
)y
.

Thus, (
ax
)y

= lim
n

(
arn

)y
= lim

n
arny = axy , ∀x ∈ R, y ∈ Q. (5.12)

Now fix x, y ∈ R and choose a sequence of rational numbers yn → y, yn 6= y. Then(
ax
)yn (5.12)

= axyn , ∀n.

Using Lemma 5.15, we deduce (
ax
)y

= lim
n

(
ax
)yn = lim

n
axyn = axy , ∀x, y ∈ R.

This proves (ii).

To prove (iv) observe that fa is injective because it is increasing. (We recall that we are working under the
assumption a > 1.) To prove surjectivity, fix y ∈ (0,∞). We have to show that there exists x ∈ R such that ax = y.
Define

S :=
{
s ∈ R; as ≤ y

}
.

Observe first that S 6= ∅. Indeed

lim
n
a−n = lim

n

1

an
= 0
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so that there exists n0 ∈ N such that a−n0 < y, i.e., −n0 ∈ S. Observe that S is also bounded above. Indeed

lim
n
an =∞.

Hence there exists n1 ∈ N such that an1 > y. If x ≥ n1, then ax ≥ an1 > y so that S ∩ [n1,∞) = ∅ and thus
S ⊂ (−∞, n1) and therefore n1 is an upper bound for S. Set

x := supS.

Note that if x′ > x, then ax
′ ≥ y. Indeed, if ax

′
< y then for any s < x′ we have as < ax

′
< y and thus

(−∞, x′] ⊂ S. This contradicts the fact that x is an upper bound for S.

Consider now two sequences s′n → x and s′′n → x where s′n < x and s′′n > x then

as
′
n ≤ y ≤ as

′′
n , ∀n.

Letting n→∞ in the above inequalities we obtain, from Lemma 5.15, that

ax ≤ y ≤ ax⇐⇒ax = y.

The case a < 1 follows from the case a > 1 by observing that

ax =

(
1

a

)−x
.

ut

Definition 5.19. Let a ∈ (0,∞), a 6= 1. The bijective function

R 3 x 7→ ax ∈ (0,∞)

is called the exponential function with base a. Its inverse is called the logarithm to base a
and it is a function

loga : (0,∞)→ R.
When a = e = the Euler number, we will refer to loge as the natural logarithm and we
will use the simpler notation log or ln. Also, we will use the notation lg for log10. ut

We have depicted below the graphs of the functions ax and loga x for a = 2 and a = 1
2 .

The meaning of the logarithm function answers the following question: given a, y > 0,
a 6= 1, to what power do we need to raise a in order to obtain y? The answer: we need to
raise a to the power loga y in order to get y. Equivalently, loga is uniquely determined by
the following two fundamental identities

loga a
x = x and aloga y = y, ∀x ∈ R, y > 0.

For example, log2 8 = 3 because 23 = 8. Similarly lg 10, 000 = 4 since 104 = 10, 000.

Theorem 5.20. Let a > 0, a 6= 1. Then the following hold.
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Figure 5.1. The graph of 2x.

Figure 5.2. The graph of
(

1
2

)x
.

(i)

loga(y1y2) = loga y1 + loga y2, loga
y1

y2
= loga y1 − loga y2, ∀y1, y2 > 0.

(ii) loga y
α = α loga y, ∀y > 0, α ∈ R.

(iii) If b > 0 and b 6= 1, then

logb y =
loga y

loga b
, ∀y > 0.
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Figure 5.3. The graph of log2 x.

Figure 5.4. The graph of log1/2 x.

(iv) If a > 1, then the function y 7→ loga y is increasing, while if a ∈ (0, 1), then the
function y 7→ loga y is decreasing.

(v) If y > 0, then for any sequence of positive numbers (yn) that converges to y we
have

lim
n→∞

loga yn = loga y.
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Proof. (i) Let y1, y2 > 0. Set x1 = loga y1, x2 = loga y2, i.e., ax1 = y1 and y2 = ax2 . We have to show that

loga(y1y2) = x1 + x2, loga
y1

y2
= x1 − x2.

We have

y1y2 = ax1ax2 = ax1+x2 ⇒ loga(y1y2) = loga a
x1+x2 = x1 + x2,

y1

y2
=
ax1

ax2
= ax1−x2 ⇒ loga

y1

y2
= loga a

x1−x2 = x1 − x2.

(ii) Let x ∈ R such that ax = y, i.e., loga y = x. We have to prove that

loga y
α = αx.

We have

yα = (ax)α = aαx ⇒ loga y
α = loga a

αx = αx.

(iii) Let β, x, t ∈ R such that aβ = b, y = ax = bt. Then

y = bt = (aβ)t = atβ = ax.

Hence,

loga y = x = tβ = (logb y)(loga b)⇒ logb y =
loga y

loga b
.

(iv) Assume first that a > 1. Consider the numbers y2 > y1 > 0, and set

x1 := loga y1, x2 = loga y2.

We have to show that x2 > x1. We argue by contradiction. If x1 ≥ x2, then

y1 = ax1 ≥ ax2 = y2 ⇒ y1 ≥ y2.

This contradiction proves the statement (iv) in the case a > 1. The case a ∈ (0, 1) is dealt with in a similar fashion.

(v) Assume first that a > 1 so that the function y 7→ loga y is increasing. Since yn → y, we deduce that

yn

y
→ 1.

Hence, for any ε > 0 there exists N = N(ε) > 0 such that

∀n > N(ε) :
yn

y0
∈ (a−ε, aε).

Hence, ∀n > N(ε)

−ε = loga a
−ε < loga

(
yn

y0

)
︸ ︷︷ ︸

=loga yn−loga y0

< loga a
ε = ε⇐⇒| loga yn − loga y0| < ε.

ut

Theorem 5.21. Fix a real number s and consider f : (0,∞)→ (0,∞) given by f(x) = xs.
Then for any c > 0 any sequence of positive numbers (xn), and any sequence of real
numbers (sn) such that xn → c, and sn → s, we have

lim
n→∞

xsnn = cs.
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Proof. Set

yn := log xsnn = sn log xn.

Theorem 5.20(v) implies that

lim
n
yn = (lim

n
sn)(lim

n
log xn) = s log c.

Using Theorem 5.18(v), we deduce that

lim
n
eyn = es log c = (elog c)s = cs.

Now observe that

eyn = elog xsnn = xsnn .

This proves Theorem 5.21. ut

5.3. Limits involving infinities

Suppose that we are given a subset X ⊂ R and a function f : X → R.

Definition 5.22. Let c be a cluster point of X.

(a) We say that the limit of f as x→ c is ∞, and we write this

lim
x→c

f(x) =∞

if for any M > 0, ∃δ = δ(M) > 0 such that

∀x ∈ X
(

0 < |x− c| < δ ⇒ f(x) > M
)
.

(b) We say that the limit of f as x→ c is −∞, and we write this

lim
x→c

f(x) = −∞

if for any M > 0, ∃δ = δ(M) > 0 such that

∀x ∈ X
(

0 < |x− c| < δ ⇒ f(x) < −M
)
. ut

We have the following version of Proposition 5.3. The proof is left to you.

Proposition 5.23. Let f : X → R be a function defined on a set X ⊂ R and c a cluster point of X. Then the

following statements are equivalent.

(i) limx→c f(x) =∞, i.e., f satisfies (5.1) or (5.2).

(ii)

∀M > 0, ∃V ∈ N∗c such that ∀x ∈ X : x ∈ V ⇒ f(x) ∈ (M,∞). (5.13)

ut

Arguing as in the proof of Theorem 5.4 we obtain the following result. The details are
left to you.
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Theorem 5.24. Let c be a cluster point of the set X ⊂ R and f : X → R a real valued
function on X. The following statements are equivalent.

(i) limx→c f(x) =∞ ∈ R.

(ii) For any sequence (xn)n∈N in X \{c} such that xn → c, we have limn f(xn) =∞.

ut

Observe that if X ⊂ R is not bounded above, then for any M > 0 the intersection
X ∩ (M,∞) is nonempty, i.e., for any number M > 0 there exists at least one number
x ∈ X such that x > M . Equivalently, this means that there exists a sequence (xn)n∈N of
numbers in X such that

lim
n→∞

xn =∞.

Definition 5.25. Suppose X ⊂ R is a subset not bounded above and f : X → R is a real
function defined on X.

(a) We say that the limit of f as x → ∞ is the real number A, and we write this
limx→∞ f(x) = A, if

∀ε > 0 ∃M = M(ε) > 0 ∀x ∈ X (x > M ⇒ |f(x)−A| < ε).

(b) We say that the limit of f as x→∞ is ∞,and we write this limx→∞ f(x) =∞, if

∀C > 0 ∃M = M(C) > 0 ∀x ∈ X (x > M ⇒ f(x) > C).

(c) We say that the limit of f as x→∞ is −∞, and we write this limx→∞ f(x) = −∞, if

∀C > 0 ∃M = M(C) > 0 ∀x ∈ X (x > M ⇒ f(x) < −C). ut

Observe that if X ⊂ R is not bounded below, then for any M > 0 the intersection
X ∩ (−∞,−M) is nonempty, i.e., for any number M > 0 there exists at least one number
x ∈ X such that x < −M . Equivalently, this means that there exists a sequence (xn)n∈N
of numbers in X such that

lim
n→∞

xn = −∞.

Definition 5.26. Suppose X ⊂ R is a subset not bounded below and f : X → R is a real
function defined on X.

(a) We say that the limit of f as x → −∞ is the real number A, and we write this
limx→−∞ f(x) = A, if

∀ε > 0 ∃M = M(ε) > 0 ∀x ∈ X (x < −M ⇒ |f(x)−A| < ε).

(b) We say that the limit of f as x→ −∞ is ∞, and we write this limx→−∞ f(x) =∞, if

∀C > 0 ∃M = M(C) > 0 ∀x ∈ X (x < −M ⇒ f(x) > C).

(c) We say that the limit of f as x→ −∞ is −∞, and we write this limx→−∞ f(x) = −∞,
if

∀C > 0 ∃M = M(C) > 0 ∀x ∈ X (x < −M ⇒ f(x) < −C). ut
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The limits involving infinities have an alternate description involving sequences. Thus,
if X ⊂ R is not bounded above and f : X → R is a real function defined on X, then the
equality

lim
x→∞

f(x) = A

can be given a characterization as in Theorem 5.4. More precisely, it means that for any
sequence of real numbers xn ∈ X such that xn →∞, the sequence f(xn) converges to A.

Example 5.27. (a) We want to prove that

lim
x→∞

(
1 +

1

x

)x
= e. (5.14)

We will use the fundamental result in Example 4.23 which states that the sequence

xn :=

(
1 +

1

n

)n
, n ∈ N,

converges to the Euler number e. In particular, we deduce that

lim
n→∞

(
1 +

1

n+ 1

)n
= lim

n→∞

(
1 +

1

n

)n+1

= e. (5.15)

Recall that for any real number x we denote by bxc the integer part of the real number
x, i.e., the largest integer which is ≤ x. Thus bxc is an integer and

bxc ≤ x < bxc+ 1.

For x ≥ 1 we have
1 ≤ bxb≤ x ≤ bxc+ 1

and we deduce

1 +
1

bxc+ 1
≤ 1 +

1

x
≤ 1 +

1

bxc
.

In particular, we deduce that(
1 +

1

bxc+ 1

)bxc
≤
(

1 +
1

x

)bxc
≤
(

1 +
1

x

)x
≤
(

1 +
1

bxc

)x
≤
(

1 +
1

bxc

)bxc+1

.

(5.16)
From (5.15) we deduce that for any ε > 0 there exists N = N(ε) > 0 such that(

1 +
1

n+ 1

)n
,

(
1 +

1

n

)n+1

∈ (e− ε, e+ ε), ∀n > N(ε).

If x > N(ε) + 1, then bxc > N(ε) and we deduce from the above that

e− ε <
(

1 +
1

bxc+ 1

)bxc
< e+ ε and e− ε <

(
1 +

1

bxc

)bxc+1

< e+ ε.

The inequalities (5.16) now imply that for x > N(ε) + 1 we have

e− ε <
(

1 +
1

bxc+ 1

)bxc
≤
(

1 +
1

x

)x
≤
(

1 +
1

bxc

)bxc+1

< e+ ε.
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This proves (5.14).

(b) We want to prove that

lim
x→−∞

(
1 +

1

x

)x
= e. (5.17)

We will prove that for any sequence of nonzero real numbers (xn) such that xn → −∞,
we have

lim
n

(
1 +

1

xn

)xn
= e.

Consider the new sequence yn := −xn. Clearly yn →∞. We have(
1 +

1

xn

)xn
=

(
1− 1

yn

)−yn
=

(
yn − 1

yn

)−yn
=

(
yn

yn − 1

)yn
.

Now set zn := yn − 1 so that yn = zn + 1 and(
yn

yn − 1

)yn
=

(
zn + 1

zn

)zn+1

=

(
1 +

1

zn

)zn+1

=

(
1 +

1

zn

)zn
×
(

1 +
1

zn

)
.

Clearly zn →∞ so that

lim
n

(
1 +

1

zn

)
= 1.

Invoking (5.14) we deduce

lim
n→∞

(
1 +

1

zn

)zn
= e.

Hence,

lim
n

(
1 +

1

xn

)xn
= lim

n

(
1 +

1

zn

)zn
× lim

n

(
1 +

1

zn

)
= e.

This proves (5.17). ut

5.4. One-sided limits

Suppose X ⊂ R is a set of real numbers. For any c ∈ R we define

X<c :=
{
x ∈ X; x < c

}
= X ∩ (−∞, c), X>c :=

{
x ∈ X; x > c

}
= X ∩ (c,∞).

Definition 5.28. Let f : X ⊂ R and c ∈ R. We say that L is the left limit of f at c, and
we write this

L = lim
x↗c

f(x) = lim
x→c−

f(x),

if

• c is a cluster point of X<c and

• for any ε > 0 there exists δ = δ(ε) > 0 such that

∀x ∈ X : x ∈ (c− δ, c)⇒ |f(x)− L| < ε.
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We say that R is the right limit of f at c, and we write this

R = lim
x↘c

f(x) = lim
x→c+

f(x),

if

• c is a cluster point of X>c and

• for any ε > 0 there exists δ = δ(ε) > 0 such that

∀x ∈ X : x ∈ (c, c+ δ)⇒ |f(x)−R| < ε.

ut

The next result follows immediately from Theorem 5.4. The details are left to you.

Theorem 5.29. Let f : X → R be a real valued function defined on the set X ⊂ R. Fix
c ∈ R.

(a) Suppose that c is a cluster point of X<c and L ∈ R. Then the following statements
are equivalent.

(i)

lim
x↗c

f(x) = L.

(ii) For any sequence of real numbers (xn) in X such that xn → c and xn < c ∀n we
have

lim
n
f(xn) = L.

(iii) For any nondecreasing sequence of real numbers (xn) in X such that xn → c and
xn < c ∀n we have

lim
n
f(xn) = L.

(b) Suppose that c is a cluster point of X>c and L ∈ R. Then the following statements are
equivalent.

(i)

lim
x↘c

f(x) = L.

(ii) For any sequence of real numbers (xn) in X such that xn → c and xn > c ∀n we
have

lim
n
f(xn) = L.

(iii) For any nonincreasing sequence of real numbers (xn) in X such that xn → c and
xn > c ∀n we have

lim
n
f(xn) = L.

ut
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The next result describes one of the reasons why the one-sided limits are useful. Its
proof is left to you as an exercise.

Theorem 5.30. Consider three real numbers a < c < b, a real valued function

f : (a, b) \ {c} → R.

and suppose that A ∈ [−∞,∞]. Then the following statements are equivalent.

(i)

lim
x→c

f(x) = A.

(ii)

lim
x↗c

f(x) = lim
x↘c

f(x).

ut

5.5. Some fundamental limits

In this section we present a collection of examples that play a fundamental role in the
development of real analysis.

Example 5.31. We want to prove that

lim
x→0

(
1 + x

) 1
x = e. (5.18)

We invoke Theorem 5.30, so we will prove that

lim
x↘0

(
1 + x

) 1
x = lim

x↗0

(
1 + x

) 1
x = e.

We prove first the equality

lim
x↘0

(
1 + x

) 1
x = e.

We have to prove that if (xn) is a sequence of positive numbers such that xn → 0, then

lim
n

(
1 + xn

) 1
xn = e.

Set

yn :=
1

xn
.

Then yn →∞ and (
1 + xn

) 1
xn =

(
1 +

1

yn

)yn
,

and, according to (5.15), we have (
1 +

1

yn

)yn
= e.
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The equality

lim
x↗0

(
1 + x

) 1
x = e.

is proved in a similar fashion invoking (5.17) instead of (5.15). ut

Example 5.32. We have (log = loge)

lim
x→0

log
(

1 + x
)

x
= 1. (5.19)

Indeed, consider a sequence of nonzero numbers (xn) such that xn → 0. Set

yn = (1 + xn)
1
xn .

From (5.19) we deduce that yn → e. Using Theorem 5.20(v), we deduce that log yn → log e = 1.
ut

Example 5.33. We have

lim
x→0

ex − 1

x
= 1. (5.20)

Let xn → 0. Set yn := exn so that xn = log yn and yn → e0 = 1. Next, set hn := yn − 1
so that hn → 0. Then

exn − 1

xn
=
yn − 1

log yn
=

hn
log(1 + hn)

=
1

log(1+hn)
hn

(5.19)−→ 1. ut

Example 5.34. Suppose that α ∈ R, α 6= 0. We have

lim
x→0

(1 + x)α − 1

x
= α. (5.21)

Let xn → 0. Then
(1 + xn)α = eα log(1+xn).

Set yn := α log(1 + xn) so that yn → 0. Then

(1 + xn)α − 1

xn
=
eyn − 1

yn
· yn
xn

=
eyn − 1

yn
· α log(1 + xn)

xn
.

Using (5.20) we deduce
eyn − 1

yn
→ 1,

and using (5.19) we deduce
α log(1 + xn)

xn
→ α.

This shows that
(1 + xn)α − 1

xn
→ α. ut

Here is a typical application of the equality (5.18).
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Example 5.35. Let us compute

lim
x→∞

(
1 +

x

x2 + 1

)2x

.

For any sequence xn →∞ we have to compute

lim
n→∞

(
1 +

xn
x2
n + 1

)2xn

.

Set

yn :=
xn

x2
n + 1

.

Note that yn → 0 as n→∞ so that

e = lim
y→0

(1 + y)
1
y = lim

n→∞
(1 + yn)

1
yn .

We first seek to express 2xn in the form

2xn =
sn
yn
⇐⇒ sn = 2xnyn =

2x2
n

x2
n + 1

.

Note that sn → 2 as n→∞. We deduce(
1 +

xn
x2
n + 1

)2xn

= (1 + yn)
sn
yn =

(
(1 + yn)

1
yn

)sn
,

so that

lim
n→∞

(
1 +

xn
x2
n + 1

)2xn

= lim
n→∞

(
(1 + yn)

1
yn

)sn
(use Theorem 5.21)

=
(

lim
n

(1 + yn)
1
yn

)limn sn
= e2. ut

5.6. Trigonometric functions: a less than
completely rigorous definition

Recall that the Cartesian product R2 := R × R is called the Cartesian plane and can be
visualized as an Euclidean plane equipped with two perpendicular coordinate axes, the
x-axis and the y-axis; see Figure 5.5. We can locate a point P in this plane if we can locate
its projections Px and Py respectively, on the x- and the y-axis respectively; see Figure
5.5. The locations of these projections are indicated by two numbers, the x-coordinate
and the y-coordinate respectively, of P . The point with coordinates (0, 0) is called the
origin and it is denoted by O.

The trigonometric circle is the circle of radius 1 centered at the origin; see Figure 5.5.
More precisely, a point with coordinates (x, y) lies on this circle if and only if

x2 + y2 = 1. (5.22)
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Additionally, we agree that this circle is given an orientation, i.e., a prescribed way of
traveling around it. In mathematics, the agreed upon orientation is counterclockwise
orientation indicated by the arrow along the circle in Figure 5.5.

The starting point of the trigonometric circle is the point S with coordinates (1, 0).
It can alternatively be described as the intersection of the circle with the positive side of
the x-axis. The length2 of the upper semi-circle is a positive number know by its famous
name, π. In particular, the total length of the circle is 2π.

Suppose that we start at the point S and we travel along the circle, in the counter-
clockwise direction a distance θ ≥ 0. We denote by P the final point of this journey. The
coordinates of this point depend only on the distance θ traveled. The x-coordinate of P
is denoted by cos θ, and the y-coordinate of P is denoted by sin θ. The equality (5.22)
implies that

cos2 θ + sin2 θ = 1, ∀θ ≥ 0. (5.23)

O S

P

P

P

xx

y

y

= cos

sin  =

θ

θ

Figure 5.5. The trigonometric circle. The distance of the journey from S to P in the
counterclockwise direction is θ.

Observe that if we continue our journey from P in the counterclockwise direction for
a distance 2π then we are back at P . This shows that

cos(θ + 2π) = cos θ, sin(θ + 2π) = sin θ, ∀θ ≥ 0. (5.24)

We can define cos θ and sin θ for negative θ’s as well. Suppose that θ = −φ, φ ≥ 0. If
we start at S and travel along the circle in the clockwise direction a distance φ, then we
reach a point Q. By definition, its coordinates are cos(−φ) and sin(−φ); see Figure 5.6.

2We have surreptitiously avoided explaining what length means.
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O S x

y

Q

(−φ)

(−φ)sin

cos

Figure 5.6. The trigonometric circle. The distance of the journey from S to Q in the
clockwise direction is φ.

From the description it is easily seen that

cos(−φ) = cosφ, sin(−φ) = − sinφ, ∀φ ≥ 0. (5.25)

We have thus constructed two functions

cos, sin : R→ R,

called trigonometric functions. Their graphs are depicted in Figure 5.7 and 5.8.

Figure 5.7. The graph of cosx.

Let us record a few important values of these functions.
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Figure 5.8. The graph of sinx.

Table 5.1. Some important values of trig functions

θ 0 π
6

π
4

π
3

π
2 π 2π

cos θ 1
√

3
2

√
2

2
1
2 0 −1 1

sin θ 0 1
2

√
2

2

√
3

2 1 0 0

We list below some of the more elementary, but very important, properties of the
trigonometric functions sin and cos.

cos2 x+ sin2 x = 1, ∀x ∈ R. (5.26a)

cos(x+ 2π) = cosx, sin(x+ 2π) = sinx, ∀x ∈ R. (5.26b)

cos(−x) = cosx, sin(−x) = − sin(x), ∀x ∈ R. (5.26c)

cos(x+ π) = − cos(x), sin(x+ π) = − sin(x), ∀x ∈ R, (5.26d)

sin
(
x+

π

2

)
= cosx, ∀x ∈ R. (5.26e)

| cosx| ≤ 1, | sinx| ≤ 1, ∀x ∈ R. (5.26f)

cosx > 0, ∀x ∈ (−π
2
,
π

2
) and sinx > 0, ∀x ∈ (0, π). (5.26g)

cosx = 0⇐⇒x is an odd multiple of π
2 , sinx = 0⇐⇒x is a multiple of π. (5.26h)

Definition 5.36. Let f : R→ R be a real valued function defined on the real axis R.

(i) The function f is called even if

f(−x) = f(x), ∀x ∈ R.

(ii) The function f is called odd if

f(−x) = −f(x), ∀x ∈ R.

(iii) Suppose P is a positive real number. We say that f is P -periodic if

f(x+ P ) = f(x), ∀x ∈ R.
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(iv) The function f is called periodic if there exists P > 0 such that f is P -periodic.
Such a number P is called a period of f .

ut

We see that the functions cosx and sinx are 2π-periodic, cosx is even, and sinx is
odd.

In applications, we often rely on other trigonometric functions derived from sin and
cos. We define

tanx =
sinx

cosx
, whenever cosx 6= 0,

cotx =
cosx

sinx
, whenever sinx 6= 0.

The graphs of tanx and cotx are depicted in Figure 5.9 and 5.10.

Figure 5.9. The graph of tanx for x ∈ (−π/2, π/2).

Example 5.37. We want to outline a geometric explanation for an important limit.

lim
x→0

sinx

x
= 1. (5.27)

We will prove that

lim
x↗0

sinx

x
= lim

x↘0

sinx

x
= 1.

Since
sinx

x
=

sin(−x)

−x
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Figure 5.10. The graph of cotx for x ∈ (0, π).

it suffices to prove only that

lim
x↘0

sinx

x
= 1. (5.28)

This will follow immediately from the following fundamental inequalities

θ cos2 θ ≤ sin θ ≤ θ, ∀0 < θ <
π

2
. (5.29)

Let us temporarily take for granted these inequalities and show how they imply (5.28).

Observe that (5.29) implies that

0 ≤ sin θ ≤ θ, ∀0 < θ <
π

2
.

The Squeezing Principle shows that

lim
θ↘0

sin θ = 0. (5.30)

This shows that the limit

lim
θ↘0

sin θ

θ

is a bad limit of the type 0
0 . We can rewrite (5.29) as

1− sin2 θ = cos2 θ ≤ sin θ

θ
≤ 1. (5.31)

The equality (5.30) shows that

lim
θ↘0

(1− sin2 θ) = 1.
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The equality (5.29) now follows by applying the Squeezing Principle to the inequalities
(5.31).

O S

P

x

y

Q

M θ

Figure 5.11. The trigonometric circle. The distance of the journey from S to P in the
counterclockwise direction is θ.

“Proof” of (5.29). Fix θ, 0 < θ < π
2

. We denote by P the point on the trigonometric circle reached from S by

traveling a distance θ in the counterclockwise direction; see Figure 5.11. Denote by Q the projection of P onto the
x-axis. We have

|OQ| = cos θ, |PQ| = sin θ.

Denote by M the intersection of the line OP with the circle centered at O and radius |OP | = cos θ. We distinguish

three regions in Figure 5.12: the circular sector (OQM), the triangle 4OSP , and the circular sector (OSP ). Clearly

(OQM) ⊂ 4OSP ⊂ (OSP )

so that we obtain inequalities between their areas3

area (OQM) ≤ area4OSP ≤ area (OSP )

The area of a circular sector is4

1

2
× square of the radius of the sector× the size of the angle of the sector. (5.32)

We have

area (OQM) =
1

2
|OQ|2θ =

θ cos2 θ

2
, area (OSP ) =

1

2
|OS|2θ =

θ

2
,

area4OSP =
1

2
|PQ| × |OS| =

1

2
sin θ.

Hence,
θ cos2 θ

2
≤

1

2
sin θ ≤

θ

2
. ut

3At this point we do not have a rigorous definition of the area of a planar region.
4The equality (5.32) needs a justification
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5.7. Useful trig identities.

We list here a few important trigonometric identities that we will use in the future.

sin(x± y) = sinx cos y ± sin y cosx, cos(x± y) = cosx cos y ∓ sinx sin y). (5.33a)

sin 2x = 2 sinx cosx, cos 2x = cos2 x− sin2 x. (5.33b)

1 + cosx

2
= cos2(x/2),

1− cosx

2
= sin2(x/2). (5.33c)

cosx cos y =
1

2

(
cos(x−y)+cos(x+y)

)
, sinx sin y =

1

2

(
cos(x−y)−cos(x+y)

)
. (5.33d)

tan(x± y) =
tanx+ tan y

1∓ tanx tan y
. (5.33e)

5.8. Landau’s notation

Let c ∈ [−∞,∞] and consider two real valued functions f, g defined on the same set X ⊂ R
which admits c as a cluster point. We say that

f(x) = O
(
g(x)

)
as x→ c (5.34)

if there exists a positive constant C and a neighborhood U of c such that

∀x ∈ X, x ∈ (X ∩ U) \ {c} ⇒ |f(x)| ≤ C|g(x)|.

For example,
x

x2 + 1
= O

(
1

x

)
as x→∞.

We say that

f(x) = o
(
g(x)

)
as x→ c, (5.35)

if, for any ε > 0, there exists a neighborhood Uε of c such that

∀x ∈ X, x ∈ Uε \ {c} ⇒ |f(x)| ≤ ε|g(x)|.

If g(x) 6= 0 for any x in a neighborhood U of c, then

f(x) = o
(
g(x)

)
as x→ c⇐⇒ lim

x→c

f(x)

g(x)
= 0.

Loosely speaking, this means that f(x) is much, much smaller than g(x) as x approaches
c. For example,

e−x = o(x−25) as x→∞,
and

x3 = o(x2) as x→ 0.

However

x2 = o(x3) as x→∞.
Finally, we say that f is similar to g(x) as x→ c, and we write this

f(x) ∼ g(x) as x→ c
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if

lim
x→c

f(x)

g(x)
= 1.

For example
x3 − 39x2 + 17 ∼ x3 + 3x2 + 2x+ 1 as x→∞,

and
ex − 1 ∼ x as x→ 0.
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5.9. Exercises

Exercise 5.1. Prove that any real number is a cluster point of the set of rational numbers.
ut

Exercise 5.2. Prove Proposition 5.3. ut

Exercise 5.3 (Squeezing principle). Let f, g, h : X → R be three functions defined on the
same subset X ⊂ R and c a cluster point of X. Suppose that U is a deleted neighborhood
of c such that

f(x) ≤ h(x) ≤ g(x), ∀x ∈ U ∩X.
Show that if

lim
x→c

f(x) = A = lim
x→c

g(x),

then

lim
x→c

h(x) = A. ut

Exercise 5.4. Consider a subset X ⊂ R, a function f : X → R, and a cluster point c of
the set X. Prove that the following statements are equivalent.

(i) The limit limx→c f(x) exists and it is finite.

(ii) For any sequence (xn)n∈N ⊂ X such that xn → c and xn 6= c, ∀n ∈ N the
sequence

(
f(xn)

)
n∈N is convergent.

ut

Exercise 5.5. Let I ⊂ R be an interval and f : I → R a function. Suppose that f is a
Lipschitz function, i.e., there exists a constant L such that

|f(x)− f(y)| ≤ L|x− y|, ∀x, y ∈ I.

Show that for any y ∈ Y we have

lim
x→y

f(x) = f(y). ut

Exercise 5.6. We already know that the series∑
n≥1

1

ns

converges for any rational number s > 1. Prove that it converges for any real number
s > 1. ut

Exercise 5.7. (a) Prove that for any n ∈ N we have

lim
x→∞

1

xn
= 0.
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(b)Let k ∈ N and consider the function f : R \ {0} → R, f(x) = 1
x2k . Show that

lim
x→0

f(x) =∞. ut

Exercise 5.8. Fix a natural number n. Consider the polynomial

P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

Show that

lim
x→∞

P (x) =∞, lim
x→−∞

P (x) =

{
∞, n is even

−∞ , n is odd.
ut

Exercise 5.9. Consider two convergent sequences of real numbers (xn)n≥0, (yn)n≥0. We
set

x := lim
n→∞

xn, y := lim
n→∞

yn.

Show that if xn > 0, ∀n ≥ 0 and x > 0 then

lim
n→∞

xynn = xy.

Hint. Use the same strategy as in the proof of Theorem 5.21. ut

Exercise 5.10. Prove that

lim
n→∞

(
1 +

x

n

)n
= ex, ∀x ∈ R.

Hint: Use the result in Example 5.27 and Theorem 5.21. ut

Exercise 5.11. Fix an arbitrary number a > 1.

(a) Prove that for any x > 1 we have

ax ≥ abxc ≥ 1 + (a− 1)bxc+

(
bxc
2

)
(a− 1)2.

(b) Prove that

lim
x→∞

x

ax
= 0, lim

x→∞

ax

x
=∞.

Hint. Use (a) and Example 4.18.

(c) Let r > 0. Prove that

lim
x→∞

xr

ax
= 0.

Hint. Reduce to (b).

(d) Prove that

lim
x→∞

loga x

x
= 0.

Hint. Reduce to (c). ut
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Exercise 5.12. Fix a positive real number s and consider the function f : (0,∞) → R,
f(x) = xs.

(a) Show that f is an increasing function.

(b) Show that

lim
x↘0

xs = 0.

Exercise 5.13. Let a, b ∈ R, a < b. Prove that if f : (a, b) → R is a nondecreasing
function and x0 ∈ (a, b), then the one sided limits

lim
x↗x0

f(x) and lim
x↘x0

f(x)

exist and

lim
x↗x0

f(x) = sup
x<x0

f(x), lim
x↘x0

f(x) = inf
x>x0

f(x). ut

Exercise 5.14. Consider the function

f : R \ {0} → R, f(x) = x sin

(
1

x

)
.

Prove that

lim
x→0

f(x) = 0. ut

Figure 5.12. The graph of x sin(1/x) for |x| < π/10.

Exercise 5.15. Consider f : [0,∞)→ R,

f(x) =
2x3 + x2

x3 + x2 + 1
.

Show that

f(x) = O(1) as x→∞.
Above, we used Landau’s notation introduced in section 5.8. ut

Exercise 5.16. (a) Prove Lemma 5.15.
Hint. The case a = 1 is trivial. In the case a > 1 show that there exists a sequence of positive rational numbers
(rn) such that

−rn ≤ xn − x ≤ rn, ∀n.
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Now use Lemma 5.9, Lemma 5.12, and the Squeezing Principle to conclude. The case a < 1 follows from the case

a > 1.

(b) Prove the equality (5.11).

Hint. First prove that (5.11) holds for any x ∈ Q. Then conclude using Lemma 5.15. ut

Exercise 5.17. Prove Proposition 5.23. ut

Exercise 5.18. Prove Theorem 5.24. ut

Exercise 5.19. Prove Theorem 5.29. ut

Exercise 5.20. Prove Theorem 5.30. ut

5.10. Exercises for extra credit

Exercise* 5.1 (Viète). Consider the sequence (xn)n≥0 defined by

x0 = 0, xn+1 =

√
1 + xn

2
, ∀n ≥ 0.

(a) Prove that

xn = cos
π

2n+1
, ∀n ≥ 0.

(b) Prove that

lim
n→∞

(x1 · x2 · · ·xn) =
2

π
. ut

Exercise* 5.2. Suppose that ∑
n≥0

an

is a convergent series of real numbers. We denote by a its sum.

(i) Show that for any x ∈ (−1, 1) the series∑
n≥0

anx
n

is convergent. For x ∈ (−1, 1) we denote by A(x) the sum of the above series.

(ii) Prove that

lim
x↗1

A(x) = a.

Hint: At some point you will need to use Abel’s trick (4.29).

ut
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Exercise* 5.3. Suppose that U : (0,∞)→ (0,∞) is an increasing function such that the
limit

lim
t→∞

U(tx)

U(x)

exists and it is positive for any x > 0. We denote by ψ(x) the above limit.

(a) Prove that ψ(x) ≤ ψ(y), ∀x, y ∈ (0,∞), x < y.

(b) Prove that ψ(xy) = ψ(x)ψ(y), ∀x, y > 0.

(c) Prove that there exists p ≥ 0 such that ψ(x) = xp, ∀x > 0. ut



Chapter 6

Continuity

6.1. Definition and examples

The concept of continuity is a fundamental mathematical concept with a wide range of
applications.

Definition 6.1. Suppose that X ⊂ R and f : X → R is a real valued function defined on
X. We say that the function f is continuous at a point x0 ∈ X if

∀ε > 0 ∃δ = δ(ε) > 0 such that ∀x ∈ X |x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

We say that the function f is continuous (on X) if it is continuous at every point x0 ∈ X.ut

Arguing as in the proof of Theorem 5.4 we obtain the following very useful alternate
characterization of continuity. The details are left to you as an exercise.

Theorem 6.2. Let X ⊂ R, x0 ∈ X, and f : X → R a real valued function on X. The
following statements are equivalent.

(i) The function f is continuous at x0.

(ii) For any sequence (xn)n∈N in X such that xn → x0, we have limn f(xn) = f(x0).

ut

We have the following useful consequence which relates the concept of continuity to
the concept of limit. Its proof is left to you as an exercise.

Corollary 6.3. Let X ⊂ R and f : X → R. Suppose that x0 ∈ X is a cluster point of X.
Then the following statements are equivalent.

(i) The function f is continuous at x0.

139
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(ii) limx→x0 f(x) = f(x0).

ut

We have already encountered many examples of continuous functions.

Example 6.4. (a) Let k ∈ N. Then the function

f : R→ R, f(x) = xk, ∀x ∈ R,
is continuous on its domain R. Indeed, if x0 ∈ R and (xn)n∈R is a sequence of real numbers
such that xn → x0, then Proposition 4.15 implies that

xkn → xk0,

thus proving the continuity of f at an arbitrary point x0 ∈ R.

(b) A similar argument shows that if k ∈ N, then the function

f : R \ {0} → R, f(x) =
1

xk
, ∀x ∈ R \ {0},

is continuous.

(c) Fix s ∈ R. Then the function

f : (0,∞)→ R, f(x) = xs, ∀x > 0,

is continuous. Indeed, this follows by invoking Theorems 5.21 and 6.2.

(d) Let a > 0. Then the functions

f : R→ (0,∞), f(x) = ax,

and
g : (0,∞)→ R, g(x) = loga x,

are continuous on their domains. Indeed, the continuity of f follows from Lemma 5.15,
while the continuity of g follows from Theorem 5.20.

(e) The trigonometric functions

sin, cos : R→ R
are continuous.

Let us first prove that these functions are continuous at x0 = 0. The continuity of sin at x0 = 0 follows

immediately from (5.30) and Corollary 6.3. To prove the continuity of cos at x0 = 0 we have to show that if (xn)
is a sequence of real numbers such that xn → 0, then cosxn → cos 0 = 1.

Let (xn) be a sequence of real numbers converging to zero. Then

cos2 xn = 1− sin2 xn

and we deduce that

lim
n

cos2 xn = 1− sin2 xn = lim
n

(1− sin2 xn) = 1.

Since xn → 0, we deduce that there exists N0 > 0 such that |xn| < π
2

, ∀n > N0. The inequalities (5.26g) imply
that

cosxn > 0, ∀n >0,
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so that,

cosxn =
√

1− sin2 xn, ∀n > N0.

Exercise 4.15 now implies that

lim
n

cosxn =
√

lim
n

(1− sin2 xn) =
√

1 = cos 0.

We can now prove the continuity of sin and cos at an arbitrary point x0. Suppose that xn is a sequence of real

numbers such that xn → x0. We have to show that

lim
n

sinxn = sinx0 and lim
n

cosxn = cosx0.

We set hn = xn − x0, so that, xn = x0 + h. Then

sinxn = sin(x0 + hn)
(5.33a)

= sinx0 coshn + sinhn cosx0

and

cosxn = cos(x0 + hn)
(5.33a)

= cosx0 coshn − sinx0 sinhn.

Observe that hn → 0 and, since sin and cos are continuous at 0, we have sinhn → 0 and coshn → 1. We deduce

lim
n

sinxn = lim
n

sin(x0 + hn) = sinx0 lim
n

coshn + cosx0 lim
n

sinhn = sinx0

and

lim
n

cosxn = lim
n

cos(x0 + hn) = cosx0 lim
n

coshn − sinx0 lim
n

sinhn = cosx0.

(f) Recall that a function f : X → R, X ⊂ R is called Lipschitz if

∃L > 0 : ∀x1, x2 ∈ X |f(x1)− f(x2)| ≤ L|x1 − x2|.

Observe that a Lipschitz function is necessarily continuous. Indeed, if x0 ∈ X and (xn) is
a sequence in X such that xn → x0 then

|f(xn)− f(x0)| ≤ L|xn − x0| → 0,

and the squeezing principle implies that f(xn)→ f(x0).

Observe that the absolute value function f : R → [0,∞), f(x) = |x| is Lipschitz
because of the following elementary inequality (see Exercise 4.5)

|f(x)− f(y)| =
∣∣ |x| − |y| ∣∣ ≤ |x− y|, ∀x, y ∈ R. (6.1)

Thus the absolute value function f : R→ R, f(x) = |x| is a continuous function. ut

Proposition 6.5. Let X ⊂ R, c ∈ R, and suppose that f, g : X → R are two continuous
functions. Then the functions

f + g, cf, f · g : X → R,

are continuous. Additionally, if ∀x ∈ X g(x) 6= 0, then the function

f

g
: X → R

is also continuous.

Proof. This is an immediate consequence of Proposition 4.15 and Theorem 6.2. ut
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Example 6.6. Polynomial function p : R→ R defined by

p(x) = cnx
n + · · ·+ c1x+ c0,

n ∈ Z, n ≥ 0, c0, . . . , cn ∈ R are continuous. For example, the function p(x) = x3−2x+5,
x ∈ R, is continuous on R.

We can easily get more complicated examples. Thus, the function (x3 − 2x+ 5) sinx,
x ∈ R, is continuous, the function ex + e−x, x ∈ R, is continuous and nowhere zero, so the
quotient

(x3 − 2x+ 5) sinx

ex + e−x
, x ∈ R

is also continuous on R. ut

Proposition 6.7. Suppose that X,Y ⊂ R and that f : X → R and g : Y → R are
continuous functions such that

f(X) ⊂ Y.
Then the composition g ◦ f : X → R, g ◦ f(x) = g(f(x)), ∀x ∈ X is also a continuous
function.

Proof. Theorem 6.2 implies that we have to prove that for any x0 ∈ X and any sequence
(xn) in X such that xn → x0 we have

g(f(xn) )→ g( f(x0) ).

Set y0 := f(x0), yn := f(xn). Since f is continuous at x0, Theorem 6.2 shows that
f(xn) → f(x0), i.e., yn → y0. Since g is continuous at y0, Theorem 6.2 implies that
g(yn)→ g(y0), i.e.,

g(f(xn) )→ g( f(x0) ).

ut

Example 6.8. Consider the continuous functions

f, g, h : R→ R, f(x) = sinx, g(x) = ex, h(x) = |x|.

Then g◦f(x) = esinx is continuous on R, and so is the function f ◦g(x) = sin ex. Similarly
f ◦ h(x) = sin |x| is a continuous function on R. ut

Definition 6.9. Let X ⊂ R be a set of real numbers and f : X → R a real valued function
on X.

(a) The sequence of functions fn : X → R, n ∈ N is said to converge pointwisely to the
function f : X → R if

lim
n→∞

fn(x) = f(x), ∀x ∈ X,

i.e.,

∀ε > 0, ∀x ∈ X ∃N = N(ε, x) : ∀n > N(ε, x) |fn(x)− f(x)| < ε. (6.2)
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(b) The sequence of functions fn : X → R, n ∈ N is said to converge uniformly to the
function f : X → R if

∀ε > 0 ∃N = N(ε) > 0 such that ∀n > N(ε), ∀x ∈ X : |fn(x)− f(x)| < ε. (6.3)

ut

Theorem 6.10 (Continuity of uniform limits). Let X ⊂ R be a set of real numbers. If the
sequence of continuous functions fn : X → R, n ∈ N, converges uniformly to the function
f : X → R, then the limit function f is also continuous on X.

Proof. We have to prove that given x0 ∈ X the function f is continuous at x0, i.e., we
have to show that

∀ε > 0 ∃δ = δ(ε) > 0 ∀x ∈ X |x− x0| < δ ⇒ |f(x)− f(x0)| < ε. (6.4)

Let ε > 0. The uniform convergence implies that

∃N(ε) > 0 : ∀x ∈ X, ∀n > N(ε) |fn(x)− f(x)| < ε

3
. (6.5)

Fix n0 > N(ε). The function fn0 is continuous at x0 and thus

∃δ(ε) > 0 ∀x ∈ X : |x− x0| < δ(ε)⇒ |fn0(x)− fn0(x0)| < ε

3
. (6.6)

We deduce that if |x− x0| < δ(ε), then

|f(x)− f(x0)| ≤ |f(x)− fn0(x)|+ |fn0(x)− fn0(x0)|+ |fn0(x0)− f(x0)|. (6.7)

From (6.5) we deduce that since n0 > N(ε) we have

|f(x)− fn0(x)|, |fn0(x0)− f(x0)| < ε

3
, ∀x ∈ X.

From (6.6) we deduce that if |x− x0| < δ(ε), then

|fn0(x)− fn0(x0)| < ε

3
.

Using these facts in (6.7) we deduce that if |x− x0| < δ(ε), then

|f(x)− f(x0)| < ε.

ut

6.2. Fundamental properties of continuous
functions

In this section we will discuss several fundamental properties of continuous functions,
which hopefully will explain the usefulness of the concept of continuity.
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Theorem 6.11. Suppose that c is an arbitrary real number, X ⊂ R and f : X → R is a
function continuous at x0 ∈ X.

(a) If x0 ∈ X satisfies f(x0) < c, then there exists δ > 0 such that

∀x ∈ X, |x− x0| < δ ⇒ f(x) < c.

In other words, if f(x0) < c, then for any x ∈ X sufficiently close to x0 we also have
f(x) < c.

(b) If x0 ∈ X satisfies f(x0) > c, then there exists δ > 0 such that

∀x ∈ X, |x− x0| < δ ⇒ f(x) > c.

In other words, if f(x0) > c, then for any x ∈ X sufficiently close to x0 we also have
f(x) > c.

Proof. Fix ε0 > 0, such that f(x0)+ε0 < c. (For example, we can choose ε0 = 1
2(c−f(x0) ).)

The continuity of f at x0 (Definition 6.1) implies that there exists δ0 > 0 such that
for any x ∈ X satisfying |x− x0| < δ0 we have

|f(x)− f(x0)| < ε0,

so that
f(x0)− ε0 < f(x) < f(x0) + ε0 < c.

ut

Corollary 6.12. Suppose that X ⊂ R, x0 ∈ X and f : X → R is a continuous function
such that f(x0) 6= 0. Then there exists δ > 0 such that

∀x ∈ X ( |x− x0| < δ ⇒ f(x) 6= 0 ).

In other words, if f(x0) 6= 0, then for any x ∈ X sufficiently close to x0 we also have
f(x) 6= 0.

Proof. Consider the function g : X → R, g(x) = |f(x)|. The function g is continuous
because it is the composition of the absolute-value-function with the continuous function
f . Additionally, |g(x0)| > 0. The desired conclusion now follows from Theorem 6.11 (b).ut

To state and prove our next result we need to make a small digression. Recall that
the Completeness Axiom states that if the set X ⊂ R is bounded above, then it admits a
least upper bound which is a real number denoted by supX. If the set X is not bounded
above, then we define supX := ∞. Thus, we have given a meaning to supX for any
subset X ⊂ R. Moreover,

supX <∞⇐⇒ the set X is bounded above.

Similarly, we define inf X = −∞ for any set X that is not bounded below. Thus we have
given a meaning to inf X for any subset X ⊂ R. Moreover,

inf X > −∞⇐⇒the set X is bounded below.
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Lemma 6.13. (a) If Y is a set of real numbers and M = supY ∈ (−∞,∞], then there
exists an increasing sequence of real numbers (Mn)n≥1 and a sequence (yn) in Y such that

Mn ≤ yn ≤M, ∀n, lim
n
Mn = M.

(b) If Y is a set of real numbers and m = inf Y ∈ [−∞,∞), then there exists a decreasing
sequence of real numbers (mn)n≥1 and a sequence (yn) in Y such that

m ≤ yn ≤ mn, ∀n, lim
n
mn = m.

Proof. We prove only (a). The proof of (b) is very similar and it is left to you as an
exercise. We distinguish two cases.

A. M < ∞. Since M is the least upper bound of Y , for any n > 0 there exists yn ∈ X
such that

M − 1

n
≤ yn ≤M.

The sequences (yn) and Mn = M − 1
n have the desired properties.

B. M = ∞. Hence, the set Y is not bounded above. Thus, for any n ∈ N there exists
yn ∈ Y such that yn ≥ n. The sequences (yn) and Mn = n have the desired properties. ut

Theorem 6.14 (Weierstrass). Consider a continuous real valued function f defined on a
closed and bounded interval [a, b], i.e., f : [a, b]→ R. Then the following hold.

(i)
M := sup

{
f(x); x ∈ [a, b]

}
<∞.

(ii) ∃x∗ ∈ [a, b] such that f(x∗) = M .

(iii)
m := inf

{
f(x); x ∈ [a, b]

}
> −∞.

(iv) ∃x∗ ∈ [a, b] such that f(x∗) = m.

Proof. We prove only (i) and (ii). The proofs of statements (iii) and (iv) are similar.
Denote by Y the range of the function f ,

Y =
{
f(x); x ∈ [a, b]

}
.

Hence M = supY . From Lemma 6.13 we deduce that there exists a sequence (yn) in Y
and an increasing sequence (Mn) such that

Mn ≤ yn ≤M, lim
n
Mn = M.

The Squeezing Principle implies that

lim
n
yn = M. (6.8)

Since yn is in the range of f there exists xn ∈ [a, b] such that f(xn) = yn. The sequence
(xn) is obviously bounded because it is contained in the bounded interval [a, b]. The
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Bolzano-Weierstrass Theorem (Theorem 4.29) implies that (xn) admits a subsequence
(xnk) which converges to some number x∗

lim
k
xnk = x∗.

Since a ≤ xnk ≤ b, ∀k, we deduce that x∗ ∈ [a, b]. The continuity of f implies that

lim
k
ynk = lim

k
f(xnk) = f(x∗).

On the other hand,

lim
k
ynk = lim

n
yn

(6.8)
= M.

Hence

M = f(x∗) <∞.
ut

Definition 6.15. Let f : X → R be a function defined on a nonempty set X ⊂ R.

(a) A point x∗ ∈ X is called a global minimum of f if

f(x∗) ≤ f(x), ∀x ∈ X.

(b) A point x∗ ∈ X is called a global maximum of f if

f(x) ≤ f(x∗), ∀x ∈ X. ut

We can rephrase Theorem 6.14 as follows.

Corollary 6.16. A continuous function f : [a, b] → R admits a global minimum and a
global maximum. ut

Remark 6.17. The conclusions of Theorem 6.14 do not necessarily hold for continuous
functions defined on non-closed intervals. Consider for example the continuous function

f : (0, 1]→ R, f(x) =
1

x
.

Note that f(1/n) = n, ∀n ∈ N so that

sup
{
f(x); x ∈ (0, 1]

}
=∞. ut

Theorem 6.18 (The intermediate value theorem). Suppose that f : [a, b] → R is a
continuous function and c, d ∈ [a, b] are real numbers such that

c < d and f(c) · f(d) < 0.

Then there exists a real number r ∈ (c, d) such that f(r) = 0.
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c

d

r x

y

Figure 6.1. If the graph of a continuous functions has points both below and above the
x-axis, then the graph must intersect the x-axis.

Proof. We distinguish two cases: f(c) < 0 or f(c) > 0. We discuss only the case f(c) < 0
depicted in Figure 6.1. The second case follows from the first case applied to the continuous
function −f . Observe that the assumption f(c)f(d) < 0 implies that if f(c) < 0, then
f(d) > 0.

Consider the set
X :=

{
x ∈ [c, d]; f(x) < 0

}
.

Clearly X is nonempty because c ∈ X. By construction, the set X is bounded above by
d. Define

r := supX.

We will prove that f(r) = 0. Since r = supX, we deduce from Lemma 6.13 that there
exists a sequence (xn) in X such that xn → r as n→∞. The function f is continuous at
r so that

f(r) = lim
x→r

f(x) = lim
n→∞

f(xn).

On the other hand f(xn) < 0, for any n because xn ∈ X. Hence f(r) ≤ 0. In particular
r 6= d because f(d) > 0.

c dr r+δ

Figure 6.2. The function f would be negative on [r, r + δ] if f(r) were negative.

To prove that f(r) = 0 it suffices to show that f(r) ≥ 0. We argue by contradiction
and we assume that f(r) < 0. Theorem 6.11 implies that there exists δ > 0 such that if
x ∈ [a, b] and |x − r| < δ, then f(x) < 0. Thus f(x) < 0 for any x ∈ [a, b] ∩ [r, r + δ];
Figure 6.2.

Choose h > 0 such that
h < min

{
δ, dist(r, d)

}
.
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Then r + h ∈ [r, d] and r + h ∈ [r, r + δ]. Hence r + h ∈ [c, d] and f(r + h) < 0 so that
r + h ∈ X. This contradicts the fact that r = supX. ut

The Intermediate Value Theorem has many useful consequences. We present a few of
them.

Corollary 6.19. Suppose that f : [a, b] → R is a continuous function, y0 ∈ R and c ≤ d
are real numbers in the interval [a, b] such that

• either f(c) ≤ y0 ≤ f(d) , or

• f(c) ≥ y0 ≥ f(d).

Then there exists x0 ∈ [c, d] such that f(x0) = y0.

Proof. If f(c) = y0 or f(d) = y0, then there is nothing to prove so we assume that
f(c), f(d) 6= y0. Consider the function g : [a, b]→ R, g(x) = f(x)−y0. Then g(c)g(d) < 0,
and the Intermediate Value Theorem implies that there exists x0 ∈ (c, d) such that
g(x0) = 0, i.e., f(x0) = y0. ut

Corollary 6.20. Suppose that f : [a, b] → R is a continuous function and c < d are real
numbers in the interval [a, b] such that

f(x) 6= 0, ∀x ∈ (c, d).

Then the function f does not change sign in the interval (c, d), i.e., either

f(x) > 0, ∀x ∈ (c, d),

or

f(x) < 0, ∀x ∈ (c, d).

Proof. If f did change sign in the interval (c, d), then we could find two numbers c′, d′ ∈ (c, d)
such that f(c′) < 0 and f(d′) > 0. The Intermediate Value Theorem will then imply that
f must equal zero at some point r situated between c′ and d′. This would contradict the
assumptions on f . ut

Corollary 6.21. Suppose that f : [a, b]→ R is a continuous function,

M = sup
{
f(x); x ∈ [a, b]

}
, m = inf

{
f(x); x ∈ [a, b]

}
.

Then the range of the function f is the interval [m,M ].

Proof. Observe first that

m ≤ f(x) ≤M, ∀x ∈ [a, b].

This shows that the range of f is contained in the interval [m,M ]. Let us now prove the
opposite inclusion, i.e., [m,M ] is contained in the range of f . More precisely, we need to
show that for any y0 ∈ [m,M ] there exists x0 ∈ [a, b] such that f(x0) = y0.
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Observe first that Weierstrass’ Theorem 6.14 implies that m,M belong to the range of
f . In particular, there exist c, d ∈ [a, b] such that f(c) = m and f(d) = M . In particular,

f(c) ≤ y0 ≤ f(d).

Corollary 6.19 implies that there exists a number x0 situated between c and d such that
f(x0) = y0. ut

Corollary 6.22. Suppose that f : R→ R is a continuous function such that

lim
x→∞

f(x) ∈ (0,∞] lim
x→−∞

f(x) ∈ [−∞, 0).

Then there exists r ∈ R such that f(r) = 0. ut

The proof of this corollary is left to you as an exercise.

Corollary 6.23. Suppose that a < b and f : [a, b] → R is a continuous function. Then
the following statements are equivalent,

(i) The function f is injective.

(ii) The function f is strictly monotone; see Definition 5.17(v).

Proof. The implication (ii) ⇒ (i) is immediate. Indeed, suppose x1, x2 ∈ [a, b] and
x1 6= x2. One of the numbers x1, x2 is smaller than the other and we can assume x1 < x2. If
f is strictly increasing, then f(x1) < f(x2), thus f(x1) 6= f(x2). If f is strictly decreasing,
then f(x1) > f(x2) and again we conclude that f(x1) 6= f(x2).

Let us now prove (i) ⇒ (ii). Since a < b and f is injective we deduce that either
f(a) < f(b), or f(a) > f(b). We discuss only the first situation, f(a) < f(b). The second
case follows from the first case applied to the continuous injective function g = −f . We
will prove in several steps that f is strictly increasing.

Step 1. Suppose that d ∈ [a, b) is such that f(d) < f(b). Then

f(d) < f(c), ∀c ∈ (d, b). (6.9)

We argue by contradiction. Assume that there exists c ∈ (d, b) such that f(c) ≤ f(d).
Since f is injective and d 6= c we deduce f(d) 6= f(c) so that f(c) < f(d); see Figure 6.3.

We observe that on the interval [c, b] the function f has values both < f(d) and > f(d)
because

f(c) < f(d) < f(b).

The Intermediate Value Theorem implies that there must exist a point r in the interval
(c, b) such that f(r) = f(d); see Figure 6.3. This contradicts the injectivity of f and
completes the proof of Step 1.
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bc r

f(b)

f(c)

x

y

d

f(d)

Figure 6.3. A continuous injective function has to be monotone.

Step 2. We will show that

f(c) < f(b), ∀c ∈ (a, b). (6.10)

f(a)

f(b)

f(c)

ra bc

Figure 6.4. A continuous injective function has to be monotone.
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Again we argue by contradiction. Assume that there exists c ∈ (a, b) such that f(c) ≥ f(b).
Since f is injective, f(c) > f(b); Figure 6.4.

We observe that on the interval [a, c] the function f has values both < f(b) and > f(b)
because

f(c) > f(b) > f(a).

The Intermediate Value Theorem implies that there must exist a point r in the interval
(a, c) such that f(r) = f(b); see Figure 6.4. This contradicts the injectivity of f and
completes the proof of Step 2.

Step 3. Suppose that d < d′ are points in the interval (a, b). We want to show
that f(d) < f(d′). Note that since d ∈ (a, b) we deduce from (6.9) and (6.10) that
f(a) < f(d) < f(b). Since d′ ∈ (d, b) and f(d) < f(b) we deduce from Step 1 that
f(d) < f(d′). ut

Example 6.24. Consider the function

sin :
[
−π/2, π/2

]
→ R.

Using the trigonometric-circle definition of sin we deduce that the above function is strictly
increasing. Note that

sin(−π/2) = −1 = min
x∈R

sinx, sin(π/2) = 1 = max
x∈R

sinx.

Using Corollary 6.21 we deduce that the range of this function is [−1, 1] so that the
resulting function

sin[−π/2, π/2]→ [−1, 1]

is bijective. Its inverse is the function

arcsin : [−1, 1]→ [−π/2, π/2].

We want to emphasize that, by construction, the range of arcsin is [−π/2, π/2].

Similarly, the function

cos : [0, π]→ R

is strictly decreasing and its range is [−1, 1]. Its inverse is the function

arccos : [−1, 1]→ [0, π]. ut

Finally, consider the function

tan : (−π/2, π/2)→ R.

Exercise 6.15 asks you to prove that the above function is bijective. Its inverse is the
function

arctan : R→ (−π/2, π/2). ut



152 6. Continuity

6.3. Uniform continuity

We want to discuss a more subtle concept of continuity that will play an important role
in our investigation of integrability.

Definition 6.25. Suppose that X is a nonempty subset of the real axis and f : X → R
is a real valued function defined on X. The oscillation of the function f on the set S ⊂ X
is the quantity

osc(f, S) := sup
s∈S

f(s)− inf
s∈S

f(s) ∈ [0,∞]. ut

Let us observe that

osc(f, S) = sup
s′,s′′∈S

|f(s′)− f(s′′)|. (6.11)

Exercise 6.14 asks you to prove this equality.

Definition 6.26. Let J ⊂ R be an interval and f : J → R a function. We say that f is
uniformly continuous on J if, for any ε > 0, there exists δ = δ(ε) > 0 such that, for any
closed interval I ⊂ J of length `(I) ≤ δ, we have

osc(f, I) ≤ ε. ut

Remark 6.27. The uniform continuity of f : J → R can be alternatively characterized
by the following quantized statement

∀ε > 0 ∃δ = δ(ε) > 0 such that ∀x, y ∈ J |x− y| < δ ⇒ |f(x)− f(y)| < ε. ut

Proposition 6.28. Let J ⊂ R be an interval and f : J → R a function. If f is uniformly
continuous, then f is continuous at any point x0 ∈ J .

Proof. Let x0 ∈ J . We have to prove that ∀ε > 0 there exists δ > 0 such that

∀x |x− x0| ≤ δ ⇒ |f(x)− f(x0)| < ε.

Since f is uniformly continuous, there exists δ0 = δ0(ε) > 0 such that, for any interval
I ⊂ J of length ≤ δ0(ε) we have osc(f, I) < ε. Consider now the interval

Ix0 :=
{
x ∈ J ; |x− x0| <

δ0

2

}
.

Clearly Ix0 has length < δ0 so that osc(f, Ix0) < ε. In particular (6.11) implies that for
any x ∈ Ix0 we have

|f(x)− f(x0)| < ε.

Hence

|x− x0| < δ(ε) :=
δ0(ε)

2
⇒ x ∈ Ix0 ⇒ |f(x)− f(x0)| < ε

ut
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Theorem 6.29 (Uniform Continuity). Suppose that a < b are two real numbers and
f : [a, b] → R is a continuous function. Then f is uniformly continuous, i.e., for any
ε > 0 there exists δ = δ(ε) > 0 such that for any interval I ⊂ [a, b] of length `(I) ≤ δ we
have

osc(f, I) ≤ ε.

Proof. We have to prove that

∀ε > 0 ∃δ > 0 ∀I ⊂ [a, b] interval, `(I) ≤ δ ⇒ osc(f, I) ≤ ε.

We argue by contradiction and we assume that the opposite is true

∃ε0 > 0 ∀δ > 0 ∃I = Iδ ⊂ [a, b] interval, `(Iδ) ≤ δ ∧ osc(f, Iδ) > ε0.

We deduce that for any n ∈ N there exists a closed interval In = [an, bn] ⊂ [a, b] of length
≤ 1

n such that

osc(f, [an, bn]) > ε0. (6.12)

Since the length of [an, bn] is ≤ 1
n we deduce

an < bn ≤ an +
1

n
.

The Bolzano-Weierstrass Theorem 4.29 implies that the sequence (an) admits a convergent
subsequence (ank). We set

a∗ := lim
k→∞

ank .

Since a ≤ an ≤ b, we deduce a∗ ∈ [a, b]. Since

ank < bnk ≤ ank +
1

nk

we deduce from the Squeezing Principle that

lim
k→∞

bnk = lim
k→∞

ank = a∗.

On the other hand, since a∗ ∈ [a, b], the function f is continuous at a∗. Thus there exists
δ > 0 such that

|x− a∗| < δ ⇒ |f(x)− f(a∗)| <
ε0

4
.

In other words,

dist(x, a∗) < δ ⇒ f(a∗)−
ε0

4
< f(x) < f(a∗) +

ε0

4
.

Since ank , bnk → a∗ there exists k0 such that

[ank0
, bnk0

] ⊂ (a∗ − δ, a∗ + δ)⇒ f(a∗)−
ε0

4
< f(x) < f(a∗) +

ε0

4
, ∀x ∈ [ank0

, bnk0
].

Thus

f(a∗)−
ε0

4
≤ inf

x∈[ank0
,bnk0

]
f(x) ≤ sup

x∈[ank0
,bnk0

]
f(x) ≤ f(a∗) +

ε0

4
.
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This shows that

osc
(
f, [ank0

, bnk0
]
)
≤
(
f(a∗) +

ε0

4

)
−
(
f(a∗)−

ε0

4

)
=
ε0

2
.

This contradicts (6.12) and completes the proof of the theorem. ut

Remark 6.30. The above result is no longer valid for continuous functions defined
on non-closed or unbounded intervals. Consider for example the continuous function
f : (0, 1)→ R, f(x) = 1

x . For each n ∈ N, n > 1 we define

In =
[ 1

n+ 1
,

1

n

]
.

Since f is decreasing we deduce that

sup
x∈In

f(x) = f
( 1

n+ 1

)
= n+ 1, inf

x∈In
f(x) = f

( 1

n

)
= n

so that osc(f, In) = 1. On the other hand, `(In) = 1
n(n+1) → 0 as n → ∞. We have thus

produced arbitrarily short intervals over which the oscillation is 1.

Exercise 6.13 describes an example of continuous function over an unbounded interval
that is not uniformly continuous on that interval. ut
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6.4. Exercises

Exercise 6.1. Prove Theorem 6.2. ut

Exercise 6.2. Suppose that f, g : R → R are two continuous functions such that
f(q) = g(q), ∀q ∈ Q. Prove that f(x) = g(x), ∀x ∈ R.

Hint. You may want to invoke Proposition 3.33. ut

Exercise 6.3. Prove Corollary 6.3. ut

Exercise 6.4. Prove the inequality (6.1). ut

Exercise 6.5. Suppose that f, g : [a, b]→ R are continuous functions.

(a) Prove that the function |f | continuous.

(b) Prove that for any x ∈ [a, b] we have

max
{
f(x), g(x)

}
=

1

2

(
f(x) + g(x) + |f(x)− g(x)|

)
.

(c) Prove that the function h : [a, b]→ R, h(x) = max{f(x), g(x)} is continuous. ut

Exercise 6.6 (Weierstrass). Suppose thatX is a nonempty set of real numbers, fn : X → R,
n ∈ N, is a sequence of functions, and f : X → R a function on X. Suppose that for any
n ∈ N we have

Mn := sup
x∈X
|fn(x)− f(x)| <∞.

Prove that the following statements are equivalent.

(i) The sequence (fn) converges uniformly to f on X.

(ii) limn→∞Mn = 0.

ut

Exercise 6.7 (Weierstrass). Consider a sequence of functions fn : [a, b] → R, n ≥ 0,
where a, b are real numbers a < b. Suppose that there exists a sequence of positive real
numbers (cn)n≥0 with the following properties.

(i) |fn(x)| ≤ cn, ∀n ≥ 0, ∀x ∈ [a, b].

(ii) The series
∑

n≥0 cn is convergent.

(a) Prove that for any x ∈ [a, b], the series of real numbers
∑

n≥0 fn(x) is absolutely

convergent. Denote by s(x) its sum.

(b) Denote by sn(x) the n-th partial sum

sn(x) = f0(x) + f1(x) + · · ·+ fn(x)
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Prove that the sequence of functions sn : [a, b] → R converges uniformly on [a, b] to the
function s : [a, b]→ R defined in (a).

Hint. Use Exercise 6.6. ut

Exercise 6.8. Consider the power series∑
n≥0

anx
n, an ∈ R. (6.13)

Suppose that for some R > 0 the series ∑
n≥0

anR
n

is absolutely convergent.

(a) Prove that the series (6.13) converges absolutely for any x ∈ [−R,R]. Denote by s(x)
its sum.

(b) Denote by sn(x) the n-th partial sum

sn(x) = a0 + a1x+ · · ·+ anx
n.

Prove that the resulting sequence of functions sn : [−R,R] → R converges uniformly to
s(x). Conclude that the function s(x) is continuous on [−R,R].

Hint. Use the results in Exercise 6.7. ut

Exercise 6.9. Consider the sequence of functions

fn : [0, 1]→ R, fn(x) = xn, n ∈ N.
(a) Prove that for any x ∈ [0, 1] the sequence (fn(x))n∈N is convergent. Compute its limit
f(x).

(b) Given n ∈ N compute
sup
x∈[0,1]

|fn(x)− f(x)|.

(c) Prove that the sequence of functions fn(x) does not converge uniformly to the function
f(x) defined in (a). ut

Exercise 6.10 (Cauchy). SupposeX ⊂ R is a nonempty set of real number and fn : X → R
is a sequence of real valued functions defined on X. Prove that the following statements
are equivalent.

(i) There exists a function f : X → R such that the sequence fn : X → R converges
uniformly on X to f : X → R.

(ii) ∀ε > 0, ∃N = N(ε) ∈ N such that

∀n,m > N(ε), ∀x ∈ X : |fn(x)− fm(x)| < ε.

ut
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Exercise 6.11. (a) Prove Corollary 6.22.

(b) Let f(x) be a polynomial of odd degree. Prove that there exists r ∈ R such that
f(r) = 0. ut

Exercise 6.12. Suppose that f : [0, 1]→ [0, 1] is a continuous function. Prove that there
exists c ∈ [0, 1] such that f(c) = c. Can you give a geometric interpretation of this result?ut

Exercise 6.13. (a) Find the oscillation of the function f : [0,∞) → R, f(x) = x2, over
an interval [a, b] ⊂ (0,∞).

(b) Prove that for any n ∈ N one can find an interval [a, b] ⊂ [0,∞) of length ≤ 1
n over

which the oscillation of f is ≥ 1. ut

Exercise 6.14. (a) Suppose that f : X → R is a function defined on a set X, and Y ⊂ X.
Prove that

osc(f,X) = sup
x′,x′′∈X

|f(x′)− f(x′′)| and osc(f, Y ) ≤ osc(f,X).

(b) Consider a function f : (a, b)→ R. Prove that f is continuous at a point x0 ∈ (a, b) if
and only if

lim
δ↘0

osc
(
f, [x0 − δ, x0 + δ]

)
= 0.

(c) Suppose that f : [a, b]→ R is a continuous function. Prove that

osc(f, (a, b) ) = osc(f, [a, b] ).

Exercise 6.15. Consider the function

f : (−π/2, π/2)→ R, f(x) = tanx =
sinx

cosx
.

Prove that f is strictly increasing and

lim
x→±π/2

f(x) = ±∞.

Conclude that f is bijective. ut

6.5. Exercises for extra-credit

Exercise* 6.1. Suppose that f : [a, b] → R is a continuous function. For any x ∈ [a, b]
we define

m(x) = inf
t∈[a,x]

f(x), M(x) = sup
t∈[a,x]

f(x).

Prove that the functions x 7→ m(x) and x 7→M(x) are continuous. ut
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Exercise* 6.2. Suppose that f : R→ R is a continuous function satisfying

f(0) = 0, f(1) = 1

and

f(x+ y) = f(x) + f(y), ∀x ∈ R.
Prove that f(x) = x, ∀x ∈ R. ut

Exercise* 6.3. Suppose that f : R→ R is a continuous function satisfying the following
properties.

(i) f(x) > 0, ∀x ∈ R.

(ii) f(x+ y) = f(x)f(y), ∀x, y ∈ R.

Set a := f(1). Prove that f(x) = ax, ∀x ∈ R. ut

Exercise* 6.4. Suppose that f : R→ R is a a function satisfying the following conditions

f(x+ y) = f(x) + f(y), ∀x, y ∈ R. (6.14a)

f(xy) = f(x)f(y), ∀x, y ∈ R. (6.14b)

f(1) 6= 0. (6.14c)

Prove that the following hold.

(i) f(0) = 0, f(1) = 1.

(ii) f(n) = n, ∀n ∈ N.

(iii) f(m) = m, ∀m ∈ Z.

(iv) f(q) = q, ∀q ∈ Q.

(v) If x, y ∈ R and x < y, then f(x) < f(y).

(vi) f(x) = x, ∀x ∈ R.

Exercise* 6.5 (Dini). Suppose that fn : [0, 1] → R, n ∈ N is a sequence of continuous
functions with the following properties.

(i) For any t ∈ [0, 1] we have

f1(t) ≤ f2(t) ≤ f3(t) ≤ · · · .

(ii) There exists a continuous function f : [0, 1]→ R such that

lim
n→∞

fn(t) = f(t).

Prove that the sequence of functions (fn) converges uniformly to f on [0, 1]. ut

Exercise* 6.6. Suppose that f : [0, 1]→ R is a continuous function. For n ∈ R define

fn : [0, 1]→ R



6.5. Exercises for extra-credit 159

by setting

fn(x) :=

{
f(0), if x = 0

min
{
f(x); k−1

n ≤ x ≤
k
n

}
, if k−1

n < x ≤ k
n , k = 1, . . . , n.

Prove that the sequence of functions (fn) converges uniformly to the function f on [0, 1].ut





Chapter 7

Differential calculus

7.1. Linear approximation and derivative

The differential calculus is one of the most consequential scientific discoveries in the history
of mankind. Surprisingly, this revolutionary theory is based on a very simple principle:
often one can learn nontrivial things about complicated objects by approximating them
with simpler ones.

In the case at hand, the complicated object is a function f : (a, b) → R and one
would like to understand its behavior near a point x0 ∈ (a, b). To achieve this, we try to
approximate f with a simpler function, and the linear functions are the simplest nontrivial
candidates.

Definition 7.1. Suppose that I is an interval1 on the real axis, f : I → R is a function
and x0 ∈ I. A linear approximation or linearization of f at x0 is a linear function

L : R→ R, L(x) = b+m(x− x0)

such that

L(x0) = f(x0) (7.1)

and

f(x)− L(x) = o(x− x0) as x→ x0. (7.2)

Above, we used Landau’s symbol o defined in (5.35) signifying that

lim
x∈I, x→x0

f(x)− L(x)

x− x0
= 0.

The function is said to be linearizable at x0 if it admits a linearization at x0. ut

1The interval I could be closed, could be open, could be neither, could be bounded or not.

161
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Suppose that L is a linearization of the function f : I → R at x0. By (7.1), the value
of L at x0 is equal to the value of f at x0, L(x0) = f(x0). On the other hand

L(x0) = b+m(x0 − x0) = b

and we deduce that L(x) has the form

L(x) = f(x0) +m(x− x0).

The linear function L(x) is meant to approximate the function f(x) for x not too far for
x0. The error of this linear approximation of f(x) is the difference r(x) = f(x) − L(x)
which by definition is o(x− x0) as x → x0. In less rigorous terms, r(x) is a tiny fraction
of (x− x0) when x is close to x0. Note that

f(x)− L(x) = f(x)−
(
m(x− x0) + f(x0)

)
= f(x)− f(x0)−m(x− x0),

f(x)− L(x)

x− x0
=
f(x)− f(x0)

x− x0
−m.

Since

0 = lim
x→x0

f(x)− L(x)

x− x0
= lim

x→x0

f(x)− f(x0)

x− x0
−m

we deduce that

m = lim
x→x0

f(x)− f(x0)

x− x0
. (7.3)

Thus if f is linearizable at x0, then there exists a unique linearization L(x) described by

L(x) = f(x0) +m(x− x0),

where the slope m is given by (7.3).

Definition 7.2. Suppose that I is an interval of the real axis, f : I → R is a function
and x0 ∈ I.

(i) We say that f is differentiable at x0 if the limit (7.3)

lim
x→x0
x∈I

f(x)− f(x0)

x− x0
(7.4)

exists and it is finite. If this is the case, we denote the limit by f ′(x0) or df
dx |x=x0

and we will refer to it as the derivative of f at x0.

(ii) We say that f is differentiable on I if it is differentiable at any point x ∈ I. The
function f ′ : I → R that assigns to x ∈ I the derivative f ′(x) of f at x is called
the derivative of the function f on the interval I. ut

Remark 7.3. In concrete computations it is often convenient to describe the derivative
of f at x0 as the limit

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.
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This is obtained from (7.4) if we denote by h the “displacement” x−x0. With this notation
we have x = x0 + h and

f(x)− f(x0)

x− x0
=
f(x0 + h)− f(x0)

h
. ut

The next result summarizes the observations we have made so far.

Proposition 7.4. Suppose that I is an interval of the real axis, f : I → R is a function
and x0 ∈ I. Then the following statements are equivalent.

(i) The function f is differentiable at x0.

(ii) The function f is linearizable at x0.

(iii) The function f is differentiable at x0 and the function L(x) = f(x0)+f ′(x0)(x−x0)
is the linearization of f at x0, i.e.,

f(x) = f(x0) + f ′(x0)(x− x0) + r(x), lim
x→x0

r(x)

|x− x0|
= 0. (7.5)

ut

We should perhaps give a geometric interpretation to the linear approximation of f
at x0. The graph of f is the curve

Gf :=
{(
x, f(x)

)
∈ R2; x ∈ (a, b)

}
.

The point x0 ∈ I determines a point P0 = (x0, f(x0) ) on the curve Gf ; see Figure 7.1.

P

P

x x +h

f(x )

f(x +h)

0

0

0

00

h

Figure 7.1. A tangent line to the graph of a function is a limit of secant lines.
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The graph of a linear function L(x) is a line in the plane and since we are interested
in approximating the behavior of f near x0 it makes sense to look only at lines `P0,P

determined by two points P0, P on the graph Gf . Since we are interested only in the
behavior of f near x0, we may assume that the point P is not too far from P0. Thus we
assume that the coordinates of P are (x0 + h, f(x0 + h) ), where h is very small.

In more concrete terms, we look at the lines `P0,Ph determined by the two points

P0 := (x0, f(x0) ), Ph := (x0 + h, f(x0 + h) ),

where h very small. The slope of the line `P0,Ph is

m(h) :=
f(x0 + h)− f(x0)

(x0 + h)− x0
=
f(x0 + h)− f(x0)

h
,

so its equation is
y − f(x0) = m(h)(x− x0).

This is the graph of the linear function

Lx0,h(x) = f(x0) +m(h)(x− x0).

Suppose that as h→ 0 the line `P0,Ph stabilizes to some limiting position. This limit line
goes through the point P0 and therefore its position is determined by its slope

lim
h→0

m(h) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

x→x0

f(x)− f(x0)

x− x0
.

We see that this limit exists and it is finite if and only if f is differentiable at x0. In this
case, the limit line is the graph of the linear approximation of f at x0.

Definition 7.5. Suppose I ⊂ R is an interval of the real axis and f : I → R is a function
differentiable at x0. The tangent line to the graph of f at x0 is the graph of the linearization
of f at x0. ut

Remark 7.6. (a) The quantities

f(x)− f(x0)

x− x0
,
f(x0 + h)− f(x0)

h

are called difference quotients of f at x0. You should think of such a difference quotient
as measuring the average rate of change of the quantity f over the interval [x0, x].

In physics, the numerator f(x) − f(x0) is denoted by ∆f while the denominator is
denoted ∆x. The symbol ∆ is shorthand for “variation of ”. Thus

df

dx
= lim

∆x→0

∆f

∆x
.

From the equality

f ′(x) =
df

dx
we deduce formally

df = f ′(x)dx. (7.6)



7.1. Linear approximation and derivative 165

The expression f ′(x)dx is called the differential of f and as the above equality suggests,
it is denoted by df .

(b) Often a function f : [a, b]→ R has a physical meaning. For example, the interval
[a, b] can signify a stretch of highway between mile a and mile b and f(x) could be the
temperature at mile x and thus it is measured in ◦F . The difference quotient

f(x)− f(x0)

x− x0

has a different meaning. The numerator f(x)−f(x0) describes the change in temperature
from mile x0 to mile x and it is again measured in ◦F , while the numerator x − x0 is
the “distance” (could be negative) from mile x0 to mile x and thus it is measured in
miles. We deduce that the quotient is measured in different units, degrees-per-mile, and
should be viewed as the average rate of change in temperature per mile. When x → x0

we are measuring the rate of change in temperature over shorter and shorter stretches of
highway. For this reason, the limit f ′(x0) is sometimes referred to as the infinitesimal rate
of change. ut

The differentiability of a function at a point x0 imposes restrictions on the behavior
of the function near that point. Our next elementary result describes one such restriction.
Its proof is left to you as an exercise.

Proposition 7.7. Suppose I is an interval of the real axis R and f : I → R is a function
that is differentiable at a point x0 ∈ I. Then f is continuous at x0, i.e.,

lim
I3x→x0

f(x) = f(x0). ut

Remark 7.8. The converse of the above result is not true. There exist continuous func-
tions f : [0, 1]→ R which are nowhere differentiable. For example, the function

f : [0, 1]→ R, f(t) =

∞∑
n=0

cos(5nt)

2n
,

is continuous and nowhere differentiable. Its graph, depicted in Figure 7.2, may convince
you of the validity of this claim. The rigorous proof of this fact is rather ingenious and
for details and generalizations we refer to [11]. ut

Suppose that I ⊂ R is an interval and f : I → R is a differentiable function. We say
that f is twice differentiable if its derivative f ′, viewed as a function f ′ : I → R, is also

differentiable. The second derivative of f denoted by f ′′ or d2f
dx2 is the derivative of f ′

f ′′ :=
d

dx
(f ′).
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Figure 7.2. Weierstrass’s example of continuous, nowhere differentiable function.

Recursively, for any natural number n > 1, we say that f is n-times differentiable if
its derivative is (n − 1)-times differentiable. The n-th derivative of f is the function

f (n) : I → R defined recursively as

f (n) :=
d

dx

(
f (n−1)

)
.

Often we will use the alternate notation dnf
dxn to denote the n-th derivative of f .

Definition 7.9. Let I ⊂ R be an interval.

(i) We denote by C0(I) the set consisting of all the continuous functions f : I → R.

(ii) If n is a natural number, then we denote by Cn(I) the space of functions
f : I → R which are
• n-times differentiable and
• the n-th derivative f (n) is a continuous function.

We will refer to the functions in Cn(I) as Cn-functions.

(iii) We denote by C∞(I) the space of functions I → R which are infinitely many
times differentiable. We will refer to such functions as smooth.

ut

7.2. Fundamental examples

In this section we describe a very important collection of differentiable functions.
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Example 7.10 (Constant functions). Suppose that f : R → R is the function which is
identically equal to a fixed real number c,

f(x) = c, ∀x ∈ R.

Then f is differentiable and f ′(x) = 0, ∀x ∈ R. Indeed, for any x0 ∈ R

f(x0 + h)− f(x0)

h
= 0, ∀h 6= 0. ut

Example 7.11 (Monomials). Suppose that n ∈ N and consider the monomial function
µn : R→ R, µn(x) = xn. Then µn is differentiable on R and its derivative is

µ′n(x) = nxn−1, ∀x ∈ R⇐⇒ d

dx
(xn) = nxn−1. (7.7)

To prove this claim we investigate the difference quotients of µn at x0 ∈ R. We have

µn(x0 + h)− µn(x0) = (x0 + h)n − xn0
(use Newton’s binomial formula (3.6))

= xn0 +

(
n

1

)
xn−1

0 h+

(
n

2

)
xn−2

0 h2 + · · ·+
(
n

n

)
hn − xn0

= h

((
n

1

)
xn−1

0 +

(
n

2

)
xn−2

0 h+ · · ·+
(
n

n

)
hn−1

)
,

so that
µn(x0 + h)− µn(x0)

h
=

(
n

1

)
xn−1

0 +

(
n

2

)
xn−2

0 h+ · · ·+
(
n

n

)
hn−1.

Now observe that

µ′n(x0) = lim
h→0

µn(x0 + h)− µn(x0)

h

= lim
h→0

((
n

1

)
xn−1

0 +

(
n

2

)
xn−2

0 h+ · · ·+
(
n

n

)
hn−1

)
=

(
n

1

)
xn−1

0 = nxn−1
0 .

For example

(x2)′ = 2x, d(x2) = 2xdx. ut

Example 7.12 (Power functions). Fix a real number α and consider the power function

f : (0,∞)→ R, f(x) = xα.

Then f is differentiable and its derivative is

f ′(x) = αxα−1, ∀x > 0⇐⇒ d

dx
(xα) = αxα−1 . (7.8)
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To prove this claim we investigate the difference quotients of f(x) at x0 ∈ (0,∞). We
have

(x0 + h)α − xα0 =

(
x0

(
1 +

h

x0

))α
− xα0 = xα0

((
1 +

h

x0

)α
− 1

)
,

f(x0 + h)− f(x0)

h
= xα0

(
1 + h

x0

)α
− 1

h
= xα0

(
1 + h

x0

)α
− 1

x0
h
x0

= xα−1
0

(
1 + h

x0

)α
− 1

h
x0

.

We set t := h
x0

and we observe that t→ 0 as h→ 0 and

f(x0 + h)− f(x0)

h
= xα−1

0

(1 + t)α − 1

t
.

Invoking the fundamental limit (5.21) we deduce

lim
t→0

(1 + t)α − 1

t
= α

so that

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= αxα−1

0 .

Note that if α = 1
2 , then f(x) =

√
x and we deduce

d

dx
(
√
x) =

1

2
√
x
, d(
√
x) =

dx

2
√
x
. (7.9)

ut

Example 7.13 (The exponential function). Consider the exponential function

f : R→ R, f(x) = ex.

This function is differentiable and its derivative is

f ′(x) = ex, ∀x ∈ R⇐⇒ d

dx
(ex) = ex. (7.10)

To prove this claim we investigate the difference quotients of f at x0 ∈ R. We have

f(x0 + h)− f(x0) = ex0+h − ex0 = ex0(eh − 1),

f(x0 + h)− f(x0)

h
= ex0

eh − 1

h
.

On the other hand, the fundamental limit (5.20) implies that

lim
h→0

eh − 1

h
= 1.

Hence

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
= ex0 .
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These computations show that the exponential function is smooth, i.e., infinitely many
times differentiable and

dn

dxn
ex = ex, d(ex) = exdx . (7.11)

ut

Example 7.14 (The natural logarithm). Consider the natural logarithm

f : (0,∞)→ R, f(x) = lnx = log x.

Then f is differentiable and its derivative is

f ′(x) =
1

x
, ∀x > 0⇐⇒ d

dx
(lnx) =

1

x
, d(lnx) =

dx

x
. (7.12)

To prove this claim we investigate the difference quotients of f at x0 > 0. We have

f(x0 + h)− f(x0) = ln(x0 + h)− lnx0 = ln

(
x0

(
1 +

h

x0

))
− lnx0

= lnx0 + ln
(

1 +
h

x0

)
− lnx0 = ln

(
1 +

h

x0

)
,

f(x0 + h)− f(x0)

h
=

ln
(

1 + h
x0

)
h

=
ln
(

1 + h
x0

)
x0

h
x0

=
1

x0

ln
(

1 + h
x0

)
h
x0

.

We set t = h
x0

and we conclude from above that

f(x0 + h)− f(x0)

h
=

1

x0

ln(1 + t)

t
.

Note that t goes to zero when h→ 0. We can now invoke (5.19) to conclude that

lim
t→0

ln(1 + t)

t
= 1.

This proves

lim
h→0

f(x0 + h)− f(x0)

h
=

1

x0
. ut

Example 7.15 (Trigonometric functions). The trigonometric functions

sin, cos : R→ R

are differentiable and

d

dx
(sinx) = cosx,

d

dx
(cosx) = − sinx . (7.13)

Fix x0 ∈ R. We have

sin(x0 + h)− sinx0
(5.33a)

= sinx0 cosh+ cosx0 sinh− sinx0

= sinx0

(
cosh− 1

)
+ cosx0 sinh = −2 sin2(h/2) sinx0 + cosx0 sinh.
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Hence
sin(x0 + h)− sinx0

h
= −2 sinx0

sin2(h/2)

h
+ cosx0

sinh

h
.

= − sinx0
sin2(h/2)

h
2

+ cosx0
sinh

h
= −h

2
sinx0

(
sin(h2 )

h
2

)2

+ cosx0
sinh

h
.

From the fundamental identity (5.27) we deduce that

lim
t→0

sin t

t
= 1.

Hence

lim
h→0

h

2
sinx0

(
sin(h2 )

h
2

)2

= 0, lim
h→0

cosx0
sinh

h
= cosx0,

and thus

lim
h→0

sin(x0 + h)− sinx0

h
= cosx0.

The equality

lim
h→0

cos(x0 + h)− cosx0

h
= − sinx0

is proved in a similar fashion and the details are left to you as an exercise. ut

7.3. The basic rules of differential calculus

In the previous section we have computed the derivatives of a few important functions.
In this section we describe a few basic rules which will allow us to easily compute the
derivatives of almost any function.

Theorem 7.16 (Arithmetic rules of differentiation). Suppose that I ⊂ R is an interval,
and f, g : I → R are two functions differentiable at x0. Then the following hold.

Addition. The sum f + g is differentiable at x0 and

(f + g)′(x0) = f ′(x0) + g′(x0).

Scalar multiplication. If c is a real number, then the function cf is differentiable at x0

and

(cf)′(x0) = cf ′(x0).

Product. The product f ·g is differentiable at x0 and its derivative is given by the product
rule or Leibniz rule

(f · g)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

Quotient. If g(x0) 6= 0, then there exists δ > 0 such that

∀x ∈ I |x− x0| < δ ⇒ g(x) 6= 0.
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Set

Ix0,δ :=
{
x ∈ I; |x− x0| < δ }.

The quotient f
g is a well defined function on Ix0,δ which is differentiable at x0 and its

derivative at x0 is determined by the quotient rule(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g′(x0)

g(x0)2
.

Proof. Addition. We have

(f + g)(x0 + h)− (f + g)(x0)

h
=
f(x0 + h)− f(x0) + g(x0 + h)− g(x0)

h

=
f(x0 + h)− f(x0)

h
+
g(x0 + h)− g(x0)

h
.

Hence

lim
h→0

(f + g)(x0 + h)− (f + g)(x0)

h
= lim

h→0

f(x0 + h)− f(x0)

h
+ lim
h→0

g(x0 + h)− g(x0)

h

= f ′(x0) + g′(x0).

Scalar multiplication. We have

(cf)(x0 + h)− (cf)(x0)

h
= c

f(x0 + h)− f(x0)

h

so that

lim
h→0

(cf)(x0 + h)− (cf)(x0)

h
= c lim

h→0

f(x0 + h)− f(x0)

h
= cf ′(x0).

Product. We have

(f · g)(x0 + h)− (f · g)(x0) = f(x0 + h)g(x0 + h)− f(x0)g(x0)

= f(x0 + h)g(x0 + h)− f(x0)g(x0 + h) + f(x0)g(x0 + h)− f(x0)g(x0)

=
(
f(x0 + h)− f(x0)

)
g(x0 + h) + f(x0)

(
g(x0 + h)− g(x0)

)
,

so that

(f · g)(x0 + h)− (f · g)(x0)

h
=

(
f(x0 + h)− f(x0)

)
h

g(x0 +h)+f(x0)

(
g(x0 + h)− g(x0)

)
h

.

Since g is differentiable at x0 it is also continuous at x0 by Proposition 7.7. Hence

lim
h→0

g(x0 + h) = g(x0), lim
h→0

f(x0)

(
g(x0 + h)− g(x0)

)
h

= f(x0)g′(x0).

Since f is differentiable at x0 we deduce

lim
h→0

(
f(x0 + h)− f(x0)

)
h

g(x0 + h)

= lim
h→0

(
f(x0 + h)− f(x0)

)
h

· lim
h→0

g(x0 + h) = f ′(x0)g(x0).
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Hence

lim
h→0

(f · g)(x0 + h)− (f · g)(x0)

h
= f ′(x0)g(x0) + f(x0)g′(x0).

Quotient. The function g is differentiable at x0, thus continuous at this point. From
Theorem 6.11 we deduce that there exists δ > 0 such that

∀x ∈ I, |x− x0| < δ ⇒ g(x) 6= 0.

For |h| < δ such that x0 + h ∈ I we have(
1

g

)
(x0 + h)−

(
1

g

)
(x0) =

1

g(x0 + h)
− 1

g(x0)
=
g(x0)− g(x0 + h)

g(x0)g(x0 + h)

so that (
1
g

)
(x0 + h)−

(
1
g

)
(x0)

h
=
g(x0)− g(x0 + h)

h

1

g(x0)g(x0 + h)

Hence (
1

g

)′
(x0) = lim

h→0

(
1
g

)
(x0 + h)−

(
1
g

)
(x0)

h

= lim
h→0

g(x0)− g(x0 + h)

h
· lim
h→0

1

g(x0)g(x0 + h)
= − g

′(x0)

g(x0)2
.

To compute the derivative of f
g at x0 we use the product rule. We have

f

g
= f · 1

g
⇒
(
f

g

)′
(x0) =

(
f · 1

g

)′
(x0)

= f ′(x0)
1

g(x0)
+ f(x0)

(
1

g

)′
(x0)

= f ′(x0)
1

g(x0)
− f(x0)

g′(x0)

g(x0)2
=
f ′(x0)g(x0)− f(x0)g′(x0)

g(x0)2
.

ut

Example 7.17. Let us see how the above rules work on some simple examples.

(a) Consider the polynomial function

p(x) = 5− 3x2 + 7x5, x ∈ R.

From the scalar multiplication rule and the Examples 7.10, 7.11 we deduce that each of
the functions 5, −3x2 and 7x5 is differentiable and the addition rule implies that their
sum is differentiable as well. We deduce

p′(x) = (5)′ + (−3x2)′ + (7x5)′ = −6x+ 35x4.

(b) From the equalities

d

dx
(sinx) = cosx,

d

dx
(cosx) = − sinx
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and the scalar multiplication rule we deduce that the trigonometric functions are smooth
and we have

d2

dx2
sinx = − sinx,

d2

dx2
cosx = − cosx,

d4

dx4
sinx = sinx,

d4

dx4
cosx = cosx.

(c) If a is a positive real number, then

loga x =
lnx

ln a

and we deduce

(loga x)′ =
1

x ln a
. (7.14)

(d) If n is a natural number, then the function

f : R \ {0} → R, f(x) =
1

xn
= x−n

is differentiable by the quotient rule and we have

(x−n)′ =

(
1

xn

)′
= −nx

n−1

x2n
= − n

xn+1
= −nx−n−1.

(e) From the quotient rule we deduce

d

dx
tanx =

d

dx

(
sinx

cosx

)
=

cos2 x+ sin2 x

cosx2
=

1

cos2 x
= 1 + tan2 x.

Thus

(tanx)′ = 1 + tan2 x =
1

cos2 x
. (7.15)

(f) Using the product rule we deduce

d

dx
(ex sinx) = ex sinx+ ex cosx.

The above simple rules are unfortunately not powerful enough to allow us to compute
the derivative of simple functions such as e

√
x, x > 0 or

√
2 + sinx. For this we need a

more powerful technology. ut

Theorem 7.18 (Chain Rule). Let I, J be two nontrivial intervals of the real axis. Suppose
that we are given two functions u : I → R and f : J → R and a point x0 ∈ I with the
following properties.

(i) The range of the function u is contained in the interval J , i.e., u(I) ⊂ J .

(ii) The function u is differentiable at x0.

(iii) The function f is differentiable at u0 := u(x0).
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Then the composition

f ◦ u : I → R, f ◦ u(x) = f
(
u(x) )

is differentiable at x0 and

(f ◦ u)′(x0) = f ′(u0)u′(x0).

Proof. Let us begin by giving a flawed proof. We have

f(u(x))− f(u(x0))

x− x0
=
f(u(x))− f(u(x0))

u(x)− u(x0)
· u(x)− u(x0)

x− x0
.

Since u is differentiable at x0 we have

lim
x→x0

u(x) = u(x0).

Thus

lim
x→x0

f(u(x))− f(u(x0))

u(x)− u(x0)
· u(x)− u(x0)

x− x0

=

(
lim

u(x)→u(x0)

f(u(x))− f(u(x0))

u(x)− u(x0)

)
·
(

lim
x→x0

u(x)− u(x0)

x− x0

)
= f ′(u(x0))u′(x0)

et voilà, we’re done!

Unfortunately the above argument has one serious flaw. More precisely it is possible
that u(x) = u(x0) for infinitely many values of x close to x0. The quotient

f(u(x))− f(u(x0)

u(x)− u(x0)

is ill-defined and thus the above argument is meaningless. Although problematic, the above
argument displays the strategy of the proof. We need a bit of technical contortionism to
avoid the problem of vanishing denominators. The details follow below.

Since f is differentiable at u0 we deduce that it is linearly approximable at x0. From
(7.5) we deduce that

f(u) = f(u0) + f ′(u0)(u− u0) + r(u), r(u) = o(u− u0) as u→ u0.

Recall that the equality

r(u) = o(u− u0) as u→ u0

signifies that

lim
u→u0

r(u)

u− u0
= 0. (7.16)

In particular, we deduce that

f
(
u(x)

)
− f

(
u(x0)

)
= f

(
u(x)

)
− f(u0 ) = f ′(u0)

(
u(x)− u(x0)

)
+ r(u(x) )

f
(
u(x)

)
− f

(
u(x0)

)
x− x0

= f ′(u0)

(
u(x)− u(x0)

)
x− x0

+
r(u(x))

x− x0
.
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Observe that if we prove that

lim
x→x0

r(u(x) )

x− x0
= 0, (7.17)

then we deduce

lim
x→x0

f
(
u(x)

)
− f

(
u(x0)

)
x− x0

= f ′(u0) lim
x→x0

(
u(x)− u(x0)

)
x− x0

= f ′(u0)u′(x0)

which is the claim of the theorem.

Why do we expect (7.17) to be true? We have r(u(x)) = o(u(x)− u0), i.e., r(u(x)) is
a tiny fraction of u(x)− u0 if u(x) is close to x. When x is close to x0, then u(x) is close
to u0 so r(u(x)) is a tiny fraction of u(x)− u0 when x is close to x0.

On the other hand, when x is close to x0 we have

u(x)− u0 = u′(x0)(x− x0) + o(x− x0) = u′(x0)(x− x0) + tiny fraction of x− x0

= (x− x0)(u′(x0) + tiny number).

Thus when x is close to x0 the remainder r(u(x)) is a tiny fraction of (x−x0)(u′(x0)+tiny number)
which in turn is obviously a tiny fraction of (x−x0). The precise proof is presented below.

To prove (7.17) it suffices to show that

∀~ > 0 ∃d = d(~) > 0 : |x− x0| < d(~)⇒
|r(u(x))|
|x− x0|

≤ ~. (7.18)

The function u is differentiable at x0 and it is linearizable at this point. Hence

u(x)− u0 = u′(x0)(x− x0) + ρ(x), ρ(x) = o(x− x0) as x→ x0.

Since ρ(x) = o(x− x0) as x→ x0 we deduce that there exists a small γ > 0 such that

|x− x0| < γ ⇒ |ρ(x)| ≤ |x− x0|.

Hence, for |x− x0| < γ we have

|u(x)− u0| = |u′(x0)(x− x0) + ρ(x)|
≤ |u′(x0)||x− x0|+ |ρ(x)| ≤ (|u′(x0)|+ 1)|x− x0|.

If we set C := |u′(x0)|+ 1 > 0, then we deduce

|x− x0| < γ ⇒ |u(x)− u0| ≤ C|x− x0|. (7.19)

Note that (7.16) implies that

∀~ > 0 ∃ε(~) > 0 : |u− u0| < ε(~)⇒ |r(u)| ≤ ~|u− u0|. (7.20)

Observe that (7.19) implies

|x− x0| < δ(~) := min
{
γ,
ε(~)

c

}
⇒ |u(x)− u0| ≤ C|x− x0| < ε(~).

Using this in (7.20) we deduce that

|x− x0| < δ(~)⇒ |u(x)− u0| < ε(~)
(7.20)⇒ |r(u(x) )| ≤ ~|u(x)− u0|

(7.19)

≤ C~|x− x0|.

We have thus proved that

∀~ > 0 ∃δ(~) > 0 : |x− x0| < δ(~)⇒
|r(u(x) )|
|x− x0|

≤ C~.

If we set

d(~) := δ(~/C)
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we obtain (7.18).

ut

Remark 7.19. Since the chain rule is without a doubt the key rule in differential calculus
it is perhaps appropriate to pause and provide a bit of intuition behind it. The classical
point of view on this formula is in our view the most intuitive.

Before the modern concept of function (late 19th century) functions were regarded as
quantities that depend on other quantities. In the chain rule we deal with three quantities
denoted by x, u, f . The quantity u depends on the quantity x thus giving us the function
u = u(x). The quantity f depends on the quantity u thus giving us the function f = f(u).
Since u also depends on x, we deduce that through u as intermediary the function f also
depends on x, this giving us the composition f ◦ u.

The derivative of f ◦ u with respect to x measures the rate of change in the quantity
f per unit of change in x. The classics would denote this rate of change by df

dx instead

of the more complete, but more cumbersome2 df◦u
dx . The quantity df

du denotes the rate of

change in f per unit of change in u, The quantity du
dx is defined in a similar fashion and

the chain rule takes the simpler form

df

dx
=
df

du
· du
dx

. (7.21)

A less rigorous but more intuitive way of phrasing the above equality is

change in f

change in x
=

change in f

change in u
· change in u

change in x
.

ut

Let us see the chain rule at work in some simple examples.

Example 7.20. (a) Consider the function

sin
√
x, x > 0.

It is the composition of the two functions

f(u) = sinu, u(x) =
√
x.

Then
d

dx
sin
√
x =

df

du
· du
dx

= (cosu) · 1

2
√
x

=
cos
√
x

2
√
x
.

(b) Consider the function 2x. We have

2x = (eln 2)x = e(ln 2)x.

2The concept of composition of function was not clearly defined given that the concept of function was nebulous.



7.3. The basic rules of differential calculus 177

It is the composition of two functions

f(u) = eu, u(x) = (ln 2)x.

Then
d

dx
2x =

df

du
· du
dx

= eu(ln 2) = e(ln 2)x ln 2 = 2x ln 2.

More generally, if a is a positive real number then

d

dx
ax = ax ln a. (7.22)

Observe that for any λ ∈ R we have

d

dx
eλx = λeλx,

and we conclude inductively that

dn

dxn
eλx = λneλx, ∀n ∈ N. (7.23)

(c) Consider now a trickier situation. Let f : (0,∞)→ R be given by f(x) = xx. We want
to prove that f is differentiable and then compute its derivative. We set

g(x) = ln f(x) = x lnx.

Clearly g is differentiable since it is the product of differentiable functions. From the
equality

f(x) = eg(x)

we deduce that f is also differentiable because it is the composition of differentiable func-
tions. Using the chain rule we deduce

f ′(x) = eg(x)g′(x) = (xx)g′(x) = xx(lnx+ 1).

ut

Theorem 7.21 (Inverse function rule). Suppose that I, J are two intervals of the real axis
and u : I → J is a bijective function satisfying the following properties.

(i) The function u is differentiable at the point x0 ∈ I.

(ii) u′(x0) 6= 0.

(iii) The inverse function u−1 is continuous at y0 = u(x0).

Then the inverse function u−1 is differentiable at y0 = u(x0) and

(u−1)′(y0) =
1

u′(x0)
.
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Proof. Since u is bijective we deduce that for any y ∈ J , there exists a unique x = x(y)
in I such that u(x) = y. More precisely x(y) = u−1(y). Since u−1 is continuous at y0 we
have

lim
y→y0

x(y) = x(y0) = x0.

Then
u−1(y)− u−1(y0)

y − y0
=

x− x0

u(x)− u(x0)
=

1
u(x)−u(x0)

x−x0

.

so that

lim
y→y0

u−1(y)− u−1(y0)

y − y0
= lim

x→x0

1
u(x)−u(x0)

x−x0

=
1

u′(x0)
.

ut

Example 7.22. The inverse function rule is a bit tricky to use. We discuss a few classical
examples.

(a) Consider the function

u : (−π/2, π/2)→ (−1, 1), u(x) = sinx.

This function is bijective, differentiable, and the derivative u′(x) = cosx is nowhere zero.
Its inverse is the continuous function

arcsin : (−1, 1)→ (−π/2, π/2).

We have
d

du
arcsinu =

1

u′(x)
=

1

cosx
, u = sinx.

Observe that on the interval (−π/2, π/2) the function cosx is positive so that

cosx =
√

1− sin2 x =
√

1− u2.

Hence
d

du
arcsinu =

1√
1− u2

, ∀u ∈ (−1, 1) . (7.24)

A similar argument shows that

d

du
arccosu = − 1√

1− u2
, ∀u ∈ (−1, 1). (7.25)

(b) Consider the bijective differentiable function

u : (−π/2, π/2)→ R, u(x) = tanx.

Its inverse is the function arctan : R→ (−π/2, π/2). It is continuous and

d

du
arctanu =

1

u′(x)
=

1

(tanx)′
, u = tanx.
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Using the equality (tanx)′ = 1 + tan2 x we deduce

d

du
arctanu =

1

1 + tan2 x
=

1

1 + u2
. (7.26)

ut

7.4. Fundamental properties of differentiable
functions

The first fundamental result concerning differentiable functions is Fermat’s Principle. Be-
fore we formulate it we need to introduce a new concept.

Definition 7.23. Suppose that f : I → R is a function defined on an interval I ⊂ R.

(i) A point x0 ∈ I is said to be a local minimum of f if there exists δ > 0 with the
following property

∀x ∈ I, |x− x0| < δ ⇒ f(x) ≥ f(x0).

The point x0 is called a strict local minimum if there exists δ > 0 with the
following property

∀x ∈ I, 0 < |x− x0| < δ ⇒ f(x) > f(x0).

(ii) A point x0 ∈ I is said to be a local maximum of f if there exists δ > 0 with the
following property

∀x ∈ I, |x− x0| < δ ⇒ f(x) ≤ f(x0).

The point x0 is called a strict local maximum if there exists δ > 0 with the
following property

∀x ∈ I, 0 < |x− x0| < δ ⇒ f(x) < f(x0).

(iii) A point x0 ∈ I is said to be a (strict) local extremum of f if it is either a (strict)
local minimum, or a (strict) local maximum.

ut

Theorem 7.24 (Fermat’s Principle). Consider a function f : [a, b]→ R which is differen-
tiable on the open interval (a, b). Suppose that x0 is a local extremum of f situated in the
interior, x0 ∈ (a, b). Then f ′(x0) = 0. In geometric terms, at an interior local extremum,
the tangent line to the graph has zero slope, i.e., it is horizontal.

Proof. Assume for simplicity that x0 is a local minimum; see Figure 7.4. Since x0 is in
the interior of the interval [a, b] we can find δ > 0 such that

(x0 − δ, x0 + δ) ⊂ (a, b) and f(x0) ≤ f(x), ∀x ∈ (x0 − δ, x0 + δ).
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x x x
1 2 3

x

y

Figure 7.3. The points x1 and x3 are local minima, while the point x2 is a local maximum.

x

x +x - δ δ

a b

0

0

0

0

y

x

y=f(x)

f(x )

Figure 7.4. The point x0 is an interior local minimum.

We have

lim
x↘x0

f(x)− f(x0)

x− x0
= f ′(x0) = lim

x↗x0

f(x)− f(x0)

x− x0
.

Note that

x ∈ (x0, x0 + δ)⇒ f(x)− f(x0) ≥ 0 ∧ x− x0 > 0⇒ f(x)− f(x0)

x− x0
≥ 0⇒

⇒ lim
x↘x0

f(x)− f(x0)

x− x0
≥ 0⇒ f ′(x0) ≥ 0.
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Similarly

x ∈ (x0 − δ, x0)⇒ f(x)− f(x0) ≥ 0 ∧ x− x0 < 0⇒ f(x)− f(x0)

x− x0
≤ 0⇒

⇒ lim
x↗x0

f(x)− f(x0)

x− x0
≤ 0⇒ f ′(x0) ≤ 0.

This proves that f ′(x0) = 0. ut

Remark 7.25. The importance of Fermat’s Principle is difficult to overestimate. Lo-
cating the local extrema of a function is a problem with a huge number of applications
beyond theoretical mathematics. Fermat’s Principle states that the local extrema of a
differentiable function f : [a, b] → R are very special points: they are either endpoints of
the interval, or points where the derivative of f vanishes.

This principle reduces the search of extrema to a set much much smaller than the
interval [a, b]. Instead of looking for the needle in a haystack, we’re looking for a needle
hidden in a small matchbox. There is a caveat: the matchbox could be locked and it may
take some ingenuity to unlock it. ut

Definition 7.26. Suppose that f : I → R is a differentiable function defined on an
interval I ⊂ R. A point x0 ∈ I is called a critical or stationary point of f if f ′(x0) = 0. ut

We can thus rephrase Fermat’s Principle as saying that interior local extrema must
be critical points. We want to point out that not all critical points are necessarily local
extrema. For example the point x0 = 0 of f(x) = x3, x ∈ R, is a critical point of f .
However it is not a local extremum because

f(x) > f(0) ∀x > 0 ∧ f(x) < f(0) ∀x < 0.

Fermat’s Principle has several fundamental consequences. We describe a few of them.

Theorem 7.27 (Rolle). Suppose that f : [a, b] → R is a continuous function that is also
differentiable on the open interval (a, b). If f(a) = f(b), then there exists ξ ∈ (a, b) such
that f ′(ξ) = 0.

Proof. According to Weierstrass’ Theorem 6.14 there exist x∗, x
∗ ∈ [a, b] such that

f(x∗) = inf
x∈[a,b]

f(x), f(x∗) = sup
x∈[a,b]

f(x). (7.27)

We distinguish two cases.

1. f(x∗) = f(x∗). We deduce from (7.27) that f is the constant function f(x) = f(x∗),
∀x ∈ [a, b]. In particular f ′(x) = 0, ∀x ∈ (a, b), proving the claim in the theorem.

2. f(x∗) < f(x∗). Thus x∗ and x∗ cannot simultaneously be endpoints of the interval [a, b]
because f(a) = f(b). Hence at least one of the points x∗ or x∗ is located in the interior
of the interval. Suppose for x∗ is that point. Then x∗ is a local minimum of f located in
the interior of (a, b). Fermat’s Principle implies that f ′(x∗) = 0. ut
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Theorem 7.28 (Lagrange’s Mean Value Theorem). Suppose that f : [a, b] → R is a
continuous function that is also differentiable on the open interval (a, b). Then there
exists a point ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
.

Geometrically this signifies that somewhere on the graph of f there exists a point so that
the tangent to the graph at that point is parallel to the line connecting the endpoints of the
graph of f ; see Figure 7.5.

a b

y

x

y=f(x)A

B

ξ

Figure 7.5. The geometric interpretation of Theorem 7.28.

Proof. We set

m :=
f(b)− f(a)

b− a
.

The line passing through the points A = (a, f(a)) and B = (b, f(b)) has slope m and is
the graph of the linear function

L(x) = m(x− a) + f(a).

Observe that
L(a) = f(a), L(b) = f(b), L′(x) = m, ∀x.

Define
g : [a, b]→ R, g(x) = f(x)− L(x).

Note that g is continuous on [a, b] and differentiable on (a, b). Moreover

g(a) = f(a)− L(a) = 0 = f(b)− L(b) = g(b).

Rolle’s theorem implies that there exists ξ ∈ (a, b) such that

0 = g′(ξ) = f ′(ξ)− L′(ξ) = f ′(ξ)−m⇒ f ′(ξ) = m.

ut
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Remark 7.29. In the Mean Value Theorem the requirement that f be continuous on
the closed interval [a, b] is essential and does not follow from the requirement that f be
differentiable on the open interval (a, b).

In the theorem we have tacitly assumed that a < b. The result continues to be true
even when a > b because

f(b)− f(a)

b− a
=
f(a)− f(b)

a− b
.

In this case ξ is a point in the open interval with endpoints a and b. ut

Corollary 7.30. Suppose that f : [a, b] → R is a continuous function that is also differ-
entiable on the open interval (a, b). Then the following statements are equivalent.

(i) The function f is constant.

(ii) f ′(x) = 0, ∀x ∈ (a, b).

Proof. The implication (i)⇒ (ii) is immediate since the derivative of a constant function
is 0.

To prove the implication (ii) ⇒ (i) we argue by contradiction. Suppose that there
exist x0, x1 ∈ [a, b], such that x0 < x1 and f(x0) 6= f(x1). The Mean Value Theorem
implies that there exists ξ ∈ (x0, x1) such that

f ′(ξ) =
f(x1)− f(x0)

x1 − x0
6= 0.

ut

Corollary 7.31. Suppose that f : [a, b]→ R is a continuous function that is differentiable
on (a, b). If f ′(x) 6= 0 for any (a, b), then f is injective.

Proof. If x0, x1 ∈ [a, b] and x0 6= x1, say x0 < x1, then the Mean Value Theorem implies
that there exists ξ ∈ (x0, x1) such that

f(x1)− f(x0) = f ′(ξ)(x1 − x0) 6= 0.

This proves the injectivity of f . ut

Corollary 7.32. Suppose that f : [a, b]→ R is a continuous function that is differentiable
on (a, b). Then the following statements are equivalent.

(i) The function f is nondecreasing.

(ii) f ′(x) ≥ 0, ∀x ∈ (a, b).

Also, the following statements are equivalent.

(iii) The function f is nonincreasing.

(iv) f ′(x) ≤ 0, ∀x ∈ (a, b).
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Proof. (i) ⇒ (ii). Let x0 ∈ (a, b). Then for h > 0 we have f(x0 + h)− f(x0) ≥ 0 so that

f(x0 + h)− f(x0)

h
≥ 0⇒ f ′(x0) = lim

h↘0

f(x0 + h)− f(x0)

h
≥ 0.

(ii) ⇒ (i). Suppose that x0, x1 ∈ [a, b] are such that x0 < x1. The Mean Value Theorem
implies that there exists ξ ∈ (x0, x1) such that

f ′(ξ) =
f(x1)− f(x0)

x1 − x0
⇒ f(x1)− f(x0) = f ′(ξ)(x1 − x0) ≥ 0.

ut

Remark 7.33. If in the above result we replace (ii) with the stronger condition

f ′(x) > 0, ∀x ∈ (a, b),

then we obtain a stronger conclusion namely that f is (strictly) increasing. This follows
by coupling Corollary 7.32 with Corollary 7.31. ut

Example 7.34. (a) We want to prove that

ex ≥ x+ 1, ∀x ∈ R. (7.28)

To this aim consider the function f : R → R, f(x) = ex − (x + 1). This function is
differentiable and f ′(x) = ex − 1.

We see that the derivative is positive on (0,∞) and negative on (−∞, 0). Hence f is
increasing on (0,∞) and thus f(x) > f(0) = 0, ∀x > 0 and f(x) > 0, ∀x ∈ (−∞, 0). In
other words,

ex − (x+ 1) ≥ 0, ∀x ∈ R,
which is (7.28).

(b) We want to prove that

x ≥ sinx, ∀x ≥ 0. (7.29)

Consider the function f : [0,∞)→ R, f(x) = x− sinx. This function is differentiable and

f ′(x) = 1− cosx ≥ 0, ∀x ≥ 0.

Hence f is nondecreasing and thus

x− sinx = f(x) ≥ f(0) = 0, ∀x ≥ 0.

(c) We want to prove that

cosx ≥ 1− x2

2
, ∀x ∈ R. (7.30)

Consider the function

f : R→ R, f(x) = cosx−
(

1− x2

2

)
, ∀x ∈ R.
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We have to prove that f(x) ≥ 0, ∀x ∈ R. We observe that f is an even function, i.e.,
f(−x) = f(x), ∀x ∈ R so it suffices to show that f(x) ≥ 0, ∀x ≥ 0. Note that f is
differentiable and

f ′(x) = − sinx+ x
(7.29)

≥ 0 ∀x ≥ 0.

Thus f is nondecreasing on the interval [0,∞) and we conclude that f(x) ≥ f(0) = 0,
∀x ≥ 0. ut

Example 7.35 (Young’s inequality). Suppose that p ∈ (1,∞). Define q ∈ (1,∞) by 1
p

+ 1
q

= 1, i.e., q = p
p−1

.

Consider f : (0,∞)→ R

f(x) = xα − αx+ α− 1, α :=
1

p
.

We want to prove that f(x) ≤ 0, ∀x > 0. We have

f ′(x) = αxα−1 − α = α(xα−1 − 1) = α

(
1

x1−α − 1

)
.

Observe that f ′(x) = 0 if and only if x = 1. Moreover f ′(x) < 0 for x > 1 and f ′(x) > 0 for x < 1 because

1− α = 1− 1
p
> 0. Thus the function f increases on (0, 1) and decreases on (1,∞) so that

0 = f(1) ≥ f(x) ∀x > 0.

Thus

xα − αx ≤ 1− α = 1−
1

p
> 0 =

1

q
.

If we choose a, b > 0 and we set x = a
b

we deduce

(a
b

) 1
p −

1

p

(a
b

) 1
p

+ 1
q ≤

1

q
⇒
(a
b

) 1
p ≤

1

p

(a
b

) 1
p

+ 1
q

+
1

q
.

Multiplying both sides by b = b
1
p

+ 1
q we deduce

a
1
p b

1
q ≤

a

p
+
b

q
, ∀a, b > 0. (7.31)

If we set u := a
1
p , v := b

1
q then we can rewrite the above inequality in the commonly encountered form

uv ≤
up

p
+
vq

q
, ∀u, v > 0, p, q > 1,

1

p
+

1

q
= 1. (7.32)

The last inequality is known as Young’s inequality. ut

Corollary 7.36. Suppose that f : [a, b] → R is a continuous function that is twice dif-
ferentiable on (a, b). Let x0 ∈ (a, b) be a critical point of f , i.e., f ′(x0) = 0. Then the
following hold.

(i) If f ′′(x0) > 0, then x0 is a strict local minimum of f .

(ii) If f ′′(x0) < 0, then x0 is a strict local maximum of f .
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Proof. We prove only (i). Part (ii) follows by applying (i) to the new function −f .
Suppose that

f ′(x0) = 0, f ′′(x0) > 0.

We have to prove that there exists δ > 0 such that

0 < |x− x0| < δ ⇒ f(x) > f(x0).

We have

lim
x↘x0

f ′(x)

x− x0
= lim

x↘x0

f ′(x)− f ′(x0)

x− x0
= f ′′(x0) > 0.

Thus there exists δ1 > 0 such that,

x ∈ (x0, x0 + δ1)⇒ f ′(x)

x− x0
> 0⇒ f ′(x) > 0.

The Mean Value Theorem implies that for any x ∈ (x0, x0 + δ1) there exists ξ ∈ (x0, x)
such that

f(x)− f(x0) = f ′(ξ)(x− x0).

Since ξ ∈ (x0, x0 + δ1) we have f ′(ξ) > 0 and thus f ′(ξ)(x− x0) > 0.

Similarly

lim
x↗x0

f ′(x)

x− x0
= lim

x↗x0

f ′(x)− f ′(x0)

x− x0
= f ′′(x0) > 0.

Thus there exists δ2 > 0 such that,

x ∈ (x0 − δ2, x0)⇒ f ′(x)

x− x0
> 0→ f ′(x) < 0.

Hence if x ∈ (x0 − δ2, x0), then the Mean Value Theorem implies that there exists
η ∈ (x, x0) ⊂ (x0 − δ2, x0) such that

f(x)− f(x0) = f ′(η)(x− x0) > 0.

If we let δ := min(δ1, δ2), then we deduce

0 < |x− x0| < δ ⇒ f(x) > f(x0).

ut

Example 7.37. Here is a simple application of the above corollary. Fix a positive number
a. Consider the function

f : [0, a]→ R, f(x) = x(a− x)2.

We want to find the maximum possible value of this function. It is achieved either at
one of the end points 0, a or at some interior point x0. Note that f(0) = f(a) = 0 and
f(x) ≥ 0, ∀x ∈ [0, a], so there must exist an interior maximum which must be a critical
point. To find the critical points of f we need to solve the equation f ′(x) = 0. We have

f ′(x) = (a− x)2 − 2x(a− x) = x2 − 2ax+ a2 − 2ax+ 2x2 = 3x2 − 4ax+ a2.
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The discriminant of the quadratic equation 3x2 − 4ax+ a2 = 0 is

∆ = 16a2 − 12a2 = 4a2 > 0

Thus this quadratic equation has two roots

x± =
4a± 2a

6
= a,

a

3
.

Only one of these roots is in the interval (0, a), namely a
3 . Note that

f ′′(x) = 6x− 4a, f ′′(a/3) = 2a− 4a < 0.

Thus a/3 is the unique maximum point of f , and thus it is absolute maximum point. We
have

f(x) ≤ f(a/3) =
4a3

27
, ∀x ∈ [0, a]. ut

Theorem 7.38 (Cauchy’s finite increment theorem). Suppose that f, g : [a, b] → R are
two continuous functions that are differentiable on (a, b). Then there exists ξ ∈ (a, b) such
that

f ′(ξ)
(
g(b)− g(a)

)
= g′(ξ)

(
f(b)− f(a)

)
. (7.33)

In particular, if g′(t) 6= 0 for any t ∈ (a, b), then g(b) 6= g(a) and

f(b)− f(a)

g(b)− g(a)
=
f ′(ξ)

g′(ξ)
. (7.34)

Proof. Consider the function F : [a, b]→ R defined by

F (x) = f(x)
(
g(b)− g(a)

)︸ ︷︷ ︸
=:∆g

−g(x)
(
f(b)− f(a)

)︸ ︷︷ ︸
=:∆f

, ∀x ∈ [a, b].

This function is continuous on [a, b] and differentiable on (a, b). Moreover

F (b)− F (a) =
(
f(b)∆g − g(b)∆f

)
−
(
f(a)∆g − g(a)∆f

)
=
(
f(b)− f(a)

)
∆g +

(
g(a)− g(b)

)
∆f = 0.

Rolle’s theorem implies that there exists ξ ∈ (a, b) such that F ′(ξ) = 0. This proves (7.33).
To obtain (7.34) we observe that the assumption g′(t) 6= 0 for any t ∈ (a, b) implies that
g is injective and thus g(b) 6= g(a). Dividing both sides of (7.33) by g(b)− g(a) we deduce
(7.34). ut

Remark 7.39. In the above theorem we have tacitly assumed that a < b. The result
continues to be true even when a > b because

f(b)− f(a)

g(b)− g(a)
=
f(a)− f(b)

g(a)− g(b)
.

In this case ξ is a point in the open interval with endpoints a and b. ut
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If f : I → R is a function differentiable on the interval I, then its derivative f ′ : I → R
need not be continuous. However, the derivative is very close to being continuous in the
sense that it satisfies the intermediate value property, just like continuous functions do.

Theorem 7.40 (Darboux). Suppose that I is an interval of the real axis and f : I → R is
a differentiable function. Then the derivative f ′ satisfies the intermediate value property:
given a, b ∈ I, a < b, and a number γ strictly between f ′(a) and f ′(b), there exists a
number ξ ∈ (a, b) such that f ′(ξ) = γ. ut

Exercise 7.1 will guide you toward a proof of this theorem which is also a consequence
of Fermat’s principle.
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7.5. Table of derivatives

Table 7.1 summarizes the derivatives of the most frequently encountered functions.

f(x) f ′(x)

xn, (x ∈ R, n ∈ N) nxn−1

x−n (x 6= 0, n ∈ N) −nx−n−1

xα, (α ∈ R, x > 0) αxα−1

√
x, (x > 0) 1

2
√
x

lnx 1/x

ex, (x ∈ R) ex

ax, (a > 0, x ∈ R) ax ln a

sinx, (x ∈ R) cosx

cosx, (x ∈ R) − sinx

tanx, (cosx 6= 0) 1 + tan2 x = 1
cos2 x

arcsinx, x ∈ (−1, 1) 1√
1−x2

arccosx, x ∈ (−1, 1) − 1√
1−x2

arctanx, (x ∈ R) 1
1+x2

sinhx, (x ∈ R) coshx

coshx, (x ∈ R) sinhx

Table 7.1. Table of derivatives.

The hyperbolic functions sinhx and coshx are defined by the equalities

coshx :=
ex + e−x

2
, sinhx =

ex − e−x

2
.

The function sinh is called the hyperbolic sine while the function cosh is called the hyper-
bolic cosine.
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7.6. Exercises

Exercise 7.1. Consider the function f : R→ R, f(x) = |x|.

(i) Sketch the graph of f .

(ii) Show that f is not differentiable at 0.

(iii) Show that f is differentiable at any point x0 6= 0 and then compute the derivative
of f at x0.

ut

Exercise 7.2. Prove Proposition 7.7. ut

Exercise 7.3. Imitate the strategy in Example 7.15 to prove

lim
h→0

cos(x0 + h)− cosx0

h
= − sinx0.

Hint. You need to use the trigonometric identities (5.33a) and (5.33c). ut

Exercise 7.4. Consider the function f : (−π/2, π/2) → R, f(x) = tanx. Write the
equation of the tangent line to the graph of f at the point (π/4, f(π/4) ). ut

Exercise 7.5. Suppose that the functions f, g : I → R are n-times differentiable. Prove
that their product f · g is also n-times differentiable and satisfies the generalized product
rule

dn

dxn
(fg) =

n∑
k=0

(
n

k

)
f (n−k)g(k) =

n∑
k=0

(
n

k

)
f (k)g(n−k), (7.35)

where we defined f (0) := f , g(0) = g.

Hint. Argue by induction on n. At some point you need to use the Pascal formula (3.7),(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
,

also used in the proof of Newton’s binomial formula (3.6). ut

Exercise 7.6. Let n be a natural number. A real number r is said to be a root of order
n of a polynomial P (x) if there exists a polynomial Q(x) with the following properties:

• P (x) = (x− r)nQ(x), ∀x ∈ R.

• Q(r) 6= 0.

(a) Prove that if n > 1 and r is a a root of P (x) of order n, then r is also a root of order
(n− 1) of P ′(x).
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(b) Prove that for any natural numbers k < n the real numbers ±1 are roots of order
(n− k) of the polynomial

dk

dxk
(x2 − 1)n.

(c) For any natural number n we define the n-th Legendre polynomial to be

Pn(x) :=
1

2nn!

dn

dxn
(
x2 − 1

)n
.

Use (7.35) to compute Pn(±1). ut

Exercise 7.7. Consider the continuous function f : [0,∞) → R, f(x) =
√
x. Show that

f is not differentiable at 0. ut

Exercise 7.8. Consider the function f : R→ R given by

f(x) =

{
0, |x| ≥ 1

e−T (x), |x| < 1,
where T (x) =

1

1− x2
, ∀|x| < 1.

(a) Set

Fn(x) :=
dn

dxn
(
e−T (x)

)
, ∀|x| < 1.

Prove by induction that for any n ∈ N there exists a polynomial Pn(x) and a natural
number kn such that

Fn(x) = Pn(x)T (x)kne−T (x), ∀|x| < 1.

Hint. Observe that

T ′(x) = 2xT (x)2.

(b) Prove that f is a smooth function, i.e., infinitely many times differentiable.
Hint. Prove by induction that

f (n)(x) =

{
0, |x| ≥ 1,

Fn(x), |x| < 1.

For the inductive step observe that for |x| < 1 we have

1

x− 1
= −(x+ 1)T (x),

f (n)(x)− f (n)(1)

x− 1
=
Fn(x)

x− 1
= −(x+ 1)T (x)Fn(x) = (x+ 1)Pn(x)T (x)kn+1e−T (x),

Fn(x)

x+ 1
= (x− 1)T (x)Fn(x) = −(x− 1)Pn(x)T (x)kn+1e−T (x).

Then

lim
x↗1

f (n)(x)− f (n)(1)

x− 1
= − lim

x↗1

Fn(x)

x− 1
=
(

lim
x↗1

(x+ 1)Pn(x)
)
·
(

lim
x↗1

T (x)kn+1e−T (x)
)

= −2Pn(1)
(

lim
x↗1

T (x)kn+1e−T (x)
)
.

Now observe that

lim
x↗1

T (x) =∞.
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Use the result in Exercise 5.11 (b) to deduce

lim
x↗1

T (x)kn+1e−T (x) = 0.

ut

Exercise 7.9. 3 Fix a natural number n and real numbers p, q.

(a) Prove that for any t ∈ R we have

np(tp+ q)n−1 =

n∑
k=1

k

(
n

k

)
tk−1pkqn−k,

n(n− 1)p2(tp+ q)n−2 =
n∑
k=2

k(k − 1)

(
n

k

)
tk−2pkqn−k.

Hint. Consider the function

fn : R→ R, fn(t) =
(
tp+ q

)n
.

Compute the derivatives f ′n(t), f ′′n (t). Then describe fn(t) using Newton’s binomial formula and compute the same

derivatives using the new description of fn(t).

(b) For any integer k, 0 ≤ k ≤ n, and any x ∈ R set wk(x) :=
(
n
k

)
xk(1− x)n−k. Use part

(a) to prove that for any x ∈ R

1 =
n∑
k=0

wk(x) (7.36a)

nx =
n∑
k=0

kwk(x), (7.36b)

n(n− 1)x2 =
n∑
k=0

k(k − 1)wk(x) =
n∑
k=0

k2wk(x)− nx, (7.36c)

nx(1− x) =

n∑
k=0

(k − nx)2wk(x). (7.36d)

Hint. Use the results in (a) in the special case p = x, q = 1− x, t = 1. ut

Exercise 7.10. Find the extrema and the intervals on which the following functions are
increasing.

(i) f(x) =
√
x− 2

√
x+ 2, x > 0.

(ii) g(x) = x
x2+1

, x ∈ R.

ut

3The results in this exercise are very useful in probability theory.
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Exercise 7.11. Suppose that f : [a, b] → R is continuous and differentiable on (a, b).
Show that if

lim
x→a

f ′(x) = A,

then f is differentiable at a and f ′(a) = A. ut

Exercise 7.12. Prove that if f : I → R is a differentiable function defined on an interval
I, and the derivative f ′ is bounded on I, then f is a Lipschitz function, i.e.,

∃L > 0, ∀x, y ∈ I |f(x)− f(y)| ≤ L|x− y|. ut

Exercise 7.13. Use the Mean Value Theorem to prove that

| sin(x)− sin(y)| ≤ |x− y|, ∀x, y ∈ R. ut

Exercise 7.14. Fix a real number λ and suppose that u : R → R is a differentiable
function satisfying the differential equation

u′(t) = λu(t), ∀t ∈ R.

Prove that there exists a constant c ∈ R such that u(t) = ceλt, ∀t ∈ R.

Hint. Show that the function f(t) = e−λtu(t), t ∈ R is constant. ut

Exercise 7.15. Suppose that b, c are real numbers and u, v : R → R are twice differen-
tiable functions satisfying the differential equation

u′′(t) + bu′(t) + cu(t) = 0 = v′′(t) + bv′(t) + cv(t), ∀t ∈ R.

Define the Wronskian to be the function

W (t) = u(t)v′(t)− u′(t)v(t), t ∈ R.

Prove that

W ′(t) + bW (t) = 0

and deduce that

W (t) = W (0)e−bt.

Hint. You may want to use Exercise 7.14. ut

Exercise 7.16. (a) Suppose that u : R → R is a twice differentiable function satisfying
the differential equation

u′′(t) + u(t) = 0, ∀t ∈ R. (7.37)

Prove that

u′(t)2 + u(t)2 = u′(0)2 + u(0)2, ∀t ∈ R.
(b) Suppose that u, v : R→ R are twice differentiable functions satisfying the differential
equation (7.37), i.e.,

u′′(t) + u(t) = 0 = v′′(t) + v(t), ∀t ∈ R.
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Show that the difference w(t) = u(t) − v(t) also satisfies the differential equation (7.37).
Use part (a) to prove that if u(0) = v(0) and u′(0) = v′(0), then u(t) = v(t), ∀t ∈ R.

(c) Can you think of a function u : R→ R satisfying (7.37) and the initial conditions

u(0) = 0, u′(0) = 1? ut

Exercise 7.17. (a) Prove that for any real number α ≥ 1 and any x > −1 we have

(1 + x)α ≥ 1 + αx.

(b) Prove by induction that for any natural number n and any x ≥ 0 we have

1 + x+
x2

2!
+ · · ·+ xn

n!
≤ ex.

Hint. Have a look at Example 7.34. ut

Exercise 7.18. Prove that

sinx ≥ x− x3

6
, ∀x ≥ 0.

Hint. Have a look at Example 7.34. ut

Exercise 7.19. Prove that the function

f : (0,∞)→ R, f(x) =

(
1 +

1

x

)x
is increasing. ut

Exercise 7.20. Use Lagrange’s mean value theorem to show that for any x > 0 we have

1

x+ 1
< ln(x+ 1)− lnx <

1

x
.

Conclude that

1 +
1

2
+ · · ·+ 1

n
> ln(n+ 1), ∀n ∈ N. ut

Exercise 7.21. Fix a real number s ∈ (0, 1). Prove that for any x > 0 we have

(1 + x)1−s − x1−s <
1− s
xs

.

Conclude that

1 +
1

2s
+ · · ·+ 1

ns
>

1

1− s
(

(n+ 1)1−s − 1
)
. ut

Exercise 7.22. Find the maximum possible volume of an open rectangular box that can
be obtained from a square sheet of cardboard with a 6 ft side by cutting squares at each
of the corners and bending up the ends of the resulting cross-like figure; see Figure 7.6.ut

Exercise 7.23. Prove that among all the rectangles with given perimeter P the square
has the largest area. ut
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Figure 7.6. Cutting out a box.

Exercise 7.24. Suppose that f : [−1, 1]→ R is a differentiable function.

(a) Prove that if f is even, i.e., f(x) = f(−x), ∀x ∈ [−1, 1], then f ′(x) is odd, f ′(−x) = −f ′(x),
∀x ∈ [−1, 1]. In particular, f ′(0) = 0.

(b) Prove that if f is odd, then f ′ is even. ut

Exercise 7.25. Fix a natural number n and suppose that f : (a, b) → R is a 2n-times
differentiable function. Prove the following statements.

(a) If x0 ∈ (a, b) satisfies

f ′(x0) = · · · = f (2n−1)(x0) = 0, f (2n)(x0) > 0,

then x0 is a strict local minimum of f .

(b) If x0 ∈ (a, b) satisfies

f ′(x0) = · · · = f (2n−1)(x0) = 0, f (2n)(x0) < 0,

then x0 is a strict local maximum of f .

Hint. Use proof of Corollary 7.36 as inspiration and prove (in case (a)) that there exists δ > 0 such that for

x ∈ (x0, x0+δ) we have f (k)(x) > 0,∀k = 1, . . . , 2n−1 and for x ∈ (x0−δ, x0) we have f (k)(x) < 0, ∀k = 1, . . . , 2n−1.

ut

7.7. Exercises for extra-credit

Exercise* 7.1 (Intermediate value property of derivatives). Suppose that f : [a, b] → R
is a differentiable function.

(a) Prove that if f ′(a) < 0 < f ′(b), then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

Hint. Think Fermat.

(b) More generally, prove that if f ′(a) < f ′(b) and m ∈ (f ′(a), f ′(b)), then there exists
ξ ∈ (a, b) such that f ′(ξ) = m. ut



196 7. Differential calculus

Exercise* 7.2. Suppose fn : [a, b] → R, n ∈ N, is a sequence of differentiable functions
functions with the following properties.

(i) The sequence of derivatives f ′n : [a, b]→ R converge that converges uniformly to
a function g : [a, b]→ R.

(ii) The sequence fn : [a, b]→ R converges pointwisely to a function f : [a, b]→ R.

Prove that the following hold.

(a) The sequence fn : [a, b]→ R converges uniformly to f : [a, b]→ R.

(b) The function f is differentiable and f ′ = g, i.e., the sequence f ′n : [a, b]→ R converges
uniformly to f ′.

Hint. Use Exercise 6.10 and the Mean Value Theorem. ut

Exercise* 7.3. Suppose that f : R→ R is a continuous function such that

lim
h↘0

f(x+ 2h)− f(x+ h)

h
= 0, ∀x ∈ R.

Prove that f is a constant function.

Hint. Argue by contradiction and assume there exist a, b such that f(a) 6= f(b), say f(a) < f(b). Consider the

function g(x) = f(x)−mx, m :=
f(b)−f(a)

b−a . Note that g(a) = g(b) and

lim
h↘0

g(x+ 2h)− g(x+ h)

h
= −m < 0,

and prove that g admits a local maximum in [a, b). ut

Exercise* 7.4. Suppose f : R → R is a C2-function, i.e., twice differentiable and the
second derivative is continuous. Show that if the functions f and f (2) are bounded on R,
then so is the function f ′. ut

Exercise* 7.5 (Bernstein). Let f : [0, 1] → R be a continuous function. For any n ∈ N
we denote by Bf

n(x) the n-th Bernstein polynomial determined by f ,

Bn(x) =
n∑
k=0

f(k/n)

(
n

k

)
xk(1− x)n−k.

(a) Show that for any x ∈ [0, 1] we have

f(x)−Bf
n(x) =

n∑
k=0

(
f(x)− f(k/n)

)(n
k

)
xk(1− x)k.

(b) Show that for any δ ∈ (0, 1) and x ∈ [0, 1] we have∑
|k/n−x|≥δ

(
n

k

)
xk(1− x)k ≤

∑
k=0

(k − nx)2

n2δ2
≤ x(1− x)

nδ2
.
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(c) Use (a) and (b) to prove that as n → ∞ the sequence (Bf
n(x)) converges to f(x)

uniformly in x ∈ [0, 1].

Hint. Use the equalities in Exercise 7.9. ut





Chapter 8

Applications of
differential calculus

8.1. Taylor approximations

The concept of derivative is based on the idea of approximation. Thus, if f : I → R is a
differentiable function and x0 ∈ I, then the linearization of f at x0,

L(x) = f(x0) + f ′(x0)(x− x0),

is a good approximation for f(x) when x is not too far from x0. More precisely, the error

r(x) = f(x)− L(x)

is o(x− x0), much much smaller than |x− x0|, which itself is small when x is close to x0.
In this section we want to refine and improve this observation.

Definition 8.1. Suppose that f : I → R is an n-times differentiable function defined on
an interval I. For x0 ∈ I we define the degree n Taylor polynomial of f at x0 to be

Tn(x) = f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n =

n∑
k=0

f (k)(x0)

k!
(x− x0)k.

Often the Taylor polynomial of f at x0 = 0 is referred to as the Maclaurin polynomial.

If f : I → R is a smooth function, then the series

∞∑
k=0

f (k)(x0)

k!
(x− x0)k

is called the Taylor series of the smooth function f at the point x0. ut

199
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Example 8.2. (a) Consider a differentiable function f : I → R. Then the degree 1 Taylor
polynomial of f at x0 is

T1(x) = f(x0) + f ′(x0)(x− x0).

Thus, T1(x) is the linearization of f at x0.

(b) Consider the function f : R → R, f(x) = ex. We know that f (n)(x) = ex, ∀n ∈ N,
x ∈ R and we deduce that

f (k)(0) = 1, ∀k ∈ N.
In particular, the degree n Taylor polynomial of ex at x0 = 0 is

Tn(x) = 1 +
x

1!
+ · · ·+ xn

n!
.

The Taylor series of ex at x0 = 0 is
∞∑
k=0

xk

k!
.

(c) Consider the function f : R→ R, f(x) = sinx. We have

f (4k)(x) = sinx, f (4k+1)(x) = cosx, f (4k+2)(x) = − sinx, f (4k+3)(x) = − cosx, ∀k ≥ 0,

f (4k)(0) = 0, f (4k+1)(0) = 1, f (4k+2)(0) = 0, f (4k+3)(0) = −1.

We deduce that the Taylor polynomials of sinx at x0 = 0 are

T1(x) = f(0) +
f ′(0)

1!
x = x,

T2(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 = x,

T3(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 = x− x3

6
,

Tn(x) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · .

The Taylor series of sinx at x0 = 0 is
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

(d) Consider the function f : R→ R, f(x) = cosx. We have

f (4k)(x) = cosx, f (4k+1)(x) = − sinx, f (4k+2)(x) = − cosx, f (4k+3)(x) = sinx, ∀k ≥ 0

f (4k)(0) = 1, f (4k+1)(0) = 0, f (4k+2)(0) = −1, f (4k+3)(0) = 0.

We deduce that the Taylor polynomials of cosx at x0 = 0 are

T1(x) = f(0) +
f ′(0)

1!
x = 1,

T2(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 = 1− x2

2!
,
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T3(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 = 1− x2

2!
,

Tn(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

The Taylor series of cosx at x0 = 0 is
∞∑
k=0

(−1)k
x2k

(2k)!

(e) Fix a real number α and define f : (0,∞)→ R, f(x) = xα. We have

f ′(x) = αxα−1, f (2)(x) = α(α− 1)xα−2, f (k)(x) = α(α− 1) · · · (α− (k − 1) )xα−k.

We deduce that

f (k)(1) = α(α− 1) · · · (α− (k − 1) )

and thus the degree n Taylor polynomial of xα at x0 = 1 is

Tn(x) = 1 +
α

1!
(x− 1) +

α(α− 1)

2!
(x− 1)2 + · · ·+ α(α− 1) · · · (α− (n− 1) )

n!
(x− 1)n.

The coefficients of the above polynomial coincide with the binomial coefficients if α is a
natural number. For this reason, for any α ∈ R we introduce the notation(

α

0

)
= 1,

(
α

n

)
=
α(α− 1) · · · (α− (n− 1) )

n!
, n ∈ N.

The degree n Taylor polynomial of xα at x0 = 1 can then be described in the more compact
form

Tn(x) =

n∑
k=0

(
α

k

)
(x− 1)α−k. ut

Remark 8.3. The degree n Taylor polynomial of a function f at a point x0 is the unique
polynomial of degree ≤ n such that

Tn(x0) = f(x0), T ′n(x0) = f ′(x0), T (k)
n (x0) = f (k)(x0), ∀k = 1, . . . , n.

Exercise 8.1 asks you to prove this fact. ut

Example 8.2 shows that the degree 1 Taylor polynomial of a differentiable function at
a point x0 is the linear approximation of f at x0, and we know that it provides a very
good approximation for f(x) if x is near x0. The next result states that the same is true
for the higher degree Taylor polynomials.

Theorem 8.4 (Taylor approximation). Suppose that f : [a, b] → R is (n + 1)-times
differentiable, n ∈ N. Fix x0 ∈ [a, b]. We form the degree n Taylor polynomial of f at x0

Tn(x) = f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n
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and we consider the remainder (or error)

Rn(x0, x) = f(x)− Tn(x), x ∈ [a, b].

Fix x ∈ [a, b], x 6= x0, and a continuous function ϕ : [x0, x]→ R which is differentiable on
(x0, x) and ϕ′(t) 6= 0, ∀t ∈ (x0, x). (Here we are deliberately a bit negligent and we think
of [x0, x] as the closed interval with endpoints x0, x, even in the case x0 > x.)

Then there exists ξ in the open interval with endpoints x0 and x such that

Rn(x0, x) =
ϕ(x)− ϕ(x0)

n!ϕ′(ξ)
f (n+1)(ξ)(x− ξ)n. (8.1)

Proof. Consider the function F : [x0, x]→ R given by

F (t) = f(x)−

(
f(t) +

f ′(t)

1!
(x− t) + · · ·+ f (n)(t)

n!
(x− t)n

)
, ∀t ∈ [x0, x].

Note that F (x) = 0, F (x0) = Rn(x0, x). From Cauchy’s finite increment theorem, Theo-
rem 7.38, we deduce that there exists ξ in the interval (x0, x) such that

F (x)− F (x0)

ϕ(x)− ϕ(x0)
=
F ′(ξ)

ϕ′(ξ)
.

Now observe that

−F ′(t) = f ′(t) +

(
f ′′(t)

1!
(x− t)− f ′(t)

1!

)
+

(
f (3)(t)

2!
(x− t)2 − f (2)(t)

1!
(x− t)

)

+ · · ·+

(
f (n+1)(t)

n!
(x− t)n − f (n)(t)

(n− 1)!
(x− t)n−1

)

=
f (n+1)(t)

n!
(x− t)n.

Thus

− Rn(x0, x)

ϕ(x)− ϕ(x0)
=
F (x)− F (x0)

ϕ(x)− ϕ(x0)
=
F ′(ξ)

ϕ′(ξ)
= −f

(n+1)(t)(x− ξ)n

n!ϕ′(ξ)

The last equality clearly implies (8.1). ut

If we let ϕ(t) = (x − t)n+1 in the above theorem, we obtain the following important
consequence.

Corollary 8.5 (Lagrange remainder formula). There exists ξ ∈ (x0, x) such that

f(x)− Tn(x) = Rn(x0, x) =
1

(n+ 1)!
f (n+1)(ξ)(x− x0)n+1. (8.2)

Proof. We have ϕ(x) = 0 and ϕ(x)− ϕ(x0) = −(x− x0)n+1, ϕ′(ξ) = −(n+ 1)(x− ξ)n.ut
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Remark 8.6. Let us explain how this works in applications. Suppose that f : [a, b]→ R
is (n+ 1)-times differentiable and x0 ∈ [a, b]. The degree n Taylor polynomial of f at x0

is

Tn(x) = f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n

It is convenient to introduce the notation h = x− x0 so that x = x0 + h and we deduce

Tn(x0 + h) = f(x0) +
f ′(x0)

1!
h+ · · ·+ f (n)(x0)

n!
hn.

If h is sufficiently small, then Tn(x0 + h) is an approximation for f(x0 + h). The error of
this approximation is given by the remainder Rn(x0, x) = f(x0 + h) − Tn(x0 + h). This
remainder really depends only on the difference h = x − x0 and, to emphasize this fact,
we will write Rn(x0, h) instead of Rn(x0, x) in the argument below. Also, for simplicity,
we will denote by (x0, x0 + h) the open interval with endpoints x0 and x0 + h. (Note that
x0 + h < x0 when h < 0.)

The Lagrange remainder formula tells us that there exists ξ ∈ (x0, x0 + h)

Rn(x0, h) =
1

(n+ 1)!
f (n+1)(ξ)hn+1,

If we define

Mn+1(x0, h) := sup
ξ∈[x0,x0+h]

|f (n+1)(ξ)|,

then we deduce

|Rn(x0, h) | ≤ Mn+1(x0, h)|h|n+1

(n+ 1)!
. (8.3)

If the right-hand side of the above inequality is small, then the error has to be small. The
above result implies that∣∣ f(x)− Tn(x)

∣∣ = O
(
|x− x0|n+1

)
as x→ x0, , (8.4)

where O is Landau’s symbol defined in (5.34). ut

Example 8.7. Let us show how the above remark works in a rather concrete case. Suppose
f(x) = sinx. We use Taylor approximations of sinx at x0 = 0. For example, the degree
4 Taylor polynomial of sinx at x0 = 0 is

T4(h) = sin(0) +
cos(0)

1!
h− sin(0)

2!
h2 − cos(0)

3!
h3 +

sin(0)

4!
h4 = h− h3

3!
= h− h3

6
.

We have

sinh ≈ h− h3

6
.

To estimate the error of this approximation we use (8.2). The 5th derivative of sinx is
cosx so that | cos ξ| ≤ 1, ∀x ∈ R. We deduce from (8.2) that for some ξ between 0 and x
we have ∣∣∣sinh− (h− h3

6

)∣∣∣ =
| cos ξ|

5!
h5 ≤ |h|

5

5!
=
|h|5

120
.
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If for example |h| ≤ 1
2 , then

|h|5

120
≤ 1

32 · 120
=

1

3840
<

1

103
.

Thus for |h| ≤ 1
2 the expression h− h3

6 approximates sinh up to two decimals. For example

0.5− (0.5)3/6 = 0.47916...⇒ sin 0.5 = 0.47...

If h = 1
4 , then

|h|5

120
=

1

45 · 120
=

1

1024 · 120
=

1

122880
≤ 1

105
,

and 0.25− (0.25)3/6 computes sin(0.25) up to four decimals. Thus

0.25− (0.25)3/6 = 0.248666...⇒ sin(0.25) = 0.2486....

In Figure 8.1 we have depicted side-by-side the graph of sin(x) for |x| ≤ 10 and the graph
of T7(x), its degree 7 Taylor approximation at x0 = 0. While T7(x) takes large values for
|x| large, it matches very well the graph of sinx on the interval [−3, 3]. ut

Figure 8.1. The graphs of sinx and its degree 7 Taylor approximation at the origin.

Here is a nice consequence of Corollary 8.5.

Corollary 8.8. For any x ∈ R we have

ex =

∞∑
n=0

xn

n!
. (8.5)
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Note that for x = 1 the above equality specializes to (4.26).

Proof. Observe that for any natural number n the partial sum

sn(x) = 1 +
x

1!
+ · · ·+ xn

n!

is the n-th Taylor polynomial of ex at x0 = 0. Corollary 8.5 implies that there exists a
real number ξn between 0 and x such that

ex − sn(x) = eξn
xn+1

(n+ 1)!
.

Observe that since −|x| ≤ ξn ≤ |x| we have eξn ≤ e|x| so that∣∣ ex − sn(x)
∣∣ ≤ e|x| |x|n+1

(n+ 1)!
. (8.6)

From (4.8) we deduce that

lim
n→∞

|x|n+1

(n+ 1)!
= 0.

The Squeezing Principle then implies that

lim
n→∞

∣∣ ex − sn(x)
∣∣ = 0.

ut

Remark 8.9. The above proof shows a bit more namely that for any R > 0, the partial
sums sn(x) converge to ex uniformly on [−R,R]. Indeed, if x ∈ [−R,R] so that |x| ≤ R,
then (8.6) implies that ∣∣ ex − sn(x)

∣∣ ≤ eR Rn+1

(n+ 1)!
, ∀|x| ≤ R.

Note that the right-hand side of the above inequality is independent of x and converges to
0 as n → ∞ according to (4.8). Weierstrass criterion in Exercise 6.6 implies the claimed
uniform convergence. ut

8.2. L’Hôpital’s rule

Differential calculus is also very useful in dealing with singular limits such as 0
0 , ∞∞ .

Proposition 8.10 (L’Hôpital’s Rule). Let a, b ∈ [−∞,∞], a < b. Suppose that the
differentiable functions f, g : (a, b)→ R satisfy the following conditions.

(i) g′(x) 6= 0, ∀x ∈ (a, b).

(ii)

lim
x↗b

f ′(x)

g′(x)
= A ∈ [−∞,∞].
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(iii) Either

lim
x↗b

f(x) = lim
x↗b

g(x) = 0, (iii0)

or

lim
x↗b

g(x) = ±∞. (iii∞)

Then

lim
x↗b

f(x)

g(x)
= A.

Proof. Let us first observe that (i) and Rolle’s Theorem imply that g is injective. Hence,
there exists a′ ∈ [a, b) such that g(x) 6= 0, ∀x ∈ (a′, b). Without any loss of generality we
can assume that a = a′ since we are interested in the behavior of f, g near b. We have to
prove that for any sequence xn ∈ (a, b) such that limxn = b we have

lim
n→∞

f(xn)

g(xn)
= A.

Fix one such sequence (xn)n∈N. At this point we want to invoke the following auxiliary
fact whose proof we postpone.

Lemma 8.11. There exists a sequence (yn) in (a, b) such that xn 6= yn, ∀n, limn→∞ yn = b
and

lim

(
|f(yn)|+ |g(yn)|

|g(xn)|

)
= 0. ut

Choose a sequence (yn) as in the above lemma so that

lim
n→∞

f(yn)

g(xn)
= lim

n→∞

g(yn)

g(xn)
= 0.

From Cauchy’s Finite Increment Theorem 7.38 we deduce that there exists ξn ∈ (xn, yn)
such that

rn =
f(xn)− f(yn)

g(xn)− g(yn)
=
f ′(ξn)

g′(ξn)
.

Since xn → b we deduce ξn → b so that

lim
n→∞

rn = lim
n→∞

f ′(ξn)

g′(ξn)
= A. (8.7)

On the other hand, for any n we have

rn =
f(xn)− f(yn)

g(xn)− g(yn)
=

f(xn)− f(yn)

g(xn)
(
1− g(yn)

g(xn)

) =

f(xn)
g(xn) −

f(yn)
g(xn)

1− g(yn)
g(xn)

.

We deduce

f(xn)

g(xn)
− f(yn)

g(xn)
= rn

(
1− g(yn)

g(xn)

)
⇒ f(xn)

g(xn)
=
f(yn)

g(xn)
+ rn

(
1− g(yn)

g(xn)

)
.
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Hence

lim
n→∞

f(xn)

g(xn)
= lim

n→∞

f(yn)

g(xn)︸ ︷︷ ︸
=0

+
(

lim
n→∞

rn
)
· lim
n→∞

(
1− g(yn)

g(xn)

)
︸ ︷︷ ︸

=1

= lim
n→∞

rn
(8.7)
= A.

All there is left to do is prove Lemma 8.11.

Proof of Lemma 8.11 We consider two cases.

1. Suppose that (iii0) holds, i.e.,

lim
x↗b

f(x) = lim
↗b

g(x) = 0.

Then for any n we can find yn ∈ (xn, b) such that

|f(yn)|+ |g(yn)| < 1

n
|g(xn)|.

so that
|f(yn)|+ |g(yn)|

|g(xn)|
<

1

n
, ∀n,

and thus

lim
n→∞

|f(yn)|+ |g(yn)|
|g(xn)|

= 0.

2. Suppose that (iii∞) holds, i.e.,

lim
n→∞

g(xn) = ±∞.

For t ∈ (a, b) we set h(t) := |f(t)|+ |g(t)|. We construct inductively an increasing sequence of natural numbers (nk)

as follows.

A. Since |g(xn)| → ∞ there exists n0 ∈ N such that

|g(xn)| > h(x1), ∀n ≥ n0.

B. Since |g(xn)| → ∞, for any k ∈ N, k > 1, we can find nk ∈ N such that nk > nk−1 and

|g(xn)| > 2kh(xnk−1 ) ∀n ≥ nk. (8.8)

Now define yn by setting

yn :=

{
x1, 1 ≤ n < n1

xnk−1 , nk ≤ n < nk+1, k ∈ N.

Observe that for n ∈ [nk, nk+1) we have

h(yn)

|g(xn)|
=
|h(xnk−1 )|
g(xn)

(8.8)
<

1

2k
.

This proves that

lim
n→∞

h(yn)

|g(xn)|
= 0. ut

ut
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Remark 8.12. Proposition 8.10 has a counterpart involving the left limit limx↘a. Its
statement is obtained from the statement of Proposition 8.10 by globally replacing the
limit at b with the limit at a. The proof is entirely similar. ut

Example 8.13. (a) We want to compute

lim
x→0

1− cosx

x2
.

According to L’Hôpital’s theorem we have

lim
x→0

1− cosx

x2
= lim

x→0

(1− cosx)′

(x2)′
= lim

x→0

sinx

2x
=

1

2
.

(b) Consider the function f : (0,∞)→ R, f(x) = xx. We want to investigate the limit

lim
x→0

xx.

Formally the limit ought to be 00, but we do not know what 00 means. Consider a new
function

g(x) = lnxx = x lnx, x > 0.

In this case we have

lim
x→0+

g(x) = 0 · (−∞)

which is a degenerate limit. We rewrite

g(x) =
lnx

1
x

and we observe that in this case

lim
x→0+

g(x) = −∞
∞

which suggests trying L’Hôpital’s rule. We have

(lnx)′ =
1

x
, (1/x)′ = − 1

x2

and
1/x

−1/x2
= −x→ 0 as x→ 0+.

Hence

lim
x→0+

g(x) = 0⇒ lim
x→0+

f(x) = e0 = 1. ut

8.3. Convexity

In this section we discuss in some detail a concept that has find many applications.
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8.3.1. Basic facts about convex functions. We begin with a simple geometric obser-
vation.

Proposition 8.14. Let x, x1, x2 ∈ R, x1 < x2. The following statements are equivalent.

(i) x ∈ [x1, x2].

(ii) There exist t1, t2 ≥ 0 such that t1 + t2 = 1 and x = t1x1 + t2x2.

Proof. (i) ⇒ (ii) Suppose x ∈ [x1, x2]. We set

t1 :=
x2 − x
x2 − x1

, t2 :=
x− x1

x2 − x1
. (8.9)

Since x1 ≤ x ≤ x2 we deduce that t1, t2 ≥ 0. We observe that

t1 + t2 =
x2 − x
x2 − x1

+
x− x1

x2 − x1
=
x2 − x1

x2 − x1
= 1,

and

t1x1 + t2x2 =
x1(x2 − x) + x2(x− x1)

x2 − x1
=
x2x− x1x

x2 − x1
= x. (8.10)

(ii) ⇒ (i) Suppose that there exist t1, t2 ≥ 0 such that t1 + t2 = 1 and x = t1x1 + t2x2.
We have

x− x1 = (t1 − 1)x1 + t2x2 = −t2x1 + t2x2 = t2(x2 − x1) ≥ 0,

x2 − x = (1− t2)x2 − t1x1 = t1x2 − t1x1 = t1(x2 − x1) ≥ 0.

Hence x1 ≤ x ≤ x2. ut

Remark 8.15. The point t1x1 + t2x2 is interpreted as the center of mass of a system of
two particles, one located at x1 and of mass t1 and the other located at x2 and of mass t2.

In general, given n particles of masses m1, . . . ,mn respectively located at x1, . . . , xn,
then the center of mass of this system is the point

x=
m1x1 + · · ·+mnxn
m1 + · · ·+mn

.

Note that if we define

tk :=
mk

m1 +m2 + · · ·+mn
, k = 1, 2, . . . , n,

then

t1 + t2 + · · ·+ tn = 1 and x= t1x1 + · · ·+ tnxn.

Thus, a point x lies between x1 and x2 if and only if it is the center of mass of a system
of particles located at x1 and x2. ut

Given a function f : (a, b) → R and x1, x2 ∈ (a, b), x1 < x2, we denote by Lfx1,x2 the
linear function whose graph contains the points (x1, f(x1)) and (x2, f(x2)) on the graph
of f . The slope of this line is

m =
f(x2)− f(x1)

x2 − x1
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and thus the equation of this line is

Lfx1,x2
(x) = f(x1) +m(x− x1) = f(x1) +

f(x2)− f(x1)

x2 − x1
(x− x1)

= f(x1)

(
1− x− x1

x2 − x1

)
+ f(x2)

x− x1

x2 − x1
=

x2 − x
x2 − x1

f(x1) + f(x2)
x− x1

x2 − x1
.

Hence

Lfx1,x2
(x) =

x2 − x
x2 − x1

f(x1) +
x− x1

x2 − x1
f(x2). (8.11)

Above we recognize the numbers t1, t2 defined in (8.9).

Proposition 8.16. Consider a function f : (a, b) → R and x1, x2 ∈ (a, b), x1 < x2.

Denote by Lfx1,x2 the linear function whose graph contains the points (x1, f(x1)) and
(x2, f(x2)) on the graph of f . The following statements are equivalent.

f(x) ≤ Lfx1,x2
(x), ∀x ∈ [x1, x2]. (8.12a)

f(x) ≤ x2 − x
x2 − x1

f(x1) +
x− x1

x2 − x1
f(x2), ∀x ∈ [x1, x2]. (8.12b)

∀t1, t2 ≥ 0 such that t1 + t2 = 1 f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2), (8.12c)

Proof. The equivalence (8.12a)⇐⇒ (8.12b) follows from (8.11). The equivalence (8.12b)
⇐⇒ (8.12c) follows from (8.9) and (8.10).

ut

y=f(x)

xx

y

1 2

Figure 8.2. The graph lies below the chord.
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Remark 8.17. The part of the graph of Lfx1,x2 over the interval [x1, x2] is called the chord
of the graph of f determined by the interval [x1, x2]. The condition (8.12a) is equivalent
to saying that the part of the graph of f corresponding to the interval [x1, x2] lies below
the chord of the graph determined by this interval; see Figure 8.2. ut

Definition 8.18. Let f : I → R be a real valued function defined on an interval I.

(i) The function f is called convex if, for any x1, x2 ∈ I, and any t1, t2 ≥ 0 such
that t1 + t2 = 1, we have

f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2).

(ii) The function f is called concave if, for any x1, x2 ∈ I, and any t1, t2 ≥ 0 such
that t1 + t2 = 1, we have

f(t1x1 + t2x2) ≥ t1f(x1) + t2f(x2).

ut

Remark 8.19. (a) From Propositions 8.14 and 8.16 we deduce that a function f : I → R
is convex if and only if, for any interval [x1, x2] ⊂ I, the part of the graph of f determined
by the interval [x1, x2] is below the chord of the graph determined by this interval. It is
concave if the graph is above the chords.

(b) Observe that if t1 = 1 and t2 = 0 we have t1x1+t2x2 = x1 and t1f(x1)+t2f(x2) = f(x1)
and thus

f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2).

is automatically satisfied. A similar thing happens when t1 = 0 and t2 = 1. Thus the
definition of convexity is equivalent to the weaker requirement that for any x1, x2 ∈ I, and
any positive t1, t2 such that t1 + t2 = 1, we have

f(t1x1 + t2x2) ≤ t1f(x1) + t2f(x2).

(c) Observe that a function f is concave if and only if −f is convex.

(d) In many calculus texts, convex functions are called concave-up and concave functions
are called concave-down. ut

Before we can give examples of convex functions we need to produce simple criteria
for recognizing when a function is convex.

Proposition 8.14 implies that a function f : I → R is convex if and only if for any
x1, x2 ∈ I and any x ∈ (x1, x2) we have

f(x) ≤ x2 − x
x2 − x1

f(x1) +
x− x1

x2 − x1
f(x2)

Since

1 =
x2 − x
x2 − x1

+
x− x1

x2 − x1
,
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we deduce that f is convex if and only if

f(x)

(
x2 − x
x2 − x1

+
x− x1

x2 − x1

)
≤ x2 − x
x2 − x1

f(x1) +
x− x1

x2 − x1
f(x2)

⇐⇒ x2 − x
x2 − x1

(
f(x)− f(x1)

)
≤ x− x1

x2 − x1

(
f(x2)− f(x)

)
⇐⇒ (x2 − x)

(
f(x)− f(x1)

)
≤ (x− x1)

(
f(x2)− f(x)

)
⇐⇒ f(x)− f(x1)

x− x1
≤ f(x2)− f(x)

x2 − x
.

We have thus proved the following result.

Corollary 8.20. Let f : I → R be a function defined on the interval I ⊂ R. The following
statements are equivalent.

(i) The function f is convex.

(ii) For any x1, x, x2 ∈ I such that x1 < x < x2 we have

f(x)− f(x1)

x− x1
≤ f(x2)− f(x)

x2 − x
.

ut

xxx
1 2

Figure 8.3. Chords of the graph of a convex function become less inclined as they move
to the right.

Let us observe that f(x)−f(x1)
x−x1

is the slope of the chord determined by [x1, x] while
f(x2)−f(x)

x2−x is the slope of the chord determined by [x, x2]. The above result states that f

is convex if and only if for any x1 < x < x2 the chord determined by [x1, x] has a smaller
inclination than the chord determined by [x, x2]; see Figure 8.3.
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Corollary 8.21. Suppose that f : I → R is a convex function. Then

f(x2)− f(x1)

x2 − x1
≤ f(x4)− f(x3)

x4 − x3
, ∀x1, x2, x3, x4 ∈ I, x1 < x2 < x3 < x4.

Proof. From Corollary 8.20 we deduce that the slope of the chord determined by [x1, x2]
is smaller than the slope of the chord determined by [x2, x3] which in turn is smaller than
the slope of the chord determined by [x3, x4]; see Figure 8.4. In other words,

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
≤ f(x4)− f(x3)

x4 − x3
.

ut

xxxx
1 2 3 4

Figure 8.4. Chords of the graph of a convex function become more inclined as they
move to the right.

Corollary 8.22. Suppose that f : I → R is a differentiable function. Then the following
statements are equivalent.

(i) The function f is convex.

(ii) The derivative f ′ is a nondecreasing function.

Proof. (ii)⇒ (i) In view of Corollary 8.20 we have to prove that for any x1 < x2 < x3 ∈ I
we have

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
.

From Lagrange’s Mean Value theorem we deduce that there exist ξ1 ∈ (x1, x2) and
ξ2 ∈ (x2, x3) such that

f ′(ξ1) =
f(x2)− f(x1)

x2 − x1
, f ′(ξ2) =

f(x3)− f(x2)

x3 − x2
.
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Since f ′ is nondecreasing and ξ1 < x2 < ξ2, we deduce f ′(ξ1) ≤ f ′(ξ2).

(i) ⇒ (ii) We know that f is convex and we have to prove that f ′ is nondecreasing,
i.e.,

x1 < x2 ⇒ f ′(x1) ≤ f ′(x2).

For h > 0 sufficiently small, h < 1
2(x2 − x1), we have

x1 < x1 + h < x2 − h < x2.

From Corollary 8.21 we deduce that slope of the chord determined by [x1, x1 +h] is smaller
than the slope of the chord determined by [x2 − h, x2], that is,

f(x1 + h)− f(x1)

h
≤ f(x2)− f(x2 − h)

h
=
f(x2 − h)− f(x2)

−h
.

Hence

f ′(x1) = lim
h→0+

f(x1 + h)− f(x1)

h
≤ lim

h→0+

f(x2 − h)− f(x2)

−h
= f ′(x2).

ut

Since a differentiable function is nondecreasing iff its derivative is nonnegative, we deduce
the following useful result.

Corollary 8.23. Suppose that f : I → R is a twice differentiable function. Then the
following statements are equivalent.

(i) The function f is convex.

(ii) The second derivative f ′′ is nonnegative, f ′′(x) ≥ 0, ∀x ∈ I.

ut

Since a function is concave if and only if −f is convex we deduce the following result.

Corollary 8.24. Suppose that f : I → R is a twice differentiable function. Then the
following statements are equivalent.

(i) The function f is concave.

(ii) The second derivative f ′′ is nonpositive, f ′′(x) ≤ 0, ∀x ∈ I.

ut

Example 8.25. The function f : R → R, f(x) = ex is convex since f ′′(x) = ex > 0 for
any x ∈ R. The function f : (0,∞)→ R, f(x) = lnx is concave since

f ′(x) =
1

x
, f ′′(x) = − 1

x2
< 0, ∀x > 0.

Fix α ∈ R and consider the power function

p : (0,∞)→ R, p(x) = xα.
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Then

p′′(x) = α(α− 1)xα−2.

Note that if α(α− 1) > 0 this function is convex, if α(α− 1) < 0 this function is concave,
and if α = 0 or α = 1 this function is both convex and concave. Thus, the function

√
x is

concave, while the function 1√
x

= x−
1
2 is convex. ut

8.3.2. Some classical applications of convexity. We start with a simple geometric
consequence of convexity.

Proposition 8.26. Suppose that f : I → R is a differentiable convex function. Then the
graph of f lies above any tangent to the graph; see Figure 8.5. If additionally f ′ is strictly
increasing, then any tangent to the graph intersects the graph at a unique point.

y=f(x)

x
0

y=L(x)

Figure 8.5. The graph of a convex function lies above any of its tangents.

Proof. Let x0 ∈ I. The tangent to the graph of f at the point (x0, f(x0) ) is the graph
of the linearization of f at x0 which is the function

L(x) = f(x0) + f ′(x0)(x− x0).

We have to prove that

f(x)− L(x) ≥ 0, ∀x ∈ I.
We have

f(x)− L(x) = f(x)− f(x0)− f ′(x0)(x− x0).

Suppose x 6= x0. Lagrange’s Mean Value Theorem implies that there exists ξ between x0

and x such that f(x)− f(x0) = f ′(ξ)(x− x0). Hence

f(x)− L(x) = f ′(ξ)(x− x0)− f ′(x0)(x− x0) = ( f ′(ξ)− f ′(x0) )(x− x0).
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We distinguish two cases.

1. x > x0. Then ξ > x0 and (x − x0) > 0. Since f is convex, f ′ is increasing and thus
f ′(ξ) ≥ f ′(x0) so that

( f ′(ξ)− f ′(x0) )(x− x0) ≥ 0.

Clearly if f ′ is strictly increasing, then f ′(ξ) > f ′(x0) and ( f ′(ξ)− f ′(x0) )(x− x0) > 0.

2. x < x0. Then ξ < x0 and (x − x0) < 0. Since f is convex, f ′ is increasing and thus
f ′(ξ) ≤ f ′(x0) so that

( f ′(ξ)− f ′(x0) )(x− x0) ≥ 0.

Clearly if f ′ is strictly increasing, then f ′(ξ) < f ′(x0) and ( f ′(ξ)− f ′(x0) )(x− x0) > 0 ut

Example 8.27 (Newton’s Method). We want to describe an ingenious method devised
by Isaac Newton1 for approximating the solutions of an equation f(x) = 0.

Suppose that f : (a, b)→ R is a C2-function such that

f ′(x), f ′′(x) > 0, ∀x ∈ (a, b). (8.13)

Suppose z0 ∈ (a, b) satisfies
f(z0) = 0.

The condition (8.13) implies that f is strictly increasing and thus z0 is the unique solution
of the equation f(x) = 0. Newton’s method described one way of constructing very
accurate approximations for z0.

Here is roughly the principle behind the method. Pick an arbitrary point x0 ∈ (z0, b).
The linearization L(x) of f at x0 is an approximation for f(x) so, intuitively, the solution
of the equation L(x) = 0 ought to approximate the solution of the equation f(x) = 0.
Denote by Z(x0) the solution of the equation L(x) = 0, i.e., the point where the tangent
to the graph of f at (x0, f(x0)) intersects the horizontal axis; see Figure 8.6.

More precisely, we have L(x) = f(x0) + f ′(x0)(x− x0) and thus,

L(x) = 0⇐⇒f ′(x0)(x− x0) = −f(x0)⇐⇒x− x0 = − f(x0)

f ′(x0)

⇐⇒x = Z(x0) = x0 −
f(x0)

f ′(x0)
.

Key Remark. The point Z(x0) lies between z0 and x0, z0 < Z(x0) < x0. In particular,
Z(x0) is closer to z0 than x0.

Clearly Z(x0) < x0 because L(x0) = f(x0) > 0 = L(Z(x0)) and the linear function
L(x) is increasing. The assumption (8.13) implies that f is convex and f ′ is strictly
increasing. Proposition 8.26 implies that the tangent lies below the graph, i.e.,

f
(
Z(x0)

)
> L

(
Z(x0)

)
= 0 = f(z0).

1Isaac Newton (1642-1726) was an English mathematician and physicist who is widely recognized as one of the
most influential scientists of all time and a key figure in the scientific revolution; see Wikipedia.

https://en.wikipedia.org/wiki/Isaac_Newton
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z xZ(x )0 00

Figure 8.6. The geometry behind Newton’s method.

Since f is strictly increasing we deduce Z(x0) > z0.

The correspondence x0 7→ Z(x0) is thus a map (z0, b)→ (z0, b) with the property that
z0 < Z(x0) < x0, ∀x0 ∈ (z0, b).

We iterate this procedure. We set x1 = Z(x0) so that z0 < x1 < x0. Define next
x2 = Z(x1) so that z0 < x2 < x1 and inductively

xn+1 := Z(xn) = xn −
f(xn)

f ′(xn)
, n ≥ 0. (8.14)

The above discussion shows that the sequence (xn) is strictly decreasing and bounded
below by z0. It is therefore convergent and we set x = limxn. Observe that x ≥ z0.
Letting n→∞ in (8.14) and taking into account the continuity of f and f ′ we deduce

x= x− f(x)

f ′(x)
⇒ f(x)

f ′(x)
= 0⇒ f(x) = 0.

Since z0 is the unique solution of the equation f(x) = 0 we deduce x = z0. Thus the
sequence generated by Newton’s iteration (8.14) converges to the unique zero of f .

Remarkably, the above sequence (xn) converges to z0 extremely quickly. Taylor’s formula with Lagrange

remainder implies that for any n there exists ξn ∈ (z0, xn) such that

0 = f(z0) = f(xn) + f ′(xn)(z0 − xn) +
1

2
f ′′(ξn)(z0 − xn)2.

Hence

0 =
f(xn)

f ′(xn)
+ z0 − xn +

f ′′(ξn)

2f ′(xn)
(z0 − xn)2 ⇒

f(xn)

f ′(xn)
+ z0 − xn︸ ︷︷ ︸

=z0−xn+1

= −
f ′′(ξn)

2f ′(xn)
(z0 − xn)2
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Hence

(z0 − xn+1) = −
f ′′(ξn)

2f ′(xn)
(z0 − xn)2.

If we denote by εn the error, εn := xn − z0 we deduce

εn+1 =
f ′′(ξn)

2f ′(xn)
ε2n. (8.15)

Thus, the error at the (n + 1) -th step is roughly the square of the error at the n-th step. If e.g. the error εn is

< 0.01, then we expect εn+1 < (0.1)2 = 0.0001.

Let us see how this works in a simple case. Let k be a natural number ≥ 2. Consider
the function

f : (0,∞)→ R, f(x) = xk − 2.

Then

f ′(x) = kxk−1, f ′′(x) = k(k − 1)xk−2

so the assumption (8.13) is satisfied. The unique solution of the equation f(x) = 0 is the
number k

√
2 and Newton’s method will produce approximations for this number.

We first need to choose a number x0 >
k
√

2. How do we do this when we do not know
what the number k

√
2 is?

Observe we have to choose a number x0 such that f(x0) > f( k
√

2) = 0, or equivalently,

xk0 > 2.

Let’s pick x0 = 3
2 . Then (

3

2

)k
≥
(

3

2

)2

=
9

4
> 2.

Note also that f(1) = 1k − 2 = −1 < 0 so that

1 <
k
√

2 <
3

2

and thus the error

ε0 = x0 =
k
√

2 <
1

2
.

In this case we have

Z(x) = x− f(x)

f ′(x)
= x− xk − 2

kxk−1
=
k − 1

k
x+

2

kxk−1
.

Observe that for k = 2 we have

Z(x) =
x

2
+

1

x
.

and the recurrence xn+1 = Z(xn) takes the form

xn+1 =
xn
2

+
1

xn

Above, we recognize the recurrence that we have investigated earlier in Example 4.25.
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For k = 3 the recurrence xn+1 = Z(xn) takes the form

xn+1 =
2xn
3

+
2

3x2
n

, x0 = 1.5.

We have

x1 = 1.296296..., x2 = 1.260932..., x3 = 1.25992186...,

x4 = 1.25992104..., x5 = 1.25992104...

Note that, as predicted theoretically, this sequence displays a very rapid stabilization.
Thus

3
√

2 ≈ 1.25992.....

We can independently confirm the above claim by observing that

(1.25992)3 = 1.999995. ut

Theorem 8.28 (Jensen’s inequality). Suppose that f : I → R is a convex function defined
on an interval I. Then for any n ∈ N, any x1, . . . , xn ∈ I and any t1, . . . , tn ≥ 0 such that

t1 + · · ·+ tn = 1

we have t1x1 + · · ·+ tnxn ∈ I and

f
(
t1x1 + · · ·+ tnxn

)
≤ t1f(x1) + · · ·+ tnf(xn). (8.16)

Proof. We argue by induction on n. For n = 1 the inequality is trivially true, while for n = 2 it is the definition

of convexity. We assume that the inequality is true for n and we prove it for n+ 1.

Let x0, . . . , xn ∈ I and t0, . . . , tn ≥ 0 such that

t0 + · · ·+ tn = 1.

We have to prove that

f(t0x0 + t1x1 + t2x2 + · · ·+ tnxn) ≤ t0f(x0) + t1f(x1) + t2f(y2) + · · ·+ tnf(yn). (8.17)

If one of the numbers t0, t1, . . . , tn is zero, then the above inequality reduces to the case n. We can therefore assume

that t0, t1, . . . , tn > 0. Consider now the real numbers

s1 := t0 + t1, s2 := t2, . . . , sn := tn,

y1 :=
t0

t0 + t1
x0 +

t1

t0 + t1
x1, y2 := x2, . . . , yn := xn.

Note that

s1, s2, . . . , sn ≥ 0 and s1 + · · ·+ sn = 1

and since
t0

t0 + t1
+

t1

t0 + t1
= 1

the point y1 lies between x0 and x1 and thus in the interval I. From the induction assumption we deduce

s1y1 + · · ·+ snyn ∈ I,

and

f(s1y1 + · · ·+ snyn) ≤ s1f(y1) + s2f(y2) + · · ·+ snf(yn)
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= (t0 + t1)f

(
t0

t0 + t1
x0 +

t1

t0 + t1
x1

)
+ s2f(y2) + · · ·+ snf(yn).

Now observe that

s1y1 + · · ·+ snyn = (t0 + t1)

(
t0

t0 + t1
x0 +

t1

t0 + t1
x1

)
+ t2y2 + · · ·+ tnyn

= t0x0 + t1x1 + t2x2 + · · ·+ tnxn

and since f is convex

f

(
t0

t0 + t1
x0 +

t1

t0 + t1
x1

)
≤

t0

t0 + t1
f(x0) +

t1

t0 + t1
f(x1)

so that

(t0 + t1)

(
t0

t0 + t1
x0 +

t1

t0 + t1
x1

)
≤ t0f(x0) + t1f(x1).

Putting together all of the above we deduce (8.17). ut

Corollary 8.29. If f : I → R is a convex function defined on an interval I, then for any
n ∈ N and any x1, . . . , xn ∈ I we have

f

(
x1 + · · ·+ xn

n

)
≤ f(x1) + · · ·+ f(xn)

n
. (8.18)

Proof. Use (8.16) in which t1 = t2 = · · · = tn = 1
n . ut

Corollary 8.30. Suppose that g : I → R is a concave function defined on an interval I.
Then for any n ∈ N, any x1, . . . , xn ∈ I and any t1, . . . , tn ≥ 0 such that

t1 + · · ·+ tn = 1

we have t1x1 + · · ·+ tnxn ∈ I and

g
(
t1x1 + · · ·+ tnxn

)
≥ t1g(x1) + · · ·+ tng(xn). (8.19)

In particular,

g

(
x1 + · · ·+ xn

n

)
≥ g(x1) + · · ·+ g(xn)

n
. (8.20)

Proof. Apply Theorem 8.28 to the convex function f = −g. ut

Corollary 8.31 (AM-GM inequality). For any natural number n and any positive real
numbers x1, . . . , xn we have (

x1 · · ·xn
) 1
n ≤ x1 + · · ·+ xn

n
. (8.21)

The left-hand side of the above inequality is called the geometric mean (GM) of the numbers
x1, . . . , xn, while the right-hand side is called the arithmetic mean (AM) of the same
numbers.
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Proof. Consider the function

f : (0,∞)→ R, f(x) = lnx.

This function is concave and (8.20) implies that

ln

(
x1 + · · ·+ xn

n

)
≥ lnx1 + · · ·+ lnxn

n
.

Exponentiating this inequality we deduce

x1 + · · ·+ xn
n

= eln(
x1+···+xn

n
)

≥ e
ln x1+···+ln xn

n = e
ln(x1···xn)

n = (x1 · · ·xn)
1
n .

ut

Corollary 8.32 (Hölder’s inequality). Fix a real number p > 1 and define q > 1 by the
equality

1

q
= 1− 1

p
=
p− 1

p
.

Then for any natural number n and any nonnegative real numbers a1, . . . , an, b1, . . . , bn
we have

a1b1 + · · ·+ anbn ≤
(
ap1 + · · ·+ apn

) 1
p
(
bq1 + · · ·+ bqn

) 1
q , (8.22)

or, using the summation notation,

n∑
k=1

akbk ≤

(
n∑
i=1

api

) 1
p

 n∑
j=1

bqj

 1
q

. (8.23)

Proof. Since p > 1, the function f : [0,∞)→ R, f(x) = xp, is convex. We define

B := bq1 + · · ·+ bqn,

tk :=
bqk
B
, k = 1, . . . , n,

xk := akb
− 1
p−1

k B, k = 1, . . . , n.

Observe that tk ≥ 0, ∀k and

t1 + · · ·+ tk = 1.

Using Jensen’s inequality (8.18) we deduce that(
t1x1 + · · ·+ tnxn

)p ≤ t1xp1 + · · ·+ tnx
p
n.

Observe that (
t1x1 + · · ·+ tnxn

)p
=

(
a1b

q− 1
p−1

1 + · · ·+ anb
q− 1

p−1
n

)p
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(q − 1
p−1 = 1)

= ( a1b1 + · · ·+ anbn )p .

Similarly

t1x
p
1 + · · ·+ tnx

p
n =

bq1
B
ap1b
− p
p−1

1 Bp + · · ·+ bqn
B
apnb
− p
p−1

n Bp

(q − p
p−1 = 0)

= Bp−1
(
ap1 + · · ·+ apn

)
.

Hence

( a1b1 + · · ·+ anbn )p ≤ Bp−1 ( ap1 + · · ·+ apn )

so that

a1b1 + · · ·+ anbn ≤ B
p−1
p ( ap1 + · · ·+ apn )

1
p

=
(
ap1 + · · ·+ apn

) 1
p
(
bq1 + · · ·+ bqn

) 1
q .

ut

If in Hölder’s inequality we let p = 2, then q = 2, and we obtain the following important
result.

Corollary 8.33 (Cauchy-Schwarz inequality). For any natural number n and any real
numbers x1, . . . , xn, y1, . . . , yn we have

∣∣∣∣∣
n∑
k=1

xkyk

∣∣∣∣∣ ≤
(

n∑
i=1

x2
i

) 1
2

 n∑
j=1

y2
j

 1
2

. (8.24)

Proof. We define

ak = |xk|, bk = |yk|, k = 1, . . . , n.

Note that a2
k = x2

k, b
2
k = y2

k. Using Hölder’s inequality with p = q = 2 we deduce

n∑
k=1

|xkyk| ≤

(
n∑
i=1

x2
i

) 1
2

 n∑
j=1

y2
j

 1
2

.

Now observe that ∣∣∣∣∣
n∑
k=1

xkyk

∣∣∣∣∣ ≤
n∑
k=1

|xkyk|.

ut
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Corollary 8.34 (Minkowski’s inequality). For any real number p ∈ [1,∞), any natural
number n, and any real numbers x1, . . . , xn, y1, . . . , yn we have(

n∑
k=1

|xk + yk|p
) 1

p

≤

(
n∑
k=1

|xk|p
) 1

p

+

(
n∑
k=1

|yk|p
) 1

p

. (8.25)

Proof. We set

X :=

(
n∑
k=1

|xk|p
) 1

p

, Y :=

(
n∑
k=1

|yk|p
) 1

p

, Z :=

(
n∑
k=1

|xk + yk|p
) 1

p

.

Clearly X,Y, Z ≥ 0. We have to prove that Z ≤ X + Y . This inequality is obviously true
if Z = 0 so we assume that Z > 0. Note that we have

Zp =
n∑
k=1

|xk + yk|p =
n∑
k=1

|xk + yk|︸ ︷︷ ︸
≤|xk|+|yk|

|xk + yk|p−1

≤
n∑
k=1

|xk| |xk + yk|p−1 +

n∑
k=1

|yk| |xk + yk|p−1.

(8.26)

This proves (8.25) in the special case p = 1 so in the sequel we assume that p > 1. Let
q = p

p−1 so that

1

p
+

1

q
= 1.

Using Hölder’s inequality we deduce that that for any k = 1, . . . , n we deduce

n∑
k=1

|xk| |xk + yk|p−1≤

(
p∑

k=1

|xk|p
) 1

p

︸ ︷︷ ︸
X

(
n∑
k=1

|xk + yk|p
) p−1

p

︸ ︷︷ ︸
Zp−1

,

n∑
k=1

|yk| |xk + yk|p−1≤

(
p∑

k=1

|yk|p
) 1

p

︸ ︷︷ ︸
Y

(
n∑
k=1

|xk + yk|p
) p−1

p

︸ ︷︷ ︸
Zp−1

.

Using the last two inequalities in (8.26) we deduce

Zp ≤ (X + Y )Zp−1 Z>0⇒ Z ≤ X + Y.

ut

Remark 8.35. Minkowski’s inequality has a very useful interpretation. For a natural
number n we denote by Rn the n-dimensional Euclidean space whose points are called
(n-dimensional) vectors and are defined to be n-tuples

x = (x1, . . . , xn), xi ∈ R, 1 ≤ i ≤ n.
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The space Rn has a rich algebraic structure. We mention here two operations. One is the
addition of vectors. Given

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn

we define their sum x+ y to be the vector

x+ y := (x1 + y1, . . . , xn + yn).

Another is the multiplication by a scalar. Given

x = (x1, . . . , xn) ∈ Rn, t ∈ R,

we define

tx := (tx1, . . . , txn).

For p ∈ [1,∞) and x ∈ Rn we set

‖x‖p :=

(
n∑
k=1

|xk|p
) 1

p

.

Note that

‖tx‖p = |t| ‖x‖p, ∀t ∈ R, x ∈ Rn,
‖x‖p ≥ 0, ∀x ∈ Rn,
‖x‖p = 0⇐⇒x = (0, 0, . . . , 0).

(8.27)

Minkowski’s inequality is then equivalent to the triangle inequality

‖x+ y‖p ≤ ‖x‖p + ‖y‖p, ∀x,y ∈ Rn. (8.28)

A function Rn → R that associates to a vector R a real number ‖x‖ satisfying (8.27) and
(8.28) is called a norm on Rn. Minkowski’s inequality can be interpreted as saying that
for any p ∈ [1,∞) the correspondence

Rn 3 x 7→ ‖x‖p ∈ [0,∞),

defines a norm on Rn.

Note that (8.28) implies that for any u,v,w ∈ Rn we have

‖u−w‖p ≤ ‖u− v‖p + ‖v −w‖p, (8.29)

since

(u− v)︸ ︷︷ ︸
x

+ (v −w)︸ ︷︷ ︸
y

= (u−w)︸ ︷︷ ︸
x+y

. ut
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8.4. How to sketch the graph of a function

Differential calculus can be quite useful in producing sketches of the graphs of functions.
Instead of giving a detailed description of the steps that need to be taken to produce a
sketch of a graph, we will outline a few general principles and illustrate them on a few
examples.

In sketching the graph of a function f(x), one needs to look at certain distinguishing
features.

• Locate the intersections of f with the coordinate axes, if possible.

• Locate, if possible, the critical points of f , i.e., the points x such that f ′(x) = 0.

• Locate the intervals where f is increasing and the intervals where f is decreasing,
if possible.

• Locate the intervals where f is convex, and the intervals where f is concave, if
possible. The endpoints of such intervals are found among the solutions of the
equation.

f ′′(x) = 0.

Sometimes solving this equation explicitly may not be possible.

• Locate the asymptotes, if any.

Example 8.36 (Cubic polynomials). Consider an arbitrary cubic polynomial

p : R→ R, p(x) = x3 + a2x
2 + a1x+ a0,

where a0, a1, a2 are given real numbers. We would like to describe the general appearance
of the graph of p and analyze how it depends on the coefficients a0, a1, a2. Observe first
that

lim
x→±∞

p(x) = ±∞.

The graph intersects the y-axis at y = a0. The intersection with the x-axis is difficult to
find because the equation p(x) = 0 is difficult to solve. Instead, we will try to find the
critical points of p(x) i.e., the solutions of the equation p′(x) = 0.

3x2 + 2a2x+ a1 = 0. (8.30)

The function p′(x) has a global minimum achieved at the point µ defined by the equation

p′′(µ) = 0⇐⇒ 6µ+ 2a2 = 0⇐⇒ µ = −a2

3
.

The function p′(x) is decreasing on the interval (−∞, µ] and increasing on [µ,∞). Thus
p(x) is concave on (−∞, µ] and convex on [µ,∞). The point µ is an inflection point of p.

The general theory of quadratic equations tells us that (8.30) can have zero, one or
two solutions depending on whether ∆ = 4a2

2 − 12a1 is negative, zero or positive. These
situations are depicted in Figure 8.7.
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m

y=p (x)

m

y=p (x)

Figure 8.7. ∆ = 4a2
2 − 12a1 ≤ 0 .

If p has no critical points, as in the left-hand side of Figure 8.7, then p′(x) > 0 for
any x ∈ R. This shows that p is increasing. Similarly, if p has a single critical point,
then again p(x) is increasing. In both cases, the graph of p looks like the left-hand side of
Figure 8.9.

m

cc1 2

y=p (x)

Figure 8.8. ∆ = 4a2
2 − 12a1 > 0 .

m

y=p(x)

m

y=p(x)

Figure 8.9. The graph of y = x3 + a2x
2 + a1x+ a0.
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If p(x) has two critical points c1 < c2, then p′(x) < 0 on (c1, c2) and positive on
(−∞, c1)∪ (c2,∞); see Figure 8.8. The point c1 is a local max of p and c2 is a local min of
p. The inflection point µ is the midpoint of the interval [c1, c2]. The graph of p is depicted
on the right-hand side of Figure 8.9. ut

Example 8.37. Consider the function

f(x) =
x2 + 1

x2 − 3x+ 2
.

We have not specified its domain so it is understood to consist of all the x for which the
fraction

x2 + 1

x2 − 3x+ 2
is well defined. The only problems are the points where the denominator vanishes,

x2 − 3x+ 2 = 0⇐⇒ x = 1 ∨ x = 2.

Thus the domain is

(−∞, 1) ∪ (1, 2) ∪ (2,∞).

The points 1 and 2 are also points where the vertical asymptotes could be located. We
will investigate this issue later.

We have

f ′(x) =
(2x)(x2 − 3x+ 2)− (x2 + 1)(2x− 3)

(x2 − 3x+ 2)2
=

2x3 − 6x2 + 4x− (2x3 − 3x2 + 2x− 3)

(x2 − 3x+ 2)2

=
−3x2 + 2x+ 3

(x2 − 3x+ 2)2
.

The derivative vanishes when 3x2 − 2x − 3 = 0. The roots of this quadratic polynomial
are

2±
√

4 + 36

6
=

2±
√

40

6
=

2± 2
√

10

6
=

1±
√

10

3
.

One root is obviously negative. Since 3 <
√

10 < 4 we deduce

1 <
1 +
√

10

3
<

5

3
< 2.

The intersection with the y-axis is obtained by computing f(0) = 1
2 . There is no inter-

section with the x axis since the numerator does not vanish. We have already detected
several remarkable points

−∞, c1 =
1−
√

10

3
, 1, c2 =

1 +
√

10

3
, 2, ∞.

Observe that

lim
x→±∞

x2 + 1

x2 − 3x+ 2
,
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so the horizontal line y = 1 is a horizontal asymptote for f(x) at ±∞. We do not
investigate the second derivative because it requires a substantial amount of work, with
little payoff.

Table 8.1 organizes the information we have collected. The exclamation signs indicate

x −∞ c1 1 c2 2 ∞
(x2 − 3x+ 2) ∞ ++ + ++ 0 −−− − −− 0 ++ ∞
−3x2 + 2x+ 3 −∞ −− 0 ++ + ++ 0 −− − −− −∞

f ′(x) − −− 0 ++ ! ++ 0 −− ! −− −
f(x) 1 ↘ min ↗ ! ↗ max ↘ ! ↘ 1

Table 8.1. Organizing all the relevant data.

that the corresponding functions are not defined at those points. As x approaches 1 from
the left, the function f(x) is increasing and

lim
x→1−

f(x) =∞.

Similarly, the table shows

lim
x→1+

f(x) = −∞, lim
x→2−

f(x) = −∞, lim
x→2+

f(x) =∞.

This shows that the vertical lines x = 1 and x = 2 are asymptotes of f(x). Figure 8.10
contains a sketch of the graph of the function f(x).

x=1 x=2

y=1

c

c

1

2

Figure 8.10. The graph of x2+1
x2−3x+2

.
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ut

Some functions admit inclined asymptotes.

Definition 8.38. (a) The line y = mx+ b is the asymptote of f(x) at ∞ if

lim
x→∞

f(x)

x
= m and lim

x→∞
(f(x)−mx) = b.

(b) The line y = mx+ b is the asymptote of f(x) at −∞ if

lim
x→−∞

f(x)

x
= m and lim

x→−∞
(f(x)−mx) = b. ut

Example 8.39. The function

f(x) =
x5 + 2x4 + 3x3 + 4x+ 5

x4 + 1

admits an inclined asymptote y = mx+ b as x→∞. The slope m can be found from the
equality

m = lim
x→∞

f(x)

x
= 1,

and b can be found from the equality

b = lim
x→∞

(
f(x)− x

)
= lim

x→∞

x5 + 2x4 + 3x3 + 4x+ 5− x(x4 + 1)

x4 + 1

= lim
x→∞

2x4 + 3x3 + 3x+ 5

x4 + 1
= 2. ut

8.5. Antiderivatives

Definition 8.40. Suppose that f : I → R is a function defined on an interval I ⊂ R. A
function F : I → R is called an antiderivative or primitive of f on I if F is differentiable,
and

F ′(x) = f(x), ∀x ∈ I. ut

Example 8.41. (a) The function x2 is an antiderivative of 2x on R. Similarly, the function
sinx is an antiderivative of cosx on R. ut

Observe that if F (x) is an antiderivative of a function f(x) on an interval I, then for
any constant C ∈ R the function F (x) + C is also an antiderivative of f(x) on I. The
converse is also true.

Proposition 8.42. If F1, F2 are antiderivatives of the function f : I → R, then F1 − F2

is constant.

Proof. Observe that (F1 − F2)′ = F ′1 − F ′2 = f − f = 0 and Corollary 7.30 implies that
F1 − F2 is constant on I. ut
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Definition 8.43. Given a function f : I → R we denote by
∫
f(x)dx the collection of all

the antiderivatives of f on I. Usually
∫
f(x)dx is referred to as the indefinite integral of

f . ut

For example, ∫
cosx dx = sinx+ C,

∫
2x dx = x2 + C.

Table 8.2 describes the antiderivatives of some basic functions.

f(x)
∫
f(x)dx

xn, (x ∈ R, n ∈ Z, n ≥ 0) xn+1

(n+1) + C

1
xn (x 6= 0, n ∈ N, n > 1) − 1

(n−1)xn−1 + C

xα, (α ∈ R, α 6= −1, x > 0) xα+1

α+1 + C

1/x, x 6= 0 ln |x|+ C

ex, (x ∈ R) ex + C

sinx, (x ∈ R) − cosx+ C

cosx, (x ∈ R) sinx+ C

1/ cos2 x tanx+ C

1√
1−x2

, x ∈ (−1, 1) arcsinx+ C

1
1+x2 , x ∈ R arctanx+ C

∫
1√
x2±1

dx, x2 ± 1 > 0 ln
∣∣x+

√
x2 ± 1

∣∣+ C

Table 8.2. Table of integrals.

Note that if f :→ R is a differentiable function, then f is an antiderivative of f ′ so
that ∫

f ′(x)dx = f(x) + c. (8.31)
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Observing that f ′(x)dx = df we rewrite the above equality as∫
df = f + C. (8.32)

In general, the computation of an antiderivative is a more challenging task that cannot
always be completed. There are a few tricks and a few classes of functions for which this
task is feasible. We will spend the remainder of this section discussing a few frequently
encountered techniques for computing antiderivatives.

Proposition 8.44 (Linearity). Suppose f, g : I → R and a, b ∈ R. If F,G : I → R are
antiderivatives of f and respectively g on I, then aF + bG is an antiderivative of af + bg
on I. We write this in condensed form∫

(af + bg)dx = a

∫
fdx+ b

∫
gdx.

Proof.

(aF + bG)′ = aF ′ + bG′ = af + bg.

ut

Example 8.45.∫
(3 + 5x+ 7x2)dx = 3

∫
dx+ 5

∫
xdx+ 7

∫
x2dx = 3x+

5

2
x2 +

7

3
x3 + C. ut

Proposition 8.46 (Integration by parts). Suppose that f, g : I → R are two differentiable
functions. If the function f(x)g′(x) admits antiderivatives on I, then so does the function
f ′(x)g(x) and moreover∫

f(x)g′(x)dx = f(x)g(x)−
∫
g(x)f ′(x)dx . (8.33)

Proof. The function (fg)′ = f ′g + fg′ admits antiderivatives and thus the difference

(fg)′ − fg′ = f ′g

admits antiderivatives. Moreover,

fg =

∫
(fg)′dx =

∫
(f ′g + fg′)dx =

∫
f ′gdx+

∫
fg′dx⇒

∫
fg′dx = fg −

∫
gf ′dx.

ut

Let us observe that we can rewrite (8.33) in the simpler form∫
fdg = fg −

∫
gdf . (8.34)
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Example 8.47. (a) We can use integration by parts to find the antiderivatives of lnx,
x > 0. We have ∫

lnxdx = (lnx)x−
∫
xd(lnx) = x lnx−

∫
x
dx

x

= x lnx−
∫
dx = x lnx− x+ C.

(b) For a ∈ R consider the indefinite integrals

Ia =

∫
eax cosx dx, Ja =

∫
eax sinx dx .

We have

Ia =

∫
eaxd(sinx) = eax sinx−

∫
sinxd(eax) = eax sinx−

∫
aeax sinxdx

= eax sinx− aJa.
Similarly we have

Ja =

∫
eaxd(− cosx) = −eax cosx+

∫
cosxd(eax) = −eax cosx+ a

∫
eax cosxdx

= −eax cosx+ aIa.

We deduce

Ia = eax sinx− a(−eax cosx+ aIa) = eax sinx+ aeax cosx− a2Ia,

so that

(a2 + 1)Ia = eax sinx+ aeax cosx,

which shows that

Ia =
1

a2 + 1

(
eax sinx+ aeax cosx

)
+ C . (8.35)

From this we deduce

Ja = aIa − eax cosx =
a

a2 + 1

(
eax sinx+ aeax cosx

)
− eax cosx+ C,

so that

Ja =
1

a2 + 1

(
aeax sinx− eax cosx

)
+ C . (8.36)

(c) For any nonnegative integer n we consider the indefinite integral

In =

∫
xnexdx .

Note that

I0 =

∫
exdx = ex + c.



8.5. Antiderivatives 233

In general, we have

In+1 =

∫
xn+1d(ex) = xn+1ex −

∫
exd(xn+1) = xn+1ex − (n+ 1)

∫
xnexdx

so that

In+1 = xn+1ex − (n+ 1)In, ∀n = 0, 1, 2, . . . . (8.37)

If we let n = 0 in the above equality we deduce

I1 = xex − I0 = xex − ex + C, (8.38)

Using n = 1 in (8.37) we obtain

I2 = x2ex − 2I1 = x2ex − 2xex + 2ex + C.

This suggests that in general In = Pn(x)ex +C, where Pn(x) is a polynomial of degree n.
For example,

P0(x) = 1, P1(x) = (x− 1), P2(x) = x2 − 2x+ 2.

The equality (8.37) shows that

Pn+1(x) = xn+1 − (n+ 1)Pn(x), ∀n = 0, 1, 2, . . . . (8.39)

(d) Let us now explain how to compute the integrals

An =

∫
dx

(x2 + 1)n
.

Note that

A1 =

∫
dx

x2 + 1
= arctanx+ C.

In general

An =

∫
(x2 + 1)−ndx = x(x2 + 1)−n −

∫
xd
(

(x2 + 1)−n
)

=
x

(x2 + 1)n
−
∫
x
−2nx

(x2 + 1)n+1
dx =

x

(x2 + 1)n
+ 2n

∫
x2

(x2 + 1)n+1
dx

=
x

(x2 + 1)n
+ 2n

∫
x2 + 1− 1

(x2 + 1)n+1
dx

=
x

(x2 + 1)n
+ 2n

∫
1

(x2 + 1)n
dx− 2n

∫
1

(x2 + 1)n+1
dx

=
x

(x2 + 1)n
+ 2nAn − 2nAn+1.

Hence

An =
x

(x2 + 1)n
+ 2nAn − 2nAn+1,

so that

2nAn+1 =
x

(x2 + 1)n
+ (2n− 1)An,
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and thus

An+1 =
1

2n

x

(x2 + 1)n
+

(2n− 1)

2n
An . (8.40)

For example, ∫
1

(x2 + 1)2
dx =

1

2

x

x2 + 1
+

1

2
arctanx+ C. ut

Proposition 8.48 (Integration by substitution). Suppose that u : I → J and f : J → R
are differentiable functions. Then the function f ′(u(x))u′(x) admits antiderivatives on I
and ∫

f ′(u(x))u′(x)dx =

∫
f ′(u)du =

∫
df = f(u) + C, u = u(x). (8.41)

Proof. The chain formula shows that f ′(u(x))u′(x) is the derivative of f(u(x)) so that
f(u(x)) is an antiderivative of f ′(u(x))u′(x). ut

Example 8.49. (a) To find an antiderivative of xex
2

we use the change in variables u = x2.
Then

du = 2xdx⇒ xdx =
du

2

so that ∫
ex

2
xdx =

∫
eu
du

2
=

1

2
eu + C =

1

2
ex

2
+ C.

(b) Let us compute an antiderivative of tanx = sinx
cosx on an interval I where cosx 6= 0. We

distinguish two cases.

1. cosx > 0 on I. We make the change in variables u = cosx so that u > 0, and
du = − sinxdx. We have∫

sinx

cosx
dx = −

∫
du

u
= − lnu+ C = − ln cosx+ C = − ln | cosx|+ C.

2. cosx < 0 on I. We make the change in variables v = − cosx so that v > 0 and
dv = sinxdx. We have∫

sinx

cosx
dx =

∫
dv

−v
= − ln v + C = − ln(− cosx) + C = − ln | cosx|+ C.

Thus, in either case we have ∫
tanxdx = − ln | cosx|+ C. (8.42)

(c) To compute the integral ∫
(ax+ b)ndx, n ∈ N, a > 0,
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we make the change in variables u = ax + b. Then du = adx so that dx = 1
adu and we

have ∫
(ax+ b)ndx =

1

a

∫
undu =

1

a(n+ 1)
un+1 + C =

1

a(n+ 1)
(ax+ b)n+1 + C.

(d) To compute the integral ∫
1

(ax+ b)n
dx, a 6= 0, n ∈ N

we again make the change in variables u = (ax+ b) and we deduce

∫
1

(ax+ b)n
dx =

1

a

∫
1

un
du = C +


1
a ln |u|, n = 1

1
a(1−n)un−1 , n > 1.

, u = ax+ b.

(e) To compute the integral

Bn :=

∫
x

(x2 + 1)n
dx .

We make the change in variables u = x2 + 1. Then du = 2xdx so that xdx = 1
2du and

thus

∫
x

(x2 + 1)n
dx =

1

2

∫
1

un
du = C +

1

2
×


lnu, n = 1

1
(1−n)un−1 , n > 1.

, u = x2 + 1.

(f) The integrals of the form∫
(sinx)m(cosx)2k+1dx, k,m ∈ Z≥0 ,

are found using the change in variables u = sinx. Then

du = cosxdx, (cosx)2k+1dx = (cos2 x)k cosxdx = (1− sin2 x)kd(sinx) = (1− u2)kdu

and ∫
(sinx)m(cosx)2k+1dx =

∫
um(1− u2)kdu.

Similarly, the integrals of the form∫
(cosx)m(sinx)2k+1dx, m, k ∈ Z≥0,

are found using the change in variables v = cosx. Then∫
(cosx)m(sinx)2k+1dx = −

∫
vm(1− v2)kdv.
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(g) The integrals of the form∫
(sinx)2m(cosx)2kdx, k,m ∈ Z≥0

are a bit trickier to compute. There are two possible strategies.

One strategy is based on the trigonometric identities

sin2 x =
1− cos 2x

2
, cos2 x =

1 + cos 2x

2
.

Using the change in variables u = 2x, so that

du = 2dx⇒ dx =
1

2
du

we deduce ∫
(sinx)2m(cosx)2kdx =

1

2m+k+1

∫
(1− cosu)m(1 + cosu)kdu.

The last integral involves smaller powers in cosu. For example∫
cos4 xdx =

∫ (
1 + cosu

2

)2 du

2
, u = 2x,

=
1

8

∫
(1 + 2 cosu+ cos2 u)du =

1

8
u+

1

4
sinu+

1

8

∫
cos2 udu

(v = 2u = 4x)

=
1

8
u+

1

4
sinu+

1

8

∫ (
1 + cos v

2

)
dv

2
=

1

8
u+

1

4
sinu+

1

32

∫
(1 + cos v)dv

=
1

4
x+

1

4
sin(2x) +

v

32
+

1

32
sin v + C

=
x

4
+

1

4
sin(2x) +

x

8
+

1

32
sin(4x) + C =

3

8
x+

1

4
sin(2x) +

1

32
sin(4x) + C.

One other possible strategy is to use the change in variables u = tanx. Then

cos2 x =
1

1 + tan2 x
=

1

1 + u2
, sin2 x = cos2 x tan2 x =

tan2 x

1 + tan2 x
=

u2

1 + u2

du = d(tanx) = (1 + tan2 x)dx = (1 + u2)dx⇒ dx =
du

1 + u2
.

We deduce ∫
(sinx)2m(cosx)2kdx =

∫ (
u2

1 + u2

)m(
1

1 + u2

)k du

1 + u2

=

∫
u2m

(1 + u2)m+k+1
du.
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Thus we need to know how to compute integrals of the form

J(m,n) =

∫
u2m

(1 + u2)n
du, 0 ≤ m < n, m, n ∈ Z .

Observe first that when m = 0 the integrals J(0, n) coincide with the integrals An of
(8.40). The general case can be gradually reduced to the case J(0, n) by observing that

J(m,n) =

∫
u2m + u2m−2 − u2m−2

(1 + u2)n
du =

∫
u2m−2(1 + u2)

(1 + u2)n
−
∫

u2m−2

(1 + u2)n

=

∫
u2m−2

(1 + u2)n−1
− J(m− 1, n)

so that

J(m,n) = J(m− 1, n− 1)− J(m− 1, n) . ut

The examples discussed above will allow us to describe a procedure for computing the
antiderivatives of any rational function, i.e., a function f(x) of the form

f(x) =
P (x)

Q(x)

where P (x) and Q(x) are polynomials. Theoretically, the procedure works for any ratio-
nal function, but the practical implementation can lead to complex computations. Such
computation is possible because any rational function can be written as a sum of rational
functions of the following simpler types.

Type I.

axn, a ∈ R, n = 0, 1, 2, . . . .

Type II.
a

(x− r)n
, c, r ∈ R, n ∈ N.

Type III.
bx+ c(

(x− r)2 + a2
)n , a, b, c, r ∈ R, n ∈ N.

If the degree of the numerator P (x) is smaller than the degree of the denominator Q(x),

then only the Type II and Type III functions appear in the decomposition of P (x)
Q(x) . The

functions of Type II and III are also known as partial fractions or simple fractions.

Actually finding the decomposition of a rational function as a sum of simple fractions
requires a substantial amount of work and it is not very practical for more complicated
rational functions. For this reason we will not discuss this technique in great detail.

The primitives of a function of Type I are known. More precisely∫
axndx =

a

n+ 1
xn+1 + C.
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The primitives of the functions of Type II where computed in Example 8.49(e). To deal
with the Type III functions we make a change in variables

x− r = at⇐⇒x = at+ r.

Then

dx = adt, bx+ c = b(at+ r) + β = abt+ rb+ c,

(x− r)2 + a2 = a2t2 + a2 = a2(t2 + 1),

so that ∫
bx+ c(

(x− r)2 + a2
)ndx =

∫
abt+ rb+ c

a2n(t2 + 1)n
adt

=
b

a2n−2

∫
t

(t2 + 1)n
dt+

rb+ c

a2n−1

∫
1

(t2 + 1)n
dt.

The computation of integral ∫
1

(t2 + 1)n
dt

is described in (8.40), while the computation of the integral∫
t

(t2 + 1)n
dt

as described in Example 8.49(e).

Let us illustrate this strategy on a simple example.

Example 8.50. Consider the rational function

f(x) =
1

(x− 1)2(x2 + 2x+ 2)
.

Let us observe that

x2 + 2x+ 2 = (x+ 1)2 + 12.

The function admits a decomposition of the form

1

(x− 1)2(x2 + 2x+ 2)
= f(x) =

A1

x− 1
+

A2

(x− 1)2
+

B1x+ C1

x2 + 2x+ 2
.

Multiplying both sides by (x− 1)2(x2 + 2x+ 2) we deduce that for any x ∈ R we have

1 = A1(x− 1)(x2 + 2x+ 2) +A2(x2 + 2x+ 2) + (B1x+ C1)(x− 1)2.

= A1(x3 + 2x2 + 2x− x2 − 2x− 2) +A2(x2 + 2x+ 2) + (B1x+ C1)(x2 − 2x+ 1)

= A1(x3 + x2 − 2) +A2(x2 + 2x+ 2) + (B1x
3 − 2B1x

2 +B1x+ C1x
2 − 2C1x+ C1)

= (A1 +B1)x3 + (A1 +A2 − 2B1 + C1)x2 + (2A2 +B1 − 2C1)x− 2A1 + 2A2 + C1.

This implies 
A1 +B1 = 0

A1 +A2 − 2B1 + C1 = 0
2A2 +B1 − 2C1 = 0
−2A1 + 2A2 + C1 = 1.
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From the first equality we deduce A1 = −B1 and using this in the last three equalities
above we deduce 

A2 − 3B1 + C1 = 0
2A2 +B1 − 2C1 = 0
2A2 + 2B1 + C1 = 1.

From the first equality we deduce A2 = 3B1−C1. Using this in the last two equalities we
deduce {

7B1 − 4C1 = 0
8B1 − C1 = 1.

Hence,

7

4
B1 = C1 = 8B1 − 1⇒ 25

4
B1 = 1⇒ B1 =

4

25
, C1 =

7

25
⇒ A1 = − 4

25
,

A2 = 3B1 − C1 =
12

25
− 7

25
=

1

5
.

Hence
1

(x− 1)2(x2 + 2x+ 2)
= − 4

25(x− 1)
+

1

5(x− 1)2
+

4x+ 7

25
(

(x+ 1)2 + 12
) . ut

Example 8.51 (First order linear differential equations). A quantity u that depends on
time can be viewed as a function

u : I → R, t 7→ u(t),

where I ⊂ R is a time interval. We say that u satisfies a linear first order differential
equation if u is differentiable and it satisfies an equality of the form

u′(t) + r(t)u(t) = f(t), ∀t ∈ I, (8.43)

where r, f : I → R are some given functions. Solving a differential equation such as (8.43)
means finding all the differentiable functions u : I → R satisfying the above equality. Let
us look at some special examples.

(a) If r(t) = 0 for any t ∈ I, then (8.43) has the simpler form u′(t) = f(t), so that u(t)
must be an antiderivative of f(t).

(b) The general case. Suppose that r(t) admits antiderivatives on I. The differential
equation (8.43) is solved as follows.

Step 1. Choose one antiderivative R(t) of r(t), i.e., a function R(t) such that R′(t) = r(t).

Step 2. Multiply both sides of (8.43) by eR(t). We obtain the equality

eR(t)u′(t) + eR(t)r(t)u(t) = f(t)eR(t).

Now observe that the left-hand side of the above equality is the derivative of eR(t)u(t),(
eR(t)u(t)

)′
= eR(t)u′(t) + eR(t)R′(t)u(t) = eR(t)u′(t) + eR(t)r(t)u(t) = f(t)eR(t).

This shows that eR(t)u(t) is an antiderivative of f(t)eR(t).
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Step 3. Find one antiderivative G(t) of f(t)eR(t). We deduce that there exists a constant
C ∈ R such that

eR(t)u(t) = G(t) + C ⇒ u(t) = e−R(t)G(t) + Ce−R(t).

Take for example the equation

u′(t) + 2tu(t) = t.

In this case
r(t) = 2t, f(t) = t.

We can choose R(t) = t2 and we have

d

dt

(
et

2
u(t)

)
= et

2
u′(t) + 2tet

2
u(t) = et

2
t,

so that

et
2
u(t) =

∫
et

2
tdt =

1

2

∫
et

2
d(t2) =

1

2
et

2
+ C

⇒ u(t) = e−t
2
(
C +

1

2
et

2
)

= Ce−t
2

+
1

2
. ut
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8.6. Exercises

Exercise 8.1. Let n ∈ N, x0, c0, c1, . . . , cn ∈ R and

P (x) = c0 +
c1

1!
(x− x0) +

c2

2!
(x− x0)2 + · · ·+ cn

n!
(x− x0)n =

n∑
k=0

ck
k!

(x− x0)k.

(a) Prove that for any k = 0, 1, 2, . . . , n we have

P (k)(x0) = ck.

(b) Prove that if Q(x) = q0 + q1x+ · · · qnxn is a polynomial of degree ≤ n such that

Q(k)(x0) = ck, ∀k = 0, 1, 2, . . . , n,

then Q(x) = P (x), ∀x ∈ R.

Hint. Consider the difference D(x) = P (x)−Q(x), observe that

D(k)(x0) = 0, ∀k = 0, 1, 2, . . . , n,

and conclude from the above that D(x) = 0, ∀x ∈ R. To reach this conclusion write

D(x) = d0 + d1x+ · · ·+ dnx
n,

and observe first that D(n)(x) = n!dn, ∀x ∈ R. ut

Exercise 8.2. Suppose that a, b ∈ R, b ≥ 0 and consider f : R→ R

f(x) =
1 + ax2

1 + bx2
.

Find the degree 4 Taylor polynomial of f at x0 = 0. For which values of a, b does this
polynomial coincide with the degree 4 Taylor polynomial of cosx at x0 = 0?

Hint. To simplify the computations of the derivatives of f at 0 use the following trick. Let N(x) = 1 + ax2 be the

numerator of the fraction, D(x) = 1 + bx2 be the denominator. Then

N(0) = D(0) = 1, N ′(0) = D′(0) = 0, N ′′(0) = 2a, D′′(0) = 2b, (8.44)

N(k)(x) = D(k)(x) = 0, ∀k ≥ 3, x ∈ R. (8.45)

We have

N(x) = D(x)f(x), N ′(x) = D′(x)f(x) +D(x)f ′(x),

N ′′(x) = D′′(x)f(x) + 2D′(x)f ′(x) +D(x)f ′′(x),

N(n)(x)
(7.35)

=

n∑
k=0

(n
k

)
D(k)(x)f (n−k)(x)

(8.45)
=

2∑
k=0

(n
k

)
D(k)(x)f (n−k)(x)

= D(x)f (n)(x) + nD′(x)f (n−1)(x) +
n(n− 1)

2
D′′(x)f (n−2)(x), ∀n > 2.

We deduce

f(0) = D(0)f(0) = N(0) = 1, f ′(0) = D(0)f ′(0) = N ′(0)−D′(0)f(0)
(8.44)

= 0,

f ′′(0) = D(0)f ′′(0) = N ′′(0)− 2D′(0)f ′(0)−D′′(0)f(0)
(8.44)

= N ′′(0)−D′′(0)f(0) = 2a− 2b,

f (n)(0) = D(0)f (n)(0) = N(n)(0)− nD′(0)f (n−1)(0)−
n(n− 1)

2
D′′(0)f (n−2)(0)

(8.44)
= −bn(n− 1)f (n−2)(0), n > 2. ut
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Exercise 8.3. Use the inequality 2 < e < 3 and the strategy outlined in Remark 8.6 to
show that ∣∣∣eh−(1 +

h

1!
+ · · ·+ hn

n!

)∣∣∣ ≤ 3|h|n+1

(n+ 1)!
, ∀|h| ≤ 1. ut

Exercise 8.4. Using Example 8.7 as a guide, compute cos 1 up to two decimals. ut

Exercise 8.5. Approximate 3
√

8.1 using the degree 3 Taylor polynomial of f(x) = 3
√
x at

x0 = 8. Estimate the error of this approximation using the Lagrange estimate (8.3). ut

Exercise 8.6. Find the Taylor series of the function

f(x) =
1

1− x
, x 6= 1

at x0 = 0. For which values of x is this series convergent? ut

Exercise 8.7. Prove that the Taylor series of ln(1− x) at x0 = 0 is

−
∞∑
n=1

xn

n
.

and then show that this series converges to ln(1− x) for any x ∈ (−1, 1
2).

Hint. Use Corollary 8.5.
2 ut

Exercise 8.8. (a) Prove that the Taylor series of sinx at x0 = 0,∑
k≥0

(−1)k
x2k+1

(2k + 1)!
,

is absolutely convergent for any x ∈ R and its sum is sinx. Show that the convergence is
uniform on any interval [−R,R].

(b) Prove that the Taylor series of cosx at x0 = 0,∑
k≥0

(−1)k
x2k

(2k)!

is absolutely convergent and for any x ∈ R and its sum is cosx. Show that the convergence
is uniform on any interval [−R,R].

Hint. Use Corollary 8.5. ut

Exercise 8.9. Find

lim
x→∞

x

[
1

e
−
(

x

x+ 1

)x]
. ut

2The Taylor series of ln(1−x) at x0 = 0 converges to ln(1−x) for all |x| < 1. However, the Lagrange remainder

formula is not strong enough to prove this. We need a different remainder formula (9.50) to prove this stronger
statement. For details see Example 9.52.
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Exercise 8.10. Using the fact that the function ln : (0,∞)→ R is concave prove Young’s
inequality : if p, q ∈ (1,∞) are such that

1

p
+

1

q
= 1,

then

xy ≤ xp

p
+
yq

q
, ∀x, y > 0. (8.46)

ut

Exercise 8.11. Use the AM-GM inequality to prove that if x ∈ R, n,m ∈ N and
−x < n < m, then (

1 +
x

n

)n
≤
(

1 +
x

m

)m
. ut

Exercise 8.12. Let x1, . . . , xn > 0.

(i) Prove that

x2
1 + · · ·+ x2

n +
1

x1 · · ·xn
≥ n+ 1.

(ii) Prove that ∑
1≤i≤j≤1

xixj +

n∑
k=1

1

xnk
≥ n(n+ 3)

2
.

ut

Exercise 8.13. Suppose that a < b are two real numbers and f : (a, b) → R is a convex
function.

(a) Prove that for any x1 < x2 < x3 ∈ (a, b) we have

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
≤ f(x3)− f(x2)

x3 − x2
.

Hint. Give a geometric interpretation to this statement and then think geometrically.

(b) Suppose that x0 ∈ (a, b). Prove that the one-sided limits

m±(x0) = lim
h→0±

f(x0 + h)− f(x0)

h

exist, are finite and m−(x0) ≤ m+(x0).

(c) Suppose x0 ∈ (a, b) and m±(x0) are as above. Fix m ∈ [m−(x0),m+(x0)]. Show that

f(x) ≥ f(x0) +m(x− x0), ∀x ∈ (a, b).

Can you give a geometric interpretation of this fact?

(d) Prove that f : R → R, f(x) = |x| is convex. For x0 := 0, compute the numbers
m±(x0) defined as in (b). ut
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Exercise 8.14. 3 Suppose that f : [0, 1]→ [0,∞) is a C2-function satisfying the following
additional properties.

(i) f ′(x) ≥ 0, ∀x ∈ [0, 1].

(ii) f ′′(x) > 0, ∀x ∈ (0, 1).

(iii) f(1) = 1, f ′(1) > 1 and f(0) > 0.

Prove that the following hold.

(a) f(x) ∈ [0, 1], ∀x ∈ [0, 1].

(b) If x0 ∈ (0, 1) is a fixed point of f , i.e., f(x0) = x0, then f ′(x0) < 1.

Hint. Argue by contradiction. Use the Mean Value Theorem with the quotient

f(1)− f(x0)

1− x0
.

(c) The function f has a unique fixed point x∗ located in the open interval (0, 1).
Hint. Argue by contradiction. Suppose that f has two fixed points x∗ < y∗. in (0, 1). Use the Mean Value Theorem
for the quotient

f(y∗)− f(x∗)

y∗ − x∗
and reach a contradiction using (b).

(d) Fix s ∈ (0, 1) and consider the sequence (xn) defined by the recurrence

x0 = s, xn+1 = f(xn), ∀n ≥ 0.

Prove that

lim
n
xn = x∗,

where x∗ is the unique fixed point of f located in the interval (0, 1).

Hint. The sequence is bounded since it lies in [0, 1]. Show that the sequence is monotone and the limit lies in

(0, 1). ut

Exercise 8.15. Prove that for any n ∈ N and any numbers x1, x2, . . . , xn ≥ 0 we have(
x1 + · · ·+ xn

n

)2

≤ x2
1 + · · ·+ x2

n

n
.

Hint. Use the Cauchy-Schwarz inequality. ut

Exercise 8.16. Consider the Gauss bell, i.e., the function

γ : R→ R, γ(x) = e−
x2

2 .

(a) Prove that for any n ∈ N there exists a polynomial Hn(x) of degree n such that

γ(n)(x) = (−1)nHn(x)γ(x).

3The results in this exercise are particularly useful in probability theory in the investigation of the so called
branching processes.
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(The polynomial Hn(x) is called the degree n Hermite polynomial.)

(b) Prove that
Hn+1(x) = xHn(x)−H ′n(x), ∀n ∈ N.

(c) Compute H1(x), H2(x), H3(x).

(d) Find the intervals of convexity and concavity of γ(x).

(e) Sketch the graph of the function γ(x). ut

Exercise 8.17. Consider the hyperbolic functions

cosh, sinh : R→ R, coshx =
ex + e−x

2
, sinh(x) =

ex − e−x

2
, ∀x ∈ R.

(cosh=hyperbolic cosine, sinh= hyperbolic sine)

(a) Prove that
cosh′ x = sinhx, sinh′ x = coshx,

cosh2 x− sinh2 x = 1, cosh2 x+ sinh2 x = cosh(2x), ∀x ∈ R.
(b) Find the Taylor series of coshx and sinhx at x0 = 0.

(c) Prove that the function sinh is bijective and then find its inverse.

(d) Sketch the graphs of cosh and sinh. ut

Exercise 8.18. Compute∫
xe2xdx,

∫
xe2x cosxdx,

∫
xe2x sinxdx,

∫
sin3 x cos2 xdx. ut

Exercise 8.19. Compute ∫
1

(4 + x2)5
dx

by reducing it to the computation in Example 8.47(d). ut

Exercise 8.20. Compute ∫
(cosx)11dx. ut

Exercise 8.21. Using the strategy outlined in Example 8.51 find the function u(t), v(t), f(t)
satisfying the differential equations

u′(t) + 2u(t) = t, v′(t)− v(t) = cos t,

f ′(t)− (tan t)f(t) = t, −π
2
< t <

π

2
. ut

Exercise 8.22. Suppose that we are given a huge container containing 200 liters of pure
water. In this container, starting at t = 0, we continuously add 10 liters of salted water
per minute containing 1.5 grams of salt per liter and, at the same time, the container is
leaking salt-water mixture at a constant rate of 10 liters per minute. Denote by m(t) the
amount of salt (in grams) contained in the mixture after t minutes from the start.
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(a) Prove that m(t) satisfies the differential equation

dm

dt
= 15− m(t)

20
.

(b) Recalling that initially there was no salt in the water, i.e., m(0) = 0, find m(t) for any
t > 0. ut

8.7. Exercises for extra-credit

Exercise* 8.1. Suppose that f : (0,∞)→ R is a differentiable function such that

lim
x→∞

(
f(x) + f ′(x)

)
= 0.

Show that

lim
x→∞

f(x) = lim
x→∞

f ′(x) = 0. ut

Exercise* 8.2. (a) Prove that for any n ∈ N and any real numbers a, r > 0 we have

a
n
n+1 ≤ 1

r

(
rn+1

n+ 1
+

na

n+ 1

)
.

Hint: Use Young’s inequality (8.46).

(b) Prove that if
∑

n≥0 an is a convergent series of positive numbers, then so is
∑

n≥0 a
n
n+1
n .
ut

Exercise* 8.3. Suppose that f : R→ R is a C3-function. Prove that there exists a ∈ R
such that

f(a) · f ′(a) · f ′′(a) · f ′′′(a) ≥ 0. ut

Exercise* 8.4. Suppose that f : R → R is a convex C1 function. For c ∈ R we denote
by Ec(x) the function

Ec : R→ R, Ec(x) =
x2

2
− cx+ f(x).

(a) Prove that Ec has a unique critical point.

(b) Prove that the function g : R→ R, g(x) = x+ f ′(x) is bijective. ut

Exercise* 8.5. Suppose that f : [a, b]→ R is a continuous function satisfying

f

(
x+ y

2

)
≤ f(x) + f(y)

2
, ∀x, y ∈ [a, b].

Prove that f is convex. ut

Exercise* 8.6. Suppose that f : (a, b) → R is a convex function. Prove that f is
continuous.

Hint. You need to use the facts proven in Exercise 8.13. ut
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Exercise* 8.7. Show that for any positive real numbers a, b, c we have

a+ b+ c ≤ a3

bc
+
b3

ac
+
c3

ab
. ut

Exercise* 8.8. Fix a natural number n and positive real numbers x1, . . . , xn. For any
α > 0 we set

Mα(x1, . . . , xn) :=

(
xα1 + · · ·+ xαn

n

) 1
α

.

(a) Show that
Mα(x1, . . . , xn) ≤Mβ(x1, . . . , xn), ∀0 < α < β.

Hint. Use Hölder’s inequality (8.22).

(b) Compute
lim
α→0+

Mα(x1, . . . , xn). ut

Exercise* 8.9. (a) Prove that for any n ∈ N the equation xn + x = 1 has a unique
positive solution xn.

(b) Prove that
lim
n→∞

xn = 1. ut





Chapter 9

Integral calculus

9.1. The integral as area: a first look

The Riemann integral is a very complicated infinite summation process that is often
required when we want to compute areas or volumes of more irregular regions.

By way of motivation, let us consider a famous problem first solved by Archimedes by
other means. Consider the arc of parabola in Figure 9.1 given by the equation

y = x2, 0 ≤ x ≤ 1.

We would like to compute the area of the region R between the x-axis, the parabola and
the vertical line x = 1.

Let us observe that we do not have a precise definition of the concept of area. We only
have an intuitive belief that

(i) the area of a rectangle is width × length, and

(ii) the area of a union of rectangles that intersect only along edges should be the
sum of the area of the rectangles. We will refer to such regions as simple type
regions.

We proceed by approximating R by a region of simple type. We subdivide the interval
[0, 1] into N equal parts, where N is a very large natural number. We obtain the points

x0 = 0, x1 =
1

N
, x2 =

2

N
, . . . , xN =

N

N
.

For each k = 1, 2, . . . , N we denote by Rk the very thin slice of R of width 1
N delimited

by the vertical lines x = xk−1 and x = xk. We have thus decomposed R into N thin slices

249
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R1, . . . , RN and

area(R) =
n∑
k=1

area(Rk) = area(R1) + · · ·+ area(RN ).

Now observe that the slice Rk contains a thin rectangle Rk of height f(xk−1) and is
contained in a thin rectangle Rk of height f(xk); see Figure 9.1.

xx

f(x )

f(x   )

k

k

k

k

k-1

k-1

R

R

_
y=x2

10

_

Figure 9.1. Computing the area underneath an arc of parabola.

Thus

f(xk−1)× (xk − xk−1) = area(Rk) ≤ area(Rk) ≤ area(Rk) = f(xk)× (xk − xk−1).

Since f(xk) = k2

N2 and xk − xk−1 = 1
N we deduce

(k − 1)2

N3
≤ area(Rk) ≤

k2

N3
,

and thus
N∑
k=1

(k − 1)2

N3︸ ︷︷ ︸
=:LN

≤
N∑
k=1

area(Rk)︸ ︷︷ ︸
=area(R)

≤
N∑
k=1

k2

N3︸ ︷︷ ︸
=:UN

. (9.1)

Thus
LN ≤ area(R) ≤ UN . (9.2)

Observe that

LN =
02

N3
+

12

N3
+ · · ·+ (N − 1)2

N3
=

12 + 22 + · · ·+ (N − 1)2

N3
,
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UN =
12

N3
+ · · ·+ (N − 1)2

N3
+
N2

N3
=

12 + 22 + · · ·+N2

N3
,

so that

UN − LN =
N2

N3
=

1

N
.

For N very large, the difference UN − LN is very small and thus the sequence (LN )
converges if and only if the sequence (UN ) converges. Moreover, the inequality (9.2)
shows that the common limit of these sequences, if it exists, must be equal to the area of
R. To compute the limit of UN we use the following famous identity whose proof is left
to you as an exercise.

12 + 22 + · · ·+N2 =
N(N + 1)(2N + 1)

6
. (9.3)

We deduce that

UN =
N(N + 1)(2N + 1)

6N3
=

1

6

N

N

N + 1

N

2N + 1

N
→ 2

6
as N →∞.

Thus

area(R) =
1

3
.

This example describes the bare bones of the process called integration. As this simple
example suggests, the integration it involves a sophisticated infinite summation and a bit
of good fortune, in the guise of (9.3), that allowed us to actually compute the result of
this infinite summation.

We will spend the rest of this chapter describing rigorously and in great generality
this process and we will show that in a large number of cases we can cleverly create our
good fortune and succeed in carrying out explicit computations of the limits of infinite
summations involved.

9.2. The Riemann integral

The process sketched in the previous section can be carried out in greater generality. We
present the quite involved details in this section.

Definition 9.1 (Partitions). Fix an interval [a, b], a < b.

(a) A partition P of [a, b] is a finite collection of points x0, x1, . . . , xn of the interval such
that

a = x0 < x1 < · · · < xn = b.

The natural number n is called the order of the partition, while the points x0, . . . , xn are
called the nodes of the partition. The intervals

[x0, x1], [x1, x2], . . . , [xn−1, xn]
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are called the intervals of the partition. The interval [xk−1, xk] is called the k-th interval
of the partition and it is denoted by Ik(P ). Its length is denoted by ∆k(P ) or ∆xk. The
largest of these lengths is called the mesh size of the partition and it is denoted by ‖P ‖,

‖P ‖ := max
1≤k≤n

(xk − xk−1) = max
1≤k≤n

∆k(P ) .

We denote by P[a,b] the collection of all partitions of the interval [a, b].

(b) A sample of a partition P of order n is a collection ξ consisting of n points ξ1, . . . , ξn
such that

ξk ∈ Ik(P ), ∀k = 1, . . . , n.

The point ξk is called the sample point of the interval Ik(P ). We denote by S(P ) the
collection of all possible samples of the partition P .

(c) A sampled partition of the interval [a, b] is a pair (P , ξ), where P is a partition of [a, b]
and ξ ∈ S(P ) is a sample of P . ut

a b

xxxxxx

ξξξξξ

0

1

1 2

2 3

3 4

4

5

5

Figure 9.2. A sampled partition of order 5 of an interval [a, b]. Its longest interval is
[x1.x2] so its mesh size is (x2 − x1).

Example 9.2. Any compact interval [a, b] has a natural partition Un of order n corre-
sponding to a subdivision of [a, b] into n subintervals of order n. More precisely, Un is
defined by the points

x0 = a, x1 = a+
1

n
(b− a), xk = a+

k

n
(b− a), k = 0, 1, . . . , n.

The partition Un is called the uniform partition of order n of [a, b]. Note that

‖Un‖ =
b− a
n

. ut

Definition 9.3. Let f : [a, b] → R be a function defined on the closed and bounded
interval [a, b]. Given a partition P = (x0 < · · · < xn) of [a, b], and a sample ξ of P , we

define the Riemann1 sum of f associated to the sampled partition (P, ξ) to be the number

S(f,P , ξ) =
n∑
k=1

f(ξk)∆k(P ) =
n∑
k=1

f(ξk)∆xk =
n∑
k=1

f(ξk)(xk − xk−1). ut
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xx

f(   )ξ

ξ k

k

k
k-1

Figure 9.3. The term f(ξk)∆xk is the area of a rectangle.

As depicted in Figure 9.3, each term f(ξk)(xk − xk−1) in a Riemann sum is equal
to the area of a “thin” rectangle of width ∆xk = (xk − xk−1), and height given by the
altitude of the point on the graph of f determined by the sample point ξk ∈ [xk−1, xk].
The Riemann sum is therefore the area of the region formed by putting side by side each
of these thin rectangles. The hope is that the area of this rather jagged looking region
is an approximation for the area of the region under the graph of f . The next definition
makes this intuition precise.

Definition 9.4. Suppose that f : [a, b] → R is a function defined on the closed and
bounded interval [a, b]. We say that f is Riemann integrable on [a, b] if there exists a real
number I with the following property: for any ε > 0 there exists δ = δ(ε) > 0 such that,
for any partition P of [a, b] with mesh size ‖P ‖ < δ, and any sample ξ of P we have∣∣ I − S(f,P , ξ)

∣∣ < ε.

Equivalently, as a quantified statement, the above reads

∃I ∈ R, ∀ε > 0, ∃δ = δ(ε) > 0, ∀P ∈ P[a,b], ∀ξ ∈ S(P ) :

‖P ‖ < δ ⇒
∣∣ I − S(f,P , ξ)

∣∣ < ε.
(9.4)

We will denote by R[a, b] the collection of all Riemann integrable functions f : [a, b]→ R.
ut

1Named after Bernhardt Riemann (1826-1866) German mathematician who made lasting and revolutionary
contributions to analysis, number theory, and differential geometry; see Wikipedia.

https://en.wikipedia.org/wiki/Bernhard_Riemann
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Suppose that f : [a, b]→ R is Riemann integrable. For any n ∈ N we fix a sample ξ(n)

of Un, the uniform partition of order n of [a, b]. If I is any real number satisfying (9.4),
then from the equality

lim
n→∞

‖Un‖ = 0

we deduce that

I = lim
n→∞

S
(
f,Un, ξ

(n)
)
.

Since a convergent sequence has a unique limit, we deduce that there exists precisely one
real number I satisfying (9.4). This real number is called the Riemann integral of f on
[a, b] and it is denoted by ∫ b

a
f(x)dx.

It bears repeating the definition of
∫ b
a f(x)dx.

The Riemann integral of f over [a, b], when it exists, is the unique real number
∫ b
a f(x)dx

with the following property: for any ε > 0 there exists = δ = δ(ε) > 0 such that for any
partition P of [a, b] with mesh ‖P ‖ < δ, and for any sample ξ of P , the Riemann sum

S(f,P , ξ) is within ε of
∫ b
a f(x)dx, i.e.,∣∣∣∣∫ b

a
f(x)dx− S(f,P , ξ)

∣∣∣∣ < ε.

We can loosely rephrase this as follows∫ b

a
f(x)dx = lim

‖P ‖→0,
ξ∈S(P )

S(f,P , ξ). (9.5)

Example 9.5. Consider the constant function f : [a, b] → R, f(x) = C, for all x ∈ [a, b]
where C is a fixed real number. Note that for any sampled partition of order n (P , ξ) of
[a, b] we have

S(f,P , ξ) = f(ξ1)(x1 − x0) + f(ξ2)(x2 − x1) + · · ·+ f(ξn)(xn − xn−1)

= C(x1 − x0) + C(x2 − x1) + · · ·+ C(xn − xn−1)

= C
(

(x1 − x0) + (x2 − x1) + · · ·+ (xn − xn−1)
)

= C(xn − x0) = C(b− a).

This shows that the constant function is integrable and∫ b

a
Cdx = C(b− a). ut
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It is natural to ask if there exist Riemann integrable functions more complicated than
the constant functions. The next section will address precisely this issue. We will see that
indeed, the world of integrable functions is very large. Until then, let us observe that not
any function is Riemann integrable.

Proposition 9.6. Suppose that f : [a, b] → R is a Riemann integrable function. Then f
is bounded, i.e.,

−∞ < inf
x∈[a,b]

f(x) < sup
x∈[a,b]

f(x) <∞.

Proof. We argue by contradiction. Suppose that f : [a, b] → R is Riemann integrable
and unbounded above, i.e.,

sup
x∈[a,b]

f(x) =∞.

For any n ∈ N consider the uniform partition Un of [a, b]. Then there exists k = k(n) such
that f is unbounded the interval Ik = Ik(n) of this partition. For j 6= k fix an arbitrary
sample point ξj ∈ Ij . Since f is not bounded above on Ik, there exists ξk ∈ Ik such that

f(ξk) >
n

∆xk
−
∑
j 6=k

f(ξj)
∆xj
∆xk
⇐⇒f(ξk)∆xk +

∑
j 6=k

f(ξj)∆xj > n.

We obtain a sample ξ(n) of Un and for this sample we have

S
(
f,Un, ξ

(n)
)

= f(xk)∆xk +
∑
j 6=k

f(ξj)∆xj > n, ∀n ∈ N.

The Riemann integrability of f implies that the sequence of Riemann sums S
(
f,Un, ξ

(n)
)

is convergent. This contradicts the last inequality which states that this sequence is
unbounded. ut

The above result shows that the function

f : [0, 1]→ R, f(x) =

{
0, x = 0,

1√
x
, x ∈ (0, 1],

is not Riemann integrable because it is not bounded.

9.3. Darboux sums and Riemann integrability

To be able to construct examples of integrable functions we need a criterion for recognizing
such functions, more flexible than the definition. Fortunately there is one such criterion
due to Gaston Darboux. To formulate it we need to introduce several new concepts.

Definition 9.7. Suppose that f : [a, b] → R is a bounded function defined on the closed
and bounded interval [a, b]. For any partition P of [a, b] of order n we set

S∗(f,P ) :=
n∑
k=1

sup
x∈Ik(P )

f(x)∆xk,
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S∗(f,P ) :=

n∑
k=1

inf
x∈Ik(P )

f(x)∆xk,

ω(f,P ) :=
∑
k=1

osc(f, Ik)∆xk,

where

• Ik = Ik(P ) is the k-th interval of the partition P ,

• ∆xk is the length of Ik,

• osc(f, Ik) denotes the oscillation of f on Ik.

The quantity S∗(f,P ) is called the upper Darboux2 sum of the function f determined
by the partition P , while S∗(f,P ) is called the lower Darboux sum of the function f
determined by the partition P . We will refer to ω(f,P ) as the mean oscillation of f along
P . ut

Proposition 9.8. If f : [a, b] → R is a bounded function, then for any partition P of
[a, b] and any sample ξ of P we have

S∗(f,P ) ≤ S(f,P , ξ) ≤ S∗(f,P ), (9.6a)

ω(f,P ) = S∗(f,P )− S∗(f,P ). (9.6b)

Proof. Suppose that P is a partition of order n of [a, b] and ξ is a sample of P . For
k = 1, . . . , n we denote by Ik the k-the interval of P and we set

Mk := sup
x∈Ik

f(x), mk := inf
x∈Ik

f(x).

Then Mk −mk = osc(f, Ik) and

S∗(f,P )− S∗(f,P ) =
(
M1∆x1 + · · ·+Mn∆xn

)
−
(
m1∆x1 + · · ·+mn∆xn

)
= (M1 −m1)∆x1 + · · ·+ (Mn −mn)∆xn

= osc(f, I1)∆x1 + · · ·+ osc(f, In)∆xn = ω(f,P ).

This proves (9.6b). If ξ is a sample of P , then

mk∆xk ≤ f(ξk)∆xk ≤Mk∆xk, ∀k = 1, . . . , n,

so that
n∑
k=1

mk∆xk ≤
n∑
k=1

f(ξk)∆xk ≤
n∑
k=1

Mk∆xk.

This proves (9.6a). ut

2Named after Gaston Darboux (1842-1917) French mathematician who made several important contributions
to geometry and mathematical analysis; see Wikipedia.

https://en.wikipedia.org/wiki/Jean_Gaston_Darboux
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Corollary 9.9. If f : [a, b] → R is a bounded function then for any partition P of [a, b]
and for any samples ξ, ξ′ of P we have∣∣S(f,P , ξ)− S(f,P , ξ′)

∣∣ ≤ ω(f,P ).

Proof. According to (9.6a) the Riemann sums S(f,P , ξ), S(f,P , ξ′) are both contained
in the interval [S∗(f,P ),S∗(f,P )] so the distance between them must be smaller than
the length of this interval which is equal to ω(f,P ) according to (9.6b). ut

Proposition 9.10. Suppose that f : [a, b]→ R is a bounded function and P is a partition
of [a, b]. If P ′ is a partition of [a, b] obtained from P by adding one extra node x′ in the
interior of some interval of P , then

S∗(f,P ) ≤ S∗(f,P ′) ≤ S∗(f,P ′) ≤ S∗(f,P ).

Thus, by adding a node the upper Darboux sums decrease, while the lower Darboux sums
increase.

Proof. The inequality (9.6a) shows that S∗(f,P
′) ≤ S∗(f,P ′). Suppose that the extra

node x′ is contained in (xk−1, xk). We set

Mk := sup
x∈Ik

f(x), mk := inf
x∈Ik

f(x).

Then

S∗(f,P
′) =

∑
j<k

mj∆xj + inf
x∈[xk−1,x′]

f(x)︸ ︷︷ ︸
≥mk

(x′ − xk−1) + inf
[x′,xk]

f(x)︸ ︷︷ ︸
≥mk

(xk − x′) +
∑
`>k

m`∆x`

≥
∑
j<k

mj∆xj +mk(x
′ − xk−1) +mk(xk − x′)︸ ︷︷ ︸

=mk(xk−xk−1)

+
∑
`>k

m`∆x`

=
∑
j<k

mj∆xj +mk∆xk +
∑
`>k

m`∆x` =
n∑
i=1

mi∆xi = S∗(f,P ).

The inequality

S∗(f,P ′) ≤ S∗(f,P )

is proved in a similar fashion.

ut

Definition 9.11. Given two partitions P ,P ′ of [a, b], we say that P ′ is a refinement of
P , and we write this P ′ � P , if P ′ is obtained from P by adding a few more nodes. ut

Since the addition of nodes increases lower Darboux sums and decreases upper Dar-
boux sums we deduce the following result.
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Proposition 9.12. Suppose that f : [a, b] → R is a bounded function and P ,P ′ are
partitions of [a, b]. If P ′ � P , then

S∗(f,P ) ≤ S∗(f,P ′) ≤ S∗(f,P ′) ≤ S∗(f,P ). ut

Corollary 9.13. Suppose that f : [a, b]→ R is a bounded function and P ,P ′ are partitions
of [a, b]. If P ′ � P ,

ω(f,P ′) ≤ ω(f,P ). (9.7)

Proof. From (9.8) we deduce

S∗(f,P ) ≤ S∗(f,P ′) ≤ S∗(f,P ′) ≤ S∗(f,P ),

so that,

ω(f,P ′) = S∗(f,P ′)− S∗(f,P ′) ≤ S∗(f,P )− S∗(f,P ) = ω(f,P ).

ut

Given two partitions P ,P ′ of [a, b] we denote by P ∨ P ′ the partition whose set of
nodes is the union of the sets of nodes of the partitions P and P ′. Clearly P ∨ P ′ is a
refinement of both P and P ′. From Proposition 9.12 we deduce the following important
consequence.

Corollary 9.14. Suppose that f : [a, b] → R is a bounded function and P 0,P 1 are
partitions of [a, b]. Then

S∗(f,P 1) ≤ S∗(f,P 0 ∨ P 1) ≤ S∗(f,P 0 ∨ P 1) ≤ S∗(f,P 0). (9.8)

ut

The above corollary shows that if f : [a, b]→ R is a bounded function, then the set{
S∗(f,P ); P ∈ P[a,b]

}
is bounded below. Indeed, if we denote by U1 the uniform partition of order 1 of [a, b],
then (9.8) shows that

S∗(f,U1) ≤ S∗(f,P ), ∀P ∈ P[a,b].

We set

S∗(f) := inf
{
S∗(f,P ); P ∈ P[a,b]

}
.

Similarly, the set {
S∗(f,P ); P ∈ P[a,b]

}
is bounded above and we define

S∗(f) := sup
{
S∗(f,P ); P ∈ P[a,b]

}
.

Proposition 9.15. If f : [a, b]→ R is a bounded function, then

S∗(f) ≤ S∗(f). (9.9)
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Proof. From (9.8) we deduce that ∀P 0,P 1 ∈ P[a,b] we have

S∗(f,P 1) ≤ S∗(f,P 0)⇒ S∗(f,P 1) ≤ inf
P 0

S∗(f,P 0) = S∗(f)

⇒ S∗(f) = sup
P 1

S∗(f,P 1) ≤ S∗(f).

ut

Definition 9.16. Let f : [a, b]→ R be a bounded function.

(a) The numbers S∗(f) and respectively S∗(f) are called the lower and respectively upper
Darboux integrals of f .

(b) The function f is called Darboux integrable if S∗(f) = S∗(f). ut

Theorem 9.17 (Riemann-Darboux). Suppose that f : [a, b] → R is a bounded function.
Then the following statements are equivalent.

(i) The function f is Riemann integrable.

(ii) The function f is Darboux integrable, i.e., S∗(f) = S∗(f).

(iii) infP ω(f,P ) = 0, i.e.,

∀ε > 0, ∃P ε ∈ P[a,b] : ω(f,P ε) < ε. (ω0)

(iv) lim‖P ‖→0 ω(f,P ) = 0, i.e.,

∀ε > 0 ∃δ = δ(ε) > 0 ∀P ∈ P[a,b] : ‖P ‖ < δ ⇒ ω(f,P ) < ε. (ω)

Proof. We will prove these equivalences using the following logical successions

(iii)⇐⇒ (ii), (iv) ⇒ (iii), (iv)⇐⇒(i), (iii) ⇒ (iv).

(iii) ⇒ (ii). For any ε > 0 we can find a partition P ε such that ω(f,P ε) < ε. Now observe
that

S∗(f,P ε) ≤ S∗(f) ≤ S∗(f) ≤ S∗(f,P ε),

and

S∗(f,P ε)− S∗(f,P ε) = ω(f,P ε) < ε.

Hence

0 ≤ S∗(f)− S∗(f) ≤ S∗(f,P ε)− S∗(f,P ε) < ε, ∀ε > 0,

so that

S∗(f) = S∗(f).

(ii) ⇒ (iii). We know that S∗(f) = S∗(f). Denote by S(f) this common value. Since

S(f) = S∗(f) = sup
P
S∗(f,P ),

we deduce that for any ε > 0 there exists a partition P−ε such that

S(f)− ε

2
< S∗(f,P

−
ε ) ≤ S(f).
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Since

S(f) = S∗(f) = inf
P
S∗(f,P ),

we deduce that for any ε > 0 there exists a partition P+
ε such that

S(f) ≤ S∗(f,P+
ε ) < S(f) +

ε

2
.

Hence

S(f)− ε

2
< S∗(f,P

−
ε ) ≤ S∗(f,P+

ε ) < S(f) +
ε

2
.

Now set P ε := P−ε ∨ P+
ε . We deduce from (9.8) that

S(f)− ε

2
< S∗(f,P

−
ε ) ≤S∗(f,P ε) ≤ S∗(f,P ε)≤ S∗(f,P+

ε ) < S(f) +
ε

2
.

This proves that

ω(f,P ε) = S∗(f,P ε)− S∗(f,P ε) < ε.

(iv) ⇒ (iii). This is obvious.

(iv) ⇒ (i). From the above we deduce that (iv) ⇒ (ii) ∧ (iii) so S∗(f) = S∗(f). We set

S(f) := S∗(f) = S∗(f).

We will show that f is integrable and its Riemann integral is S(f).

Fix ε > 0. According to (ω), there exists δ = δ(ε) > 0 such that for any partition P
of [a, b] satisfying ‖P ‖ < δ we have

ω(f,P ) < ε.

Given a partition P such that ‖P ‖ < δ and ξ a sample of P we have

S∗(f,P ) ≤ S(f) ≤ S∗(f,P ),

S∗(f,P ) ≤ S(f,P , ξ) ≤ S∗(f,P ).

Thus both numbers S(f) and S(f,P , ξ) lie in the interval [S∗(f,P ),S∗(f,P )] of length
ω(f,P ) < ε. Hence∣∣S(f,P , ξ)− S(f)

∣∣ < ε, ∀‖P‖ < δ(ε), ∀ξ ∈ S(P ).

This proves that f is Riemann integrable.

(i) ⇒ (iv). We have to prove that if f is Riemann integrable, then f satisfies (ω). We
first need an auxiliary result.

Lemma 9.18. Suppose that f : [a, b]→ R is a bounded function. Then, for any partition
P of [a, b] we have

S∗(f,P ) = inf
ξ∈S(P )

S(f,P , ξ),

S∗(f,P ) = sup
ξ∈S(P )

S(f,P , ξ).



9.3. Darboux sums and Riemann integrability 261

In other words, for any ε > 0, and any partition P of [a, b], there exist samples ξ′ and ξ′′

of P such that

S∗(f, P ) ≤ S(f,P , ξ′) < S∗(f, P ) + ε,

S∗(f,P )− ε < S(f,P , ξ′′) ≤ S∗(f,P ).

In particular

ω(f,P ) = S∗(f,P )− S∗(f,P ) = sup
ξ∈S(P )

S(f,P , ξ)− inf
ξ∈S(P )

S(f,P , ξ). (9.10)

Proof. We prove only the statement involving lower sums. The proof of the statement involving upper sums is

similar. Denote by n the order of P and by Ik the k-th interval of P and, as usual, we set

mk = inf
x∈Ik

f(x).

In particular, there exists ξ′k ∈ Ik such that

mk ≤ f(ξ′k) < mk +
ε

b− a
.

The collection ξ′ = (ξ′k)1≤k≤n is a sample of P satisfying

mk(xk − xk−1) ≤ f(ξ′k)(xk − xk−1) < mk(xk − xk−1) +
ε

b− a
(xk − xk−1).

Hence

S∗(f,P ) =

n∑
k=1

mk(xk − xk−1) ≤
n∑
k=1

f(ξ′k)(xk − xk−1)

︸ ︷︷ ︸
=S(f,P ,ξ′)

<

n∑
k=1

mk(xk − xk−1)

︸ ︷︷ ︸
=S∗(f,P )

+
ε

b− a

n∑
k=1

(xk − xk−1)

︸ ︷︷ ︸
=(b−a)

= S∗(f, P ) + ε.

ut

We can now complete the proof of (ω). Since f is Riemann integrable, there exists
Sf ∈ R such that, for any ε > 0 we can find δ = δ(ε) > 0 with the property that for any
partition P with mesh size ‖P ‖ < δ and any sample ξ of P we have∣∣Sf − S(f,P , ξ)

∣∣ < ε

4
. (9.11)

According to Lemma 9.18 we can find samples ξ′ and ξ′′ such that∣∣S∗(f,P )− S(f,P , ξ′)
∣∣, ∣∣S∗(f,P )− S(f,P , ξ′′)

∣∣ < ε

4
. (9.12)

If ‖P ‖ < δ, then

ω(f,P ) =
∣∣S∗(f,P )− S∗(f,P )

∣∣
≤
∣∣S∗(f,P )− S(f,P , ξ′)

∣∣+
∣∣S(f,P , ξ′)− S(f,P , ξ′′)

∣∣+
∣∣S(f,P , ξ′′)− S∗(f,P )

∣∣
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(9.12)
<

ε

4
+
∣∣S(f,P , ξ′)− S(f,P , ξ′′)

∣∣+
ε

4

≤ ε

2
+
∣∣S(f,P , ξ′)− Sf

∣∣+
∣∣Sf − S(f,P , ξ′′)

∣∣ (9.11)
<

ε

2
+
ε

4
+
ε

4
= ε.

(iii) ⇒ (iv). We have to show that if f satisfies (ω0), then it also satisfies (ω). We need
the following auxiliary result.

Lemma 9.19. Suppose that P 0 = {a = z0 < z1 < · · · < zn0 = b} is a partition of [a, b] of
order n0. Denote by λ0 the length of the shortest intervals of the partition P 0, i.e.,

λ0 := min
1≤j≤n0

(zj − zj−1).

For any partition P such that ‖P ‖ < λ0 we have

ω(f,P ) ≤ (n0 − 1)‖P ‖ osc(f, [a, b]) + ω(f,P 0). (9.13)

Proof. Denote by I1, . . . , In0 the intervals of P 0. Denote by n the order of P , and by J1, . . . , Jn the intervals of

P . We will denote by `(Jk) the length of Jk and by `(Ij) the length of Ij

Since `(Jk) ≤ `(Ij), ∀j = 1, . . . , n0, k = 1, . . . , n we deduce that the intervals Jk of P are of only the following

two types.

Type 1. The interval Jk is contained in an interval Ij of P 0.

Type 2. The interval Jk contains in the interior a node zj(k) of P 0.

We denote by J1 the collection of Type 1 intervals of P , and by J2 the collection of Type 2 intervals of P . We

remark that J2 could be empty. Moreover, for any node zj of P 0 there exists at most one Type 2 interval of P that

contains zj in the interior. Thus J2 consist of at most n0 − 1 intervals, i.e., its cardinality |J2| satisfies

|J2| ≤ n0 − 1.

We have

ω(f,P ) =
n∑
k=1

osc(f, Jk)`(Jk) =
∑
jk∈J1

osc(f, Jk)`(Jk)

︸ ︷︷ ︸
=:S1

+
∑
Jk∈J2

osc(f, Jk)`(Jk)

︸ ︷︷ ︸
=:S2

.

We now estimate S1 from above

S1 =

n0∑
j=1

 ∑
Jk⊂Ij

osc(f, Jk)`(Jk)


(osc(f, Jk) ≤ osc(f, Ij) whenever Jk ⊂ Ij)

≤
n0∑
j=1

 ∑
Jk⊂Ij

osc(f, Ij)`(Jk)

 =

n0∑
j=1

osc(f, Ij)

 ∑
Jk⊂Ij

`(Jk)


︸ ︷︷ ︸

≤`(Ij)

≤
n0∑
j=1

osc(f, Ij)`(Ij) = ω(f,P 0).

Now observe that if Jk is a Type 2 interval of P , then `(Jk) ≤ ‖P ‖ and osc(f, Jk) ≤ osc(f, [a, b]). Hence

S2 ≤
∑
Jk∈J2

osc(f, [a, b])‖P ‖ ≤ |J2| osc(f, [a, b])‖P ‖ ≤ (n0 − 1) osc(f, [a, b])‖P ‖.

Hence

ω(f,P ) = S1 + S2 ≤ (n0 − 1) osc(f, [a, b])‖P ‖+ ω(f,P 0).

ut
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Returning to our implication (ω0) ⇒ (ω), we observe that (ω0) implies that for any
ε > 0 there exists a partition P ε such that

ω(f,P ε) <
ε

2
.

Denote by nε the order of P ε and by x0 < x1 < · · · < xnε the nodes of P ε. We set

λε := min
1≤j≤nε

(xj − xj−1).

Now choose δ = δ(ε) > 0 such that

δ < λε and (nε − 1) osc(f, [a, b])δ <
ε

2
⇐⇒ δ < min

(
λε,

ε

2(nε − 1) osc(f, [a, b])

)
.

If P is an arbitrary partition of [a, b] such that ‖P ‖ < δ(ε), then Lemma 9.19 implies that

ω(f,P ) ≤ (nε − 1) osc(f, [a, b])δ + ω(f,P ε) < ε.

This proves that f satisfies (ω) and completes the proof of the Riemann-Darboux Theorem.
ut

We record here for later use a direct consequence of the above proof.

Corollary 9.20. Suppose that f : [a, b]→ R is a Riemann integrable function. Then∫ b

a
f(x)dx = S∗(f) = S∗(f). (9.14)

In particular,

S∗(f,P ) ≤
∫ b

a
f(x)dx ≤ S∗(f,P ′), ∀P ,P ′ ∈ P[a,b]. (9.15)

ut
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We are now going to collect the reward for the effort we spent proving the Riemann-
Darboux theorem.

Proposition 9.21. Any continuous function f : [a, b]→ R is Riemann integrable.

Proof. We will use the Riemann-Darboux theorem to prove the claim. Note first that
the Weierstrass Theorem 6.14 shows that f is bounded.

To prove that f satisfies (ω) we rely on the Uniform Continuity Theorem 6.29. Ac-
cording to this theorem, for any ε > 0 there exists δ = δ(ε) > 0 such that for any interval
I ⊂ [a, b] of length < δ we have

osc(f, I) <
ε

b− a
.
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If P is any partition of [a, b] of order n and mesh size ‖P ‖ < δ(ε), then for any interval
Ik of P we have

osc(f, Ik) <
ε

b− a
.

Hence

ω(f,P ) =

n∑
k=1

osc(f, Ik)∆xk <
ε

b− a

n∑
k=1

∆xk︸ ︷︷ ︸
=(b−a)

= ε.

This shows that f satisfies (ω) and thus it is Riemann integrable. ut

Example 9.22. The function f : [0, 1]→ R, f(x) = x2 is continuous and thus integrable.
Thus ∫ 1

0
x2dx = lim

N→∞
S∗(f,UN ),

where UN denote the uniform partition of order N of [0, 1]. Since f is nondecreasing
we deduce that S∗(f,UN ) coincides with the sum LN defined in (9.1). As explained in
Section 9.1 the sum LN converges to 1

3 as N →∞. ut

Proposition 9.23. Any nondecreasing function f : [a, b]→ R is Riemann integrable.

Proof. Clearly f is bounded since f(a) ≤ f(x) ≤ f(b), ∀x ∈ [a, b]. If P is any partition
of [a, b] of order n, then for an interval Ik = [xk−1, xk] of this partition we have

osc(f, Ik) = f(xk)− f(xk−1),

osc(f, Ik)∆xk ≤ osc(f, Ik)‖P ‖ = ‖P ‖
(
f(xk)− f(xk−1)

)
so that

ω(f,P ) =
n∑
k=1

osc(f, Ik)∆xk ≤ ‖P ‖
n∑
k=1

(
f(xk)− f(xk−1)

)
= ‖P ‖

(
f(b)− f(a)

)
.

This shows that f satisfies (ω) since

lim
‖P ‖→0

‖P ‖
(
f(b)− f(a)

)
= 0.

ut

Proposition 9.24. Suppose that f : [a, b]→ R is a bounded function which is continuous
on (a, b). Then f is Riemann integrable.

Proof. We will prove that f satisfies (ω0). Fix ε > 0 and choose a positive real number
d(ε) such that

osc(f, [a, b])d(ε) <
ε

4
. (9.16)

Denote by Jε the compact interval Jε := [a+ d(ε), b− d(ε)]; see Figure 9.4.
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The restriction of f to Jε is continuous. The Uniform Continuity Theorem 6.29 implies
that there exists δ = δ(ε) < d(ε) with the property that for any interval I ⊂ Jε of length
`(I) < δ(ε) we have

osc(f, I) <
ε

2(b− a)
. (9.17)

Consider a partition P ε of order n of Jε satisfying ‖P ‖ < δ(ε). We denote by Ik,
k = 1 . . . , n, the intervals of P ε; see Figure 9.4. We set

I∗ := [a, a+ d(ε)], I∗ = [b− d(ε), b].

a a+ bb- d( )d( ) εε

I I II

I

1 2 n

*

*

Figure 9.4. Isolating the possible points of discontinuity of f .

The collection of intervals

I∗, I1, . . . , In, I
∗

defines a partition P̂ ε of [a, b]; see Figure 9.4. We have

ω(f, P̂ ε) = osc(f, I∗)`(I∗)︸ ︷︷ ︸
=:T∗

+
n∑
k=1

osc(f, Ik)`(Ik)︸ ︷︷ ︸
=:T

+ osc(f, I∗)`(I∗)︸ ︷︷ ︸
=:T ∗

.

Note that

`(I∗) = `(I∗) = d(ε).

so that

T∗ = osc(f, I∗)d(ε) ≤ osc(f, [a, b])d(ε)
(9.16)
<

ε

4
,

T ∗ = osc(f, I∗)d(ε) ≤ osc(f, [a, b])d(ε)
(9.16)
<

ε

4
.

Moreover,

T =

n∑
k=1

osc(f, Ik)`(Ik)
(9.17)
<

ε

2(b− a)

n∑
k=1

`(Ik) =
ε

2(b− a)
(b− a) =

ε

2
.

Hence,

ω(f, P̂ ε) = T∗ + T + T ∗ <
ε

4
+
ε

2
+
ε

4
= ε.

This proves that f satisfies (ω0) and thus it is Riemann integrable. ut
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Figure 9.5. A wildly oscillating, yet Riemann integrable function.

Remark 9.25. Proposition 9.24 has some surprising nontrivial consequences. For exam-
ple, it shows that the wildly oscillating function (see Figure 9.5)

f : [0, 1]→ R, f(x) =

{
sin
(

1
x

)
, x ∈ (0, 1],

0, x = 0,

is Riemann integrable. ut

Proposition 9.26. Suppose that f : [a, b]→ R is a bounded function and c ∈ (a, b). The
following statements are equivalent.

(i) The function f is Riemann integrable on [a, b].

(ii) The restrictions of f |[a,c] and f |[c,b] of f to [a, c] and [c, b] are Riemann integrable
functions.

Moreover, if f satisfies either one of the two equivalent conditions above, then∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx. (9.18)

Proof. (i)⇒ (ii). Suppose that f is Riemann integrable on [a, b]. Given a partition P ′ of
[a, c] and a partition P ′′ of [c, b] we obtain a partition P ′ ∗P ′′ of [a, b] whose set of nodes
is the union of the sets of nodes of P ′ and P ′′. Note that

‖P ′ ∗ P ′′‖ ≤ max
{
‖P ′‖, ‖P ′′‖

}
,

and

ω( f,P ′ ∗ P ′′ ) = ω( f |[a,c],P ′ ) + ω
(
f |[c,b],P ′ ).

Since f is Riemann integrable on [a, b], it satisfies the property (ω) so, for any ε > 0, there
exists δ = δ(ε) > 0 such that, for any partition P of [a, b] with mesh size ‖P ‖ < δ(ε), we
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have

ω(f,P ) < ε.

If the partitions P ′ and P ′′ satisfy

max
{
‖P ′‖, ‖P ′′‖

}
< δ(ε),

then ‖P ′ ∗ P ′′‖ < δ(ε) so that

ω(f |[a,c],P ′) + ω(f |[c,b],P ′′) = ω(f,P ′ ∗ P ′′) < ε.

This shows that both restrictions f |[a,c] and f |[c,b] satisfy (ω) and thus are Riemann inte-
grable.

(ii) ⇒ (i). We will prove that if f |[a,c] and f |[c,b] are Riemann integrable, then f is
integrable on [a, b]. We invoke Theorem 9.17. It suffices to show that f satisfies (ω0). Fix
ε > 0. We have to prove that there exists a partition P ε of [a, b] such that ω(f,P ε) < ε.

Since f |[a,c] and f |[c,b] are Riemann integrable, they satisfy (ω0), and we deduce that

there exist partitions P ′ε of [a, c], and P ′′ε of [c, b] such that

ω(f,P ′ε), ω(f,P ′′ε) <
ε

2
.

Then P ε = P ′ε ∗ P ′′ε is a partition of [a, b], and

ω(f,P ε) = ω(f,P ′ε) + ω(f,P ′′ε) < ε.

To prove (9.18) assume that f satisfies both (i) and (ii). Denote by U ′n the uniform
partition of order n of [a, c] and by U ′′n the uniform partition of order n of [c, b]. Set

P n := U ′n ∗U ′′n.

Note that

‖P n‖ = max
(
‖U ′n‖, ‖U ′′n‖

)
→ 0 as n→∞. (9.19)

Denote by ξ′
n

the midpoint sample of U ′n, and by ξ′′
n

the midpoint sample of U ′′n. Then

ξ
n

:= ξ
n
∪ ξ′′

n
is the midpoint sample of P n. We have

S(f,P n, ξn) = S(f,U ′n, ξ
′
n
) + S(f,U ′′n, ξ

′′
n
). (9.20)

From (i), (9.19), and (9.5) we deduce that

lim
n→∞

S(f,P n, ξn) =

∫ b

a
f(x)dx.

From (ii), (9.19), and (9.5) we deduce that

lim
n→∞

S(f,U ′n, ξ
′
n
) =

∫ c

a
f(x)dx,

lim
n→∞

S(f,U ′′n, ξ
′′
n
) =

∫ b

c
f(x)dx.

The equality (9.18) now follows from the above three equalities after letting n → ∞ in
(9.20). ut
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Applying Proposition 9.26 iteratively we deduce the following consequence.

Corollary 9.27. Suppose that f : [a, b]→ R is a bounded function and

P = (a = x0 < x1 < · · · < xn = b)

is a partition of [a, b]. Then the following statements are equivalent.

(i) The function f is Riemann integrable on [a, b].

(ii) For any k = 1, . . . , n the restriction of f to [xk−1, xk] is Riemann integrable.

Moreover, if any of the above two equivalent conditions is satisfied, then∫ b

a
f(x)dx =

∫ x1

a
f(x)dx+

∫ x2

x1

f(x)dx+ · · ·+
∫ b

xn−1

f(x)dx. (9.21)

ut

Corollary 9.28. If f : [a, b]→ R is a bounded function and D ⊂ [a, b] is a finite set such
that f is continuous at any point in [a, b] \D, then f is Riemann integrable.

Proof. We add to D the endpoints a, b if they are not contained in D and we obtain a
partition P of [a, b] such that f is continuous in the interior of any interval [xk−1, xk] of P .
Proposition 9.24 implies that f is Riemann integrable on each of the intervals [xk−1, xk]
and Corollary 9.27 implies that f is integrable on [a, b]. ut

Proposition 9.29. If f, g : [a, b] → R are Riemann integrable, then for any constants
α, β ∈ R the sum αf + βg : [a, b]→ R is also Riemann integrable and∫ b

a

(
αf(x) + βg(x)

)
dx = α

∫ b

a
f(x)dx+ β

∫ b

a
g(x)dx. (9.22)

Proof. We will show that αf + βg satisfies the definition of Riemann integrability, Defi-
nition 9.4. Observe first that if (P , ξ) is a sampled partition of [a, b], then

S
(
αf + βg,P , ξ) = αS(f,P , ξ) + βS(g,P , ξ). (9.23)

Indeed, if the partition P is

P = {a = x0 < x1 < · · · < xn−1 < xn = b},
and the sample ξ is ξ = (ξk)1≤k≤n, then

S
(
αf + βg,P , ξ) =

∑
k

(
αf(ξk) + βg(ξk)

)
∆xk =

∑
k

αf(ξk)∆xk +
∑
k

βg(ξk)∆xk

= α
∑
k

f(ξk)∆xk + β
∑
k

g(ξk)∆xk = αS(f,P , ξ) + βS(g,P , ξ).

Set

K := (|α|+ |β|+ 1).
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Fix ε > 0. Since f is Riemann integrable, there exists δ1 = δ1(ε) > 0 such that, ∀P ∈ P[a,b],
∀ξ ∈ S(P ) we have

‖P ‖ < δ1 ⇒
∣∣∣∣S(f,P , ξ)−

∫ b

a
f(x)dx

∣∣∣∣ < ε

K
. (9.24)

Since g is Riemann integrable, there exists δ2 = δ2(ε) > 0 such that, ∀P ∈ P[a,b], ∀ξ ∈ S(P )
we have

‖P ‖ < δ2 ⇒
∣∣∣∣S(g,P , ξ)−

∫ b

a
g(x)dx

∣∣∣∣ < ε

K
. (9.25)

Set

δ = δ(ε) := min
(
δ1(ε), δ2(ε)

)
, S := α

∫ b

a
f(x)dx+ β

∫ b

a
g(x)dx.

Let P ∈ P[a,b] be an arbitrary partition such that ‖P ‖ < δ. Then for any sample ξ ∈ S(P )
we have

|S(αf + βg,P , ξ)− S| (9.23)
=

∣∣∣∣α(S(f,P , ξ)−
∫ b

a
f(x)dx

)
+ β

(
S(g,P , ξ)−

∫ b

a
g(x)dx

) ∣∣∣∣
≤ |α| ·

∣∣∣∣S(f,P , ξ)−
∫ b

a
f(x)dx

∣∣∣∣+ |β| ·
∣∣∣∣S(g,P , ξ)−

∫ b

a
g(x)dx

∣∣∣∣
(use (9.24) and (9.25) )

≤ |α| ε
K

+ |β| ε
K

=
|α|+ |β|
|α|+ |β|+ 1

ε < ε.

This proves that αf + βg is Riemann integrable and∫ b

a
f(x)dx = S = α

∫ b

a
f(x)dx+ β

∫ b

a
g(x)dx.

ut

Corollary 9.30. Suppose that f, g : [a, b]→ R are two functions such that

f(x) = g(x), ∀x ∈ (a, b).

If f is Riemann integrable, then so is g and, moreover,∫ b

a
f(x)dx =

∫ b

a
g(x)dx. (9.26)

Proof. Consider the difference h : [a, b] → R, h(x) = g(x) − f(x), ∀x ∈ [a, b]. Note
that h is bounded on [a, b] and continuous on (a, b) because h(x) = 0, ∀x ∈ (a, b). Using
Proposition 9.24 we deduce that h is Riemann integrable on [a, b]. Since g = f + h, we
deduce from Proposition 9.29 that g is Riemann integrable on [a, b] and∫ b

a
g(x)dx =

∫ b

a
f(x)dx+

∫ b

a
h(x)dx.
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Thus, to prove (9.26) we have to show that∫ b

a
h(x)dx = 0.

To do this, denote by Un the uniform partition of order n of [a, b], and denote by ξ(n) the
sample of Un consisting of the midpoints of the intervals of Un. Then

S(h,Un, ξ
(n)) = 0.

Since h is Riemann integrable, we have∫ b

a
h(x)dx = lim

n→∞
S(h,Un, ξ

(n)) = 0.

ut

Example 9.31. We say that a function f : [a, b]→ R is piecewise constant if there exists
a partition

P = (a = x0 < x1 < · · · < xn = b)

and constants c1, . . . , cn such that for any k = 1, . . . , n the restriction of f to the open
interval (xk−1, xk) is the constant function ck. From the above corollary we deduce that
f is Riemann integrable on each of the intervals [xk−1, xk]. Moreover, the computation in
Example 9.5 implies that ∫ xk

xk−1

f(t)dt = ck(xk − xk−1).

Corollary 9.27 implies that f is Riemann integrable on [a, b] and∫ b

a
f(x)dx = c1(x1 − x0) + · · ·+ cn(xn − xn−1). ut

Proposition 9.32. Suppose that f : [a, b] → R is a Riemann integrable function, J is
an interval containing the range of f and G : J → R is a Lipschitz function. Then
G ◦ f : [a, b]→ R is Riemann integrable.

Proof. Fix a positive constant L such that

|G(y1)−G(y2)| ≤ L|y1 − y2|, ∀y1, y2 ∈ J.

Observe that for any X ⊂ [a, b] and any x′, x′′ ∈ X we have∣∣G ◦ f(x′)−G ◦ f(x′′)
∣∣ ≤ L|f(x′)− f(x′′)|.

Hence

osc(G ◦ f,X) = sup
x′,x′′∈X

∣∣G ◦ f(x′)−G ◦ f(x′′)
∣∣ ≤ L sup

x′,x′′∈X
|f(x′)− f(x′′)| = L osc(f,X).

We deduce as in the proof of Proposition 9.29 that for any partition P of [a, b] we have

ω(G ◦ f,P ) ≤ Lω(f,P ).
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Since f is Riemann integrable we deduce that

lim
‖P ‖→0

ω(f,P ) = 0

so that

lim
‖P ‖→0

ω(G ◦ f,P ) = 0.

ut

Corollary 9.33. Suppose that f : [a, b] → R is Riemann integrable. Then f2 is also
Riemann integrable on [a, b].

Proof. Since f is Riemann integrable it is bounded so its range is contained in some
interval [−M,M ], M > 0. The function G : [−M,M ]→ R, G(x) = x2 is Lipschitz on this
interval because for any x, y ∈ [−M,M ] we have

|G(x)−G(y)| = |x2 − y2| = |x+ y| · |x− y| ≤ (|x|+ |y|)|x− y| ≤ 2M |x− y|.

Proposition 9.32 implies that G ◦ f = f2 is Riemann integrable. ut

Corollary 9.34. If f, g : [a, b]→ R are Riemann integrable, then so is their product fg.

Proof. The function f+g is integrable according to Proposition 9.29. Invoking Corollary
9.33 we deduce that the functions (f + g)2, f2, g2 are Riemann integrable. Proposition
9.29 now implies that the function

1

2

(
(f + g)2 − f2 − g2

)
=

1

2

(
f2 + g2 + 2fg − f2 − g2

)
= fg

is Riemann integrable. ut

Corollary 9.35. Suppose that f : [a, b] → R is Riemann integrable. Then the function
|f | is also Riemann integrable.

Proof. The function G : R → R, G(y) = |y| is Lipschitz so the function G ◦ f = |f | is
Riemann integrable. ut

+ A very useful convention. We denoted the Riemann integral of a function f : [a, b]→ R
with the symbol ∫ b

a
f(x)dx,

where the lower endpoint a is at the bottom of the integral sign
∫

and the upper endpoint
b is at the top of the integral sign. We define∫ a

b
f(x)dx := −

∫ b

a
f(x)dx,

∫ a

a
f(x)dx = 0.
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There are several arguments in favor of this convention. For example, we can rewrite
(9.31) as

f(ξ) =
1

b− a

∫ b

a
f(x)dx =

1

a− b

∫ a

b
f(x)dx. (9.27)

This formulation will be especially useful when we do not know whether a < b or b < a.
The above equality says that it does not matter.

Another advantage comes from the following additivity identity.∫ c

a
f(x)dx =

∫ b

a
f(x)dx+

∫ c

b
f(x)dx, ∀a, b, c ∈ R. (9.28)

If a < b < c, then (9.28) is an immediate consequence of Corollary 9.27. When the
numbers a, b, c are situated in a different order, the identity (9.28) is still a consequence
of Corollary 9.27, but in a more roundabout way. For example, if a = 0, b = 2 and c = 1,
then ∫ 1

0
f(x)dx =

∫ 2

0
f(x)dx−

∫ 2

1
f(x)dx =

∫ 2

0
f(x)dx+

∫ 1

2
f(x)dx. ut

9.5. Basic properties of the Riemann integral

Now that we have seen how the concept of integrability interacts with the basic arithmetic
operations on functions we want to discuss a few simple techniques for estimating Riemann
integrals. All these techniques are based on the following simple result.

Proposition 9.36 (Positivity). Suppose that f : [a, b] → R is Riemann integrable and
f(x) ≥ 0 for any x ∈ [a, b]. Then ∫ b

a
f(x)dx ≥ 0.

Proof. Denote by U1 the partition of [a, b] consisting of a single interval. Then

0 ≤
(

inf
x∈[a,b]

f(x)
)
(b− a) = S∗(f,U1)

(9.15)

≤
∫ b

a
f(x)dx.

ut

Corollary 9.37 (Monotonicity). If f, g : [a, b]→ R are Riemann integrable functions and
f(x) ≤ g(x), ∀x ∈ [a, b], then ∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx.
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Proof. The function (g − f) is integrable and nonnegative so∫ b

a
g(x)dx−

∫ b

a
f(x)dx =

∫ b

a
(g(x)− f(x))dx ≥ 0.

ut

Corollary 9.38. If f : [a, b]→ R is Riemann integrable, then∣∣∣∣ ∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)| dx. (9.29)

Proof. We know that

f(x) ≤ |f(x)| and − f(x) ≤ |f(x)|, ∀x ∈ [a, b].

Hence ∫ b

a
f(x)dx ≤

∫ b

a
|f(x)|dx and −

∫ b

a
f(x)dx ≤

∫ b

a
|f(x)|dx.

The last two inequalities imply (9.29).

ut

Corollary 9.39. Suppose that f : [a, b]→ R is a Riemann integrable function. We set

m := inf
x∈[a,b]

f(x), M = sup
x∈[a,b]

f(x).

Then

m(b− a) ≤
∫ b

a
f(x)dx ≤M(b− a).

Proof. We have

m ≤ f(x) ≤M, ∀x ∈ [a, b],

so that

m(b− a) =

∫ b

a
mdx ≤

∫ b

a
f(x)dx ≤

∫ b

a
Mdx = M(b− a).

ut

Definition 9.40. If f : [a, b]→ R is a Riemann integrable function, then the quantity

1

b− a

∫ b

a
f(x)dx

is called the average value of f , or the mean of f , or the expectation of f and we denote
it by Mean(f). ut
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We see that we can rephrase the inequality in Corollary 9.39 as

inf
x∈[a,b]

f(x) ≤ Mean(f) ≤ sup
x∈[a,b]

f(x). (9.30)

Theorem 9.41 (Integral Mean Value Theorem). Suppose that f : [a, b]→ R is a contin-
uous function. Then there exists ξ ∈ [a, b] such that

f(ξ) = Mean(f),

i.e.,

f(ξ) =
1

b− a

∫ b

a
f(x)dx. (9.31)

Proof. Let

m := inf
x∈[a,b]

f(x), M = sup
x∈[a,b]

f(x).

Then (9.30) implies that Mean(f) ∈ [m,M ].

On the other hand, since f is continuous we deduce from Weierstrass’ Theorem 6.14
that there exist x∗, x

∗ ∈ [a, b] such that

f(x∗) = m, f(x∗) = M.

Since Mean(f) ∈ [f(x∗), f(x∗)] we deduce from the Intermediate Value Theorem that
there exists ξ in the interval [x∗, x

∗] such that f(ξ) = Mean(f). ut

Theorem 9.42. Suppose that f : [a, b]→ R is a Riemann integrable function. We define

F : [a, b]→ R, F (x) :=

∫ x

a
f(t)dt.

Then the following hold.

(i) The function F is Lipschitz. In particular, F is continuous.

(ii) If the function f is continuous, then the function F (x) is differentiable on [a, b]
and

F ′(x) = f(x), ∀x ∈ [a, b].

In other words, F (x) is an antiderivative of f , more precisely the unique anti-
derivative on [a, b] such that F (a) = 0.

Proof. (i) We set

M := sup
x∈[a,b]

|f(x)|.

If x, y ∈ [a, b], x < y, then

|F (x)− F (y)| = |F (y)− F (x)| =
∣∣∣∣ ∫ y

a
f(t)dt−

∫ x

a
f(t)dt

∣∣∣∣
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=

∣∣∣∣ ∫ y

x
f(t)dt

∣∣∣∣ ≤ ∫ y

x
|f(t)|dt ≤

∫ y

x
Mdt = M(y − x) = M |x− y|.

This proves that F is Lipschitz.

(ii) We have to prove that if x0 ∈ [a, b], then

lim
x→x0

F (x)− F (x0)

x− x0
= f(x0).

Using (9.28) we deduce

F (x)− F (x0) =

∫ x

a
f(t)dt−

∫ x0

a
f(t)dt =

∫ x

x0

f(t)dt

so that we have to show that

lim
x→x0

1

x− x0

∫ x

x0

f(t)dt = f(x0).

In other words, we have to prove that for any ε > 0 there exists δ = δ(ε) > 0 such that

∀x ∈ [a, b], 0 < |x− x0| < δ ⇒
∣∣∣∣ 1

x− x0

∫ x

x0

f(t)dt− f(x0)

∣∣∣∣ < ε. (9.32)

Since f is continuous at x0, given ε > 0 we can find δ = δ(ε) > 0 such that

∀x ∈ [a, b], |x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

On the other hand, invoking the continuity of f again, we deduce from the Integral Mean
Value Theorem that, for any x 6= x0, there exists ξx between x0 and x such that

f(ξx) =
1

x− x0

∫ x

x0

f(t)dt.

In particular, if |x− x0| < δ, then |ξx − x0| < δ, and thus∣∣∣∣ 1

x− x0

∫ x

x0

f(t)dt− f(x0)

∣∣∣∣ = |f(ξx)− f(x0)| < ε.

ut

9.6. How to compute a Riemann integral

To this day, the best method of computing by hand Riemann integrals is the fundamental
theorem of calculus.

Theorem 9.43 (The Fundamental Theorem of Calculus: Part 1). Suppose that f : [a, b]→ R
is a function satisfying the following two conditions.

(i) The function f is Riemann integrable.

(ii) The function f admits antiderivatives on [a, b].
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If F : [a, b]→ R is an antiderivative of f , then∫ x

a
f(t)dt = F (x)− F (a), ∀x ∈ (a, b]. (9.33)

In particular, ∫ b

a
f(t)dt = F (t)

∣∣∣t=b
t=a

:= F (b)− F (a). (9.34)

Proof. Fix x ∈ (a, b]. Denote by Un the uniform partition of [a, x] of order n. Since f is

Riemann integrable we deduce that for any choices of samples ξ(n) of Un we have∫ x

a
f(t)dt = lim

n→∞
S
(
f,Un, ξ

(n)
)
.

The miracle is that for any n we can cleverly choose a sample

ξ(n) = (ξn1 , . . . , ξ
n
n)

of Un such that the Riemann sum S
(
f,Un, ξ

(n)
)

has an extremely simple form. Here are
the details.

The k-th node of Un is xnk = a + k
n(x − a) and the k-th interval is Ik = [xnk−1, x

n
k ].

The function F is differentiable on the closed interval [a, b] and, in particular, it is contin-
uous on [a, b]. We can invoke Lagrange’s Mean Value Theorem to conclude that, for any
k = 1, . . . , n, there exists ξnk ∈ (xnk−1, x

n
k) such that

f(ξnk ) = F ′(ξnk ) =
F (xnk)− F (xnk−1)

xnk − xnk−1

,

i.e.,

f(ξnk )(xnk − xnk−1) = F (xnk)− F (xnk−1).

The collection (ξn1 , . . . , ξ
n
n) is a sample ξ(n) of the partition Un. The associated Riemann

sum satisfies

S
(
f,Un, ξ

(n)
)

= f(ξn1 )(xn1 − xn0 ) + f(ξn2 )(xn2 − xn1 ) + · · ·+ f(ξnn)(xnn − xnn−1)

= F (xn1 )− F (xn0 ) + F (xn2 )− F (xn1 ) + · · ·+ F (xnn)− F (xnn−1)

(the above is a telescopic sum!!!)

= F (xnn)− F (xn0 ) = F (x)− F (a).

Thus the sequence of Riemann sums S(f,Un, ξ
(n)) is constant, equal to F (x) − F (a).

Hence ∫ x

a
f(t)dt = lim

n→∞
S
(
f,Un, ξ

(n)
)

= F (x)− F (a).

The equality (9.34) follows from (9.33) by letting x = b. ut
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Corollary 9.44 (The Fundamental Theorem of Calculus: Part 2). Suppose that f : [a, b]→ R
is a continuous function. Then f admits antiderivatives on [a, b] and, if F (x) is any an-
tiderivative of f on [a, b], then∫ b

a
f(x)dx = F

∣∣∣b
a
:= F (b)− F (a), F (x) = F (a) +

∫ x

a
f(t)dt, ∀x ∈ [a, b]. (9.35)

Proof. The fact that f admits antiderivatives follows from Theorem 9.42(b). The rest
follows from Theorem 9.43. ut

Remark 9.45. (a) Theorem 9.43 shows that the computation of Riemann integral of a
function can be reduced to the computation of the antiderivatives of that function, if they
exist. As we have seen in the previous chapter, for many classes of continuous function
this computation can be carried out successfully in a finite number of purely algebraic
steps.

If we ponder for a little bit, the equality (9.34) is a truly remarkable result. The
left-hand side of (9.34) is a Riemann integral defined by a very laborious limiting process
which involves infinitely many and computationally very punishing steps. The right-hand
side of (9.34) involves computing the values of an antiderivative at two points. Often this
can be achieved in finitely many arithmetic steps!

The attribute fundamental attached to Theorem 9.43 is fully justified: it describes a
finite-time shortcut to an infinite-time process.

(b) Both assumptions (i) and (ii) are needed in Theorem 9.43! Indeed, there exist
functions that satisfy (i) but not (ii), and there exist function satisfying (ii), but not (i).
Their constructions are rather ingenious and we refer to [9] for more details. Note that
the continuous functions automatically satisfy both (i) and (ii). ut

Example 9.46. For k ∈ N consider the continuous function f : [0, 1] → R, f(x) = xk.
The function F (x) = 1

k+1x
k+1 is an antiderivative of f and (9.35) implies∫ 1

0
xkdx =

( 1

k + 1
xk+1

)∣∣∣1
0

=
1

k + 1
.

In particular, for k = 2 we deduce ∫ 1

0
x2dx =

1

3
.

This agrees with the elementary computations in Section 9.1. ut

The techniques for computing antiderivatives can now be used for computing Riemann
integrals. As we have seen, there are basically two methods for computing antiderivatives:
integration by parts, and change of variables. These lead to two basic techniques for
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computing Riemann integrals. In applications most often one needs to use a blend of
these techniques to compute a Riemann integral.

9.6.1. Integration by parts. We state a special case that covers most of the concrete
situations.

Proposition 9.47. Suppose that u, v : [a, b] → R are two C1 functions, i.e., they are
differentiable and have continuous derivatives. Then uv′ and u′v are Riemann integrable
and ∫ b

a
u(x)v′(x)dx = u(x)v(x)

∣∣∣b
a
−
∫ b

a
v(x)u′(x)dx . (9.36)

Proof. The functions u′v and uv′ are continuous since they are products of continuous
functions. In particular these functions are integrable, and we have∫ b

a
u′(x)v(x)dx+

∫ b

a
u(x)v′(x)dx =

∫ b

a

(
u′(x)v(x) + u(x)v′(x)

)
dx

=

∫ b

a
(uv)′(x)dx

(9.34)
= u(x)v(x)

∣∣∣b
a
.

The equality (9.36) is now obvious. ut

Remark 9.48. The integration-by-parts formula (9.36) is often written in the shorter
form ∫ b

a
udv = uv

∣∣∣b
a
−
∫ b

a
vdu. (9.37)

Observing that

uv
∣∣∣a
b
= u(a)v(a)− u(b)v(b) = −

(
u(b)v(b)− u(a)v(a)

)
= −uv

∣∣∣b
a
,

we deduce that ∫ a

b
udv = uv

∣∣∣a
b
−
∫ a

b
vdu,

even though the upper limit of integration a is smaller than the lower limit of integration
b. ut

Example 9.49. For any nonnegative integers m,n we set

Im,n =

∫ 1

−1
(x− 1)m(x+ 1)ndx. (9.38)

This integral is theoretically computable because (x − 1)m(x + 1)n is a polynomial. Its
precise form is obtained via Newton’s binomial formula and the final result is rather
complicated. For example

(x− 1)2(x+ 1)3 = (x2 − 2x+ 1)(x3 + 3x2 + 3x+ 1) = x5 + x4 − 2x3 − 2x2 + x+ 1.
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In general, we need to multiply the two polynomials in the right-hand side of (9.38) to
obtain the explicit form of (x− 1)m(x+ 1)n. This is an elaborate process which becomes
increasingly more complex as the powers m and n increase. However, an ingenious usage
of the integration-by-parts trick leads to a much simpler way of computing Im,n.

Let us first observe that

(x+ 1)n =
1

n+ 1

d

dx
(x+ 1)n+1,

from which we deduce

I0,n =

∫ 1

−1
(x+ 1)ndx =

1

n+ 1
(x+ 1)n+1

∣∣∣1
−1

=
2n+1

n+ 1
. (9.39)

Observe now that if m > 0, then

Im,n =

∫ 1

−1
(x− 1)m(x+ 1)ndx =

1

n+ 1

∫ 1

−1
(x− 1)m

d

dx
(x+ 1)n+1dx

=
1

n+ 1
(x− 1)m(x+ 1)n+1

∣∣∣1
−1︸ ︷︷ ︸

=0

− m

n+ 1

∫ 1

−1
(x− 1)m−1(x+ 1)n+1dx.

We obtain in this fashion the recurrence relation

Im,n = − m

n+ 1
Im−1,n+1, ∀m > 0, n ≥ 0. (9.40)

If m− 1 > 0, then we can continue this process and we deduce

Im−1,n+1 = −m− 1

n+ 2
Im−2,n+2 ⇒ Im,n =

m(m− 1)

(n+ 1)(n+ 2)
Im−2,n+2.

Iterating this procedure we conclude that

Im,n = (−1)m
m(m− 1) · · · 2 · 1

(n+ 1)(n+ 2) · · · (n+m− 1)(n+m)
I0,n+m

= (−1)m
m!

(n+ 1) · · · (n+m)
I0,n+m = (−1)m

1(
n+m
m

)I0,n+m.

Invoking (9.39) we deduce

Im,n = (−1)m
1(

n+m
m

) · 2n+m+1

(n+m+ 1)
. (9.41)

When m = n we have

In,n =

∫ 1

−1
(x− 1)n(x+ 1)ndx =

∫ 1

−1
(x2 − 1)ndx

and we conclude that ∫ 1

−1
(x2 − 1)ndx = In,n =

(−1)n(
2n
n

) · 22n+1

(2n+ 1)
. (9.42)
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ut

Example 9.50 (Wallis’ formula). For nonnegative integer n we set

In :=

∫ π
2

0
(sinx)n dx.

Note that

I0 =
π

2
, I1 =

∫ π
2

0
sinx dx = (− cosx)

∣∣∣∣∣
x=π

2

x=0

= 1.

In general, for n > 0, we have

In+1 =

∫ π
2

0
(sinx)nd(− cosx) = (sinx)n(− cosx)

∣∣∣∣∣
x=π

2

x=0︸ ︷︷ ︸
=0

+

∫ π
2

0
cosx d(sinx)n

= n

∫ π
2

0
(sinx)n−1 cos2 x dx = n

∫ π
2

0
(sinx)n−1(1− sin2 x) dx = nIn−1 − nIn+1.

Hence

In+1 = nIn−1 − nIn+1

so that

(n+ 1)In+1 = nIn−1, In+1 =
n

n+ 1
In−1. (9.43)

We deduce

I2 =
1

2
I0 =

1

2

π

2
, I4 =

3

4
I2 =

3

4

1

2

π

2
,

and, in general,

I2n =

∫ π
2

0
(sinx)2ndx =

2n− 1

2n
· · · 3

4

1

2

π

2
. (9.44)

Similarly,

I3 =
2

3
I1 =

2

3
, I5 =

4

5
I3 =

4

5

2

3
,

and, in general,

I2n+1 =

∫ π
2

0
(sinx)2n+1dx =

2n

2n+ 1
· · · 4

5

2

3
. (9.45)

If we introduce the notation

(2k)!! := 2 · 4 · 6 · · · (2n), (2k − 1)!! := 1 · 3 · 5 · · · (2k − 1), (9.46)

then we can rewrite the equalities (9.44) and (9.45) in a more compact form

I2j =
π

2

(2j − 1)!!

(2j)!!
, I2j−1 =

(2j − 2)!!

(2j − 1)!!
. (9.47)
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Since sinx ∈ [0, 1], ∀x ∈ [0, π/2] we deduce

(sinx)n+1 ≤ (sinx)n, ∀x ∈ [0, π/2],

and thus,

In+1 ≤ In, ∀n ∈ N.
We deduce

2n

2n+ 1

(9.43)
=

I2n+1

I2n−1
≤ I2n+1

I2n
≤ 1.

From the above equalities we deduce

lim
n→∞

I2n+1

I2n
= 1.

Using (9.44) and (9.45) we deduce

I2n+1

I2n
=

2

π
· 1

2n+ 1
· 2242 · · · (2n)2

1232 · · · (2n− 1)2
.

This implies the celebrated Wallis’ formula

π

2
=
π

2
lim
n→∞

I2n+1

I2n
= lim

n→∞

2242 · · · (2n)2

1232 · · · (2n− 1)2
· 1

2n+ 1
. (9.48)

Later on, we will need an equivalent version of the above equality, namely

π

2
=
π

2
lim
n→∞

2n+ 1

2n

I2n+1

I2n
= lim

n→∞

2242 · · · (2n)2

1232 · · · (2n− 1)2
· 1

2n
. (9.49)

ut

Let us discuss another simple but useful application of the integration-by-parts trick.

Proposition 9.51 (Integral remainder formula). Let n ∈ N and suppose that f : [a, b]→ R
is a Cn+1-function, i.e., (n+ 1)-times differentiable and the (n+ 1)-th derivative is con-
tinuous. If x0 ∈ [a, b] and Tn(x) is the degree n-Taylor polynomial of f at x0,

Tn(x) = f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n,

then the remainder Rn(x) := f(x)− Tn(x) admits the integral representation

Rn(x) =
1

n!

∫ x

x0

f (n+1)(t)(x− t)ndt, ∀x ∈ [a, b] . (9.50)

Proof. Fix x 6= x0. We have

f(x)− f(x0) =

∫ x

x0

f ′(t)dt = −
∫ x

x0

f ′(t)
d

dt
(x− t) dt

= −
(
f ′(t)(x− t)

)∣∣∣t=x
t=x0

+

∫ x

x0

f ′′(t)(x− t)dt
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= f ′(x0)(x− x0)−
∫ x

x0

f ′′(t)
d

dt

(
1

2
(x− t)2

)
dt

= f ′(x0)(x− x0)−
( 1

2
f ′′(t)(x− t)2

)∣∣∣t=x
t=x0

+
1

2

∫ x

x0

f (3)(t)(x− t)2dt

= f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 − 1

3!

∫ x

x0

f (3)(t)
d

dt
(x− t)3dt

= f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 − 1

3!

(
f (3)(t)(x− t)3

)∣∣∣t=x
t=x0

+
1

3!

∫ x

x0

f (4)(t)(x− t)3dt

= f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 +

f (3)(x0)

3!
(x− x0)3 +

1

3!

∫ x

x0

f (4)(t)(x− t)3dt

= f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 +

f (3)(x0)

3!
(x− x0)3 − 1

4!

∫ x

x0

f (4)(t)
d

dt
(x− t)4dt

= · · · · · · · · · · · · · · · =

= f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n +

1

n!

∫ x

x0

f (n+1)(t)(x− t)ndt.

Thus

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n

+
1

n!

∫ x

x0

f (n+1)(t)(x− t)ndt

= Tn(x) +
1

n!

∫ x

x0

f (n+1)(t)(x− t)ndt.

This proves (9.50). ut

Example 9.52. Let us show how we can use the integral remainder formula to strengthen
the result in Exercise 8.7. Consider the function f : (−1, 1)→ R, f(x) = ln(1− x). Since

f ′(x) = − 1

1− x
= (x− 1)−1, f ′′(x) =

d

dx
(x− 1)−1 = −(x− 1)−2,

f (3)(x) = − d

dx
(x− 1)−2 = 2(x− 1)−3, . . .

f (n)(x) = (−1)n−1(n− 1)!(x− 1)−n, ∀n ∈ N
we deduce that

f(0) = 0, f (n)(0) = (−1)n(n− 1)!(−1)−n = −(n− 1)!, ∀n ∈ N,

and thus, the Taylor series of f at x0 = 0 is

−
∞∑
k=1

xk

k
.
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We denote by Tn(x) the degree n Taylor polynomial of f(x) at x0 = 0,

Tn(x) = −
n∑
k=1

xk

k
= −x− x2

2
− · · · − xn

n!
.

We want to prove that this series converges to ln(1 − x) for any x ∈ [−1, 1). To do this
we have to show that

lim
n→∞

|f(x)− Tn(x)| = 0, ∀x ∈ [−1, 1).

We need to estimate the remainder Rn(x) = f(x)− Tn(x). We distinguish two cases.

1. x ∈ [0, 1). Using the integral remainder formula (9.50) we deduce

Rn(x) =
1

n!

∫ x

0
f (n+1)(t)(x− t)ndt = (−1)n

∫ x

0
(t− 1)−n−1(x− t)ndt.

Hence

|Rn(x)| =
∫ x

0

(x− t)n

(1− t)n+1
dt.

Observe that for t ∈ [0, x] we have 1− t ≥ 1− x > 0 so that, for any t ∈ [0, x] we have

(1− t)n+1 ≥ (1− t)n(1− x) > 0,⇐⇒0 <
1

(1− t)n+1
≤ 1

1− x
· 1

(1− t)n
.

Hence

|Rn(x)| ≤ 1

1− x

∫ x

0

(
x− t
1− t

)n
dt.

Now consider the function

g : [0, x]→ R, g(t) =
x− t
1− t

.

We have

g′(t) =
−(1− t) + (x− t)

(1− t)2
=

x− 1

(1− t)2
< 0.

Hence

0 = g(x) ≤ g(t) ≤ g(0) = x, ∀t ∈ [0, x],

and thus

|Rn(x)| ≤ 1

1− x

∫ x

0
g(t)ndt ≤ 1

1− x

∫ x

0
xndt =

xn+1

1− x
.

We deduce

|Rn(x)| ≤ xn+1

1− x
, ∀x ∈ [0, 1),

so that

lim
n→∞

Rn(x) = lim
n→∞

xn+1

1− x
= 0, ∀x ∈ [0, 1).
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2. x ∈ [−1, 0). We estimate Rn(x) using the Lagrange remainder formula. Hence, there
exists ξ ∈ (x, 0) such that

Rn(x) =
f (n+1)(ξ)

(n+ 1)!
xn+1 = (−1)n

n!(ξ − 1)−(n+1)

(n+ 1)!
xn+1 = (−1)n

1

(n+ 1)(ξ − 1)n+1
xn+1.

Hence, since ξ ∈ (x, 0), we have |ξ − 1| = |ξ|+ 1 and

|Rn(x)| = |x|n+1

(n+ 1)(1 + |ξ|)n+1
≤ |x|

n+1

n+ 1
.

Since |x| ≤ 1 we deduce

lim
n→∞

|Rn(x)| = 0, ∀x ∈ [−1, 0).

We have thus proved that

ln(1− x) = −
∞∑
n=1

xn

n
, ∀x ∈ [−1, 1).

Note in particular that

f(−1) = ln 2 = −
∞∑
n=1

(−1)n

n
= 1− 1

2
+

1

3
− 1

4
+ · · · . (9.51)

ut

9.6.2. Change of variables. The change of variables in the Riemann integral is very
similar to the integration-by-substitution trick used in the computation of antiderivatives,
but it has a few peculiarities. There are two versions of the change of variables formula.

Proposition 9.53 (Change of variables formula: version 1, t = φ(x)). Suppose that
f : [a, b] → R is a continuous function and φ : [α, β] → [a, b] is a C1-function. Then the
function f

(
φ(x)

)
φ′(x) is integrable on [α, β] and∫ β

α
f
(
φ(x)

)
φ′(x)dx =

∫ φ(β)

φ(α)
f(t)dt. (9.52)

Proof. Since f is continuous it admits antiderivatives. Fix an antiderivative F of f . The
chain rule shows that F

(
φ(x)

)
is an antiderivative of the continuous function f

(
φ(x)

)
φ′(x).

The Fundamental Theorem of Calculus then shows∫ β

α
f
(
φ(x)

)
φ′(x)dt = F

(
φ(x)

)∣∣∣x=β

x=α
= F

(
φ(β)

)
− F

(
φ(α)

)
=

∫ φ(β)

φ(α)
f(t)dt.

ut

We can relax the continuity assumption of f , but to do so we need to make an addi-
tional assumption of the nature of the change in variables, t = φ(x).
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Proposition 9.54 (Change of variables formula: version 2, x = ϕ(t)). Suppose that
f : [a, b] → R is a Riemann integrable function and ϕ : [α, β] → [a, b] is a C1-function
such that

ϕ′(t) 6= 0, ∀t ∈ (α, β).

Then f
(
ϕ(t)

)
ϕ′(t) is Riemann integrable on [α, β] and∫ ϕ(β)

ϕ(α)
f(x)dx =

∫ β

α
f
(
ϕ(t)

)
ϕ′(t)dt. (9.53)

Proof. Set

M := sup
t∈[α,β]

|ϕ′(t)|.

Note that M > 0. Since |ϕ′(t)| is continuous, Weierstrass’ theorem implies that M < ∞. Since ϕ′(t) 6= 0 for any

t ∈ (α, β) we deduce from the Intermediate Value Theorem that

either ϕ′(t) > 0, ∀t ∈ (α, β) or; ϕ′(t) < 0, ∀t ∈ (α, β).

Thus, either ϕ is strictly increasing and its range is [ϕ(α), ϕ(β)], or ϕ is strictly decreasing and its range is
[ϕ(β), ϕ(α)]. We need to discuss each case separately, but we will present the details only for the first case and leave

the details for the second case for you as an exercise. In the sequel we will assume that ϕ is increasing and thus

0 < ϕ′(t) ≤M, ∀t ∈ (α, β).

For simplicity we set

g(t) := f
(
ϕ(t)

)
ϕ′(t), t ∈ [α, β].

We will show that g is Riemann integrable on [α, β] and its Riemann integral is given by the left-hand side of (9.53).

We will we will need the following technical result.

Lemma 9.55. For any partition P of [α, β], there exists a partition Pϕ of [ϕ(α), ϕ(β)] and samples ξ of P and

η of Pϕ such that

‖Pϕ‖ ≤M‖P ‖, (9.54a)

S(P , g, ξ) = S(Pϕ, f, ξϕ). (9.54b)

Let us first show that Lemma 9.55 implies that g is Riemann integrable and satisfies (9.53). Fix ε > 0. The

function f is Riemann integrable on [ϕ(α), ϕ(β)] and thus there exists δ0 = δ0(ε) > 0 such that for any partition Q

of [ϕ(α), ϕ(β)] and any sample η of Q we have∣∣∣∣∣
∫ ϕ(β)

ϕ(α)
f(x)dx− S(f,Q, η)

∣∣∣∣∣ < ε. (9.55)

Set

δ = δ(ε) :=
1

M
δ0(ε).

For any partition P of [α, β] of mesh ‖P ‖ < δ(ε), and any sample ξ of P , the sampled partition (Pϕ, ξϕ) of

[ϕ(α), ϕ(β)] associated to (P , ξ) by Lemma 9.55 satisfies

Pϕ‖ < Mδ(ε) = δ0(ε) and S(g,P , ξ) = S(f,Pϕ, ξϕ).

We deduce that ∣∣∣∣∣
∫ ϕ(β)

ϕ(α)
f(x)dx− S(g,P , ξ)

∣∣∣∣∣ =

∣∣∣∣∣
∫ ϕ(β)

ϕ(α)
f(x)dx− S(f,Pϕ, ξϕ)

∣∣∣∣∣ (9.55)
< ε.

This proves that g(t) is integrable on [α, β] and its integral is equal to
∫ ϕ(β)
ϕ(α)

f(x)dx.
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Proof of Lemma 9.55. Consider a partition P = (α = t0 < t1 < · · · < tn = β) of [α, β]. For k = 0, 1, . . . , xn we

set

xk := ϕ(tk).

Since ϕ is increasing we have

xk−1 < xk, ∀k = 1, . . . , n.

Thus

ϕ(α) = x0 < x1 < · · · < xn = ϕ(β)

is a partition of [ϕ(α), ϕ(β)] that we denote by Pϕ. Note that

xk − xk−1 = ϕ(tk)− ϕ(tk−1).

Lagrange’s Mean Value theorem implies that there exists ξk ∈ (tk−1, tk) such that

xk − xk−1 = ϕ(tk)− ϕ(tk−1) = ϕ′(ξk)(tk − tk−1).

In particular, this shows that

|xk−1 − xk| = |ϕ′(ξk)| · |tk − tk−1| ≤M |tk − tk−1|, ∀k = 1, . . . , k.

Hence

‖Pϕ‖ ≤M‖P ‖.
This proves (9.54a).

Set ηk := ϕ(ξk). Note that since ϕ is increasing we have ηk ∈ (xk−1, xk). The collection ξ = (ξ1, . . . , ξk) is a

sample of P , and the collection η = (η1, . . . , ηn) is a sample of Pϕ. Observe that

f(ηk)(xk − xk−1) = f
(
ϕ(ξk) )ϕ′(ξk)(tk − tk−1) = g(ξk)(tk − tk−1).

Thus

S(f,Pϕ, η) =

n∑
k=1

f(ηk)(xk − xk−1) =

n∑
k=1

g(ξk)(tk − tk−1) = S(g,P , ξ).

This proves (9.54b) and completes the proof of Proposition 9.54. ut

Remark 9.56. In concrete examples, the right-hand sides of the equalities (9.52) and
(9.53) are quantities that we know how to compute. The left-hand sides are the unknown
quantities whose computations are sought. For this reason these two equalities play dif-
ferent roles in applications. ut

Example 9.57. (a) Suppose that we want to compute∫ 2

−1
cos(x2)xdx =

1

2

∫ 2

−1
cos(x2)d(x2).

We make the change of variables t = x2. Note that x = −1 ⇒ t = 1, x = 2 ⇒ t = 4 and
we deduce ∫ 2

−1
cos(x2)xdx

(9.52)
=

1

2

∫ 4

1
cos t dt =

sin 4− sin 1

2
.

Note that in this case (9.53) is not applicable.

(b) Suppose that we want to compute∫ π
2

0
esinx cosx dx =

∫ π
2

0
esinxd(sinx).
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We make the change in variables t = sinx. Note that x = 0⇒ t = 0, x = π
2 ⇒ t = 1 and

we deduce ∫ π
2

0
esinx cosxdx

(9.52)
=

∫ 1

0
etdt = et

∣∣∣t=1

t=0
= e− 1.

(c) Suppose we want to compute ∫ 1

−1

√
1− x2dx

We make a change of variables x = sin t so that dx = d(sin t) = cos tdt. Note that

x = −1⇒ t = −π
2
, x = 1⇒ t =

π

2
,

and cos t > 0 when t ∈ (−π
2 ,

π
2 ). Hence√

1− x2 =
√

1− sin2 t =
√

cos2 t = cos t, −π
2
≤ t ≤ π

2
.

We deduce ∫ 1

−1

√
1− x2dx

(9.53)
=

∫ π
2

−π
2

cos2 tdt =

∫ π
2

−π
2

1 + cos 2t

2
dt

=
1

2

(π
2

+
π

2

)
+

1

2

∫ π
2

−π
2

cos 2tdt =
π

2
+

1

2

∫ π
2

−π
2

cos 2tdt.

To compute the last integral we use the change in variables u = 2t so that dt = 1
2du,

t = −π
2
⇒ u = −π, t =

π

2
⇒ u = π.

Hence ∫ π
2

−π
2

cos 2t dt =
1

2

∫ π

−π
cosu du =

1

2

(
sinπ − sin(−π)

)
= 0.

We conclude that ∫ 1

−1

√
1− x2dx =

π

2
. (9.56)

Let us observe that this equality provides a way of approximating π
2 by using Riemann

sums to approximate the integral in the left-hand side. If we use the uniform partition
U200 of order 200 of [−1, 1] and as sample ξ the right endpoints of the intervals of the
partition, then we deduce

π ≈ 2S
(√

1− x2,U200, ξ
)
≈ 3.14041.....

If we use the uniform partition of order 2, 000 and a similar sample, then we deduce

π ≈ 2S
(√

1− x2,U2,000, ξ
)
≈ 3.14157.....

(d) Suppose that we want to compute the integral.∫ e

1

lnx

x
dx.
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We make the change in variables x = et and we observe that dx = etdt,

x = 1⇒ t = 0, x = e⇒ t = 1.

The derivative dx
dt = et is everywhere positive and we deduce

∫ e

1

lnx

x
dx

(9.53)
=

∫ 1

0

ln et

et
etdt =

∫ 1

0
tdt =

t2

2

∣∣∣t=1

t=0
=

1

2
. ut

Example 9.58 (Stirling’s formula). In many applications we need to have a simpler way of
understanding the size of n! for n very large. This is what Stirling’s formula accomplishes.

More precisely we want to prove the refined inequalities

1 <
n!

nne−n
√

2πn
< 1 +

1

4n
, ∀n ∈ N . (9.57)

The inequalities (9.57) imply the classical Stirling formula

n! ∼
√

2πn
(n
e

)n
as n→∞ , (9.58)

where we recall that the notation xn ∼ yn as n → ∞ (read xn is asymptotic to yn as
n→∞) signifies

lim
n→∞

xn
yn

= 1.

To prove the inequalities (9.57) we follow the very nice approach in [6, §2.6].

We set

Fn := lnn! = ln(1) + ln(2) + · · ·+ ln(n) = ln(2) + · · ·+ ln(n)

and we aim to find accurate approximations for Fn. We will find these by providing rather
sharp approximations for the integral

In :=

∫ n

1
lnxdx =

(
x lnx− x

)∣∣∣x=n

x=1
= n lnn− n+ 1.

To see why such an integral might be relevant observe that

ln
(n
e

)n
= n lnn− n.
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x

y

1 2 n3

RR R2 3 n

Figure 9.6. Computing the area underneath lnx, x ∈ [1, n].

Observe that In is the area below the graph of lnx and above the interval [1, n] on the
x axis. For k =, 2, 3, . . . , n we denote by Rk the region below the graph of lnx and above
the interval [k − 1, k] on the x-axis; see Figure 9.6. Then

In = Area (R2) + · · ·+ Area (Rn).

We will provide lower and upper estimates for In by producing lower and upper estimates
for the areas of the regions Rk. To produce these bounds for the area of Rk we will take
adavantage of the fact that lnx is concave so its graph lies above any chord and below
any tangent.

Denote by pk the point on the graph of lnx corresponding to x = k, i.e., pk = (k, ln k).
Due to the concavity of lnx the region Rk contains the trapezoid Ak determined by the
chord connecting the points pk−1 and pk; see Figure 9.7.

Denote by qk the point on the graph of lnx above the midpoint of the interval [k−1, k],
i.e., qk = (k − 1/2, ln(k − 1/2) ). The tangent to the graph of lnx at qk determines a
trapezoid Bk that contains the region Rk Hence

Area (Rk)−Area (Ak)︸ ︷︷ ︸
=:sk

< Area (Bk)−Area (Ak).

Hence

In =

n∑
k=2

Area (Rk) =

n∑
k=2

Area (Ak) +

n∑
k=2

sk︸ ︷︷ ︸
=:Sn

. (9.59)

Observe that

Area (Ak) =
1

2

(
ln(k − 1) + ln k

)
,
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k-1 kk-1/2

A

Bk

k k

k

p

p

q

k-1

Figure 9.7. Approximating the region Rk by trapezoids.

so

Area (A2) + · · ·+ Area (An) =
1

2
log 2 +

1

2

(
ln 2 + ln 3

)
+ · · ·+ 1

2

(
ln(n− 1) + lnn

)
= ln 2 + ln 3 + · · ·+ lnn− 1

2
lnn = lnn!− 1

2
lnn.

Using this in (9.59) we deduce

In +
1

2
lnn = lnn! + Sn,

Recalling that In = n lnn− n+ 1 we deduce

n lnn− n+
1

2
lnn+ 1− Sn = lnn!,

or, equivalently

n! = Cn
√
n
(n
e

)n
, Cn = e1−Sn . (9.60)

To progress further we need to gain some information about Sn. Observing that

Area (Bk) = ln

(
k − 1

2

)
we deduce

sk < Area (Bk)−Area (Ak) = ln

(
k − 1

2

)
− 1

2

(
ln(k − 1) + ln k

)
=

1

2
ln

(
k − 1

2

k − 1

)
− 1

2
ln

(
k

k − 1
2

)

=
1

2
ln

(
1 +

1

2k − 2

)
− 1

2
ln

(
1 +

1

2k − 1

)
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<
1

2
ln

(
1 +

1

2k − 2

)
− 1

2
ln

(
1 +

1

2k

)
We deduce

Sn =

n∑
k=2

sk <
1

2

n∑
k=2

(
ln

(
1 +

1

2k − 2

)
− 1

2
ln

(
1 +

1

2k

))
(the last sum is a telescoping sum)

=
1

2
ln

(
1 +

1

2

)
− 1

2
ln

(
1 +

1

2n

)
<

1

2
ln

3

2
.

This shows that the sequence Sn is bounded above. Since this sequence is obviously
increasing, we deduce that (Sn) is convergent. We denote by S its limit. Since the sequence
Sn is increasing, the sequence Cn = e1−Sn is decreasing and converges to C = e1−S . Using
this in(9.60) we deduce

n! = Cn
√
n
(n
e

)n
> C
√
n
(n
e

)n
. (9.61)

Observe next that
Cn
C

= eS−Sn

and

S − Sn =
∑
k>n

sk <
1

2

∑
k>n

(
ln

(
1 +

1

2k − 2

)
− 1

2
ln

(
1 +

1

2k

))

=
1

2
ln

(
1 +

1

2n

)
= ln

(
1 +

1

2n

) 1
2

Hence

Cn
C

<

(
1 +

1

2k

) 1
2

< 1 +
1

4n
⇒ Cn < C

(
1 +

1

4n

)
.

We deduce

C
√
n
(n
e

)n
< n! = Cn

√
n
(n
e

)n
< C

(
1 +

1

4n

)√
n
(n
e

)n
. (9.62)

It remains to determine the constant C. We set

Pn :=
√
n
(n
e

)n
.

From (9.62) we deduce

n! ∼ CPn as n→∞. (9.63)

To obtain C from the above equality we rely on Wallis’ formula (9.49) which states that

π

2
= lim

n→∞

2242 · · · (2n)2

1232 · · · (2n− 1)2
· 1

2n
.

Now observe that

2242 · · · (2n)2

1232 · · · (2n− 1)2
· 1

2n
=

(n!)222n

1232 · · · (2n− 1)2
· 1

2n
=

(n!)424n

( (2n)! )2(2n)
.
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Hence √
π

2
= lim

n→∞

(n!)222n

(2n)!
√

2n
,

i.e.,

√
π = lim

n→∞

(n!)222n

(2n)!
√
n

= lim
n→∞

C2P 2
n22n

CP2n
√
n
·
(
n!
CPn

)2
22n

(2n)!
CP2n

(9.63)
= lim

n→∞

C2P 2
n22n

CP2n
√
n

= C lim
n→∞

P 2
n22n

P2n
√
n
.

Now observe that

Pn =
√
n
(n
e

)n
⇒ P 2

n =
n2n+1

e2n
, P2n =

√
2n

(2n)2n

e2n
= 22n

√
2n
n2n

e2n
,

and thus

P 2
n22n

P2n
√
n

=
22n n2n+1

e2n

22n
√

2n · n2n

e2n
·
√
n

=
1√
2
.

Hence
√
π = C lim

n→∞

P2n
√
n

22nP 2
n

=
C√

2
⇒ C =

√
2π.

The inequalities (9.62) with C =
√

2π are precisely the inequalities (9.57) that we wanted
to prove. ut

9.7. Improper integrals

The Riemann integral is an operation defined for certain bounded functions defined on
bounded intervals. Sometimes, even when one or both of these boundedness requirements
are violated we can still give a meaning to an integral. Before we proceed with rigorous
definitions it is helpful to look at some guiding examples.

Example 9.59. (a) Let α ∈ (0, 1) and consider the function

f : (0, 1]→ R, f(x) =
1

xα
.

This function is continuous on (0, 1], but it is not bounded on this interval because

lim
x→0+

1

xα
=∞.

It is however continuous on any compact interval [ε, 1] and so it is Riemann integrable on
such an interval. Note that∫ 1

ε
x−αdx =

x1−α

1− α

∣∣∣1
ε

=
1

1− α
(1− ε1−α).

Since 1− α > 0 we deduce that ε1−α → 0 as ε↘ 0 and thus

lim
ε↘0

∫ 1

ε
x−αdx =

1

1− α
.



9.7. Improper integrals 293

We can define the improper Riemann integral of x−α over [0, 1] to be∫ 1

0
x−αdx := lim

ε↘0

∫ 1

ε
x−αdx =

1

1− α
.

(b) Let p > 1 and consider the function g : [1,∞) → R, g(x) = 1
xp . The function g is

bounded

0 < g(x) ≤ 1, ∀x ≥ 1

but it is defined on the unbounded interval [1,∞). It is integrable on any interval [1, L]
and we have ∫ L

1
x−pdx =

x1−p

1− p

∣∣∣L
1

=
1

1− p
(L1−p − 1).

Since 1− p < 0 we deduce that L1−p → 0 as L→∞ and thus

lim
L→∞

∫ L

1
x−pdx = − 1

1− p
=

1

p− 1
.

We define the improper Riemann integral of x−p over [1,∞) to be∫ ∞
1

x−pdx := lim
L→∞

∫ L

1
x−pdx =

1

p− 1
. ut

The above examples gave meaning to integrals of functions that are not defined on
compact intervals. Such integrals are called improper.

Definition 9.60 (Improper integrals). (a) Let −∞ < a < ω ≤ ∞. Given a function
f : [a, ω)→ R we say that the improper integral∫ ω

a
f(x) dx

is convergent if

• the restriction of f to any interval [a, x] ⊂ [a, ω) is Riemann integrable and,

• the limit

lim
x↗ω

∫ x

a
f(t) dt

exists and it is finite.

When these happen we set∫ ω

a
f(x)dx := lim

x↗ω

∫ x

a
f(t) dt.

(b) Let −∞ ≤ ω < b < ∞ . Given a function f : (ω, b] → R we say that the improper
integral ∫ b

ω
f(x)dx

is convergent if
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• the restriction of f to any interval [x, b] ⊂ (ω, b] is Riemann integrable and

• the limit

lim
x↘ω

∫ b

x
f(t) dt

exists and it is finite.

When these happen we set∫ b

ω
f(x)dx := lim

x↘ω

∫ b

x
f(t) dt. ut

Remark 9.61. (a) We can rephrase the conclusion of Example 9.59(a) by saying that the
integral ∫ 1

0

1

xα
dx

is convergent if α ∈ (0, 1). Example 9.59(b) shows that the integral∫ ∞
1

1

xp
dx

is convergent if p > 1.

(b) In the sequel, in order to keep the presentation within bearable limits, we will state
and prove results only for the improper integrals of type (a) in Definition 9.60. These
involve functions that have a “problem” at the upper endpoint ω of their domain: either
that endpoint is infinite, or the function “explodes” as x approaches ω

These results have obvious counterparts for the integrals of type (b) in Definition 9.60
that involve functions that have a “problem” at the lower endpoint of their domain. Their
statements and proofs closely mimic the corresponding ones for type (a) integrals. ut

Example 9.62. For any a, b ∈ R, a < b, the improper integrals∫ b

a

1

(x− a)α
dx,

∫ b

a

1

(b− x)α
dx

are convergent for α < 1 and divergent if α ≥ 1. Indeed, if α 6= 1 we have∫ b

a+ε

1

(x− a)α
dx =

1

1− α
(x− a)1−α

∣∣∣a=b

x=a+ε
=

1

1− α
(

(b− a)1−α − ε1−α ),
If α = 1 we have ∫ b

a+ε

1

(x− a)
dx = ln(x− a)

∣∣∣x=b

x=a+ε
= ln(b− a)− ln ε.

These computations show that

lim
ε↘0

∫ b

a+ε

1

(x− a)α
dx =

{
1

1−α(b− a)1−α, α < 1,

∞, α ≥ 1.



9.7. Improper integrals 295

The convergence of the integral ∫ b

a

1

(b− x)α
dx

is analyzed in a similar fashion.

(b) The integral ∫ ∞
1

1

xp
dx, p ∈ R.

is convergent for p > 1 and divergent if p ≤ 1.

Indeed, if p 6= 1, then∫ L

1
x−pdx =

1

1− p
x1−p

∣∣∣x=L

x=1
=

1

1− p
(
L1−p − 1

)
.

Now observe that

lim
L→∞

L1−p =

{
0, p > 1,

∞, p < 1.

When p = 1, we have ∫ L

1

1

x
dx = lnL→∞ as L→∞.

Similarly, the integral ∫ −1

−∞

1

|x|p
dx

converges for p > 1 and diverges for p ≤ 1. ut

We have the following immediate result whose proof is left to you as an exercise.

Proposition 9.63. Let −∞ < a < ω ≤ ∞ and f1, f2 : [a, ω) → R be functions that are
Riemann integrable on each of the intervals [a, x], x ∈ (a, ω).

(a) If t1, t2 ∈ R, and the improper integrals∫ ω

a
fi(x)dx, i = 1, 2

are convergent, then the integral∫ ω

a

(
t1f1(x) + t2f2(x)

)
dx

is convergent, and∫ ω

a

(
t1f1(x) + t2f2(x)

)
dx = t1

∫ ω

a
f1(x)dx+ t2

∫ ω

a
f2(x)dx.

(b) Let b ∈ (a, ω). The improper integral∫ ω

a
f1(x)dx
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is convergent if and only if the improper integral∫ ω

b
f1(x)dx

is convergent. Moreover, when these integrals are convergent we have∫ ω

a
f1(x)dx =

∫ b

a
f1(x)dx+

∫ ω

b
f1(x)dx. (9.64)

ut

Theorem 9.64 (Cauchy). Let −∞ < a < ω ≤ ∞ and suppose that f : [a, ω) → R is
a function which is Riemann integrable on each of the intervals [a, x] ⊂ [a, ω). Then the
following statements are equivalent.

(i) The integral
∫ ω
a f(t)dt is convergent.

(ii) For any ε > 0 there exists c = c(ε) ∈ (a, ω) such that

∀x, y : x, y ∈ (c(ε), ω)⇒
∣∣∣∣∫ y

x
f(t)dt

∣∣∣∣ < ε.

Proof. We set

I(x) :=

∫ x

a
f(t)dt, ∀x ∈ [a, ω).

(i) ⇒ (ii).We know that the limit

Iω := lim
x→ω

I(x)

exists and it is finite. Let ε > 0. There exists c = c(ε) ∈ [a, ω) such that

∀x, y : x, y ∈ (c, ω)⇒ |I(x)− Iω| <
ε

2
and |I(y)− Iω| <

ε

2
.

Observe that for any x, y ∈ (c, ω) we have∣∣∣∣∫ y

x
f(t)dt

∣∣∣∣ =
∣∣ I(y)− I(x)

∣∣ ≤ ∣∣ I(y)− Iω
∣∣+
∣∣ Iω − I(x)

∣∣ < ε.

This proves (ii).

(ii) ⇒ (i). We know that for any ε > 0 there exists c = c(ε) ∈ [a, ω) such that

∀x < y : x, y ∈ ( c(ε), ω )⇒
∣∣∣∣∫ y

x
f(t)dt

∣∣∣∣ < ε

2
. (9.65)

Choose a sequence (xn) in [a, ω) such that

lim
n
xn = ω.

We deduce that for any ε > 0 there exists N = N(ε) such that

∀n : n > N(ε)⇒ xn ∈ ( c(ε), ω).
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Hence, for any m,n > N(ε) we have

|I(xm)− I(xn)| < ε

2
< ε, ∀m,n > N(ε) (9.66)

proving that the sequence (I(xn)) is Cauchy, thus convergent. Set

J := lim
n
I(xn).

We will show that

lim
x→ω

I(x) = J.

Letting m→∞ in (9.66) we deduce that for any ε > 0 and any n > N(ε) we have

xn ∈ ( c(ε), ω) and |J − I(xn)| ≤ ε

2
. (9.67)

Let x ∈ ( c(ε), ω) and n > N(ε/2). Then x, xn ∈ ( c(ε), ω) and (9.65) implies that

|I(xn)− I(x)| < ε

2
(9.68)

We deduce

|I(x)− J | ≤ | I(x)− I(xn) |+ | I(xn)− J |
(9.67),(9.68)

< ε, ∀x ∈ (c(ε), ω).

This proves (i). ut

Corollary 9.65 (Comparison Principle). Let −∞ < a < ω ≤ ∞ and suppose that
f, g : [a, ω)→ R are two real functions satisfying the following properties.

(i) For any x ∈ [a, ω) the restrictions of f, g to [a, x] are Riemann integrable.

(ii) ∃b ∈ [a, ω), such that 0 ≤ f(x) ≤ g(x), ∀x ∈ [b, ω).

Then ∫ ω

a
g(x)dx is convergent ⇒

∫ ω

a
f(x)dx is convergent.

Proof. Since the improper integral ∫ ω

a
g(x)dx

is convergent we deduce from Proposition 9.63(b) that the integral∫ ω

b
g(x)dx

is also convergent. Theorem 9.64 shows that for any ε > 0 there exists c(ε) ∈ [b, ω) such
that

∀x < y : x, y ∈ (c(ε), ω)⇒
∫ y

x
g(t)dt =

∣∣∣∣∫ y

x
g(t)dt

∣∣∣∣ < ε.
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Using the assumption (i) we deduce that

∀x < y : x, y ∈ (c(ε), ω)⇒
∣∣∣∣∫ y

x
f(t)dt

∣∣∣∣ =

∫ y

x
f(t)dt ≤

∫ y

x
g(t)dt.

We can invoke Theorem 9.64 to conclude that the integral∫ ω

b
f(x)dx

is convergent. Proposition 9.63(b) now implies that∫ ω

a
f(x)dx

is convergent. ut

Remark 9.66. Using the logical tautology

p⇒ q ←→ ¬q ⇒ ¬p,

we see that if f and g are as in Corollary 9.65, then∫ ω

a
f(x)dx is divergent ⇒

∫ ω

a
g(x)dx is divergent. ut

Corollary 9.67. Let −∞ < a < ω ≤ ∞ and suppose that f, g : [a, ω) → R are two real
functions satisfying the following properties.

(i) ∃b ∈ [a, ω), such that f(x) ≥ 0 and g(x) > 0, ∀x ∈ [b, ω).

(ii) There exists C ≥ 0 such that

lim
x→ω

f(x)

g(x)
= C.

(iii) For any x ∈ [a, ω) the restrictions of f and g to [a, x] are Riemann integrable.

Then ∫ ω

a
g(x)dx is convergent ⇒

∫ ω

a
f(x)dx is convergent.

Proof. The integral ∫ ω

a
(C + 1)g(x)dx

is convergent.

The assumption (ii) implies that there exists b0 ∈ (b, ω) such that

f(x) < (C + 1)g(x), ∀x ∈ (b0, ω).

We can now invoke Corollary 9.65 to reach the desired conclusion. ut
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Example 9.68. (a) Consider the continuous function

f : [1,∞)→ R, f(x) =
x+ 2

4x3 + 3x2 + 2x+ 1

Note that f(x) ≥ 0 for any x ∈ [1,∞). To decide the convergence of the integral∫ ∞
1

f(x)dx

we compare f(x) with the function g : [1,∞)→ R, g(x) = 1
x2 . Observe that

f(x)

g(x)
=

x3 + 2x2

4x3 + 3x2 + 2x+ 1
→ 1

4
as x→∞

Since ∫ ∞
1

1

x2
dx

is convergent we deduce from Corollary 9.67 that the integral∫ ∞
1

f(x)dx

is also convergent.

(b) Consider the function

f : (0, 1]→ R, f(x) =
sin
√
x

x
.

Note that

lim
x↘0

f(x) = lim
x↘0

sin
√
x√

x

1√
x

=∞.

In particular, f(x) > 0 for x > 0 small. Since

f(x)
1√
x

=
sin
√
x√

x
→ 1 as x↘ 0

and the improper integral ∫ 1

0

1√
x
dx

is convergent, we deduce from Corollary 9.67 that the improper integral
∫ 1

0 f(x)dx is also
convergent.

(c) Consider the function f : [0,∞)→ R, f(x) = xe−x
2
. Note that f(x) ≥ 0, ∀x and

f(x)
1
x2

= x3e−x
2

=
x2

ex2 → 0 as x→∞.

Thus the integral ∫ ∞
0

xe−x
2
dx
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is convergent. To evaluate this integral we begin by evaluating the integrals∫ L

0
xe−x

2
dx

where L→∞. We use the change in variables u = x2 so that du = 2xdx

x = 0⇒ u = 0, x = L⇒ u = L2

and we deduce∫ L

0
xe−x

2
dx =

1

2

∫ L

0
e−x

2
(2xdx) =

1

2

∫ L2

0
e−udu =

1

2

(
−e−u

)∣∣∣u=L2

u=0
=

1

2
(1− e−L2

).

Now observe that

lim
L→∞

1

2
(1− e−L2

) =
1

2
,

so that ∫ ∞
0

xe−x
2
dx =

1

2
.

So far we have investigated improper integrals of function that had a problem at ω, one
of the endpoints of its domain: either ω =∞, or the function “explodes” as it approaches
ω. Sometime we need to deal with functions that have problems at both endpoints of its
domain. The next example explains how to proceed in this case.

(d) Consider the function

f : (−1, 1)→ R, f(x) =
1√

(1− x2)
.

To decide the convergence of the integral∫ 1

−1
f(x)dx,

we must first locate the sources of the possible problems. We note that f(x) “explodes”
as x→ ±1, i.e.,

lim
x→±1

f(x) =∞.

We split the integral into two parts,

I−1 =

∫ 0

−1
f(x)dx, I1 =

∫ 1

0
f(x)dx.

Each of the above integrals has only one problem point and, if both integrals are conver-
gent, then the original integral will be convergent if and only if both integrals above are
convergent and, when this happens, we have∫ 1

−1
f(x)dx =

∫ 0

−1
f(x)dx+

∫ 1

0
f(x)dx.

Now observe that

f(x) =
1√

(1− x)(1 + x)
.
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The term (1− x) is responsible for the bad behavior near x = 1, while the term (1 + x) is
responsible for the bad behavior near x = −1.

From Example 9.62 we deduce that both integrals∫ 0

−1

1√
1 + x

dx,

∫ 1

0

1√
1− x

are convergent. Observe next that

lim
x→−1

f(x)
1√
1+x

= lim
x→−1

1√
(1−x)(1+x)

1√
1+x

= lim
x→−1

1√
1− x

=
1√
2
,

lim
x→1

f(x)
1√
1−x

= lim
x→1

1√
(1−x)(1+x)

1√
1−x

= lim
x→1

1√
1 + x

=
1√
2
.

Using Corollary 9.67 we now deduce that both integrals I±1 are convergent. In particular,
we deduce that the improper integral ∫ 1

−1
f(x)dx

is convergent. We can actually compute it. Let −1 < a < 0 < b < 1. We have∫ b

a

1√
1− x2

dx = arcsinx
∣∣∣x=b

x=a
= arcsin b− arcsin a.

Note that

lim
b↗1

arcsin b = arcsin 1 =
π

2
, lim
a↘−1

arcsin a = arcsin(−1) = −π
2

so that ∫ 1

−1

1√
1− x2

dx =
π

2
−
(
−π

2

)
= π. (9.69)

Definition 9.69. Let −∞ < a < ω ≤ ∞ and f : [a, ω) → R a function that is Riemann
integrable on any interval [a, x], x ∈ (a, ω). We say that the improper integral∫ ω

a
f(x)dx

is absolutely convergent if the improper integral∫ ω

a
|f(x)|dx

is convergent. ut

The next result is very similar to Theorem 4.46.
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Proposition 9.70. Let −∞ < a < ω ≤ ∞ and f : [a, ω)→ R a function that is Riemann
integrable on any interval [a, x], x ∈ (a, ω). Then∫ ω

a
f(x)dx absolutely convergent ⇒

∫ ω

a
f(x)dx convergent.

Proof. We rely on Cauchy’s Theorem 9.64. Since the integral∫ ω

a
|f(x)|dx

is convergent we deduce from Cauchy’s theorem that for any ε > 0 there exists c(ε) ∈ (a, ω)
such that

∀x, y; x, y ∈ (c(ε), ω)⇒
∣∣∣∣∫ y

x
|f(t))|dt

∣∣∣∣ < ε.

On the other hand, (9.29) shows that∣∣∣∣∫ y

x
f(t)dt

∣∣∣∣ ≤ ∣∣∣∣∫ y

x
|f(t)|dt

∣∣∣∣
and we deduce that

∀x, y, x, y ∈ (c(ε), ω)⇒
∣∣∣∣∫ y

x
f(t))dt

∣∣∣∣ < ε.

Cauchy’s theorem now implies that ∫ ω

a
f(x)dx

is convergent. ut

The comparison principle Corollary 9.65 yields a comparison principle involving abso-
lute convergence.

Corollary 9.71 (Comparison Principle). Let −∞ < a < ω ≤ ∞ and suppose that
f, g : [a, ω)→ R are two real functions satisfying the following properties.

(i) ∃b ∈ [a, ω), such that |f(x)| ≤ |g(x)|, ∀x ∈ [b, ω).

(ii) For any x ∈ [a, ω) the restrictions of f, g to [a, x] are Riemann integrable.

Then∫ ω

a
g(x)dx is absolutely convergent ⇒

∫ ω

a
f(x)dx is absolutely convergent. ut

Example 9.72. Consider the function

f : [1,∞)→ R, f(x) =
sinx

x2
.
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Note that

|f(x)| ≤ 1

x2
, ∀x ≥ 1

and since
∫∞

1
1
x2dx is convergent we deduce that

∫∞
a f(x)dx is absolutely convergent. ut

9.7.1. Euler’s Gamma function. For every x > 0 we set

Γ(x) :=

∫ ∞
0

tx−1e−tdt . (9.70)

For each fixed x > 0 this improper integral is convergent. To see this we split the above
integral into two parts

I0 =

∫ 1

0
tx−1e−tdt, I∞ =

∫ ∞
1

tx−1e−tdt.

To prove the convergence of I0 we observe that

0 < tx−1e−t ≤ tx−1 ∀t ∈ (0, 1].

Since x− 1 > −1 the improper integral∫ 1

0
tx−1dt

is convergent. The Comparison Principle then implies that I0 is also convergent.

To prove the convergence of I∞ we observe that and as t → ∞ the function tx−1e−t

decays to zero faster, than any power t−n, n ∈ N. In particular

lim
t→∞

tx−1e−t

t−2
dt = 0.

Since the integral ∫ ∞
1

t−2dt

is convergent we deduce from the Comparison Principle that I∞ is convergent as well.

The resulting function
(0,∞) 3 x 7→ Γ(x) ∈ (0,∞)

is called Euler’s Gamma function

Observe that

Γ(1) =

∫ ∞
0

e−tdt =
(
−e−t

)∣∣∣t=∞
t=0

= 1, (9.71)

and, for x > 0,

Γ(x+ 1) =

∫ ∞
0

txe−tdt = −
∫ ∞

0
txd(e−t) = −

(
txe−t

)∣∣∣∞
t=0︸ ︷︷ ︸

=0

+x

∫ ∞
0

tx−1e−tdt︸ ︷︷ ︸
=Γ(x)

= xΓ(x).

so that
Γ(x+ 1) = xΓ(x), ∀x > 0. (9.72)
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From (9.71) and (9.72) we deduce inductively

Γ(2) = 1Γ(1) = 1, Γ(3) = 2Γ(2) = 2, Γ(4) = 3Γ(3) = 3 · 2 = 3!, . . . ,

Γ(n) = (n− 1)!, ∀n ∈ N. (9.73)

Fix λ > 0. In the definition

Γ(x) =

∫ ∞
0

tx−1e−tdt

we make the change of variables t = λs we deduce

Γ(x) =

∫ ∞
0

λx−1sx−1e−λsλds = λx
∫ ∞

0
sx−1e−λsds,

so that
Γ(x)

λx
=

∫ ∞
0

sx−1e−λsds, ∀x, λ > 0. (9.74)

9.8. Length, area and volume

The concept of integral is involved in the definition of important geometric quantities such
length, area and volume. Their definition in the most general context is quite involved
and we restrict ourselves to special cases that still have a wide range of applications.

9.8.1. Length. We will define the length of special curves in the plane, namely the curves
defined by the graphs of differentiable functions.

Definition 9.73. Suppose that −∞ ≤ a < b ≤ ∞ and f : (a, b) → R is a C1-function.
We say that its graph has finite length if the integral∫ b

a

√
1 + f ′(x)2dx

is convergent. The value of this integral is then declared to be the length of the graph Γf
of f . We write this

length(Γf )

∫ b

a

√
1 + f ′(x)2dx. (9.75)

ut

Here is the intuition behind the definition. If we are located at the point (x0, y0) = (x0, f(x0))
on the graph of f and we move a tiny bit, from x0 to x0 + dx, then the rise, that is is the
change in altitude is

dy =
dy

dx
· dx = f ′(x0)dx.

The Pythagorean theorem then shows that the distance covered along the graph is ap-
proximately √

dx2 + dy2 =
√
dx2 + f ′(x0)2dx2 =

√
1 + f ′(x0)2 dx.
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The total distance traveled along the graph, i.e., the length of the trap is obtained by
summing all these infinitesimal distances∫ b

a

√
1 + f ′(x)2 dx.

The next examples support the validity of the proposed formula for the length.

Example 9.74. Consider two points in the plane, P1 with coordinates (x1, y1) and P2

with coordinates (x2, y2). Assume moreover that x1 < x2; see Figure 9.8. We want to
compute the length |P1P2| of the line segment connecting P1 to P2.

P

P

x x x

y

y

y

1
1

1

22

2

Q

Figure 9.8. Computing the length of a line segment.

Pythagoras’ theorem shows that

|P1P2|2 = |P1Q|2 + |QP2|2 = (x2 − x1)2 + (y2 − y1)2. (9.76)

Let us show that the formula proposed in Definition 9.73 yields the same result.

The line determined by the points P1, P2 has slope

m :=
y2 − y1

x2 − x1
,

and thus it is described by the equation

y = m(x− x1) + y1.
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In other words, the line segment is the graph of the linear function

f : [x1, x2]→ R, f(x) = m(x− x1) + y1.

Note that f ′(x) = m, ∀x ∈ [x1, x2] and, according to Definition 9.73, we have

|P1P2| =
∫ x2

x1

√
1 + f ′(x)2dx =

∫ x2

x1

√
1 +m2dx =

√
1 +m2(x2 − x1).

Hence

|P1P2|2 = (1 +m2)(x2 − x1)2 =

(
1 +

(y2 − y1)2

(x2 − x1)2

)
(x2 − x1)2 = (x2 − x1)2 + (y2 − y1)2.

This agrees with the Pythagorean prediction (9.76). ut

Example 9.75. Consider the function

f : (−1, 1)→ R, f(x) =
√

1− x2.

The graph of this function is the upper half-circle of radius 1 centered at the origin; see
Figure 9.9. Indeed, a point (x, y) on this circle satisfies

x2 + y2 = 1, y ≥ 0⇐⇒ y =
√

1− x2.

(x,y)

Figure 9.9. Computing the length of a half-circle.

The function f(x) is differentiable on (−1, 1) and we have

f ′(x) = − x√
1− x2

, 1 + f ′(x)2 = 1 +
x2

1− x2
=

1

1− x2
, ∀x ∈ (−1, 1). (9.77)
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Hence the length of this semi-circle is∫ 1

−1

1√
1− x2

dx
(9.69)

= π. ut

We can define the length of more complicated curves.

Definition 9.76. Let −∞ < a < b ≤ ∞. A continuous function (a, b) → R is called
piecewise C1 if there exist points x1, . . . , xn ∈ (a, b) such that

a < x1 < x2 < · · · < xn < b

and the function f is C1 on each of the subintervals

(a, x1), (x1, x2), . . . , (xn, b).

The length of its graph is then given by∫ x1

a

√
1 + f ′(x)2 dx+

∫ x2

x1

√
1 + f ′(x)2 dx+ · · ·+

∫ b

xn

√
1 + f ′(x)2 dx.

Above, some of the integrals could be improper and for the length to be finite these
integrals have to be convergent. ut

9.8.2. Area. A region D of the cartesian plane R2 is said to be of simple type with
respect to the x-axis if there exists an interval I and functions

F,C : I → R
such that

F (x) ≤ C(x), ∀x ∈ I,
and

(x, y) ∈ D ⇐⇒ x ∈ I ∧ F (x) ≤ y ≤ C(x).

The function F is called the floor of the region D, while the function C is called the ceiling
of the region; see Figure 9.10

The area of the region D is given by the improper integral

Area (D) :=

∫
I

(
C(x)− F (x)

)
dx,

whenever this integral is well defined3 and convergent.

A region D of the cartesian plane R2 is said to be of simple type with respect to the
y-axis if there exists an interval J and functions

L,R : J → R
such that

L(y) ≤ R(y), ∀y ∈ J

3The integral is well defined if the function C(x) − F (x) is Riemann integrable on any compact interval
[α, β] ⊂ (a, b).
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C

F

D

Figure 9.10. A planar region of simple type with respect to the x-axis.

and

(x, y) ∈ R⇐⇒ y ∈ J ∧ L(y) ≤ x ≤ R(y).

The function L is called the left wall of the region D, while the function R is called the
right wall of the region; see Figure 9.11.

Figure 9.11. A planar region of simple type with respect to the y-axis, sin y ≤ x ≤ y, 0 ≤ y ≤ 3.
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The area of the region D is given by the improper integral

Area (D) :=

∫
J

(
R(y)− L(y)

)
dy,

whenever this integral is well defined

Remark 9.77. (a) We swept under the rug a rather subtle fact. A region in the plane can
be simultaneously simple type with respect to the x-axis, and simple type with respect
to the y-axis. In such situations there are two possible ways of computing the area and
they’d better produce the same result. This is indeed the case, but the proof in general is
quite complicated, and the best approach relies on the concept of multiple integrals.

To see that this is not merely a theoretical possibility, consider the region (see Figure
9.12)

R =
{

(x, y) ∈ R2; x ∈ [0, 1], x2 ≤ y ≤ x
}
.

The above description shows that R is a region of simple type with respect to the x-axis.
However, R can be given the alternate description as a region of simple type with respect
to the y-axis,

R =
{

(x, t) ∈ R2; y ∈ [0, 1], y ≤ x ≤ √y
}
.

Figure 9.12. A planar region that simple type with respect to both axes: x2 ≤ y ≤ x, 0 ≤ x ≤ 1.

If we use the first description we deduce

Area (R) =

∫ 1

0
(x− x2)dx =

(x2

2
− x3

3

)∣∣∣x=1

x=0
=

1

2
− 1

3
=

1

6
.
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If we use the second description we deduce

Area (R) =

∫ 1

0
(
√
y − y)dy =

(2x3/2

3
− x2

2

)∣∣∣x=1

x=0
=

2

3
− 1

2
=

1

6
.

Many regions in the plane decompose into finitely many simple type regions that have
overlaps only along boundary curves. For such a region, the area is defined as the sum of
the areas of the simple-type sub-regions it decomposes into. This raises an even trickier
question: why is the answer independent of the procedure we use to decompose the region
into simple-type sub-regions? To answer this question one needs the full apparatus of
multiple integrals.

(b) Let us observe that a simple-type region can have finite area, even if it is un-
bounded. Consider for example the region between the x-axis and the graph of the func-
tion

g : [0,∞)→ R, g(x) = e−x.

The area of this region is∫ ∞
0

e−xdx =
(
−e−x

)∣∣∣∞
0

= −e−∞ − (−1) = 0 + 1 = 1. ut

9.8.3. Solids of revolution. Suppose that we are given an open interval (a, b) and a
function

g : (a, b)→ R
called generatrix such that g(x) ≥ 0, ∀x ∈ (a, b). If we rotate the graph of g about the
x-axis we get a surface of revolution Σg that surrounds a solid of revolution Sg; see Figure
9.13.

The area of the surface of revolution Σg is given by the improper integral

area(Σg) := 2π

∫ b

a
g(x)

√
1 + g′(x)2dx , (9.78)

whenever the integral is well defined. The volume of the solid of revolution Sg is given by
the improper integral

vol(Sg) := π

∫ b

a
g(x)2dx , (9.79)

whenever the integral is well defined.

Example 9.78. (a) Suppose that the generatrix is the function g : (−1, 1)→ R, g(x) =
√

1− x2.
Its graph is the upper half-circle of radius 1 depicted in Figure 9.9. When we rotate this
half-circle about the x-axis, the surface of revolution obtained is a sphere Σg of radius 1
that surrounds a solid ball Sg of radius 1.

The computations in (9.77) show that√
1 + g′(x)2 =

1√
1− x2
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g(x)

x

y

a b

Figure 9.13. A surface of revolution.

so that

g(x)
√

1 + g′(x)2 = 1.

We deduce that the area of the unit sphere is

2π

∫ 1

−1
g(x)

√
1 + g′(x)2dx = 2π ∈1

−1 dx = 4π.

The volume of the unit ball is

π

∫ 1

−1
g(x)2dx = π

∫ 1

−1
(1− x2)dx = π

(
x
∣∣∣1
−1
− x3

3

∣∣∣1
−1

)
= π

(
2− 2

3

)
=

4π

3
.

These equalities confirm the classical formulæ taught in elementary solid geometry.

(b)

Consider the cone depicted in Figure 9.14. It is obtained by rotating a line segment
about the x-axis, more precisely, the line segment connecting the point (0, r) on the y-axis
with the point (h, 0) on the x-axis. Here h, r > 0.

This line segment lies on the line with slope m = −r/h and y-intercept r. In other
words, this line is given by the equation

g(x) = − r
h
x+ r.

Observe that

g′(x) = − r
h
,
√

1 + g′(x)2 =

√
h2 + r2

h
,
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h

r

Figure 9.14. A cone.

g(x)
√

1 + g′(x)2 =
h2 + r2

h

(
− r
h
x+ r

)
.

We deduce that the area of this cone (excluding its base) is

2π

∫ h

0

√
h2 + r2

h

(
− r
h
x+ r

)
dx = 2π

√
h2 + r2

h

∫ h

0

(
− r
h
x+ r

)
dx

= 2πr

√
h2 + r2

h

∫ h

0
dx− 2πr

√
h2 + r2

h2

∫ h

0
xdx

= 2πr
√
h2 + r2 − πr

√
h2 + r2 = πr

√
h2 + r2.

This agrees with the known formulæ in solid geometry.

The volume of the cone is

π

∫ h

0

(
− r
h
x+ r

)2
dx =

πr2

h2

∫ h

0
(h− x)2dx =

πr2

h2
× h3

3
=
πr2h

3
.

(c) Let α ∈ (1
2 , 1) and consider the function

g : [1,∞)→ R, g(x) =
1

xα
.

The surface of revolution obtained by rotating the graph of g about the x-axis has the
bugle shape in Figure 9.15

The volume of this bugle is

π

∫ ∞
1

g(x)2dx = π

∫ ∞
1

1

x2α
dx.

Since 2α > 1, the above integral is convergent and in fact

π

∫ ∞
1

1

x2α
dx =

π

2α− 1
.
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Figure 9.15. An infinite bugle.

On the other hand, the area of the bugle is

2π lim
L→∞

∫ L

1
g(x)

√
1 + g′(x)2dx ≥ 2π lim

L→∞

∫ L

1
g(x)dx

= 2π lim
L→∞

∫ L

1

1

xα
dx = 2π lim

L→∞

( x1−α

1− α

)∣∣∣L
1

=∞,

because α < 1. This is surprising: you need a finite amount of water to fill the bugle, but
an infinite amount of paint if you want to paint it!!! ut
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9.9. Exercises

Exercise 9.1. Prove by induction the equality (9.3). ut

Exercise 9.2. Consider the function f : [0, 4]→ R, f(x) = x2, and the partition

P = (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4)

of the interval [0, 4].

(a) Find the mesh size ‖P ‖ of P .

(b) Compute the Riemann sum S(f,P , ξ) when the sample ξ consists of the right endpoints
of the subintervals of P . ut

Exercise 9.3. (a) Suppose that f, g : [a, b] → R are two functions. Prove that for any
sampled partition (P , ξ) of [a, b] and for any real numbers α, β we have

S
(
αf + βg,P , ξ

)
= αS

(
f,P , ξ

)
+ βS

(
g,P , ξ

)
. ut

(b) Let f : [a, b]→ R. Prove that the following statements are equivalent.

(i) The function f is not Riemann integrable.

(ii) There exists ε0 such that, for any n ∈ N there exists sampled partitions (P n, ξ
n)

and (Qn, ζ
n) satisfying

‖P n‖, ‖Qn‖ <
1

n
and

∣∣S(f,P n, ξ
n)− S(f,Qn, ζ

n)
∣∣ > ε0.

Hint. For the implication (ii) ⇒ (i) use the Riemann-Darboux theorem and the equality (9.10). ut

Exercise 9.4. Consider the function f : [−2, 2]→ R, f(x) = x2 and the partition

P = (−2, −1.5, −1 ,−0.5, 0, 0.5, 1, 1.5, 2)

of [−2, 2].

(a) Compute the upper and lower Darboux sums S∗(f,P ), S∗(f,P ).

(b) Compute ω(f,P ). ut

Exercise 9.5. Suppose that f : [0, 1] → R is a C1-function, i.e., it is differentiable on
[0, 1] and the derivative is continuous. We set

M := sup
x∈[0,1]

|f ′(x)|.

(a) Suppose that I ⊂ [0, 1] is an interval of length δ. Show that

osc(f, I) ≤Mδ.

(b) For n ∈ N we denote by Un the uniform partition of order n of [0, 1]. Show that

ω(f,Un) ≤ M

n
, ∀n ∈ N.
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(c) Fix n ∈ N and a sample ξ of Un. Show that∣∣∣∣ ∫ 1

0
f(x)dx− S(f,Un, ξ)

∣∣∣∣ ≤ M

n
. ut

Exercise 9.6. Let a > 0 and assume that f : [−a, a] → R is a Riemann integrable
function.

(a) Prove that if f is an odd function, i.e., f(−x) = −f(x), ∀x ∈ [−a, a], then∫ a

−a
f(x)dx = 0.

(b) Prove that if f is an even function, i.e., f(−x) = f(x), ∀x ∈ [−a, a], then∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx. ut

Exercise 9.7. (a) Suppose that f, g : R→ R are two Lipschitz functions. Show that the
composition f ◦ g is also Lipschitz.

(b) Suppose that the function g : [a, b] → R is Riemann integrable and the function
f : R→ R is Lipschitz. Prove that f ◦ g is Riemann integrable.

(c) Suppose that the function g : [a, b] → R is Riemann integrable and the function
f : R → R is C1, i.e., differentiable with continuous derivative. Prove that f ◦ g is
Riemann integrable. ut

Exercise 9.8. Suppose that the functions f, g : [a, b] → R are Riemann integrable. Let
p, q > 1 such that

1

p
+

1

q
= 1.

(a) Prove that the functions |f |p and |g|q are Riemann integrable.

(b) Prove that ∫ b

a
|f(x)g(x)|dx ≤

(∫ b

a
|f(x)|pdx

) 1
p
(∫ b

a
|g(x)|qdx

) 1
q

.

(c) Prove that(∫ b

a
|f(x) + g(x)|pdx

) 1
p

≤
(∫ b

a
|f(x)|pdx

) 1
p

+

(∫ b

a
|g(x)|pdx

) 1
p

.

Hint. Approximate the integrals by Riemann sums and then use the inequalities (8.22) and (8.25). ut

Exercise 9.9. (a) Suppose that f : [a, b]→ R is a continuous function such that f(x) ≥ 0,
∀x ∈ [a, b]. Prove that ∫ b

a
f(x)dx = 0⇐⇒f(x) = 0, ∀x ∈ [a, b]. ut
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(b) Show that for any a < b there exists a continuous function u : R → R such that
u(x) > 0, ∀x ∈ (a, b), and u(x) = 0 ∀x ∈ R \ (a, b).

Hint. Think of a function u whose graph looks like a roof.

(c) Suppose that f : [0, 1]→ R is a continuous function such that∫ 1

0
f(x)u(x)dx = 0,

for any continuous function u : [0, 1]→ R. Prove that f(x) = 0, ∀x ∈ [0, 1].

Hint. Argue by contradiction. Suppose that there exists x0 ∈ [0, 1] such that f(x0) 6= 0, say f(x0) > 0. Reach a

contradiction using Theorem 6.11, and the facts (a), (b) above. ut

Exercise 9.10. Suppose that fn : [a, b]→ R, n ∈ N, is a sequence of Riemann integrable
functions that converges uniformly on [a, b] to the function f : [a, b]→ R. We set

dn := sup
x∈[a,b]

|f(x)− fn(x)|.

(a) (Compare with Exercise 6.6.) Prove that

lim
n→∞

dn = 0.

(b) Let X ⊂ [a, b] be a nonempty subset of [a, b]. Prove that, for any n ∈ N, we have

osc(f,X) ≤ osc(fn, X) + 2dn.

(c) Prove that, for any partition P of [a, b], and any n ∈ N, we have

ω(f,P ) ≤ ω(fn,P ) + 2dn(b− a).

(d) Prove that f is Riemann integrable and

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx. ut

Exercise 9.11. (a) Suppose that f : [a, b] → R is a continuous and convex function.
Prove that

1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

(b) Use (a) to show that for any x > y > 0 we have

1

2y
ln
x+ y

x− y
≤ x

x2 − y2
. ut

Exercise 9.12. Consider the function f : [0, 1]→ R, f(x) = 1
x+1 .

(a) Compute
∫ 1

0 f(x)dx.

(b) For n ∈ N we denote by Un the uniform partition of order n of [0, 1] and by ξ(n) the
sample of Un given by

ξ(n)
k

=
k

n
, k = 1, . . . , n.
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Describe explicitly the Riemann sum S(f,Un, ξ
(n)).

(c) Use parts (a) and (b) to compute the limit in Exercise 4.22. ut

Exercise 9.13. Use Riemann sums for an appropriate Riemann integrable function to
compute the limit

lim
n→∞

1√
n

(
1√
n+ 1

+
1√
n+ 2

+ · · ·+ 1√
2n

)
ut

Exercise 9.14. Fix a natural number k.

(a) Prove that for any n ∈ N we have

1k + 2k + · · ·+ (n− 1)k ≤
∫ n

0
xkdx ≤ 1k + 2k + · · ·+ nk.

(b) Use (a) to prove that

lim
n→∞

1k + 2k + · · ·+ nk

nk+1
=

1

k + 1
. ut

Exercise 9.15. Consider the function

F : [0,∞)→ R, F (x) =

∫ √x
0

e
t2

2 dt.

Show that F (x) is differentiable on (0,∞) and then compute F ′(x), x > 0. ut

Exercise 9.16. Suppose fn : [a, b] → R, n ∈ N, is a sequence of C1-functions with the
following properties.

(i) The sequence of derivatives f ′n : [a, b] → R converges uniformly to a function
g : [a, b]→ R.

(ii) The sequence fn : [a, b]→ R converges pointwisely to a function f : [a, b]→ R.

Prove that the following hold.

(a) The sequence fn : [a, b]→ R converges uniformly to f : [a, b]→ R.
Hint. Define G : [a, b] → R, G(x) = f(a) +

∫ x
a g(t)dt. (The function g is continuous since it is a uniform limit of

continuous functions.) Since f ′n is continuous, the Fundamental Theorem of Calculus shows that

fn(x) = fn(a) +

∫ x

a
f ′n(t)dt.

Then

fn(x)−G(x) = fn(a)− f(a) +

∫ x

a

(
f ′n(t)− g(t)

)
dt.

Use the above equality to show that the sequence fn converges uniformly on [a, b] to G. Argue next that G = f .

(b) The function f is C1 and f ′ = g, i.e., the sequence f ′n : [a, b]→ R converges uniformly
to f ′. ut

Exercise 9.17. Let L > 0. Suppose that the power series with real coefficients

a0 + a1x+ a2x
2 + · · ·
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converges absolutely for any |x| < L. For every x ∈ (−L,L) we denote by s(x) the sum
of the above series.

(a) Show that the function x 7→ s(x) is continuous on (−L,L) and, for any R ∈ (0, L), we
have ∫ R

0
s(x)dx = a0R+

a1

2
R2 +

a2

3
R3 + · · · .

Hint. Use the Exercises 6.8 and 9.10.

(b) Prove that the power series

a1 + 2a2x+ 3a3x
2 + · · ·

also converges absolutely for any |x| < L.

(c) Prove that s(x) is differentiable on (−L,L) and that

s′(x) = a1 + 2a2x+ 3a3x
2 + · · · , ∀|x| < L.

Hint. Use the Exercises 6.8, 9.16. ut

Exercise 9.18. Consider the power series

x− x3

3!
+
x5

5!
− x7

7!
+ · · · ,

and respectively,

1− x2

2!
+
x4

4!
− x6

6!
+ · · · .

(a) Prove that the above series converge absolutely for any x ∈ R. Denote their sums by
a(x) and respectively b(x).

(b) Show that the functions a, b : R→ R are differentiable and satisfy the equalities

a′(x) = b(x), b′(x) = −a(x).

Hint. Use Exercise 9.17.

(c) Show that that a(x) is the unique solution of the differential equation

a′′(x) + a(x) = 0, ∀x ∈ R

satisfying the condition a(0) = 0, a′(0) = 1. (Compare with Exercise 7.16.) ut

Exercise 9.19. Consider the function

f : R→ R, f(x) =
1

1 + x2
.

(a) Prove that

f(x) =
∞∑
n=0

(−1)nx2n, ∀|x| < 1.

(b) Conclude from (a) that the Taylor series of f(x) at x0 = 0 is

1− x2 + x4 − x6 + · · · .
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Hint. Use Exercise 9.17.

(c) Deduce from (a) that

arctanx =

∞∑
k=0

(−1)k
x2k+1

2k + 1
= x− x3

3
+
x5

5
− x7

7
+ · · · , ∀|x| < 1. ut

Exercise 9.20. (a) Suppose that f, w : [a, b]→ R are two continuous functions satisfying
the following properties.

(i) The function f is continuous.

(ii) The function w is Riemann integrable and nonnegative, i.e., w(x) ≥ 0, ∀x ∈ [a, b].

(iii) The integral

W :=

∫ b

a
w(x)dx

is strictly positive.

We set

m := inf
x∈[a,b]

f(x), M := sup
x∈[a,b]

f(x).

Show that

m ≤ 1

W

∫ b

a
f(x)w(x)dx ≤M,

and then conclude that there exists a point ξ in the open interval (a, b) such that

f(ξ) =
1

W

∫ b

a
f(x)w(x)dx. ut

(b) Use the result in (a) to show that the Integral Remainder Formula (9.50) implies the
Lagrange Remainder Formula (8.2). ut

Exercise 9.21. Consider the function f : [0, 2]→ R, f(x) = 1− |x− 1|, ∀x ∈ [0, 2].

(a) Sketch the graph of f .

(b) Compute
∫ 2

0 f(x)dx. ut

Exercise 9.22. For any natural number n we define the n-th Legendre polynomial to be

Pn(x) :=
1

2nn!

dn

dxn
(
x2 − 1

)n
.

We set P0(x) = 1, ∀x.

(a) Compute P1(x), P2(x), P3(x).

(b) Compute∫ 1

−1
P1(x)2dx,

∫ 1

−1
P2(x)2dx,

∫ 1

−1
P3(x)2dx,

∫ 1

−1
P1(x)P2(x)dx,
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(c) Use integration-by-parts to compute∫ 1

−1
Pm(x)Pn(x)dx,

∫ 1

−1
Pn(x)2dx, m, n ∈ N, m 6= n.

Hint. You may want to use the results in Exercise 7.6 and Example 9.49. ut

Exercise 9.23. Fix an integer k. Use Stirling’s formula (9.58) to compute

lim
n→∞

√
2n

22n

(
2n

n+ k

)
, lim
n→∞

√
2n+ 1

22n+1

(
2n+ 1

n+ k

)
. ut

Exercise 9.24. (a) For any integer n ≥ 0 compute the numbers∫ 1

0
sin2(2πnt)dt

∫ 1

0
cos2(2πnt)dt.

(b) Consider the function

f : [0, 1]→ R, f(x) =
1

2
−
∣∣∣∣x− 1

2

∣∣∣∣ .
Sketch its graph and then compute ∫ 1

0
f2(x)dx.

(c) Let f be as above. For any integer n ≥ 0 compute the numbers

an =

∫ 1

0
f(x) cos(2πnx)dx, bn =

∫ 1

0
f(x) sin(2πnx)dx.

(d) With an, bn as in (c) prove that the series∑
n≥1

(a2
n + b2n)

is convergent.4

Hint. When computing the above integrals it is convenient to use the change in variables u = x− 1
2

, some of the

trig identities in Section 5.6 and Exercise 9.6. ut

Exercise 9.25. Compute the area of the region depicted in Figure 9.11. ut

Exercise 9.26. Prove Proposition 9.63. ut

4A nontrivial result in the theory of Fourier series shows that∫ 1

0
f2(x)dx = a2

0 + 2
∑
n≥1

(a2
n + b2n).
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Exercise 9.27. Consider the function

f : [0, 2]→ R, f(x) = max{2− x, x2}.

(a) Sketch the graph of the function.

(b) Compute the area of the region between the x-axis and the graph of f .

(c) Show that the function f is piecewise C1 and then compute the length of its graph.ut

Exercise 9.28. Prove that for any a ∈ (−1, 0) and any b > 0 the integrals∫ 1

0
ta| ln t|bdt,

∫ ∞
1

ta−1| ln t|bdt

are convergent. ut

Exercise 9.29. Prove that the Gamma function Γ : (0,∞)→ (0,∞)

Γ(x) =

∫ ∞
0

tx−1e−tdt

is continuous.

Hint. Fix t > 0 and then use Lagrange’s mean value theorem for the function f : (0,∞)→ R, f(x) = tx. Then use

Exercise 9.28 to conclude. ut

Exercise 9.30. Suppose that f : [0,∞) → (0,∞) is a decreasing function. Prove that
the following statements are equivalent.

(i) The improper integral ∫ ∞
0

f(x)dx

is convergent.

(ii) The series

f(0) + f(1) + f(2) + · · ·
is convergent.

ut

9.10. Exercises for extra credit

Exercise* 9.1. Suppose that f : [a, b] → R is a continuous function and Φ : R → R is a
convex continuous5 function. Prove Jensen’s inequality

Φ

(
1

b− a

∫ b

a
f(x)dx

)
≤ 1

b− a

∫ b

a
Φ
(
f(x)

)
dx. (9.80)

ut

5The continuity assumption is redundant since any convex function R→ R is automatically continuous.
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Exercise* 9.2. Show that the improper integrals∫ ∞
0

sinx

x
dx,

∫ ∞
0

sin(x2)dx

are convergent. ut

Exercise* 9.3. Construct a continuous function f : [0,∞) → R satisfying the following
properties.

(i) f(x) ≥ 0, ∀x ≥ 0.

(ii) supx≥0 f(x) =∞.

(iii) The integral
∫∞

0 f(x)dx is convergent.

ut

Exercise* 9.4. Suppose that f : [0,∞) → R is a C2-function satisfying the following
conditions

(i) f ′(0) = 0.

(ii)

lim
x→∞

1

lnx

(
f(x) + f ′(x)

)
= 0.

Prove that for any α ∈ (0, 1) the integral
∫∞

0
f ′(x)
xα dx is convergent. ut

Exercise* 9.5. Suppose that f : [1,∞)→ R is differentiable, the derivative f ′ : [0,∞)→ R
is increasing and

lim
x→∞

f ′(x) = 0.

(For example f(x) = 1
x or f(x) = lnx.) Prove that the sequence

Sn :=
1

2
f(1) + f(2) + · · ·+ f(n− 1) +

1

2
f(n)−

∫ n

1
f(x)dx

is convergent and, if S is its limit, then for any n ∈ N we have

f ′(n)

n
<

1

2
f(1) + f(2) + · · ·+ f(n− 1) +

1

2
f(n)−

∫ n

1
f(x)dx− S < 0. ut

Exercise* 9.6. Suppose that f : [1,∞)→ R is differentiable, the derivative f ′ : [0,∞)→ R
is increasing and

lim
x→∞

f ′(x) =∞.

(For example, f(x) = xα, α > 1.) Prove that there resists a constant C > 0 such for any
n ∈ N we have∣∣∣∣ 1

2
f(1) + f(2) + · · ·+ f(n− 1) +

1

2
f(n)−

∫ n

1
f(x)dx

∣∣∣∣ ≤ C|f ′(n)|. ut
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Exercise* 9.7. (a) Suppose that f : [a, b]→ [0,∞) is a Riemann integrable function. For
any natural numbers k ≤ n we set

δn :=
b− a
n

, fn,k = f
(
a+ kδn).

Prove that

lim
n→∞

1

n

n∑
k=1

fn,k =
1

b− a

∫ b

a
f(x)dx,

lim
n→∞

(
n∏
k=1

fn,k

) 1
n

= exp

(
1

b− a

∫ b

a
f(x)dx

)
, exp(x) := ex.

(b) Fix real numbers c, r > 0. Denote by An, and respectively Gn, the arithmetic, and
respectively geometric, mean of the numbers

c+ r, c+ 2r, . . . , c+ nr.

Prove that

lim
n→∞

Gn
An

=
2

e
. ut

Exercise* 9.8. Prove that the sequence

xn =
1n + 2n + · · ·+ nn

nn+1

is convergent and then compute its limit. ut





Chapter 10

Complex numbers and
some of their
applications

10.1. The field of complex numbers

It is well known that there exists no real number x such that x2 = −1 because x2 ≥ 0 > −1,
∀x ∈ R. Following L. Euler, we introduce an imaginary number i with the property that

i2 = −1. (10.1)

Sometimes we write i =
√
−1. The number i is called the imaginary unit. This bold and

somewhat arbitrary move raises some troubling questions.

Can we really do this? Yes, we just did, by fiat. Where does the “number” i come
from? As its name suggests, it comes from our imagination. Can’t we get into some
sort of trouble? This vaguely formulated question is the more serious one, but let’s just
admit that we won’t get in any trouble. This can be argued rigorously, but requires more
advanced mathematics that did not even exist during Euler’s time. It took more than
a century to settle this issue. During that time mathematicians found convincing semi-
rigorous arguments that this construction leads to no contradictions. As Euler and its
followers, we will take it on faith that this construction won’t lead us to shaky grounds.

What can we do with i? Following Gauss, we define the complex numbers. These are
quantities of the form

z := x+ yi, x, y ∈ R.

The real part of the complex number z is

Re z := x,

325
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while its imaginary part is

Im z := y.

The set of all the complex numbers is denoted by C. .

The reason we are referring to the quantities a+bi as numbers is because we can operate
with them, much like we do with real numbers. First, we can add complex numbers. If

z1 := x1 + y1i, z2 = x2 + y2i,

then we define

z1 + z2 = (x1 + x2) + (y1 + y2)i.

This operation satisfies the same properties as the addition of real numbers, namely the
Axioms 1-4 in Section 2.1. Note that the real numbers are special examples of complex
numbers: they are the complex numbers whose imaginary part is zero.

We can also multiply complex numbers in a natural way, taking (10.1) into account.
Thus

(x1 + y1i)(x2 + y2i) = x1x2 + x1y2i+ y1x2i+ y1y2i
2

= (x1x2 − y1y2) + (x1y2 + y1x2)i.

One can check that this multiplication is commutative, associative, and distributive with
respect to the addition. Moreover, the real number 1 acts as a multiplicative unit for this
operation as well, and every nonzero real number z has an inverse. The construction of
the inverse requires a bit of ingenuity.

To a complex number z = x+ yi we associate its conjugate

z= x− yi.

Observe that

zz= (x+ yi)(x− yi) = x2 − (yi)2 = x2 + y2.

The quantity
√
x2 + y2 is called the norm of the complex number z and it is denoted by

|z|,
|z| :=

√
x2 + y2.

Thus

zz = zz= |z|2.
In particular, if z 6= 0, then |z| 6= 0 and we have

1

|z|2
z · z = z · 1

|z|2
z= 1.

Thus

z−1 =
1

z
=

z

|z|2
. (10.2)

The operation of conjugation interacts well with the operations of addition and multipli-
cation introduced above. More precisely,

z1 + z2 = z1 +z2, z1z2 = z1z2, ∀z1, z2 ∈ C. (10.3)
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Moreover

|z1z2| = |z1| · |z2|, ∀z1, z2 ∈ C. (10.4)

The simple proofs of these equalities are left to you as an exercise.

10.1.1. The geometric interpretation of complex numbers. The complex numbers
have a very useful geometric interpretation. More precisely, we identify the complex
number z = x + yi with the point Z = (x, y) in the Cartesian plane R2. In turn we can

identify the point Z with its position vector
−→
OZ. For this reason we will often refer to C

as the complex plane.

Given two complex numbers z1 = x1 + y1i, z2 = x2 + y2i represented in the plane by

the position vectors
−−→
OZ1 and

−−→
OZ2, then their sum z3 = (x1 +x2)+(y1 +y2)i is represented

in the plane by the point Z3 with position vector

−−→
OZ3 =

−−→
OZ1 +

−−→
OZ2,

where the addition of vectors is performed via the parallelogram rule; see Figure 10.1.

x

y

Z

Z

Z

1

2

3

O

Figure 10.1. The geometric interpretation of the sum of complex numbers.

If the complex number z = x+ yi is described by the point Z = (x, y) in R2, then its
conjugate z = x − yi is represented by the point Z− = (x,−y), the reflection of Z in the

x-axis; see Figure 10.2. Note that the norm |z| =
√
x2 + y

2
is equal to the length of the

vector
−→
OZ,

|z| =
∣∣−→OZ ∣∣.
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Z

Z
_

x

y

θ

O

r

Figure 10.2. The geometric interpretation of the conjugation of complex numbers.

The vector
−→
OZ makes an angle θ with the x-axis measured in a counterclockwise fashion,

starting on the x-axis. Measured in radians, it can be any number in [0, 2π). This angle
is called the argument of the complex number z and it is denoted by arg z.

Denote by r the norm of z

r = |z| =
√
x2 + y2.

From Figure 10.2 we deduce that the coordinates (x, y) of Z can be expressed in terms of
r and θ via the equalities

x = r cos θ, y = r sin θ,

so that

z = r cos θ + r sin θi = r(cos θ + i sin θ), r = |z|, θ = arg z. (10.5)

The equality (10.5) is usually referred to as the trigonometric representation of the complex
number z = x+ yi.

Suppose that we have two complex numbers z1, z2 with trigonometric representations

zk = rk(cos θk + i sin θk), rk ≥ 0, k = 1, 2.

Then

Re zk = rk cos θk, Im zk = rk sin θk.

Moreover

z1z2 = (r1r2)(cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= r1r2

{(
cos θ1 cos θ2 − sin θ1 sin θ2

)︸ ︷︷ ︸
=cos(θ1+θ2)

+i
(
sin θ1 cos θ2 + cos θ1 sin θ2

)︸ ︷︷ ︸
=sin(θ1+θ2)

}
.
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We have thus proved that

r1(cos θ1 + i sin θ1)× r2(cos θ2 + i sin θ2) = r1r2

(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
. (10.6)

Applying the above equality iteratively we obtain the celebrated Moivre’s formula(
cos θ + i sin θ

)n
= cos(nθ) + i sin(nθ), ∀n ∈ N, θ ∈ R. (10.7)

If we combine Moivre’s formula with Newton’s binomial formula we can obtain many
interesting consequences. We have

cosnθ + i sinnθ =
n∑
k=0

(
n

k

)
ik(cos θ)k(sin θ)n−k.

Separating the real and imaginary parts in the right-hand side of the above equality taking
into account that

i2 = −1, i3 = −i, i4 = 1,

we deduce

cosnθ = (cos θ)n −
(
n

2

)
(cos θ)n−2(sin θ)2 +

(
n

4

)
(cos θ)n(sin θ)4 − · · · (10.8a)

sinnθ =

(
n

1

)
(cos θ)n−1 sin θ −

(
n

3

)
(cos θ)n−3(sin θ)3 + · · · . (10.8b)

For example,

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ,

cos 3θ = cos3 θ − 3 cos θ sin2 θ, sin 3θ = 3 cos2 θ sin θ − sin3 θ,

cos 4θ = cos4 θ −
(

4

2

)
cos2 θ sin2 θ + sin4 θ = cos4 θ − 6 cos2 θ sin2 θ + cos4 θ,

sin 4θ = 4 cos3 θ sin θ − 4 cos θ sin3 θ.

Example 10.1. Consider the complex number

z = cos
π

4
+ i sin

π

4
=

1√
2

(1 + i).

For any n ∈ N we have

z8n = cos 2nπ + i sin 2nπ = 1.

On the other hand we have

z8n =
1

24n
(1 + i)8n

so that

24n = (1 + i)4n =
8n∑
k=0

(
8n

k

)
ik.

Isolating the real and imaginary parts in the right-hand side and equating them with the
real and imaginary parts in the left-hand side we deduce

24n =

(
8n

0

)
−
(

8n

2

)
+

(
8n

4

)
− · · · ,
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0 =

(
8n

1

)
−
(

8n

3

)
+

(
8n

5

)
− · · · . ut

Example 10.2. Fix a natural number n ≥ 2. Observe that the numbers

ζk = cos
(2π

k
n
)

+ i sin
(2π

n

)
, k = 0, 1, . . . , n− 1

satisfy the equation

ζnk = 1, ∀k.
Conversely, if z is a complex number such that zn = 1, then we deduce

|z|n = 1⇒ |z| = 1,

and thus there exists θ ∈ [0, 2π) such that

z = cos θ + i sin θ.

Using Moivre’s formula we deduce cosnθ = 1 and sinnθ = 0 which is possible if and only
if nθ is a multiple of 2π. Thus θ can only be one of the numbers

2πk

n
, k = 0, 1, . . . , n− 1.

In other words zn = 1 if and only if z is equal to one of the numbers ζk. For this reason
the numbers ζk are called the n-th roots of unity. ut

10.2. Analytic properties of complex numbers

Most of the analysis we developed for real numbers carries over to complex numbers. The
next result is crucial in this endeavor.

Proposition 10.3. (a) For any complex numbers z1, z2 we have

|z1 + z2| ≤ |z1|+ |z2|. (10.9)

(b) if z = x+ yi ∈ C then

1

2
(|x|+ |y|) ≤ |z| =

√
x2 + y2 ≤ |x|+ |y|. (10.10)

Proof. (a) Let

z1 = x1 + y1i, z2 = x2 + y2i.

Then

|z1| =
√
x2

1 + y2
1, |z2| =

√
x2

2 + y2
2.

The Cauchy-Schwarz inequality, Corollary 8.33, implies that

x1x2 + y1y2 ≤
(√

x2
1 + y2

1

)
·
(√

x2
2 + y2

2

)
= |z1| · |z2|.

We have

z1 + z2 = (x1 + x2) + (y1 + y2)i,
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|z1 + z2|2 = (x1 + y1)2 + (x2 + y2)2

= x2
1 + y2

1 + 2x1y1 + x2
2 + y2

2 + 2x2y2 = |z1|2 + |z2|2 + 2(x1y1 + 2x2y2)

≤ |z1|2 + |z2|2 + 2|z1| · |z2| = (|z1|+ |z2|)2.

This proves (10.9).

(b) Observe that

(|x|+ |y|)2 = |x|2 + |y|2 + 2|x| · |y| ≥ |x|2 + |y|2 = x2 + y2.

This shows that
|x|+ |y| ≥

√
x2 + y2.

On the other hand,

0 ≤ (|x| − |y|)2 = |x|2 + |y|2 − 2|xy| ⇒ 2|xy| ≤ x2 + y2

⇒ (|x|+ |y|)2 = |x|2 + |y|2 + 2|x| · |y| ≤ 2(x2 + y2)⇒ 1√
2

(|x|+ |y|) ≤
√
x2 + y2.

This proves (10.10). ut

Definition 10.4. We define the distance between two complex numbers z1, z2 to be the
nonnegative real number

dist(z1, z2) := |z1 − z2|. ut

Corollary 10.5 (The triangle inequality). For any z1, z2, z3 ∈ C we have

dist(z1, z3) ≤ dist(z1, z2) + dist(z2, z3).

Proof. We have
dist(z1, z3) = |z1 − z3| = |(z1 − z2) + (z2 − z3)|

(10.9)

≤ |z1 − z2|+ |z2 − z3| = dist(z1, z2) + dist(z2, z3).

ut

Definition 10.6. (a) Let z0 ∈ C and r > 0. The open disk of center z0 and radius r is
the et

Dr(z0) :=
{
z ∈ C; dist(z, z0) < r

}
.

(b) A subset O ⊂ C is called open if for any z0 ∈ O there exists ε > 0 such that

Dε(z0) ⊂ O. ut
(c) A set X ⊂ C is called closed if the complement C \X is open.

(d) A set X ⊂ C is called bounded if there exists R > 0 such that

X ⊂ DR(0) ⇐⇒ |z| < R, ∀z ∈ X. ut
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Definition 10.7. (a) We say that a sequence of complex numbers (zn)n≥1 is bounded if
the sequence of norms (|zn|)n≥1 is bounded as a sequence of real numbers.

(b) We say that a sequence of complex numbers (zn)n≥1 converges to the complex number
z∗, and we denote this

lim
n
zn = z∗,

if the sequence of nonnegative real numbers dist(zn, z∗) converges to 0, i.e.,

∀ε > 0 ∃N = N(ε) > 0 such that ∀n (n > N(ε)⇒ |zn − z∗| < ε). ut

Proposition 10.8. Suppose that (zn)n≥1 is a sequence of complex numbers. We set
xn = Re zn, yn = Im zn. The following statements are equivalent.

(i) The sequence (zn) converges to the complex number z∗ = x∗ + y∗i.

(ii) The sequences of real numbers (xn)n≥1 and (yn)n≥1 converge to x∗ and respec-
tively y∗.

Proof. (i) ⇒ (ii). From the first part of (10.10) we deduce that

1

2
(|xn − x∗|+ |yn − y∗|) ≤ |zn − z∗|.

Since limn zn = z∗ we deduce limn |zn − z∗| = 0 and the Squeezing Principle implies

lim
n

(|xn − x∗|+ |yn − y∗|) = 0.

The last equality implies (ii).

(ii) ⇒ (i). From the second part of (10.10) we deduce that

|zn − z∗| ≤ |xn − x∗|+ |yn − y∗|.

The assumption (ii) implies that

lim
n

(
|xn − x∗|+ |yn − y∗|

)
= 0.

From this we conclude that limn |zn − z∗| = 0, which is the statement (i). ut

Corollary 10.9. If the sequence of complex numbers (zn)n≥1 converges to z, then

lim
n
|zn| = |z|.

Proof. Let xn := Re zn and yn := Im zn, x = Re z, y := Im z. Then

lim
n
zn = z ⇒ lim

n
xn = x ∧ lim

n
yn = y

⇒ lim
n

(x2
n + y2

n) = x2 + y2 ⇒ lim
n

√
x2
n + y2

n =
√
x2 + y2 ⇐⇒ lim

n
|zn| = |z|.

ut
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Corollary 10.10. Any convergent sequence of complex numbers is bounded.

Proof. Given a convergent sequence of complex numbers, the associated sequence of
norms is convergent according to Corollary 10.9. The sequence of norms is thus a conver-
gent sequence of real numbers, hence bounded according to Proposition 4.14. ut

Example 10.11. Suppose z is a complex number such that |z| < 1. Then

lim
n
zn = 0.

We have to show that the sequence of nonnegative numbers |zn| goes to zero as n → ∞.
We set r : |z| and we observe that

|zn| (10.4)
= |z|n = rn.

As shown in Example 4.12

|r| < 1⇒ lim
n
rn = 0⇒ lim

n
zn = 0. ut

The convergent sequences of complex numbers satisfy many of the same properties of
convergent sequences of real numbers. We summarize these facts in our next result whose
proof is left to you as an exercise.

Proposition 10.12 (Passage to the limit). Suppose that (an)n≥1 and (bn)n≥1 are two
convergent sequences of complex numbers,

a := lim
n→∞

an, b = lim
n→∞

bn.

The following hold.

(i) The sequence (an + bn)n≥1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn = a+ b.

(ii) If λ ∈ C then

lim
n→∞

(λan) = λ lim
n→∞

an = λa.

(iii)

lim
n→∞

(an · bn) =
(

lim
n→∞

an
)
·
(

lim
n→∞

bn
)

= ab.

(iv) Suppose that b 6= 0. Then there exists N0 > 0 such that bn 6= 0, ∀N > N0 and

lim
n→∞

an
bn

=
a

b
. ut

Definition 10.13. A sequence of complex numbers (zn)n≥1 is called Cauchy if

∀ε > 0 ∃N = N(ε) > 0 such that ∀m,n (m,n > N(ε)⇒ |zm − zn| < ε). ut
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The concept of Cauchy sequence of complex numbers is closely related to the notion
of Cauchy sequence of real numbers. We state this in a precise form in our next result.
Its proof is very similar to the proof of Proposition 10.8 and we leave the details to you
as an exercise.

Proposition 10.14. Suppose that (zn)n≥1 is a sequence of complex numbers. We set
xn := Re zn, yn := Im zn. The following statements are equivalent.

(i) The sequence (zn)n≥1 is Cauchy.

(ii) The sequences of real numbers (xn)n≥1 and (yn)n≥1 are Cauchy.

ut

Definition 10.15. The series associated to a sequence (zn)n≥0 of complex numbers is
the new sequence (sn)n≥0 defined by the partial sums

s0 = z0, s1 = z0 + z1, s2 = z0 + z1 + z2, . . . , sn =

n∑
j=0

aj . . . .

The series associated to the sequence (an)n≥0 is denoted by the symbol
∞∑
n≥0

zn or
∑
n≥0

zn

The series is called convergent if the sequence of partial sums (sn)n≥0 is convergent. The
limit limn→∞ sn is called the sum series. We will use the notation∑

n≥0

an = S

to indicate that the series is convergent and its sum is the real number S. ut

Example 10.16. The geometric series
∞∑
n=0

zn = 1 + z + z2 + · · ·

is convergent for any complex number z of norm |z| < 1. Indeed, its n-th partial sum is

sn = 1 + z + · · ·+ zn =
1− zn+1

1− z
.

If |z| < 1, then we deduce from Example 10.11 and Proposition 10.12 that

lim
n
sn = lim

n

1− zn+1

1− z
=

1

1− z
.

This shows that the series is convergent and its sum is

1 + z + z2 + · · ·+ zn + · · · = 1

1− z
, ∀|z| < 1. (10.11)

ut
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Proposition 10.17. If the series of complex numbers∑
n≥0

zn

is convergent, then its terms converge to zero, limn zn = 0.

Proof. Denote by s the sum of the series and by sn its n-th partial sum,

sn = z0 + z1 + · · ·+ zn.

Then zn = sn − sn−1 and

lim
n
zn = lim

n
(sn − sn−1) = lim

n
sn − lim

n
sn−1 = s− s = 0.

ut

Example 10.18. The geometric series

1 + z + z2 + · · ·
is divergent if |z| ≥ 1. Indeed, we have

|zn| = |z|n

and

lim
n
|z|n =

{
1, |z| = 1,

∞, |z| > 1.

This shows that when |z| ≥ 1 the sequence (zn) does not converge to zero and thus,
according to Proposition 10.17, the geometric series cannot be convergent. ut

Definition 10.19. A series of complex numbers∑
n≥0

zn

is called absolutely convergent if the series of nonnegative real numbers∑
n≥0

|zn|

is convergent. ut

Proposition 10.20. If the series of complex numbers
∑

n≥0 zn is absolutely convergent,
then it is also convergent.

Proof. We mimic the proof of Theorem 4.46. Denote by sn the n-th partial sum of the
series

∑
n≥0 zn and by ŝn the n-th partial sum of the series

∑
n≥0 |zn|,

sn = z0 + · · ·+ zn, ŝn = |z0|+ · · ·+ |zn|.
For n > m we have

sn − sm = zm+1 + · · ·+ zn, ŝn − ŝm = |zm+1|+ · · ·+ |zn|
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Using (10.9) we deduce

|sn − sm| = |zm+1 + · · ·+ zn| ≤ |zm+1|+ · · ·+ |zn| = ŝn − ŝm = |ŝn − ŝm|. (10.12)

Since the series
∑

n≥0 |zn| is convergent we deduce that the sequence of partial sums

(ŝn)n≥0 is Cauchy. Hence, for any ε > 0 there exists N = N(ε) > 0 such that for any
n > m > N(ε) we have

|ŝn − ŝm| < ε.

Using (10.12) we deduce that for any n > m > N(ε) we have

|sn − sm| < ε.

This shows that the sequence (sn) is Cauchy and thus convergent according to Proposition
10.14. ut

The above result reduces the problem of deciding the absolute convergence of a series of
complex numbers to to deciding whether a series of nonnegative real numbers is convergent.
We have investigated this issue in Section 4.6. We mention here one useful convergence
test.

Corollary 10.21 (Ratio test). Suppose that

z0 + z1 + z2 + · · ·

is a series of complex numbers such that

L = lim
n

|zn+1|
|zn|

exists, L ∈ [0,∞]. Then the following hold.

(i) If L < 1, then these series
∑

n≥0 zn is absolutely convergent.

(ii) If L > 1, then the series is divergent.

Proof. (i) The ratio test Corollary 4.48 implies that the series of positive real numbers∑
n≥0

|zn|

is convergent.

(ii) If

lim
n

|zn|
|zn|

> 1,

then |zn+1| > |zn| for n sufficiently large. In particular, the sequence (zn) does not converge
to 0 and thus the series

∑
n≥0 zn is divergent. ut
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10.3. Complex power series

A complex power series is a series of the form

s(z) = a0 + a1z + a2z
2 + a3z

3 + · · · =
∑
n≥0

anz
n,

where z and the numbers a0, a1, . . . are complex. The number z should be viewed as a
quantity that is allowed to vary, while the numbers a0, a1, . . . should be viewed as fixed
quantities. As such they are called the coefficients of the power series. power series!
coefficients Note that for different choices of z we obtain different series.

Example 10.22. Consider for example the power series

s(z) = 1− 2z + 22z2 − 23z3 + · · · .

The coefficients of this power series are

a0 = 1, a1 = −2, a2 = 22, . . . , an = (−2)n, . . .

Note that we can rewrite the above series as

s(z) = 1 + (−2z) + (−2z)2 + (−2z)3 + · · · =
∑
n≥0

(−2z)n.

If we make the substitution ζ := −2z we can further rewrite

s(z) = 1 + ζ + ζ2 + · · · .

We know that this series is absolutely convergent for |ζ| > 1 and divergent for |ζ| > 1. In
other words the power series s(z) converges absolutely if |z| < 1

2 and diverges if |z| > 1
2 .

Note that the set of complex numbers z such that |z| < 1
2 is the open disk of center 0 and

radius 1
2 . ut

Proposition 10.23. Consider a complex power series

s(z) =
∑
n≥0

anz
n.

(a) If for some z0 6= 0 the series s(z0) converges absolutely, then for any z ∈ C such that
|z| ≤ |z0| the series s(z) converges absolutely.

(b) If for some z0 6= 0 the series s(z0) is convergent, not necessarily absolutely, then
for any z ∈ C such that |z| < |z0|, the series s(z) converges absolutely.

Proof. (a) Since |z| ≤ |z0| we deduce that

|anzn| ≤ |anzn0 |, ∀n ≥ 0.

The desired conclusion now follows from the comparison principle.

(b) Since s(z0) converges we deduce that

lim
n
anz

n
0 = 0.
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In particular, we deduce that the sequence (anz
n
0 ) is bounded, i.e., there exists C > 0 such

that

|anzn0 | ≤ C, ∀n ≥ 0.

We set

r :=

∣∣∣∣ zz0

∣∣∣∣ =
|z|
|z0|

< 1.

We observe that

|anzn| = |anzn0 |
|z|n

|z0|n
≤ Crn.

Since r < 1 we deduce that the geometric series∑
n≥0

Crn

is convergent and the comparison principle implies that the series∑
n≥0

|anzn|

is also convergent. ut

Consider a complex power series

s(z) =
∑
n≥0

anz
n

We consider the set

R =
{
r ≥ 0; ∃z ∈ C such that |z| = r, s(z) is convergent

}
⊂ R.

Note that the set R is not empty because 0 ∈ R. Next observe that Proposition 10.23(b)
implies that if r0 ∈ R, then [0, r0) ⊂ R. We set

R := supR ∈ [0,∞].

Proposition 10.23 shows that s(z) converges absolutely for any |z| < R, and diverges for
|z| > R. The number R ∈ [0,∞] is called the radius of convergence of the power series
s(z).

Example 10.24 (Complex exponential). Consider the power series

E(z) = 1 +
z

1!
+
z2

2!
+ · · · =

∑
n≥0

1

n!
zn.

This series is absolutely convergent for any z ∈ C because the series of positive numbers∑
n≥0

|z|n

n!

is convergent for any z. Thus the radius of convergence of this power series is ∞. For
simplicity we will denote by E(z) the sum of the series E(z).
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Observe that for a real number x the sum of the series E(x) is ex; see Exercise 8.7.
We write this

E(x) = ex, ∀x ∈ R. (10.13)

The properties of the exponential show that

E(x+ y) = ex+y = exey = E(x)E(y), ∀x, y ∈ R. (10.14)

A more general result is true, namely.

E(z + ζ) = E(z)E(ζ), ∀z, ζ ∈ C. (10.15)

To prove the above equality we denote by En(z) the n-th partial sum of the series E(z),

En(z) = 1 +
z

1!
+ · · ·+

zn

n!
.

The equality (10.15) is equivalent to the equality

lim
n

(
E2n(z + ζ)− E2n(z)E2n(ζ)

)
= 0. (10.16)

Fix a real number M > 1 such that

|z|, |ζ| < M.

We have

E2n(z + ζ) =

2n∑
m=0

1

m!
(z + ζ)m =

2n∑
m=0

1

m!

m∑
j=0

(m
j

)
zm−jζj

=
2n∑
m=0

1

m!

m∑
j=0

m!zm−jζj

(m− j)!j!
=

2n∑
m=0

m∑
j=0

zm−jζj

(m− j)!j!

(k := m− j)

=
2n∑
m=0

∑
j+k=m
j,k≥0

zkζj

k!j!
=

∑
j+k≤2n
j,k≥0

zkζj

k!j!
.

Similarly we have

E2n(z)E2n(ζ) =

(
2n∑
k=0

zk

k!

) 2n∑
j=0

ζj

j!

 =
∑

0≤j,k≤2n

zkζj

k!j!
.

We deduce

|E2n(z + ζ)− E2n(z)E2n(ζ)| =

∣∣∣∣∣∣∣∣
∑

j+k>2n
0≤j,k≤2n

zkζj

k!j!

∣∣∣∣∣∣∣∣
≤

∑
j+k>2n

0≤j,k≤2n

|z|k|ζ|j

k!j!
≤M4n

∑
j+k>2n

0≤j,k≤2n

1

k!j!
≤
M4n

n!

∑
j+k>2n

0≤j,k≤2n

1 ≤
4n2M4n

n!
.

From (4.8) we deduce that

lim
n

4n2M4n

n!
→ 0.

Because of the equalities (10.13) and (10.15), for any z ∈ C we set

ez := E(z) = 1 +
z

1!
+
z2

2!
+
z3

3!
· · · . (10.17)
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Suppose that in (10.17) the number z is purely imaginary, z = it, t ∈ R. We deduce the
celebrated Euler’s formula

eit = 1 +
it

1!
+
i2t2

2!
+
i3t3

3!
+ · · ·

=

(
1− t2

2!
+
t4

4!
+ · · ·

)
+ i

(
t− t3

3!
+
t5

5!
+ · · ·

)
= cos t+ i sin t.

(10.18)

If we let t = π in the above equality we deduce

eiπ = cosπ + i sinπ = −1

i.e.,
eiπ + 1 = 0. (10.19)

The last very compact equality describes a deep connection between the five most impor-
tant numbers in science: 0, 1, e, π, i. ut
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10.4. Exercises

Exercise 10.1. Prove the equalities (10.3) and (10.4). ut

Exercise 10.2. (a) Consider the complex numbers

z1 = 4 + 5i, z2 = 5 + 12i.

Compute

z1z2, |z2|,
z1

z2
.

(b) Show that if

z =
1

2
(1 +

√
3i),

then
z2 + z + 1 = z2 +z+ 1 = 0, z3 = z3 = 1. ut

Exercise 10.3. (a) Prove that if z ∈ C, then

z5 = 1 ∧ z 6= 1 ⇐⇒ z4 + z3 + z2 + z + 1 = 0 ⇐⇒ z2 + z + 1 +
1

z
+

1

z2
= 0.

(b) Suppose that z satisfies the above equation, z4 + z3 + z2 + z + 1 = 0. We set

ζ := z +
1

z
.

Prove that

z2 +
1

z2
= ζ2 − 2,

and
ζ2 + ζ − 1 = 0. (10.20)

(c) Find the two roots ζ1, ζ2 of the quadratic equation (10.20).

(d) If ζ1, ζ2 are as above, find all the complex numbers z such that

z +
1

z
= ζ1 ∨ z +

1

z
= ζ2.

(e) Use (d) to compute cos(2π/5), sin(2π/5). ut

Exercise 10.4. (a) Let z0 ∈ C and r > 0. Prove that the open disc Dr(z0) is an open set
in the sense of Definition 10.6(b).

(b) Prove that if O1,O2 ⊂ C are open sets, then so are the sets O1 ∩ O2, O1 ∪ O2.

(c) Consider the set
S :=

{
z ∈ C; Im z = 0, Re z ∈ [0, 1]

}
.

Draw a picture of S and then prove that it is a closed set in the sense of Definition 10.6(c).
ut

Exercise 10.5. Let S be a a subset of the complex plane, S ⊂ C. Prove that the following
statements are equivalent.
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(i) The set S is closed.

(ii) For any sequence (zn)n≥1 of points in S, zn ∈ S, ∀n, if the sequence converges
to z∗, then z∗ ∈ S.

ut

Exercise 10.6. Use the ideas in the proof of Proposition 10.8 to prove Proposition 10.14.ut

Exercise 10.7. Prove Proposition 10.12 by imitating the proof of Proposition 4.15. ut



Chapter 11

The geometry and
topology of Euclidean
spaces

The calculus of one-real-variable functions has a several-variable counterpart. To state
and prove these results we need an appropriate language. The goal of this chapter is
to introduce the terminology and the concepts required to make the jump into higher
dimensions.

11.1. Basic affine geometry

Figure 11.1. The point x ∈ R2 with (Cartesian) coordinates (4, 3) is identified with
the vector that starts at the origin and ends at x.

343
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Let n ∈ N. The canonical n-dimensional real Euclidean space is the Cartesian product

Rn := R× · · · × R︸ ︷︷ ︸
n times

.

The elements of Rn are called (n-dimensional) vectors or points and they are n-tuples of
real numbers

x :=

 x1

...
xn

 . (11.1)

Above, the real numbers x1, . . . , xn are called the Cartesian coordinates of the vector x;
see Figure 11.1.

+ Several comments are in order. First, note that we represent the vector as a (verti-
cal) column. To remind us of this, we use the superscript notation xi rather than the
subscript notation xi. There are several other good reasons for this choice of notation,
but explaining them is difficult at this time. This choice is part of a larger collection of
conventions sometimes referred to as the Einstein’s conventions. For now, accept and use
this convention as a very good idea with a nebulous payoff that will reveal itself once your
mathematical background is a bit more sophisticated.

For typographical reasons it is inconvenient to work with tall columns of numbers of

the type appearing in (11.1) so we will use the notation [x1, . . . , xn]> or (x1, . . . , xn) to
denote the column in the right-hand side of (11.1).

Also, when we refer to a point x ∈ Rn as a vector we secretly think of x as the tip of
an arrow that starts at the origin and ends at x; see Figure 11.1.

The attribute Euclidean space attached to the set Rn refers to the additional structure
this set is equipped with. First of all, Rn has a structure of vector space1. More precisely,
it is equipped with two operations, addition and multiplication by scalars satisfying certain
properties.

The addition is a function Rn×Rn → Rn that associates to a pair of vectors (x,y) ∈ Rn×Rn
a third vector, its sum x+ y ∈ Rn, defined as follows: if

x =
(
x1, . . . , xn

)
, y =

(
y1, . . . , yn

)
,

then

x+ y :=
(
x1 + y1, . . . , xn + yn

)
∈ Rn.

The multiplication-by-scalars operation associates to a pair (λ,x) consisting of a real
number (or scalar) λ and a vector x ∈ Rn, a new vector denoted by λx (or λ · x) and

1As we progress in this course I will assume increased knowledge of linear algebra. I recommend [20] as a
linear algebra source very appropriate for the goals of this course.
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defined as follows: if x =
(
x1, x2, . . . , xn

)
, then

λx :=
(
λx1, . . . , λxn

)
∈ Rn.

These operations satisfy the following properties.2

(i) (Associativity) For any x,y, z ∈ Rn

(x+ y) + z = x+ (y + z).

(ii) (Commutativity) For any x,y ∈ Rn,

x+ y = y + x.

(iii) (Neutral or identity element) The vector 0 := (0, . . . , 0) ∈ Rn has the property:
∀x ∈ Rn we have

0 + x = x+ 0 = x.

(iv) (Inverse or opposite element) For any x =
(
x1, . . . , xn

)
∈ Rn, the vector

−x :=
(
− x1, . . . ,−xn

)
has the property:

x+ (−x) = (−x) + x = 0.

(v) (Distributivity with respect to vector addition) For any λ ∈ R, x,y ∈ Rn,

λ(x+ y) = λx+ λy.

(vi) (Distributivity with respect to the scalar addition) For any λ, µ ∈ R, x ∈ Rn

(λ+ µ)x = λx+ µx, (λµ)x = λ(µx).

(vii) For any x ∈ Rn,

1 · x = x.

Note that 0 · x = 0, ∀x ∈ Rn.

Definition 11.1. The canonical or natural basis of Rn is the set of vectors {e1, . . . , en},
where

e1 :=



1
0
0
...
0
0


, e2 :=



0
1
0
...
0
0


, . . . , en :=



0
0
0
...
0
1


. (11.2)

ut

2Compare them with the algebraic axioms of R.
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Note that if x =
(
x1, . . . , xn

)
, then

x =

 x1

...
xn

 = x1e1 + · · ·+ xnen =
n∑
i=1

xiei .

For example, we have the following equality in R3, 3
−4

5

 = 3

 1
0
0

−4

 0
1
0

+ 5

 0
0
1

 = 3e1−4e2 + 5e3. (11.3)

At this point it is convenient to introduce the Kronecker symbol δij ,

δij :=

{
1, i = j,

0, i 6= j.
(11.4)

Using the Kronecker symbol we observe that

ek =


δ1
k

δ2
k
...
δnk

 , ∀k = 1, . . . , n.

Remark 11.2. When n = 2, the coordinates x1, x2 are usually denoted by x and respec-
tively y, and the vectors e1, e2 are usually denoted by i and respectively j; see Figure
11.2.

x

y

i

j

Figure 11.2. A Cartesian coordinate system in R2.

When n = 3, the coordinates x1, x2, x3 are usually denoted by x, y and respectively z,
and the vectors e1, e2, e3 are usually denoted by i, j and respectively k; see Figure 11.3.
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Thus, in R3, the equality (11.3) could be rewritten as 3
−4

5

 = 3i−4j + 5k. ut

x

y

z

i

j

k

Figure 11.3. A Cartesian coordinate system in R3.

Definition 11.3. Two nonzero vectors u,v ∈ Rn are called collinear if one is a multiple
of the other, i.e., there exists t ∈ R, t 6= 0, such that v = tu (and thus u = t−1v). ut

Definition 11.4. Let p,v ∈ Rn, v 6= 0. The line in Rn through p and in the direction v
is the set

`p,v :=
{
p+ tv; t ∈ R

}
⊂ Rn . (11.5)

The vector v is called a direction vector of the line. ut

Let us point out that, if the two nonzero vectors u,v ∈ Rn are collinear, then, for any
point p ∈ Rn, the line through p in the direction u coincides with the line through p in
the direction v, i.e.,

`p,u = `p,v.

Exercise 11.1 asks you to prove this fact.

Observe that the line through p and in the direction v is the image of the function

f : R→ Rn, f(t) = p+ tv.

You can think of the map f as describing the motion of a point in Rn so that its location
at time t ∈ R is p+ tv. The line `p,v is then the trajectory described by this point during
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Figure 11.4. The line through the point p = [1, 2, 3]> and in the direction v = [3, 4, 2]>.

its motion. If

p =

 p1

...
pn

 , v =

 v1

...
vn

 ,
then

p+ tv =

 p1 + tv1

...
pn + tvn


and we can describe the line through p in the direction v using the parametric equation
or parametrization 

x1 = p1 + tv1

...
...

...
xn = pn + tvn,

t ∈ R. (11.6)

Above, the variable t is called the parameter (of the parametric equations). As t varies,
the right-hand side of (11.6) describes the coordinates of a moving point along the line.
The parametric equations (11.6) should be interpreted as saying that

x ∈ `p,v ⇐⇒ ∃t ∈ R : xi = pi + tvi, ∀i = 1, . . . , n.

Definition 11.5. The lines `0,e1 , . . . , `0,en are called the coordinate axes of Rn. ut

Example 11.6. Figures 11.2 and 11.3 depict the coordinate axes in R2 and respectively
R3. ut
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Suppose that we are given two distinct points p, q ∈ Rn. These two points determine
two collinear vectors, v = q − p and −v = p− q; see Figure 11.5.3

p

q

0

v=q-p

Figure 11.5. You should think of v = q − p as the vector described by the arrow that
starts at p and ends at q.

The distinct points p, q belong to both lines `p,v and `q,−v. Since these two lines
intersect in two distinct points they must coincide; see Exercise 11.2. Thus

`p,v = `q,−v.

This line is called the line determined by the (distinct) points p and q, and we will denote
it by pq. In other words, pq is the line through p in the direction q − p,

pq = `p,q−p.

By construction, either of the vectors q − p or p − q is a direction vector of the line pq.
Observe that this line consists of all the points in Rn of the form

p+ tv = p+ t(q − p) = (1− t)p+ tq, t ∈ R.

We thus have the important equality

pq =
{

(1− t)p+ tq ∈ Rn, t ∈ R
}

= qp . (11.7)

Example 11.7. Consider the points p = (1, 2, 3) and q = (4, 5, 6) in R3. Then the line
through p and q is the subset of R3 described by

pq =
{

(1− t) · (1, 2, 3) + t · (4, 5, 6); t ∈ R
}

=
{

(1 + 3t, 2 + 3t, 3 + 3t); t ∈ R }.
Equivalently, we say that the line pq is described by the equations

x = 1 + 3t,
y = 2 + 3t,
z = 3 + 3t,

t ∈ R. ut

3The old-fashioned notation for the vector q − p is −→pq
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Given p, q ∈ Rn, p 6= q, the line pq is the image of the function

fp,q : R→ Rn, fp,q(t) = (1− t)p+ tq.

Moreover,
fp,q(0) = p, fp,q(1) = q.

Intuitively, the function fp,q describes the motion of a particle in the space Rn that is
located at fp,q(t) at the moment of time t. The line pq is then the trajectory described by
this moving particle. Note that at t = 0 the particle is located at p while, a second later,
at t = 1, the particle is located at q. The line segment connecting p to q is defined to be
the portion of the trajectory described by this particle during the time interval [0, 1]. We
denote this line segment by [p, q] and we observe that it has the algebraic description

[p, q] :=
{

(1− t)p+ tq; t ∈ [0, 1]
}
. (11.8)

Definition 11.8 (Convex sets). Let n ∈ N. A subset C ⊂ Rn is called convex if for any
two points in C, the segment connecting them is entirely contained in C. More formally,
C is convex iff

∀p, q ∈ C, [p, q] ⊂ C,
or, equivalently,

∀p, q ∈ C, ∀t ∈ [0, 1], (1− t)p+ tq ∈ C . ut

Convex Not convex

p

p

q

q

Figure 11.6. Examples of convex and non-convex planar sets.

Definition 11.9 (Linear forms). A linear form or linear functional on Rn is a map
ξ : Rn → R satisfying the following two properties.

(i) (Additivity.) For any x,y ∈ Rn we have ξ(x+ y) = ξ(x) + ξ(y).

(ii) (Homogeneity.) For any t ∈ R and any x ∈ Rn we have ξ(tx) = tξ(x).

We denote by (Rn)∗ the set of linear forms on Rn and we will refer to it as the dual
of Rn. ut
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+ We want to emphasize that the linear forms are “beasts that eat vectors and spit out
numbers”.

Example 11.10. (a) The set (Rn)∗ is not empty. The trivial map Rn → R that sends
every x to 0 is a linear functional. We will denote it by 0.

(b) Consider addition function α : R2 → R, α(x) = x1 + x2. Concretely, the function α
“eats” a two-dimensional vector x = (x1, x2) and returns the sum of its coordinates. Let
us verify that α is a linear form.

Indeed, we have

α(x+ y) = α
(

(x1 + y1, x2 + y2)
)

= (x1 + y1) + (x2 + y2)

= (x1 + x2) + (y1 + y2) = α(x) + α(y), ∀x,y ∈ R2,

α(tx) = α
(

(tx1, tx2)
)

= tx1 + tx2 = t(x1 + x2) = tα(x), ∀t ∈ R, x ∈ R2.

(c) For any k = 1, . . . , n, we define ek : Rn → R by

ek(x) = xk, ∀x = (x1, . . . , xn) ∈ Rn. (11.9)

From the definition of the addition and multiplication by scalars we deduce immediately
that the maps ek are linear functionals. The linear forms e1, . . . , en are called the basic
linear forms on Rn. ut

The proof of the next result is left to you as an exercise.

Proposition 11.11. If ξ,ω are linear forms on Rn and t is a real number, then the sum
ξ + ω and the multiple tξ are linear functionals on Rn.4 ut

The linear forms on Rn have a very simple structure described in our next result.

Proposition 11.12. Let ξ : Rn → R be a linear form. For i = 1, . . . , n we set5

ξi := ξ(ei),

where e1, . . . , en is the canonical basis (11.2) of Rn. Then,

ξ(x) = ξ1x
1 + ξ2x

2 + · · ·+ ξnx
n =

n∑
i=1

ξix
i, ∀x = (x1, . . . , xn) ∈ Rn. (11.10)

Conversely, given any real numbers ξ1, . . . , ξn, the linear form

ξ = ξ1e
1 + · · ·+ ξne

n,

where ek are defined by (11.9), satisfies (11.10).

4In modern language this signifies that the space (Rn)∗ of linear forms on Rn is a vector subspace of the vector
space of functions on Rn → R.

5Note that here we use the subscript notation, ξi instead of the superscript notation ξi. This is part of
Einstein’s conventions I referred to at the beginning of this chapter.
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Proof. To prove (11.10) let x = (x1, . . . , xn) ∈ Rn. Then

x = x1e1 + · · ·+ xnen.

From the additivity of ξ we deduce

ξ(x) = ξ(x1e1 + · · ·+ xnen) = ξ(x1e1) + · · ·+ ξ(xnen)

(use the homogeneity of ξ)

= x1ξ(e1) + · · ·+ xnξ(en) = ξ1x
1 + ξ2x

2 + · · ·+ ξnx
n.

This proves (11.10).

Conversely, if ξ = ξ1e
1 + · · ·+ ξne

n, then

ξ(x) = ξ1e
1(x) + · · ·+ ξne

n(x)
(11.9)

= ξ1x
1 + ξ2x

2 + · · ·+ ξnx
n.

ut

The above proposition shows that a linear form ξ on Rn is completely and uniquely
determined by its values on the basic vectors e1, . . . , en. We will identify ξ with the row

[ξ1, . . . , ξn], ξi = ξ(ei),

and we will think of any length-n row of real numbers as defining a linear form on Rn. In
the physics literature the linear forms are often referred to as covectors.

The basic linear forms e1, . . . , en defined in (11.9) are uniquely determined by the
equalities

ei(ej) = δij , ∀i, j = 1, . . . , n , (11.11)

where we recall that δij is the Kronecker symbol (11.4).

Example 11.13. Suppose that n = 4. Then the linear form ξ : R4 → R defined by the
row vector [3, 5, 7, 9] is given by

ξ(x1, x2, x3, x4) = 3x1 + 5x2 + 7x3 + 9x4, ∀(x1, x2, x3, x4) ∈ R4. ut

Definition 11.14. A subset H of Rn is called a hyperplane if there exists a nonzero
linear form ξ : Rn → R and a real constant c such that H consists of all the points x ∈ Rn
satisfying ξ(x) = c. ut

Example 11.15. (a) A hyperplane in R2 is a line in R2. Indeed, any linear form on R2

has the form
ξ(x, y) = ax+ by

where a, b are fixed real numbers and x, y denote the Cartesian coordinates on R2. An
equation of the form

ax+ by = c

describes a line in R2. For example, the equation −2x+y = 3 describes the line y = 2x+3,
with slope 2 and y-intercept 3; see Figure 11.7.
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Figure 11.7. The planar line with slope 2 and y-intercept 3.

(b) A hyperplane in R3 is a plane. For example, Figure 11.8 depicts the plane x+2y+3z = 4.

(c) A row vector [ξ1, . . . , ξn] and a constant c define the hyperplane in Rn consisting of all
the points x = (x1, . . . , xn) ∈ Rn satisfying the linear equation

ξ1x
1 + · · ·+ ξnx

n = c.

All the hyperplanes in Rn are of this form. ut

Figure 11.8. The plane x+ 2y + 3z = 4.

Definition 11.16 (Affine subspaces). (a) A nonempty subset S ⊂ Rn is called an affine
subspace if it has the following property: for any points p, q ∈ S, p 6= q, the line pq is
contained in S. In algebraic terms this means that S is an affine subspace if and only if,
for any p, q ∈ S, p 6= q, and any t ∈ R we have (1− t)p+ tq ∈ S.

(b) The subset S is called a linear subspace or vector subspace if it is an affine subspace
and contains the origin. ut
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Example 11.17. (a) Any point in Rn is an affine subspace. The space Rn is obviously
an affine subspace of itself.

(b) The lines and the hyperplanes in Rn are special examples of affine subspaces; see
Exercise 11.8. When n > 3, there are examples of affine subspaces of Rn that are neither
lines, nor hyperplanes.

(c) If nonempty, the intersection of two affine subspaces is an affine subspace. In particular,
if two hyperplanes are not disjoint, then their intersection is an affine subspace. One can
prove that if S is an affine subspace of Rn and S 6= Rn, then S is the intersection of finitely
many hyperplanes. ut

Proposition 11.18. Let S be a nonempty subset of Rn. Then the following statements
are equivalent.

(i) The set S is a linear subspace, i.e., it is an affine subspace of Rn containing the
origin.

(ii) For any u,v ∈ S and any t ∈ R we have

tu ∈ S and u+ v ∈ S.

In other words, either of the conditions (i) or (ii) above can be used as definition of a
linear subspace.

Proof. (i)⇒ (ii) We know that S is an affine subspace and 0 ∈ S. Clearly t0 = 0, ∀t ∈ R.
For any v ∈ S, v 6= 0 and any t ∈ R we have

tv = (1− t)0 + tv ∈ S.

Thus, any multiple of any vector in S is also a vector in S. Thus, if u = v ∈ S we have
u + v = 2u ∈ S. On the other hand, since S is an affine subspace, if u,v ∈ S, u 6= v,
the vector w = 1

2u+ 1
2v belongs to S. Hence the multiple 2w belongs to S and therefore

u+ v = 2w ∈ S.

(ii) ⇒ (i) Let u ∈ S. Hence 0 = 0 · u ∈ S. Next observe that if u,v ∈ S, u 6= v, and
t ∈ R, then

(1− t)u, tv ∈ S ⇒ (1− t)u+ tv ∈ S.
This proves that S is an affine subspace. ut

Definition 11.19 (Linear operators). Fix m,n ∈ N. A map A : Rn → Rm is called linear
or a linear operator if it satisfies the following two properties.

(i) (Additivity.) For any x,y ∈ Rn we have A(x+ y) = A(x) +A(y).

(ii) (Homogeneity.) For any t ∈ R and any x ∈ Rn we have A(tx) = tA(x).

We denote by Hom(Rn,Rm) the set of linear operators Rn → Rm. ut



11.1. Basic affine geometry 355

Note that Hom(Rn,R) is none other than the dual of Rn, i.e., the space (Rn)∗ of linear
functionals on Rn. Let us mention a simplifying convention that has been universally
adopted. If A : Rn → Rm is a linear operator and x ∈ Rn, then we will often use the
simpler notation Ax when referring to A(x).

The linear operators Rn → Rm have a rather simple structure. Let A : Rn → Rm be
a linear operator. Denote by e1, . . . , en the canonical basis of Rn and by x1, . . . , xn the
canonical Cartesian coordinates. Similarly, we denote by f1, . . . ,fm the canonical basis
of Rm and by y1, . . . , ym the canonical Cartesian coordinates.

For any

x = (x1, . . . , xn) = x1e1 + · · ·+ xnen ∈ Rn

we have

Ax = A(x1e1 + · · ·+ xnen) = A(x1e1) + · · ·+A(xnen) = x1Ae1 + · · ·+ xnAen. (11.12)

This shows that the operator A is completely determined by the m-dimensional vectors

Ae1, . . . , Aen ∈ Rm.

These m-dimensional vectors are described by columns of height m.

Ae1 =


A1

1

A2
1

...
Am1

 , . . . , Aej =


A1
j

A2
j

...
Amj

 , . . . , Aen =


A1
n

A2
n
...
Amn

 .
Arranging these columns one next to the other we obtain the rectangular array

MA =



A1
1 · · · A1

j · · · A1
n

A2
1 · · · A2

j · · · A2
n

...
. . .

...
. . .

...
...

. . .
...

. . .
...

Am1 · · · Amj · · · Amn


.

- We need to introduce some terminology and conventions.

• A rectangular array of numbers as above is called a matrix.

• The horizontal strings of numbers are called rows, and the vertical ones are called
columns.

• We will denote by Matm×n(R) the space of matrices with real entries, with m
rows and n columns. The matrix MA above is an m× n matrix.

• A square matrix is a matrix with an equal number of rows and columns. We
will denote by Matn(R) the space of square matrices with n rows and columns.
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• The superscripts label the rows and the subscripts label the columns. Thus, A3
7

is the entry located at the intersection of the 3rd row with the 7th column of a
matrix A.

• We denote by Aj the j-th column and by Ai the i-th row of a matrix A .

Note that a 1× k matrix is a length-k row

R = [r1 r2 . . . rk],

while a k × 1 matrix is a height-k column

C =

 c1

...
ck


The pairing between a row R and a column C of the same size k is defined to be the
number

R • C := r1c
1 + r2c

2 + · · ·+ rkc
k . (11.13)

If we identify rows with linear functionals, then R•C is the real number that we get when
we feed the vector C to the linear functional defined by R.

The above discussion shows that to any linear operator A : Rn → Rm we can canoni-
cally associate an m × n matrix called the matrix associated to the linear operator. This
matrix has n columnsA1, . . . , An that describe the coordinates of the vectorsAe1, . . . , Aen.

Using (11.12) we deduce

Ax = x1Ae1 + · · ·+ xnAen

= x1


A1

1

A2
1

...
Am1

+ x2


A1

2

A2
2

...
Am2

+ · · ·+ xn


A1
n

A2
n
...
Amn



=



x1A1
1 + x2A1

2 + · · ·+ xnA1
n

x1A2
1 + x2A2

2 + · · ·+ xnA2
n

...

x1Am1 + x2Am2 + · · ·+ xnAmn


=



A1
1x

1 +A1
2x

2 + · · ·+A1
nx

n

A2
1x

1 +A2
2x

2 + · · ·+ xnA2
nx

n

...

Am1 x
1 +Am2 x

2 + · · ·+Amn x
n


Let us analyze a bit the above sum equality. Note that the i-th coordinate of Ax is the
quantity

n∑
j=1

Aijx
j = Ai1x

1 +Ai2x
2 + · · ·+Ainx

n,
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Note also that the above expression is obtained by pairing the i-th row Ai = [Ai1, . . . , A
i
n]

of the matrix MA with the column vector x = [x1, . . . , xn]> . Thus, the vector Ax in Rm
is described by the column of height m

Ax =



∑n
j=1A

1
jx
j

∑n
j=1A

2
jx
j

...∑n
j=1A

m
j x

j

 =


A1 • x

A2 • x
...

Am • x

 . (11.14)

The above equality shows that each component of Ax is a linear functional in x.

Conversely, given an m×n matrix A, its columns A1, . . . , An define vectors in Rm and
we can use these vectors to define a linear operator L = LA : Rn → Rm via the formula

LA(x) = x1A1 + · · ·+ xnAn, x = (x1, x2, . . . , xn).

In particular,

LAej = Aj ,

so that the matrix associated to the operator LA is the matrix A we started with. This
proves the following very useful fact.

Theorem 11.20. The correspondence that associates to a linear operator Rn → Rm its
m × n matrix is a bijection between the set of linear operators Hom(Rn,Rm) and the set
Matm×n(R) of m× n matrices with real entries. ut

Because of the above bijective correspondence we will denote a linear operator and its
associated matrix by the same symbol.

Proposition 11.21. Let `,m, n ∈ N. If A : Rn → Rm and B : Rm → R` are linear
operators, then so is their composition BA := B ◦A : Rn → R`.

Proof. To prove the additivity of BA we choose x,y ∈ Rn. Then

BA(x+ y) = B
(
A(x+ y)

)
(use the additivity of A)

= B
(
Ax+Ay

)
(use the additivity of B)

= B(Ax) +B(Ay) = BA(x) +BA(y).

The homogeneity of BA is proved in a similar fashion. ut
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In Proposition 11.21 the operator A is represented by an m × n matrix MA and the
operator B by an `×m matrix MB

MA =


A1

1 A1
2 · · · A1

n

A2
1 A2

2 · · · A2
n

...
...

. . .
...

Am1 Am2 · · · Amn

 , MB =


B1

1 B1
2 · · · B1

m

B2
1 B2

2 · · · B2
m

...
...

. . .
...

B`
1 B`

2 · · · B`
m

 .
The operator BA : Rn → R` is represented by an ` × n matrix MBA with entries (BA)ij
that we want to describe explicitly. Note that the columns of this matrix describe the
coordinates of the vectors

B(Ae1), . . . , B(Aen) ∈ R`.
Thus, for i = 1, . . . , `, the entry (BA)ij denotes the i-th coordinate of the vector B(Aej).
The vector Aej is described by the column

Aej = Aj =

 A1
j

...
Amj

 .
Since (BA)ij is the i-th coordinate of B(Aej), we deduce from (11.14) with x = Aej = Aj
that

(BA)ij = Bi •Aj . (11.15)

More explicitly, given that Bi = [Bi
1, . . . , B

i
m], we deduce from (11.13) with U = Bi and

V = Aj that

(BA)ij = Bi
1A

1
j +Bi

2A
2
j + · · ·+Bi

mA
m
j .

Definition 11.22 (Matrix multiplication). 6 Given two matrices

A ∈ Matm×n(R) and B ∈ Mat`×m(R)

(so that the number of columns of B is equal to the number of rows of A) their product is
the `× n matrix B ·A whose (i, j) entry is the pairing of the i-th row of B with the j-th
column of A,

(B ·A)ij = Bi •Aj = Bi
1A

1
j +Bi

2A
2
j + · · ·+Bi

mA
m
j . ut

The next result summarizes the above discussion.

Proposition 11.23. The matrix associated to the composition of two linear operators

A : Rn → Rm, B : Rm → R`

is the product of the matrices associated to these operators,

MB◦A = MB ·MA. ut
6Check the site http://matrixmultiplication.xyz/ that interactively shows you how to multiply matrices.

http://matrixmultiplication.xyz/
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Remark 11.24. According to Theorem 11.20, any matrix A ∈ Matm×n(R) defines a
linear operator LA : Rn → Rm. A vector x ∈ Rn is represented by a column, i.e., by an
n× 1 matrix. The product of the matrices A and x is well defined and produces an m× 1
matrix A · x which can also be viewed as a vector in Rm.

When we feed the vector x to the linear operator LA defined by A we also obtain a
vector in Rm given by (11.14)

LAx =


A1 • x

A2 • x
...

Am • x


The column on the right-hand side of the above equality is none other than the matrix
multiplication A · x, i.e.,

LAx = A · x.

Thus, when viewed as a linear operator, the action of a matrix on a vector coincides with
the product of that matrix with the vector viewed as a matrix consisting of a single column.

This remarkable coincidence is one of the main reasons we prefer to think of the vectors
in Rn as column vectors. ut

+ Important Convention In the sequel, to ease the notational burden, we will denote
with the same symbol a linear operator and its associated matrix. With this convention,
the equality LAx = A · x above takes the simper form

Ax = A · x. (11.16)

Also, due to Proposition 11.23 we will use the simpler notation BA instead of B ·A when
referring to matrix multiplication.

Example 11.25. (a) A linear operator R→ R corresponds to a 1×1-matrix which in turn
can be identified with a number. If A is a real number, then the associated linear operator
sends a real number x to the real number Ax. Thus, the real number A is the slope of
the linear function f(x) = Ax. This simple example shows that the matrix associated to
a linear operator is a sort of “generalized slope” of the linear operator.

(b) The identity operator 1 : Rn → Rn is represented by the n× n diagonal matrix

1 = 1n =


1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1

 .
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E.g.

12 =

[
1 0
0 1

]
, 13 =

 1 0 0
0 1 0
0 0 1

 .
Note that the (i, j) entry of 1n is δij , where δij is the Kronecker symbol defined in (11.4).

The identity operator (matrix) 1n has the property that

1nA = A1n = A, ∀A ∈ Matn×n(R).

We will denote by 0 a matrix whose entries are all equal to 0.

(c) The diagonal of a square n × n matrix A consists of the entries A1
1, A

2
2, . . . , A

n
n. For

example the diagonal of the 2× 2 matrix

A =

[
1 2

3 4

]
consists of the boxed entries. An n× n diagonal matrix is a matrix of the form

c1 0 0 · · · 0 0
0 c2 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 cn

 .
We will denote the above matrix by Diag(c1, . . . , cn).

(d) An n× n matrix A is called symmetric if Aij = Aji , ∀i, j = 1, . . . , n. For example, the
matrix below is symmetric.  1 2 3

2 4 5
3 5 6

 .
(e) We can add two matrices of the same dimensions. Thus

(A+B)ij = Aij +Bi
j ,

i.e., the (i, j)-entry of A + B is the sum of the (i, j)-entry of A with the (i, j)-entry of
B. We can also multiply a matrix A by a scalar c ∈ R. The new matrix is obtained by
multiplying all entries of A by the constant c. ut

Example 11.26. The multiplication of matrices resembles in some respects the multipli-
cation of real numbers. For example, the multiplication of matrices is associative

(A ·B) · C = A · (B · C)

for any matrices A ∈ Matk×`(R), B ∈ Mat`×m(R), C ∈ Matm×n(R). It is also distributive
with respect to the addition of matrices

A · (B + C) = AB +AC, ∀A ∈ Mat`×m(R), B, C ∈ Matm×n(R).



11.1. Basic affine geometry 361

However, there are some important differences. Consider for example the 2× 2 matrices

A =

[
1 2
0 0

]
, B =

[
0 3
0 4

]
.

Observe that

A ·B =

[
0 3 + 8
0 0

]
=

[
0 11
0 0

]
, B ·A =

[
0 0
0 0

]
.

ut

This example shows two things.

• The multiplication of matrices is not commutative since obviously AB 6= BA in
the above example.

• The product of two matrices can be zero, although none of them is zero as in
example BA = 0 above.

Definition 11.27. Suppose that A : Rn → Rm is a linear operator. The kernel of A,
denoted by kerA is the set

kerA :=
{
x ∈ Rn; Ax = 0

}
⊂ Rn. ut

We have the following useful result whose proof is left to you as an exercise.

Proposition 11.28. Suppose that A : Rn → Rm is a linear operator and S ⊂ Rn is a
vector subspace. Then its kernel kerA is a linear subspace of Rn and the image A(S) of S
is a vector subspace of Rm. In particular, the range R(A) := A(Rn) is a linear subspace
of Rm. ut

Example 11.29. Consider the 2× 3 matrix

A =

[
1 2 3
4 5 6

]
.

As such, it defines a linear operator A : R3 → R2 described by

R3 3 x =

 x1

x2

x3

 7→ [
1 2 3
4 5 6

]
·

 x1

x2

x3

 =

[
x1 + 2x2 + 3x3

4x1 + 5x2 + 6x3

]
∈ R2.

If e1, e2, e3 is the natural basis, then Ae1, Ae2, Ae3 are described respectively by the
columns A1, A2, A3 of A. E.g.,

Ae1 =

[
1
4

]
∈ R2.

The kernel of this operator consists of vectors x = (x1, x2, x3) ∈ R3 satisfying Ax = 0,
i.e., the system of linear equations{

x1 + 2x2 + 3x3 = 0
4x1 + 5x2 + 6x3 = 0.
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If we multiply the first line above by 4 and then subtract it from the second line we deduce{
x1 + 2x2 + 3x3 = 0
−3x2 − 6x3 = 0

⇐⇒
{
x1 + 2x2 + 3x3 = 0

x2 + 2x3 = 0.

We deduce that

x2 = −2x3, x1 = −2x2 − 3x3 = x3.

If we set t := x3 we deduce that (x1, x2, x3) ∈ kerA if and only if it has the form

x1 = t, x2 = −2t, x3 = t, t ∈ R.

Thus the kernel of A is the line through the origin with direction vector v = (1,−2, 1),

kerA = `0,v. ut

11.2. Basic Euclidean geometry

The space Rn has a considerably richer structure than the ones we have discussed in the
previous section. The goal of the present section is to describe this additional structure
and some of its consequences.

Definition 11.30 (Inner product). The canonical inner product in Rn is the map Rn×Rn → R
that associates to a pair of vectors (x,y) ∈ Rn × Rn the real number 〈x,y〉 defined by

〈x,y〉 :=
n∑
j=1

xjyj = x1y1 + · · ·+ xnyn. ut

Proposition 11.31. The inner product 〈−,−〉 : Rn × Rn → R satisfies the following
properties.

(i) For any x,y, z ∈ Rn we have

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

(ii) For any x,y ∈ Rn and any t ∈ R we have

〈tx,y〉 = 〈x, ty〉 = t〈x,y〉.

(iii) For any x,y ∈ Rn we have

〈x,y〉 = 〈y,x〉.

(iv) For any x ∈ Rn we have 〈x,x〉 ≥ 0 with equality if and only if x = 0.

Proof. (i) We have

〈x+ y, z〉 = (x1 + y1)z1 + · · ·+ (xn + yn)zn = (x1z1 + · · ·+ xnzn) + (y1z1 + · · ·+ ynzn)

= 〈x, z〉+ 〈y, z〉.
The properties (ii) and (iii) are obvious. As for (iv), note that

〈x,x〉 = (x1)2 + · · ·+ (xn)2 ≥ 0.
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Clearly, we have equality if and only if x1 = · · · = xn = 0.

ut

Definition 11.32. The Euclidean norm or length of a vector x = [x1, . . . , xn]> ∈ Rn is
the nonnegative real number ‖x‖ defined by

‖x‖ :=
√
〈x,x〉 =

√
(x1)2 + · · ·+ (xn)2. ut

Observe that

‖x‖2 = 〈x,x〉, ∀x ∈ Rn.

The Cauchy-Schwarz inequality (8.24) implies that for any

x = [x1, . . . , xn]>, y = [y1, . . . , yn]>

we have ∣∣∣x1y1 + · · ·+ xnyn
∣∣∣ ≤√(x1)2 + · · · (xn)2 ·

√
(y1)2 + · · ·+ (yn)2.

This can be rewritten in the more compact form∣∣ 〈x,y〉 ∣∣ ≤ ‖x‖ · ‖y‖, ∀x,y ∈ Rn. (11.17)

We will refer to (11.17) as the Cauchy-Schwarz inequality. Given the importance of this
inequality we present below an alternate proof

Alternate proof of the inequality (11.17). The inequality (11.17) obviously holds if
x = 0 or y = 0 so it suffices to prove it in the case x,y 6= 0. Consider the function

f : R→ R, f(t) = 〈tx+ y, tx+ y〉 = ‖tx+ y‖2.

Clearly, f(t) ≥ 0 and f(t0) = 0 for some t0 ∈ R if and only if x,y are collinear, y = −t0x.
Using Proposition 11.31 we deduce

f(t) = 〈tx+ y, tx〉+ 〈tx+ y,y〉 = t〈tx+ y,x〉+ 〈tx+ y,y〉

= t
(
〈tx,x〉+ 〈y,x〉

)
+t〈x,y〉+ 〈y,y〉

= t2〈x,x〉+ t〈y,x〉+ t〈x,y〉+ 〈y,y〉 = 〈x,x〉︸ ︷︷ ︸
a

t2 + 2〈x,y〉︸ ︷︷ ︸
b

t+ 〈y,y〉︸ ︷︷ ︸
c

= at2 + bt+ c, a > 0.

This shows that the quadratic polynomial at2 + bt+ c with a > 0 is nonnegative for every
t ∈ R. From Exercise 3.10(a) we conclude that this is possible if and only if b2 − 4ac ≤ 0,
i.e.,

4
∣∣ 〈x,y〉 ∣∣2 − 4‖x‖2‖y‖2 ≤ 0.

This implies
∣∣ 〈x,y〉 ∣∣ ≤ ‖x‖ · ‖y‖. ut
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Remark 11.33. In the above argument observe that if

|〈x,y〉| = ‖x‖ · ‖y‖
then b2− 4ac = 0. In particular, this implies that there exists t ∈ R such that tx+y = 0,
i.e., the vectors are collinear. Conversely, if the vectors x,y are collinear, then clearly
|〈x,y〉| = ‖x‖ · ‖y‖.

The above argument proves a bit more namely

|〈x,y〉| ≤ ‖x‖ · ‖y‖, ∀x,y ∈ Rn,

with equality if and only if one of the vectors is a multiple of the other. ut

The Cauchy-Schwarz inequality implies that for any nonzero vectors x,y ∈ Rn we
have

〈x,y〉
‖x‖ · ‖y‖

∈ [−1, 1].

Thus, there exists a unique θ ∈ [0, π] such that

cos θ =
〈x,y〉
‖x‖ · ‖y‖

.

Definition 11.34. The angle between the nonzero vectors x,y ∈ Rn, denoted by ](x,y),
is defined to be the unique number θ ∈ [0, π] such that

cos θ =
〈x,y〉
‖x‖ · ‖y‖

. ut

Thus, for any x,y ∈ Rn, x,y 6= 0, we have

cos](x,y) =
〈x,y〉
‖x‖ · ‖y‖

and 〈x,y〉 = ‖x‖ · ‖y‖ cos](x,y) . (11.18)

Classically, two nonzero vectors x,y are orthogonal if ](x,y) = π
2 , i.e., cos](x,y) = 0

. The equality (11.18) shows that this happens iff 〈x,y〉 = 0. This justifies our next
definition.

Definition 11.35. We say that two vectors x,y ∈ Rn are orthogonal, and we write this
x ⊥ y, if 〈x,y〉 = 0. ut

Example 11.36. If e1, . . . , en is the canonical basis of Rn (see (11.2)), then

‖e1‖ = · · · = ‖en‖ = 1,

and
ei ⊥ ej , ∀i 6= j.

We can rewrite these facts in the more succinct form

〈ei, ej〉 = δij :=

{
1, i = j,

0, i 6= j.
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The collection (δij) above is also called Kronecker symbol. Note that for any vector

x =

 x1

...
xn

 ∈ Rn

we have

xi = 〈x, ei〉, ∀i = 1, 2, . . . , n,

and thus

x = 〈x, e1〉e1 + · · ·+ 〈x, en〉en. ut

Theorem 11.37 (Pythagoras). If x,y ∈ Rn and x ⊥ y, then

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Proof. We have

‖x+ y‖2 = 〈x+ y,x+ y〉 = 〈x,x+ y〉+ 〈y,x+ y〉

= 〈x,x〉+ 〈x,y〉+ 〈y,x〉︸ ︷︷ ︸
=0

+〈y,y〉 = 〈x,x〉+ 〈y,y〉 = ‖x‖2 + ‖y‖2.

ut

Observe that any vector x ∈ Rn defines a linear functional

x↓ : Rn → R, x↓(y) := 〈x,y〉.

We will refer to the functional x↓ as the dual of x. It is not hard to see that all the linear
functionals on Rn are duals of vectors in Rn.

Proposition 11.38. Let n ∈ N. Any linear functional ξ : Rn → R is the dual of a unique
vector in Rn. This means that there exists a unique vector z ∈ Rn such that ξ = z↓, i.e.,

ξ(x) = 〈z,x〉, ∀x ∈ Rn. (11.19)

This unique vector z is called the dual of ξ and it is denoted by ξ↑.

Proof. Let e1, . . . , en be the canonical basis of Rn. Set

ξi := ξ(ei), i = 1, 2, . . . , n,

The vector z = [z1, . . . , zn]> satisfies (11.19) if and only if

zi = 〈z, ei〉 = ξ(ei) = ξi, i = 1, 2, . . . , n.

ut
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The above proof shows that, if the linear form ξ is described by the row

ξ = [ξ1, . . . , ξn],

then ξ↑ is the vector described by the column

ξ↑ =

 ξ1
...
ξn

 ⇐⇒ ξi↑ = ξi, (11.20a)

ξ(x) = ξ • x = 〈ξ↑,x〉, ∀x ∈ Rn. (11.20b)

Note that

(ei)
↓ = ei, (ej)↑ = ej , ∀i, j = 1, . . . , n. (11.21)

The duality operation defined above has a very simple intuitive description: it takes a
row ξ and transforms into a column ξ↑ with the same entries, and vice-versa, it takes a

column x and transforms it into a row x↓ with the same entries. E.g.,

[1,−2, 3]↑ =

 1
−2

3

 ,
 4

5
6

↓ = [4, 5, 6].

Proposition 11.39. Let n ∈ N and H ⊂ Rn. The following statements are equivalent.

(i) The subset H is a hyperplane.

(ii) There exists a nonzero vector N ∈ Rn and a constant c ∈ R such that p ∈ H if
and only if 〈N ,p〉 = c.

Proof. (i)⇒ (ii) SinceH is a hyperplane there exists a nonzero linear functional ξ : Rn → R
and a real number c such that

x ∈ H ⇐⇒ ξ(x) = c.

Let N := ξ↑, i.e., 〈N ,x〉 = ξ(x), ∀x ∈ Rn. Then, for any p, q ∈ H, we have

〈N ,p〉 = ξ(p) = c = ξ(q) = 〈N , q〉.

(ii) ⇒ (i) Let ξ := N↓. Then

p ∈ H⇐⇒〈N ,p〉 = c⇐⇒ ξ(p) = c.

This shows that H is a hyperplane. ut

Suppose that H ⊂ Rn is a hyperplane. Hence, there exist N ∈ Rn \ {0} and c ∈ R
such that

x ∈ H⇐⇒〈N ,x〉 = c.

If p, q ∈ H and p 6= q, then the direction of the line pq is given by the vector q−p. Now
observe that

〈N , q − p〉 = 〈N , q〉 − 〈N ,p〉 = 0⇒N ⊥ (q − p).
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Thus, the defining vector N is perpendicular to all the lines contained in H. We say that
N is orthogonal to H, we write this N ⊥ H and we will to refer to N as a normal vector
of H.

Example 11.40. (a) As we have mentioned earlier, any line in R2 is also an affine hy-
perplane. For example, the line given by the equation 2x + 3y = 5 admits the vector
N = (2, 3) as normal vector.

(b) If n ∈ N, then for any p ∈ Rn and any N ∈ Rn, N 6= 0, we denote by Hp,N the
hyperplane through p and normal N , i.e., the hyperplane

Hp,N =
{
x ∈ Rn; 〈N ,x〉 = 〈N ,p〉

}
.

Clearly p ∈ H. For example if n = 3, p = (1, 1, 1) and N = (1, 2, 3), then

〈N ,p〉 = 1 + 2 + 3 = 6,

and

Hp,N =
{

(x, y, z) ∈ R3; x+ 2y + 3z = 6
}
. ut

Example 11.41 (The cross product in R3). The 3-dimensional Euclidean space R3 is
equipped with another operation that is not available in any other dimensions. The cross
product is the map

× : R3 × R3 → R3, (u,v) 7→ u× v
uniquely characterized by the following conditions

(i) ∀u,v,w ∈ R3

(u+ v)×w = (u×w) + (v ×w),

w × (u+ v) = (w × u) + (w × v).

(ii)

(tu)× v = u× (tv) = t(u× v), ∀t ∈ R, u,v ∈ R3.

(iii)

u× v = −(v × u), ∀u,v ∈ R3.

(iv)

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2.

Note that (iii) implies that

u× u = 0, ∀u ∈ R3.

Indeed

u× u = −(u× u)⇒ 2(u× u) = 0⇒ u× u = 0.

For example, if

u = [1, 2, 3]>, v = [4, 5, 6]>,

then

u× v = (e1 + 2e2 + 3e3)× (4e1 + 5e2 + 6e3)
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= e1 × (4e1 + 5e2 + 6e3)︸ ︷︷ ︸
I

+ 2e2 × (4e1 + 5e2 + 6e3)︸ ︷︷ ︸
II

+ 3e3 × (4e1 + 5e2 + 6e3)︸ ︷︷ ︸
III

= 5e1 × e2 + 6e1 × e3︸ ︷︷ ︸
I

+ 8e2 × e1 + 12e2 × e3︸ ︷︷ ︸
II

+ 12e3 × e1 + 15e3 × e2︸ ︷︷ ︸
III

= (5e3 − 6e2)︸ ︷︷ ︸
I

+ (−8e3 + 12e1)︸ ︷︷ ︸
II

+ (12e2 − 15e1)︸ ︷︷ ︸
III

= −3e1 + 6e2 − 3e3 = [−3, 6,−3|>.
If we set w = u× v = [−3, 6,−3]>, then we observe that

〈w,u〉 = 〈w,v〉 = 0.

We have

‖u‖ =
√

12 + 22 + 32 =
√

14, ‖v‖ =
√

42 + 52 + 62 =
√

77,

‖u‖ · ‖v‖ =
√

14 · 77 =
√

1078,

〈u,v〉 = 4 + 10 + 18 = 32.

If we denote by θ the angle between u and v, then we deduce

cos θ =
32√
1078

.

Hence

sin2 θ = 1− cos2 θ =
54

1078
.

Note that

‖u× v‖ =
√

32 + 62 + 32 =
√

54,

This proves that

u,v ⊥ (u× v), ‖u× v‖ =
√

54 =
√

1078 ·
√

54

1078
= ‖u‖ · ‖v‖ sin θ.

Let us observe that the quantity ‖u‖ · ‖v‖ sin θ is the area of the parallelogram spanned
by the vectors u,v.

The above observations are manifestations of a more general phenomenon. Given any
two vectors

u = [u1, u2, u3]>, v = [v1, v2, v3]> ∈ R3,

then the properties(i)-(iv) show that7

u× v = (u2v3 − u3v2)e1 + (u3v1 − u1v3)e2 + (u1v2 − u2v1)e3 . (11.22)

Using this equality one can show that u × v is a vector perpendicular to both u and v
and its length is equal to the area of the parallelogram spanned by the vectors u,v. These
facts alone almost completely determine the vector u × v. There are two vectors with
these properties, and to determine which is the cross product we need to indicate the
direction or orientation of this vector. This is achieved using the right-hand rule.

7Do not try to memorize (11.22). Use (i)-(iv) whenever you want to compute a cross product.
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* Align your right hand thumb with the vector u and your right hand index with the
vector v. If you then move the right hand middle-finger so it is perpendicular to your
right-hand palm, then it will be aligned with u× v. ut

Definition 11.42. Suppose that V ⊂ Rn is a vector subspace. Its orthogonal complement
is the subset

V ⊥ :=
{
u ∈ Rn; 〈u,v〉 = 0, ∀v ∈ V

}
. ut

11.3. Basic Euclidean topology

The notions of convergence and continuity on the real axis have a multidimensional coun-
terpart. The main reason why this happens is because the Euclidean norm ‖ − ‖ behaves
like the absolute value on R. Observe first that

‖tx‖ = |t| · ‖x‖, ∀x ∈ Rn, t ∈ R (11.23a)

‖x‖ ≥ 0, ‖x‖ = 0⇐⇒x = 0, (11.23b)

Additionally, and less trivially, we have the following key result.

Theorem 11.43 (Triangle inequality). Let n ∈ N. For any x,y ∈ Rn we have

‖x+ y‖ ≤ ‖x‖+ ‖y‖. (11.24a)∣∣∣ ‖x‖ − ‖y‖ ∣∣∣ ≤ ‖x− y‖. (11.24b)

Proof. Observe that

‖x+ y‖2 = 〈x+ y,x+ y〉 = 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉 = ‖x‖2 + 2〈x,y〉+ ‖y‖2

(use the Cauchy-Schwarz inequality)

≤ ‖x‖2 + 2‖x‖ · ‖y‖+ ‖y‖2 =
(
‖x‖+ ‖y‖

)2
.

Hence

‖x+ y‖2 ≤
(
‖x‖+ ‖y‖

)2
.

This proves (11.24a).

Next, observe that (11.24a) implies

‖x‖ = ‖y + (x− y)‖ ≤ ‖y‖+ ‖x− y‖ ⇒ ‖x‖ − ‖y‖ ≤ ‖x− y‖.
Similarly

‖y‖ = ‖x+ (y − x)‖ ≤ ‖x‖+ ‖(y − x)‖ = ‖x‖+ ‖x− y‖
⇒ ‖y‖ − ‖x‖ ≤ ‖x− y‖.

Hence

±
(
‖x‖ − ‖y‖

)
≤ ‖x− y‖.

This is clearly equivalent to (11.24b). ut
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Definition 11.44 (Euclidean distance). Let n ∈ N and x,y ∈ Rn. The Euclidean distance
between the points x,y is the nonnegative real number

dist(x,y) := ‖x− y‖. ut

Example 11.45. (a) If n = 1, then for any x, y ∈ R we have dist(x, y) = |x− y|.
(b) For any n ∈ N and any x ∈ Rn we have ‖x‖ = dist(x,0). ut

Proposition 11.46. Let n ∈ N. For any x,y, z ∈ Rn the following hold.

(i) dist(x,y) ≥ 0 with equality if and only if x = y.

(ii) dist(x,y) = dist(y,x).

(iii) (Triangle inequality) dist(x, z) ≤ dist(x,y) + dist(y, z).

Proof. We have

dist(x,y) = ‖x− y‖ =
∥∥−(x− y)

∥∥ = ‖y − x‖ = dist(y,x) ≥ 0.

Clearly

dist(x,y) = 0⇐⇒‖x− y‖ = 0⇐⇒x = y.

To prove (iii) note that

dist(x, z) = ‖x− z‖ = ‖(x− y) + (y − z)‖
(11.24a)

≤ ‖x− y‖+ ‖y − z‖ = dist(x,y) + dist(y, z).

ut

Definition 11.47 (Open sets). Let n ∈ N.

(i) For r > 0 and p ∈ Rn we define the open (Euclidean) ball of radius r and center
p to be the set

Br(p) :=
{
x ∈ Rn; dist(x,p) < r

}
=
{
x ∈ Rn; ‖x− p‖ < r

}
. (11.25)

Sometimes, when we want to emphasize the ambient space Rn we will use the
more precise notation Bn

r (p) when referring to the open ball in Rn of radius r
and center p.

(ii) A set U ⊂ Rn is called open (in Rn) if, for any p ∈ U , there exists r > 0 such
that Br(p) ⊂ U .

(iii) An open neighborhood of x0 in Rn is defined to be an open subset of Rn that
contains x0.

ut

Example 11.48. For any real numbers a < b, the intervals (a, b), (−∞, a) and (a,∞) are
open subsets of R. ut
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Proposition 11.49. Let n ∈ N. Then, for any p ∈ Rn and any r > 0, the open ball
Br(p) is an open subset of Rn.

Proof. Let r > 0 and p ∈ Rn. Given q ∈ Br(p) let ρ := dist(p, q). Note that ρ < r. We
claim that Br−ρ(q) ⊂ Br(p). Indeed, if x ∈ Br−ρ(q), then dist(q,x) < r − ρ. Using the
triangle inequality we deduce

dist(p,x) ≤ dist(p, q) + dist(q,x) < ρ+ (r − ρ) = r.

This proves that x ∈ Br(p). ut

Proposition 11.50. Let n ∈ N. Then the following hold.

(i) The empty set and the whole space Rn are open subsets of Rn.

(ii) The intersection of two open subsets of Rn is also an open subset of Rn.

(iii) The union of a (possibly infinite) collection of open subsets of Rn is also an open
subset of Rn.

Proof. The statement (i) is obvious. To prove (ii) consider two open subsets U1, U2 ⊂ Rn.
We have to show that U1 ∩ U2 is open, i.e., for any p ∈ U1 ∩ U2 there exists r > 0 such
that Br(p) ⊂ U1 ∩ U2.

Since U1 is open, there exists r1 > 0 such that Br1(p) ⊂ U1. Similarly, there exists
r2 > 0 such that Br2(p) ⊂ U2. If r = min(r1, r2), then

Br(p) = Br1(p) ∩Br2(p) ⊂ U1 ∩ U2.

(iii) Suppose that (Ui)i∈I is a collection of open subsets of Rn. Denote by U their union.
If p ∈ U , then there exists a set Ui0 of this collection that contains p. Since Ui0 is open,
there exists r0 > 0 such that

Br0(p) ⊂ Ui0 ⊂ U.
This proves that U is open. ut

Definition 11.51. Let n ∈ N. For any x = [x1, . . . , xn]> ∈ Rn we set

‖x‖∞ := max
{
|x1|, . . . , |xn|

}
.

We will refer to ‖x‖∞ as the sup-norm of x. ut

Example 11.52. If x = [3, 1,−7, 5]> ∈ R4, then

‖x‖∞ = 7 and ‖x‖ =
√

9 + 1 + 49 + 25 =
√

84. ut

The proof of the following result is left to you as an exercise.

Proposition 11.53. Let n ∈ N. Then

‖x+ y‖∞ ≤ ‖x‖∞ + ‖y‖∞, ∀x,y ∈ Rn, (11.26a)∣∣∣ ‖x‖∞ − ‖y‖∞ ∣∣∣ ≤ ‖x− y‖∞, ∀x,y ∈ Rn, (11.26b)
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and

‖x‖∞ ≤ ‖x‖ ≤
√
n‖x‖∞, ∀x ∈ Rn. (11.27)

ut

Definition 11.54. Let n ∈ N. For any p ∈ Rn and r > 0 we define the open cube of
center p and radius r to be the set

Cr(p) :=
{
x ∈ Rn; ‖x− p‖∞ < r

}
. ut

Figure 11.9. The open cube C2(0) of radius 2 and center 0 ∈ R2.

Observe that if p = [p1, . . . , pn]> ∈ Rn and r > 0 then

x ∈ Cr(p)⇐⇒|xi − pi| < r, ∀i = 1, 2, . . . , n

⇐⇒xi ∈ (pi − r, pi + r), ∀i = 1, 2, . . . , n

⇐⇒x ∈ (p1 − r, p1 + r)× (p2 − r, p2 + r)× · · · × (pn − r, pn + r).

Note that the inequality (11.27) implies that

∀p ∈ Rn, ∀r > 0 : Cr/
√
n(p) ⊂ Br(p) ⊂ Cr(p). (11.28)

Proposition 11.55. For any n ∈ N, p ∈ Rn and r > 0 the open cube Cr(p) is an open
subset of Rn. ut

The proof is left to you as an exercise.

Proposition 11.56. Let n ∈ N and U ⊂ Rn. The following statements are equivalent.

(i) The set U is open.

(ii) For all p ∈ U , ∃r > 0 such that Cr(p) ⊂ U .
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ut

Definition 11.57 (Closed sets). Let n ∈ N. A subset C ⊂ Rn is called closed (in Rn) if
its complement Rn \ C is open in Rn. More explicitly, this means that

∀p ∈ Rn \ C ∃r > 0 : Br(p) ⊂ Rn \ C. ut

Example 11.58. (a) For any real numbers a < b, the intervals [a, b], (−∞, b], [b,∞) are
closed subsets of R.

(b) For p ∈ Rn and r > 0 we set

Br(p) :=
{
x ∈ Rn; ‖x− p‖ ≤ r

}
.

Then Br(p) is a closed subset of Rn, i.e., Rn \Br(p) is open.

Indeed, let q ∈ Rn \Br(p). Thus ‖q − p‖ > r. Set R = ‖q − p‖. We claim that

BR−r(q) ⊂ Rn \Br(p).

Let y ∈ BR−r(q). We have

R = ‖p− q‖ ≤ ‖p− y‖+ ‖y − q‖<‖p− y‖+R− r ⇒ r < ‖p− y‖

⇒ y ∈ Rn \Br(p).

(c) For p ∈ Rn and r > 0 we set

Cr(p) :=
{
x ∈ Rn; ‖x− p‖∞ ≤ r

}
.

Then Cr(p) is a closed subset of Rn. To prove this fact, imitate the argument in (b) with
the Euclidean norm ‖ − ‖ replaced by the sup-norm ‖ − ‖∞ and then invoke Proposition
11.56. ut

Definition 11.59. The sets Br(p) and Cr(p) are called the closed ball and respectively
closed cube of center p and radius r. ut

According to the De Morgan law (Proposition 1.12) the complement of a union of sets
is the intersection of the complements of the sets, and the complement of an intersection
of sets is the union of the complements of the sets. Invoking Proposition 11.50 we deduce
the following result.

Proposition 11.60. Let n ∈ N. The following hold.

(i) The empty set and the whole space Rn are closed subsets of Rn.

(ii) The union of two closed subsets of Rn is also a closed subset of Rn.

(iii) The intersection of a (possibly infinite) collection of closed subsets of Rn is also
a closed subset of Rn.

ut
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11.4. Convergence

The concept of convergence of sequences of real numbers has a multidimensional counter-
part. In fact, the concept of convergence of a sequence of points in a Euclidean space Rn
can be expressed in terms of the concept of convergence of sequences of real numbers.

Definition 11.61 (Convergent sequences). Let n ∈ N. A sequence (pν)ν≥1 of points in
Rn is said to be convergent if there exists p∞ such that the sequence of real numbers(

dist(pν ,p∞)
)
ν≥1

converges to 0,

lim
ν→∞

dist(pν ,p∞) = 0.

More precisely, this means that ∀ε > 0, ∃N = N(ε) > 0 such that ∀ν > N(ε) we have
‖pν − p∞‖ < ε. The point p∞ is called the limit of the sequence (pν) and we write this

p∞ = lim
ν→∞

pν .

ut

Note that

p∞ = lim
ν→∞

pν⇐⇒ lim
ν→∞

‖pν − p∞‖ = 0⇐⇒ lim
ν→∞

dist(pν ,p∞) = 0. (11.29)

The notion of convergence can be expressed in terms of open balls because the state-
ment “dist(x,p) < ε” is equivalent to the statement: “the point x belongs to the open
ball of center p and radius ε”. More precisely, we have the following result.

Proposition 11.62. Let n ∈ N and (pν) a sequence of points in Rn. The following
statements are equivalent.

(i)
p∞ = lim

ν→∞
pν .

(ii) For any ε > 0 there exists N = N(ε) > 0 such that, ∀ν > N(ε) we have
pν ∈ Bε(p∞).

ut

The proof of the next result is left to you as an exercise.

Proposition 11.63. Let n ∈ N. Consider a sequence of points in Rn

pν =

 p1
ν
...
pnν

 , ν = 1, 2, . . . ,

and

p∞ =

 p1
∞
...
pn∞

 ∈ Rn.
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The following statements are equivalent.

(i)

lim
ν→∞

pν = p∞

(ii)

lim
ν→∞

‖pν − p∞‖∞ = 0.

(iii) For any i = 1, 2, . . . , n, the i-th coordinate of pν converges to the i-th coordinate
of p∞, i.e.,

lim
ν→∞

piν = pi∞, ∀i = 1, 2, . . . , n.

ut

Example 11.64. The sequence of points

pν =


1
ν

ν+1
ν2

ν
ν+1

 ∈ R3, ν ∈ N,

converges as ν →∞ to the point

p∞ =

 0
0
1


since

lim
ν→∞

1

ν
= lim

ν→∞

ν + 1

ν2
= 0, lim

ν→∞

ν

ν + 1
= 1. ut

The following property of convergent sequences is an immediate generalization of its
one-dimensional cousin Proposition 4.9.

Proposition 11.65. If the sequence (pν) of points in Rn converges to a point p, then any
subsequence of (pν) converges to the same point p. ut

Definition 11.66. A sequence (pν)ν≥1 in Rn is called bounded if there exists R > 0 such
that

‖pν‖ < R, ∀ν ≥ 1. ut

Proposition 11.67. A convergent sequence of points on Rn is also bounded.

Proof. Suppose that the sequence

pν =

 p1
ν
...
pnν

 , ν = 1, 2, . . .
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is convergent. According to Proposition 11.63, for each i = 1, 2, . . . , n the sequence of co-
ordinates (piν) is a convergent sequence of real numbers and thus, according to Proposition
4.14, it is bounded. Hence, there exists Ci > 0 such that

|piν | < Ci, ∀ν = 1, 2, . . . .

Set

C := max(C1, . . . , Cn).

Hence

‖pν‖∞ = max
(
|piν |, . . . , |piν |

)
< C, ∀ν ≥ 1.

Using (11.27) we deduce

‖pν‖ ≤
√
n‖pν‖∞ < C

√
n, ∀ν ≥ 1.

This proves that the sequence (pν) is bounded. ut

Proposition 11.68. Let n ∈ N. Suppose that (pν)ν≥1 and (qν)ν≥1 are convergent se-
quences of points in Rn. Denote by p∞ and respectively q∞ their limits. Then the following
hold.

(i)

lim
ν→∞

(pν + qν) = p∞ + q∞.

(ii) If (tν)ν≥1 is a convergent sequence of real numbers with limit t∞, then

lim
ν→∞

tνpν = t∞p∞.

(iii)

lim
ν→∞
〈pν , qν〉 = 〈p∞, q∞〉.

Proof. (i) We have

dist
(
pν + qν ,p∞ + q∞

)
= ‖ (pν + qν)− (p∞ + q∞) ‖ = ‖(pν − p∞) + (qν − q∞)‖

≤ ‖pν − p∞‖+ ‖qν − q∞‖ = dist(pν ,p∞) + dist(qν , q∞)→ 0 as ν →∞.
The claim now follows from the Squeezing Principle.

(ii) Since the sequences (tν) and (pν) are convergent, they are also bounded and thus there
exists C > 0 such that

|tν |, ‖pν‖ < C, ∀ν ≥ 1.

We have

dist(tνpν , t∞p∞) = ‖tνpν − t∞p∞‖ = ‖tνpν − t∞pν + t∞pν − t∞p∞‖

≤ ‖tνpν − t∞pν‖+ ‖t∞pν − t∞p∞‖ = ‖(tν − t∞)pν‖+ ‖t∞(pν − p∞)‖
= |tν − t∞| · ‖pν‖+ |t∞| · ‖pν − p∞‖

≤ C|tν − t∞|+ |t∞| dist(pν ,p∞)→ 0 as ν →∞.
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(iii) Since the sequences (pν) and (qν) are convergent, they are also bounded and thus
there exists C > 0 such that

‖pν‖, ‖qν‖ < C, ∀ν ≥ 1.

We have ∣∣ 〈pν , qν〉 − 〈p∞, q∞〉 ∣∣ =
∣∣ 〈pν , qν〉 − 〈p∞, qν〉+ 〈p∞, qν〉 − 〈p∞, q∞〉

∣∣
≤
∣∣ 〈pν , qν〉 − 〈p∞, qν〉 ∣∣+

∣∣ 〈p∞, qν〉 − 〈p∞, q∞〉 ∣∣
=
∣∣ 〈pν − p∞, qν〉 ∣∣+

∣∣ 〈p∞, qν − q∞〉 ∣∣
(use the Cauchy-Schwarz inequality)

≤ ‖pν − p∞‖ · ‖qν‖+ ‖p∞‖ · ‖qν − q∞‖

≤ C dist(pν ,p∞) + ‖p∞‖ dist(qν , q∞)→ 0 as ν →∞.
ut

Definition 11.69. Let n ∈ N. A sequence (pν)ν≥1 of points in Rn is called Cauchy or
fundamental if ∀ε > 0, ∃N = N(ε) > 0 such that

∀ν, µ > N(ε) : dist(pµ,pν) = ‖pµ − pν‖ < ε. ut

Theorem 11.70 (Cauchy sequences). Let n ∈ N and consider a sequence (pν)ν≥1 of
points in Rn. The following statements are equivalent.

(i) The sequence (pν)ν≥1 is Cauchy.

(ii) The sequence (pν)ν≥1 converges to a point p∞ ∈ Rn.

Proof. (i) ⇒ (ii) Assume

pν =

 p1
ν
...
pnν

 .
For each i = 1, . . . , n and any µ, ν ∈ N we have∣∣ piµ − piν ∣∣ =

√(
piµ − piν

)2 ≤√(p1
µ − p1

ν

)2
+ · · ·+

(
pnµ − pnν

)2 ≤ ‖pµ − pν‖.
The above inequality shows that, for each i = 1, . . . , n, the sequence of real numbers
(piν)ν≥1 is Cauchy. Invoking Cauchy’s Theorem 4.33 we deduce that, for each i = 1, . . . , n,
the sequence (piν)ν≥1 is convergent. Hence, for every i = 1, . . . , n, there exists pi∞ ∈ R
such that

lim
ν→∞

piν = pi∞.

From Proposition 11.63 we now deduce that

lim
ν→∞

 p1
ν
...
pnν

 =

 p1
∞
...
pn∞

 =: p∞.
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(ii) ⇒ (i) Suppose that

p∞ = lim
ν→∞

pν .

Then, ∀ε > 0, ∃N = N(ε) > 0 such that ∀ν > N(ε) we have

dist(pν ,p∞) <
ε

2
.

Then, for any µ, ν > N(ε) we have

dist(pµ,pν) ≤ dist(pµ,p∞) + dist(p∞,pν) < ε.

ut

Proposition 11.71. Let n ∈ N and C ⊂ Rn. Then the following statements are equiva-
lent.

(i) The set C ⊂ Rn is closed in Rn.

(ii) For any convergent sequence of points in C, its limit is also a point in C.

Proof. (i) ⇒ (ii). We know that Rn \ C is open and we have to show that if (pν)ν≥1

is a convergent sequence of points in C, then its limit p∞ belongs to C. We argue by
contradiction. Suppose that p∞ ∈ Rn \ C. Since Rn \ C is open, there exists r > 0 such
that Br(p∞) ⊂ Rn \ C, i.e.,

Br(p∞) ∩ C = ∅.
This proves that, ∀ν ≥ 1, pν 6∈ Br(p∞), i.e.,

dist(pν ,p∞) ≥ r, ∀ν ≥ 1.

This contradicts the fact that limν→∞ dist(pν ,p∞) = 0.

(ii) ⇒ (i) We have to show that Rn \C is open. We argue by contradiction. Assume that
there exists p∗ ∈ Rn \ C such that, ∀r > 0, the ball Br(p∗) is not contained in Rn \ C.
Thus, for any r > 0 there exists p(r) ∈ Br(p∗) ∩ C, i.e., p(r) ∈ C, dist(p(r),p∗) < r.
Thus, for any ν ∈ N , there exists pν ∈ C such that

dist(pν ,p∗) <
1

ν
, ∀ν ∈ N.

This shows that the sequence of points (pν) in C converges to the point p∗ that is not in
C. This contradicts (ii).

ut

Example 11.72. Any affine line in Rn is a closed subset. We will prove this in two
different ways. Consider the line `p,v ⊂ Rn passing through the point p in the direction
v 6= 0.

1st Method. Suppose that (qν) is a convergent sequence of points on this line. We
denote by q∞ its limit. We want to prove that q∞ also lies on the line `p,v.
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To see this note first that since qν ∈ `p,v, there exists tν ∈ R such that

qν = p+ tνv.

We deduce that for any µ, ν ≥ 1 we have

dist(qµ, qν) = ‖qµ − qν‖ = |tµ − tν | · ‖v‖.⇒ |tµ − tν | =
1

‖v‖
dist(qµ, qν).

Since the sequence (qν) is convergent, it is also Cauchy, and the above equality shows that
the sequence (tν) is Cauchy as well. Hence the sequence (tν) is convergent in R. If t∞ is
its limit, then Proposition 11.68 implies that

q∞ = lim
ν→∞

(p+ tνv) = p+ t∞v ∈ `p,v.

0

p

q

q

x

v

Figure 11.10. dist(q, q0) ≤ dist(q,x), ∀x ∈ `p,v.

2nd Method. We will prove that the complement of the line is open, i.e., if q is a point outside the line `p,v , then
there exists an open ball centered at q that does not intersect the line; see Figure 11.10.

To do so, we will find the point q0 on the line closest to q. Usual Euclidean geometry suggests that if q0 is
such a point, then the line qq0 should be perpendicular to `p,v ; see Figure 11.10. So, instead of looking for a point

on the line closest to q, we will look for a point q0 such that (q− q0) ⊥ v. As we will see, such a q0 will indeed be

the point on the line closest to q. Observe that

(q − q0) ⊥ v⇐⇒〈q − q0,v〉⇐⇒〈q,v〉 = 〈q0,v〉.

Since q0 is on the line `p,v it has the form q = p + t0v for some real number t0. Using this in the above equality
we deduce

〈q,v〉 = 〈p+ t0v,v〉 = 〈p,v〉+ t0〈v,v〉 = 〈p,v〉+ t0‖v‖2

⇒ t0‖v‖2 = 〈q − p,v〉 ⇒ t0 =
〈q − p,v〉
‖v‖2

.

Note that if x ∈ `p,q , then x − q0 is a multiple of v so (x − q0) ⊥ (q − q0); see Exercise 11.2(b). Pythagoras’

theorem then implies that (Figure 11.10)

dist(q,x)2 = dist(q, q0)2 + dist(q0,x)2 ≥ dist(q, q0)2.

Hence, if we set r := dist(q, q0), then we deduce that r > 0 and r ≥ dist(q,x), ∀x ∈ `p,v . In particular this shows

that the ball Br/2(q) of radius r/2 and centered at q does not intersect the line `p,v .

ut
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Definition 11.73. Let n ∈ N and X ⊂ Rn.

(i) A point p ∈ Rn is a cluster point of X if, for any ε > 0, the ball Bε(p) contains
a point in X not equal to p.

(ii) A subset S ⊂ X is called dense in X if, for any x ∈ X and any ε > 0, the ball
Bε(x) contains a point in S.

ut

Example 11.74. Proposition 3.33 shows that the set Q of rational numbers is dense in
R. More generally, the set Qn is dense in Rn. ut

Proposition 11.75. Let n ∈ N, X ⊂ Rn and p ∈ Rn. The following statements are
equivalent.

(i) The point p is a cluster point of X.

(ii) There exists a sequence of points (pν) in X \ {p} that converges to p.

Proof. (i) ⇒ (ii) Since p is a cluster point of X we deduce that, for any ν ∈ N, the ball
B1/ν(p) contains a point pν ∈ X \ {p}. Observing that dist(pν ,p) < 1

ν we deduce that

lim
ν→∞

dist(pν ,p) = 0,

i.e., (pν) is a sequence in X \ {p} that converges to p.

(ii) ⇒ (i) We know that there exists a sequence (pν) in X \ {p} that converges to p. Let
ε > 0. There exists N = N(ε) > 0 such that dist(pν ,p) < ε, ∀ν > N(ε). Thus the ball
Bε(p) contains all the points pν , ν > N(ε) and none of these points is equal to p.

ut

Definition 11.76. Let n ∈ N and X ⊂ Rn.

(i) A subset S ⊂ X is called open in X if there exists an open subset U ⊂ Rn such that S = X ∩ U .

(ii) A subset S ⊂ X is called closed in X if there exists a closed subset C ⊂ Rn such that S = X ∩ C.

ut

Example 11.77. (a) Let X ⊂ R denote the union of the intervals [0, 1] ∪ [3, 4]. Clearly the set S = [0, 1] is closed
both in R and in X. On the other hand, S is also open in X since S is equal to the intersection of X with the open
subset (−∞, 2) ⊂ R. ut

The next result provides alternate characterizations of the sets that are open (closed) in a given set X. Its
proof is left to you as an exercise.

Proposition 11.78. Let n ∈ N and X ⊂ Rn. Then the following hold

(i) The sets ∅ and X are simultaneously closed and open in X.

(ii) The subset S ⊂ X is open in X if and only if the complement X \ S is closed in X.
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(iii) The subset S ⊂ X is open in X if for any p ∈ S there exists r > 0 such that

∀x ∈ X : dist(x,p) < r ⇒ x ∈ S.

(iv) The subset S ⊂ X is closed in X if and only if for any sequence (pν) of points in S that converges to
p∞ ∈ X, then p∞ ∈ S.

ut

11.5. Normed vector spaces

To give the reader a broader perspective on the concepts we have presented so far, we have decided to include a

brief introduction to some more abstract notions. This discussion will come in handy in later chapters

Definition 11.79 (Normed spaces). A (real) normed vector space is a pair (X, ‖ − ‖), where X is a real vector
space and ‖−‖ is a norm on X , i.e., a nonnegative function ‖−‖ : X → [0,∞) satisfying the following conditions.

(i) (Nondegeneracy.) ∀x ∈X, x = 0⇐⇒‖x‖ = 0.

(ii) (Positive homogeneity.) ∀x ∈X, ∀t ∈ R, ‖tx‖ = |t| · ‖x‖.
(iii) (Triangle Inequality.)

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x,y ∈X.

ut

It turns out that there is a very large supply of normed spaces.

Example 11.80. (a) We have already discussed two examples: the Euclidean norm ‖−‖ and the sup-norm ‖−‖∞
on Rn. There are many other examples of norms on Rn. For p ∈ [1,∞) and x ∈ Rn we define

‖x‖p =

 n∑
j=1

|xj |p
 1
p

.

Minkowski’s inequality (8.25) shows that ‖ − ‖p is indeed a norm on Rn. Note that,

‖x‖∞ = lim
p→∞

‖x‖p, ∀x ∈ Rn. (11.30)

(b) Any finite dimensional vector space X admits norms. To see this fix a basis

b := {b1, . . . , bn
}
, n = dimX.

Any vector x ∈X admits a unique decomposition

x = x1b1 + · · ·+ xnbn,

where we recall that the real numbers x1, . . . , xn are called the coordinates of x in the basis b. If we set

‖x‖ = ‖x‖b = max
(
|x1|, . . . , |xn|

)
,

then it is easy to show that ‖ − ‖b is indeed a norm on X.

(c) We denote by R[0, 1] the space of Riemann integrable functions f : [0, 1] → R. This is a vector space. For
p ∈ [1,∞) and f ∈ R[0, 1] we set

‖f‖p :=

(∫ 1

0
|f(x)|p

) 1
p

The Minkowski type inequality in Exercise 9.8(c) shows that the correspondence f 7→ ‖f‖p defines a norm on R[0, 1]
for each p ∈ [1,∞). Note that R[a, b]

(c) Fix a, b ∈ R, a < b. Denote by C([a, b] the space of continuous functions f : [a, b]→ R. For f ∈ C[a, b] we set

‖f‖ := sup
x∈[a,b]

|f(x)|.

The correspondence f 7→ ‖f‖ is a norm on C[a, b] called the sup-norm.
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Note that R[a, b] and C[a, b] are not finite dimensional spaces. ut

Suppose that (X, ‖ − ‖). Using the previous sections as inspiration we can define the concepts of open and

closed subsets in X. Thus a set U ⊂X is called open in X, with respect to the norm ‖ − ‖ if, for any u ∈ U there
exists ε > 0 such that

∀x ∈X : ‖x− u‖ < ε⇒ x ∈ U.
A subset C ⊂X is called closed in X, with respect to the norm ‖ − ‖ if the complement X \ C is open in X.

The concept of openness can be more visually described in terms of open balls. The open ball of center p ∈X
and radius r > 0 is the set (compare with (11.25))

Br(p) :=
{
x ∈X; ‖x− p‖ < r

}
.

We want to emphasize that the shape and size of the open ball Br(0) depends on the norm ‖ − ‖. We see that set

U ⊂X is open in X with respect to the norm ‖ − ‖ if for any point p ∈ U there exists ε > 0 such that Bε(p) ⊂ U .

Definition 11.81. Let (X, ‖− ‖) be a normed space and S ⊂X. A point p is a cluster point of S if for any ε > 0
the ball Bε(p) contains a point in S \ {p}. ut

Definition 11.82. Suppose that (X, ‖ − ‖) is a normed space.

(i) A sequence (xν)ν≥1 of points in X is said to converge to the point x∗ with respect to the norm ‖ − ‖
if

lim
ν→∞

‖xν − x∞‖ = 0.

(ii) A sequence (xν)ν≥1 of points in X is called Cauchy or fundamental if

∀ε > 0, ∃N = N(ε) > 0 ∀ν, µ ≥ N(ε) : ‖xν − xµ‖ < ε.

ut

The proof of the implication (i) ⇒ (ii) in Theorem 11.70 extends word-for-word to the case of normed spaces

and yields the following result.

Proposition 11.83. In a normed space any convergent sequence is Cauchy. ut

Definition 11.84. A normed space (X, ‖−‖) is called complete or Banach if any Cauchy sequence is convergent.ut

Remark 11.85. One can show that not all normed spaces are Banach. However, one can prove that any finite
dimensional normed space is Banach. ut
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11.6. Exercises

Exercise 11.1. Let u,v ∈ Rn \ {0}. Show that the following statements are equivalent.

(i) The vectors u,v are collinear.

(ii) For any p ∈ Rn the lines `p,u, `p,v coincide, i.e., `p,u = `p,v, ∀p ∈ Rn.

(iii) The lines `0,u, `0,v coincide, i.e., `0,u = `0,v.

ut

Exercise 11.2. (a) Let p,v ∈ Rn, v 6= 0. Prove that if q ∈ `p,v, then `p,v = `q,v.

(b) Let p,v ∈ Rn, v 6= 0. Prove that if p1,p2 ∈ `p,v and p1 6= p2, then the vectors v and
u := p2 − p1 are collinear and `p,v = `p,u = `p1,u = `p2,u.

(c) Let p, q,u,v ∈ Rn, u,v 6= 0. Show that if the lines `p,u and `q,v have two distinct
points in common, then they coincide. ut

Exercise 11.3. Consider the points in R2

p0 =
(

0, 0
)
, q0 =

(
1, 1

)
, p1 =

(
1, 0

)
, q1 =

(
0, 1

)
.

(a) Depict these points and the lines `0 = p0q0, `1 = p1q1 on the same planar coordinate
system of the type depicted in Figure 11.2.

(b) Find the coordinates of the point where the lines `0, `1 intersect. ut

Exercise 11.4. Prove Proposition 11.11. ut

Exercise 11.5. Let n ∈ N and p, q ∈ Rn. Prove that the following statements are
equivalent.

(i) p 6= q.

(ii) There exists a linear form ξ : Rn → R such that ξ(p) 6= ξ(q).

ut

Exercise 11.6. Find a parametric equation (see (11.6) ) for the line in R2 described by
the equation

x1 + 2x2 = 3.

Hint: Use the equality x1 = 3− 2x2 to find two distinct points on this line. ut

Exercise 11.7. Let p = (1, 2, 3) ∈ R3 and v = (1, 1, 1) ∈ R3. Find the coordinates of the
point of intersection of the line `p,v with the hyperplane

3x1 + 4x2 + 5x3 = 6. ut

Exercise 11.8. Prove that the lines and the hyperplanes in Rn are affine subspaces. ut



384 11. The geometry and topology of Euclidean spaces

Exercise 11.9. Let S be a subset of the Euclidean space Rn, n ∈ N. Prove that the
following statements are equivalent.

(i) The set S is an affine subspace.

(ii) For any k ∈ N, any points p0,p1, . . . ,pk ∈ S and any real numbers t0, t1, . . . , tk
such that t0 + t1 + · · ·+ tk = 1 we have

t0p0 + t1p1 + · · ·+ tkpk ∈ S.
Hint: The implication (ii) ⇒ (i) is immediate. To prove the opposite implication (i) ⇒ (ii) argue by induction on

k. Observe that least one of the numbers t0, t1, . . . , tk is not equal to 1, say tk 6= 1. Then 1− tk 6= 0 and

t0p0 + t1p1 + · · ·+ tkpk = (1− tk)

(
t0

1− tk
p1 + · · ·+

tk−1

1− tk
pk−1

)
︸ ︷︷ ︸

q

+tkpk.

Use the induction assumption to argue that q ∈ S. Conclude using (i). ut

Exercise 11.10. Prove Proposition 11.28. ut

Exercise 11.11. Consider the linear operator A : R3 → R3 characterized by the equalities

Ae1 = e1 + 2e2 + 3e3, Ae2 = 4e1 + 5e2 + 5e3, Ae3 = 7e1 + 8e2 + 9e3,

where e1, e2, e3 is the canonical basis of R3.

(i) Find the 3× 3 matrix associated to this linear operator.

(ii) Find the vector

A

 1
1
1

 .
ut

Exercise 11.12. Consider the linear operator A : R3 → R2 given by the matrix

A =

[
1 −2 3
0 1 −4

]
.

Show that there exists a nonzero vector v ∈ R3 such that kerA is equal to the line `0,v.ut

Exercise 11.13. Suppose that A : Rn → Rm is a linear operator. Prove that the following
statements are equivalent.

(i) A is injective.

(ii) kerA = {0}.

ut

Exercise 11.14. (a) An automorphism of Rk is a bijective linear operator T : Rk → Rk.
Prove that if T is an automorphism of Rk then its inverse is also an automorphism of Rk.
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(b) A k× k matrix A is called invertible if and only if there exists a k× k matrix A′ such
that AA′ = A′A = 1k. Prove that if A is invertible, then there exists a unique matrix A′

with these properties. This unique matrix is called the inverse of A and it is denoted by
A−1.

(c) Show that T is an automorphism of Rk if and only if the k × k matrix representing T
is invertible. ut

Exercise 11.15. Let m,n ∈ N, B ∈ Matm(R), C ∈ Matn(R), D ∈ Matm×n(R) and
E ∈ Matn×m(R). Consider the square matrices S, T ∈ Matm+n(R) with block decompo-
sitions

S =

[
B D
0n×m C

]
, T =

[
B 0m×n
E C

]
,

and 0k×` denotes the k × ` matrix with all entries 0.

Show that if B,C are invertible, then so are S and T and, moreover,

S−1 =

[
B−1 −B−1DC−1

0n×m C−1

]
, T−1 =

[
B−1 0m×n

−C−1EB−1 C−1

]
. ut

Exercise 11.16. We say that a matrix R ∈ Matk×k(R) is nilpotent if there exists n ∈ N
such that Rn = 0. Show that if R is a k × k nilpotent matrix, then the matrix 1k −R is
invertible.

Hint: Prove first that if X ∈ Matk×k(R), then

1k −Xn = (1k −X)(1k +X + · · ·+Xn−1), ∀n ∈ N. ut

Exercise 11.17. Show that the space Hom(Rn,Rm) of linear operators Rn → Rm is a
real vector space. ut

Exercise 11.18. Consider the matrices

A =

[
1 −2 3
0 1 −4

]
, B =

 1 0
−2 1

3 −4

 .
(i) Compute the products AB and BA.

(ii) Show that for any vectors x ∈ R2, y ∈ R3 we have

〈x, Ay〉 = 〈Bx,y〉.

ut
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Exercise 11.19. Let m ∈ N, m ≥ 2 and consider the m×m matrix

N =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0


.

Compute the powers Nk, k ∈ N.

Hint: Regard N as a linear operator Rm → Rm and observe that

Ne1 = 0, Ne2 = e1, Ne3 = e2, . . . , Nem = em−1,

where e1, . . . , em is the natural basis of Rm. Then use the fact that the composition of two linear operators

corresponds to the multiplication of the corresponding matrices. ut

Exercise 11.20. For every α ∈ [0, 2π] we denote by Rα : R2 → R2 the counterclockwise
rotation of angle α about the origin 0.

(i) Express the coordinates y1, y2 of y = Rαx in terms of the coordinates of
x = [x1, x2]>.

(ii) Show that Rα is a linear operator and compute its associated matrix. Continue
to denote by Rα the associated matrix.

(iii) Given α, β ∈ [0, 2π] compute the product Rα ·Rβ.

Hint: (i) Set r := ‖x‖, and denote by θ the angle the vector x makes with with the x1-axis, measured conter-

clockwisely starting at the positive x1-axis. Then x1 = r cos θ, x2 = r sin θ. Next, set y := Rαx and show that,

y1 = r cos(θ + α), y2 = r sin(θ + α). Conclude using the trig formulæ (5.33a). ut

Exercise 11.21. The trace of an n×n matrix A is the scalar denoted by trA and defined
as the sum of the diagonal entries of A,

trA := A1
1 + · · ·+Ann.

(i) Show that if A,B ∈ Matn×n(R), c ∈ R, then

tr(A+B) = trA+ trB, tr(cA) = c trA.

(ii) Show that if A ∈ Matm×n(R) and B ∈ Matn×m(R), then

tr(AB) = tr(BA).

Hint: Use (11.15).

(iii) Show that there do not exist matricesA,B ∈ Matn×n(R) such thatAB−BA = 1n.

ut

Exercise 11.22. Prove (11.21). ut
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Exercise 11.23. Suppose that A ∈ Matm×n(R). Denote by (ej)1≤j≤n the canonical basis
of Rn and by (f i)1≤i≤m the canonical basis of Rm. Prove that

Aij = 〈f i, Aej〉, ∀i = 1, . . . ,m, j = 1, . . . , n. ut

Exercise 11.24. Suppose that A ∈ Matm×n(R). The transpose of A is the n×m matrix
A> defined by the requirement

(A>)ji = Aij , ∀i = 1, . . . ,m, j = 1, . . . , n.

In other words, the rows of A> coincide with the columns of A. (For example, the transpose
of the matrix A in Exercise 11.18 is the matrix B in the same exercise.)

(i) Suppose that B ∈ Matp×m(R). Prove that

(B ·A)> = (A>) · (B>).

Hint: Check this first in the special case when p = m = 1, i.e., B is a matrix consisting one row of size

m, and A is a matrix consisting of one column of size m. Use this special case and the equality (11.15)

to deduce the general case.

(ii) Prove that, for any x ∈ Rm and y ∈ Rn, we have (identifying 1 × 1 matrices
with numbers)

〈x, Ay〉 = x> ·A · y = 〈A>x,y〉.

(iii) Prove that for any y ∈ Rn we have

〈A>Ay,y〉 ≥ 0.

(iv) Prove that an n× n matrix A is symmetric if and only if

〈Ax,y〉 = 〈x, Ay〉, ∀x,y ∈ Rn.

Hint: Use Exercise 11.23 and part (i) of this exercise. ut

Exercise 11.25. Let n ∈ N and suppose that A : Rn → Rn is a linear operator. As
usual we will continue to denote by A the associated matrix. Prove that the following
statements are equivalent.

(i) 〈Ax, Ay〉 = 〈x,y〉, ∀x,y ∈ Rn.

(ii) ‖Ax‖ = ‖x‖, ∀x ∈ Rn.

(iii) A> ·A = 1n.

An operator or matrix with any of the above three equivalent properties is called orthog-
onal. ut
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Exercise 11.26. Suppose that ξ : Rn → R is a linear functional. Show that the graph of
ξ, defined as

Gξ =
{

(x, y) ∈ Rn × R; y = ξ(x)
}
,

is a hyperplane in Rn × R = Rn+1 and then find a normal vector to this hyperplane. ut

Exercise 11.27. Prove Proposition 11.53. ut

Exercise 11.28. Prove (11.28). ut

Exercise 11.29. Prove Proposition 11.55.

Hint: Use (11.28). ut

Exercise 11.30. Prove Proposition 11.56. ut

Exercise 11.31. Prove that if U ⊂ Rm is open in Rm and V ⊂ Rn is open in Rn, then
U × V is open in Rm × Rn = Rm+n.

Hint: Use Proposition 11.56 and observe several things. First, if p ∈ Rm and q ∈ Rn then the pair (p, q) ∈ Rm×Rn

and the Cartesian product can be identified with Rm+n. Next observe that the Cartesian product Cr(p)×Cr(q) ⊂ Rm×Rn

can be identified with Cr
(

(p, q)
)
, the cube of radius r with center (p, q) ∈ Rm+n. ut

Exercise 11.32. Complete the proof of the claim in Example 11.58(c). ut

Exercise 11.33. Prove Proposition 11.63.

Hint: Use (11.27). ut

Exercise 11.34. (a) Prove that any finite subset of Rn is closed.

(b) Prove that any affine hyperplane in Rn is a closed subset. ut

Exercise 11.35. Prove that any open subset U ⊂ Rn is the union of a (possibly infinite)
family of open cubes. ut

Exercise 11.36. Let n ∈ N. Prove that for any p ∈ Rn and any r > 0 the open Euclidean
ball Br(p) and the closed Euclidean ball Br(p) are convex sets. ut

Exercise 11.37. Let n ∈ N.

(a) Suppose that (pν) is a sequence in Rn that converges to p ∈ Rn. Prove that

lim
ν→∞

‖pν‖ = ‖p‖ and lim
ν→∞

‖pν‖∞ = ‖p‖∞.

(b) Let r > 0. Prove that any point x ∈ Rn such that ‖x‖ = r is a cluster point of the
open ball Br(0).

Hint: (a) Use (11.24b) and (11.26b). ut
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Exercise 11.38. Let n ∈ N and X ⊂ Rn. Prove that the following statements are
equivalent.

(i) The set X is closed.

(ii) The set X contains all its cluster points.

ut

Exercise 11.39. Prove that the set Qn is dense in Rn.

Hint: Use Proposition 3.33 and Proposition 11.63 . ut

Exercise 11.40. Let n ∈ N. Consider a sequence of vectors (xν)ν∈N in Rn. The series∑
ν∈N

xν

associated to this sequence is the new sequence (SN )N∈N of vectors in Rn described by
the partial sums

SN = x1 + · · ·+ xN , N ∈ N.
The series

∑
ν∈N xν is called convergent if the sequence of partial sums SN is convergent.

Prove that if the series of real numbers
∑

ν∈N ‖xν‖ is convergent, then the series of
vectors

∑
ν∈N xν is also convergent.

Hint. It suffices to show that the sequence (SN ) is Cauchy. Define

S∗N := ‖x1‖+ · · ·+ ‖xN‖, N ∈ N.

The series of real numbers
∑
ν∈N ‖xν‖ is convergent and thus sequence (S∗N ) is convergent, hence Cauchy. Prove

that this implies that the sequence SN is Cauchy by imitating the proof of Absolute Convergence Theorem 4.46.ut

Exercise 11.41 (Banach’s fixed point theorem). Suppose that X ⊂ Rn is a closed subset
and F : X → Rn is a map satisfying the following conditions:

F (x) ∈ X, ∀x ∈ X. (C1)

∃r ∈ (0, 1) such that ∀x1,x2 ∈ X : ‖F (x1)− F (x2)‖ ≤ r‖x1 − x2‖. (C2)

Fix x0 ∈ X and define inductively the sequence of points in X,

x1 = F (x0), x2 = F (x1), . . . ,xν = F (xν−1), ∀ν ∈ N.

Prove that the following hold.

(i) For any ν ∈ N,
‖xν+1 − xν‖ ≤ rν‖x1 − x0‖.

(ii) For any µ, ν ∈ N, µ < ν

‖xν − xµ‖ ≤
rµ(1− rν−µ)

1− r
‖x1 − x0‖ ≤

rµ

1− r
‖x1 − x0‖.

(iii) The sequence (xν)ν≥0 is Cauchy.

(iv) If x∗ is the limit of the sequence (xν)ν≥0, then F (x∗) = x∗.



390 11. The geometry and topology of Euclidean spaces

(v) Show that if p ∈ X is a fixed point of F , i.e., it satisfies F (p) = p, then p must
be equal to the point x∗ defined above.

ut

Exercise 11.42. Suppose that S ⊂ R17 consists of 1, 234, 567, 890 points and T : S → S
is a map such that

‖Ts1 − Ts2‖ < ‖s1 − s2‖, ∀s1, s2 ∈ S, s1 6= s2.

Prove that there exists s∗ ∈ S such that T (s∗) = s∗.

Hint: Use the result in the previous exercise. ut

Exercise 11.43. Prove Proposition 11.78. ut

Exercise 11.44. Consider the space R2 equipped with the norm ‖ − ‖1 described in
Example 11.80(a). Draw a picture of the open ball B1(0) defined by this norm. ut

11.7. Exercises for extra credit

Exercise* 11.1. (a) Prove that if S is an affine subspace of R2, then S is either a point,
or a line, or the whole R2.

(b) Prove that if S is an affine subspace of R3, then S is either a point, or a line, or a
plane, or the whole R3. ut

Exercise* 11.2. Suppose that n ∈ N and A ∈ Matn×n(R). Prove that the following
statements are equivalent.

(i) The matrix A is invertible in the sense defined in Exercise 11.14.

(ii) There exists B ∈ Matn×n(R) such that BA = 1n.

(iii) There exists C ∈ Matn×n(R) such that AC = 1n.

(iv) The linear operator Rn → Rn defined by A is bijective.

(v) The linear operator Rn → Rn defined by A is injective.

(vi) The linear operator Rn → Rn defined by A is surjective.

Hint: You need to use the fact that Rn is a finite dimensional vector space. ut



Chapter 12

Continuity

A function F : Rn → Rm can be viewed as transporting in some fashion the Euclidean
space Rn into the Euclidean space Rm. The space Rm is often called the target space. For
example, a map F : R→ R2 “transports” the real axis R into a region of R2 that typically
looks like a curve; see Figure 12.1. For this reason functions F : Rn → Rm are often called
transformations, operators, or maps.

F

Figure 12.1. A map F : R→ R2.

Suppose that F : Rn → Rm is a map. For any x ∈ Rn, its image y = F (x) is a point
in Rm and thus it is determined by a column vector

y =

 y1

...
ym

 .
391
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The coordinates y1, . . . , ym depend on the point x and thus they are described by functions

F i : Rn → R, yi = F i(x1, . . . , xn), i = 1, . . . ,m.

We can turn this argument on its head, and think of a collection of functions

F 1, . . . , Fm : Rn → R

as defining a map F : Rn → Rm. Often, when working with a map Rn → Rm and no
confusion is possible, we will dispense of the extra symbol F and describe the map in a
simpler way as a collection of functions

y1 = y1(x1, . . . , xn), . . . , ym = ym(x1, . . . , xn).

Example 12.1. When predicting the weather (on the surface of the Earth) we need to
describe several quantities: temperature (T ), pressure (P ) and wind velocity V = (V 1, V 2).
These quantities depend on the location (determined by two coordinates x1, x2), and the
time t. We thus have a collection of 4 functions P, T, V 1, V 2 depending on 3 variables
x1, x2, t,

P = P (x1, x2, t), V 1 = V 1(x1, x2, t) etc,

and thus we are dealing with a map R3 → R4. ut

Definition 12.2. Let m,n ∈ N and X ⊂ Rn. The graph of a map F : X → Rm is the set

GF :=
{(
x,y

)
∈ X × Rm; y = F (x)

}
⊂ X × Rm. ut

As we know, the graph of a function f : R → R can be visualized as a curve in R2.
Similarly, the graph of a function f : R2 → R can be visualized as surface in R3. If we
denote by x, y, z the Euclidean coordinates in R3, then the graph of a function of two
variables f(x, y) is described by the equation z = f(x, y). You can think of the graph as
describing a form of relief on Earth, where the altitude z at the point with coordinates
(x, y) is f(x, y); see e.g. Figure 12.2.
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Figure 12.2. The graph of the function f : [−6, 6]× [−6, 6]→ R, f(x, y) = 1− sin

√
x2+y2

3
.

12.1. Limits and continuity

Definition 12.3. Let m,n ∈ N, X ⊂ Rn. Suppose we are given a map F : X → Rm and
a cluster point x0 of X. (The point x0 need not belong to X.)

We say that the limit of F (x) when x approaches x0 is the point y0 (in the target
space Rm) if

∀ε > 0 ∃δ = δ(ε) > 0 such that ∀x ∈ X \ {x0} : ‖x− x0‖ < δ ⇒ ‖F (x)− y0‖ < ε .

(12.1)
We will indicate this using the notation

y0 = lim
x→x0

F (x). ut

We have the following multidimensional counterpart of Theorem 5.4.

Proposition 12.4. Let m,n ∈ N, X ⊂ Rn. Suppose we are given a map F : X → Rm
and a cluster point x0 of X. The following statements are equivalent.

(i)

lim
x→x0

F (x) = y0 ∈ Rm.

(ii) For any sequence (xν) in X \ {x0} that converges to x0 we have

lim
ν→∞

F (xν) = y0.

Proof. (i) ⇒ (ii) Suppose that (xν) is a sequence in X \ {x0} that converges to x0. We
have to show that, given the condition (12.1), the sequence F (xν) converges to y0.
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Let ε > 0. Choose δ(ε) > 0 determined by (12.1). Since xν → x0, there exists
N = N(ε) such that, for all ν > N(ε) we have ‖xν − x0‖ < δ(ε). Invoking (12.1) we
deduce that for all ν > N(ε) we have ‖F (xν)− y0‖ < ε. This proves that

lim
ν→∞

F (xν) = y0.

(ii) ⇒ (i) We argue by contradiction. Assume that (12.1) is false so that

∃ε0 > 0 : ∀δ > 0, ∃xδ ∈ X \ {x0} : ‖xδ − x0‖ < δ and ‖F (xδ)− y0‖ ≥ ε0.

Thus, if we choose δ of the form δ = 1
ν , ν ∈ N, we deduce that for any ν ∈ N there exists

xν ∈ X \ {x0} such that

‖xν − x0‖ <
1

ν
and ‖F (xν)− y0‖ ≥ ε0.

This shows that the sequence (xν) in X \ {x0} converges to x0, but the sequence F (xν)
does not converge to y0. This contradicts (ii). ut

Definition 12.5 (Continuity). Let m,n ∈ N, X ⊂ Rn.

(i) A map F : X → Rm is said to be continuous at x0 ∈ X if

∀ε > 0 ∃δ = δ(ε) > 0 such that ∀x ∈ X : ‖x− x0‖ < δ ⇒ ‖F (x)− F (x0)‖ < ε .

(12.2)

(ii) A map F : X → Rm is said to be continuous on X if it is continuous at every
point x0 ∈ X.

ut

Proposition 12.6. Let m,n ∈ N, X ⊂ Rn. Consider a map

F : X → Rm, F (x) =

 F 1(x)
...

Fm(x)

 .
The following statements are equivalent.

(i) The map F is continuous at x0.

(ii) For any sequence (xν) in X that converges to x0 we have

lim
ν→∞

F (xν) = F (x0).

(iii) The components F 1, . . . , Fm : X → R are continuous at x0.

Proof. The proof of the equivalence (i) ⇐⇒ (ii) is identical to the proof of Proposition
12.4 and the details are left to the reader. The proof of the equivalence (ii)⇐⇒ (iii) relies
on the equivalence (i) ⇐⇒ (ii).
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(ii) ⇐⇒ (iii) According to the equivalence (i) ⇐⇒ (ii) applied to each component F i

individually, the functions F 1, . . . , Fm are continuous at x0 if and only if, for any sequence
(xν) in X that converges to x0 we have

lim
ν→∞

F i(xν) = F i(x0), i = 1, 2, . . . ,m.

Proposition 11.63 shows that these conditions are equivalent to

lim
ν→∞

F (xν) = F (x0).

In turn, this is equivalent to the continuity of F at x0. ut

Example 12.7. The multiplication function µ : R2 → R given by µ(x, y) = xy is contin-
uous. We will prove this using Proposition 12.6. Consider a point p0 = (x0, y0) ∈ R2.

If pν = (xν , yν) ∈ R2 is a sequence of points converging to p0, then xν → x0 and
yν → y0 as ν →∞. Hence

lim
ν→∞

µ(pν) = lim
ν→∞

(xνyν) = x0y0 = µ(p0). ut

Definition 12.8 (Paths). Let n ∈ N. A continuous path in Rn is a continuous map

γ : I → Rn,
where I ⊂ R is an interval. ut

A path γ : I → Rn is completely determined by its components

γ1, . . . , γn : I → R
which are continuous functions. It is convenient to think of the interval I as a time interval
so the components γi are functions of time, γi = γi(t). As time goes by, the point

γ(t) =

 γ1(t)
...

γn(t)

 ∈ Rn

moves in space. Thus we can think of a path as describing the motion of a point in space
during a given interval of time I. The image of a path F : I → Rn is the trajectory of this
motion and it typically looks like a curve. Traditionally, a path is indicated by a system
of equations

xi = γi(t), i = 1, . . . , n,

meaning that the coordinates x1, . . . , xn of the moving point at time t are given by the
functions γ1(t), . . . , γn(t).

Example 12.9. For example, the trajectory of the path

γ : [0, 4π]→ R2, γ(t) =

[
(t+ 1) cos(2t)
(t+ 1) sin(2t)

]
∈ R2

is the helix depicted in Figure 12.3. ut
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Figure 12.3. A linear spiral x = (1 + t) cos 2t, y = (1 + t) sin 2t, t ∈ [0, 4π].

Definition 12.10. Let m,n ∈ N and X ⊂ Rn. A map F : X → Rm is called Lipschitz if
it admits a Lipschitz constant, i.e., a constant L > 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x,y ∈ X. (12.3)

ut

Proposition 12.11. Let m,n ∈ N and X ⊂ Rn. Then a Lipschitz map F : X → Rm is
continuous.

Proof. Fix a Lipschitz constant L > 0 as in the Lipschitz condition (12.3). Let x0 ∈ X be
an arbitrary point in X. To prove that F is continuous at x0 we use Proposition 12.6(ii).
Suppose that (xν) is a sequence of points in X such that

lim
ν→∞

xν = x0.

From the Lipschitz condition we deduce

‖F (xν)− F (x0)‖ ≤ L‖xν − x0‖.
Invoking the Squeezing Principle Proposition 4.10 we conclude that

lim
ν→∞

‖F (xν)− F (x0)‖ = 0⇒ lim
ν→∞

F (xν) = F (x0).

This proves that F is continuous at x0. ut

Proposition 12.12. Let m,n ∈ N. The following hold.

(i) The norm functions

Rn 3 x 7→ ‖x‖ ∈ R, Rn 3 x 7→ ‖x‖∞
are Lipschitz.
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(ii) Any linear form ξ : Rn → R is Lipschitz.

(iii) Any linear operator A : Rn → Rm is Lipschitz.

In particular, all the maps above are continuous.

Proof. (i) Using (11.24b) and (11.26b) we deduce∣∣ ‖x‖ − ‖y‖ ∣∣ ≤ ‖x− y‖, ∣∣ ‖x‖∞ − ‖y‖∞ ∣∣ ≤ ‖x− y‖∞
which shows that the constant 1 is a Lipschitz constant of both functions f(x) = ‖x‖ and
g(x) = ‖x‖∞.

(ii) Let ξ↑ be the dual of ξ defined in Proposition 11.38 . We recall that this means that
ξ↑ is the unique vector in Rn such that

ξ(x) = 〈ξ↑,x〉.
If x,y ∈ Rn, then ∣∣ ξ(x)− ξ(y)

∣∣ =
∣∣ ξ(x− y)

∣∣ =
∣∣ 〈ξ↑,x− y〉 ∣∣

(use the Cauchy-Schwarz inequality)

≤ ‖ξ↑‖ · ‖x− y‖.
This proves that ξ is Lipschitz, and the norm of ‖ξ↑‖ is a Lipschitz constant of ξ. In
particular, ∣∣ ξ(z)

∣∣ =
∣∣ ξ • z ∣∣ ≤ ‖ξ↑‖ · ‖z‖, ∀z ∈ Rn. (12.4)

(iii) As we have seen earlier, the components of Ax are linear functionals in x

Ax =

 A1 • x
...

Am • x

 ,
where A1, . . . , Am are the rows of the m × n matrix associated to the operator A. From
(12.4) we deduce ∣∣Ai • z ∣∣ ≤ ∥∥(Ai)↑

∥∥ · ‖z‖, ∀z ∈ Rn, i = 1, . . . ,m.

Given x,y ∈ Rn, we set z := x− y and we have

A(x− y) = Az =

 A1 • z
...

Am • z


so that

‖A(x− y)‖2 = |A1 • z|2 + · · ·+ |Am • z|2

≤ ‖(A1)↑‖2 · ‖z‖2 + · · ·+ ‖(Am)↑‖2 · ‖z‖2

=
(
‖(A1)↑‖2 + · · ·+ ‖(Am)↑‖2

)
‖z‖2

=
(
‖(A1)↑‖2 + · · ·+ ‖(Am)↑‖2

)
‖x− y‖2.
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ut

Remark 12.13. (a) If ξ is a linear functional on Rn described by the row vector

[ξ1, . . . , ξn],

then ξ↑ is the column vector

ξ↑ =

 ξ1
...
ξn


and

‖ξ↑‖ =
√
ξ2

1 + · · ·+ ξ2
n =

√√√√ n∑
j=1

ξ2
j .

(b) Suppose that A is an m × n matrix with real entries. As usual, we denote by Ai the
i-th row of A and by Aj the j-th column of A. The quantity√√√√ m∑

i=1

‖(Ai)↑‖2 =
√
‖(A1)↑‖2 + · · ·+ ‖(Am)↑‖2

that appears in the proof of Proposition 12.12(iii) is denoted by ‖A‖HS and it is called
the Frobenius norm or Hilbert-Schmidt norm of A. It can be given an alternate and more
suggestive description.

Observe first that for any i = 1, . . . ,m, the quantity ‖(Ai)↑‖2 is the sum of the squares
of all the entries of A located on the i-th row. We deduce

‖A‖2HS = ‖(A1)↑‖2 + · · ·+ ‖(Am)↑‖2 = the sum of the squares of all the entries of A.

An m×n matrix A is a collection of mn real numbers and, as such, it can be viewed as an
element of the Euclidean vector space Rmn. We see that the Hilbert-Schmidt norm of A
is none other than the Euclidean norm of A viewed as an element of Rmn. In particular,
if A,B ∈ Matm×n(R) then

‖A+B‖HS ≤ ‖A‖HS + ‖B‖HS . (12.5)

We can also speak of convergent sequences of matrices.

Definition 12.14. A sequence (Aν) of m × n matrices is said to converge to the m × n
matrix A if

lim
ν→∞

‖Aν −A‖HS = 0.

The proof of Proposition 12.12(iii) shows that we have the following important in-
equality

‖A · x‖ ≤ ‖A‖HS · ‖x‖, ∀A ∈ Matm×n(R), x ∈ Rn. (12.6)

ut
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Corollary 12.15. The addition function α : R2 → R, α(x, y) = (x+ y) is continuous.

Proof. As shown in Example 11.10(b), the function α is linear and thus continuous ac-
cording to Proposition 12.12(ii). ut

Proposition 12.16. Let `,m, n ∈ N, X ⊂ R` and Y ⊂ Rm. If F : X → Rm and
G : Y → Rn are continuous maps such that

F (X) ⊂ Y,

then the composition G ◦ F : X → Rn is also a continuous map.

Proof. Let x0 ∈ X and set y0 := F (x0) ∈ Y . We have to prove that if (xν) is a sequence
in X such that xν → x0 as ν →∞, then

lim
ν→∞

G(F (xν)) = G(F (x0)) = G(y0).

We set yν := F (xν). Then yν ∈ Y and

lim
ν→∞

yν = lim
ν→∞

F (xν) = F (x0) = y0,

since F is continuous at x0. On the other hand, since G is continuous at y0 we have

lim
ν→∞

G(F (xν)) = lim
ν→∞

G(yν) = G(y0).

ut

Corollary 12.17. Suppose that I ⊂ R is an interval, γ : I → Rm is a continuous path
and F : Rm → Rn is a continuous map. Then the composition F ◦ γ : I → Rn is also a
continuous path. ut

Definition 12.18. Let n ∈ N. For any X ⊂ Rn we denote by C(X) the space of
continuous functions f : X → R. ut

Corollary 12.19. Let n ∈ N and X ⊂ Rn. Then, for any f, g ∈ C(X) and any t ∈ R the
functions f + g, t · f and fg are continuous.

Proof. Consider the maps

P : X → R2, P (x) =

[
f(x)
g(x)

]
µt : R → R, µt(u) = tu, and α, µ : R2 → R, α(u, v) = u + v, µ(u, v) = uv. Each of these
maps is continuous and we have

α ◦ P (x) = f(x) + g(x), µ ◦ P (x) = f(x)g(x), µt ◦ f(x) = tf(x).

The desired conclusion follows by invoking Proposition 12.16. ut
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Remark 12.20. The set C(X) is nonempty since obviously the constant functions belong
to C(X). However, if X consists of more than one point, then X also contains nonconstant
functions. For example, given x0 ∈ X, the function

dx0 : X → R, dx0(x) = ‖x− x0‖,

is continuous and nonconstant since dx0(x0) = 0 and dx0(x) > 0, ∀x ∈ X. ut

Definition 12.21. Let m,n ∈ N and suppose that X ⊂ Rn.

(i) The sequence of maps F ν : X → Rm, ν ∈ N is said to converge pointwisely to
the map F : X → Rm if

∀x ∈ X lim
ν→∞

F ν(x) = F (x),

i.e.,

∀x ∈ X, ∀ε > 0, ∃N = N(ε,x) > 0 : ∀ν > N ‖F ν(x)− F (x)‖ < ε.

(ii) The sequence of maps F ν : X → Rm, ν ∈ N is said to converge uniformly to the
map F : X → Rm if

∀ε > 0, ∃N = N(ε) > 0 such that ∀x ∈ X, ∀ν > N : ‖F ν(x)− F (x)‖ < ε.

ut

Theorem 12.22. Let m,n ∈ N and X ⊂ Rn. Suppose that the sequence of continuous
maps F ν : X → Rm converges uniformly to the map F : X → Rm. Then the following
hold.

(i) The sequence (F ν) converges pointwisely to F .

(ii) The map F is continuous.

ut

The proof of this theorem is very similar to the proof of Theorem 6.10 and is left to
you as an exercise.

12.2. Connectedness and compactness

In this section we discuss two very important concepts that have many applications.

12.2.1. Connectedness.

Definition 12.23. Let n ∈ N. A subset X ⊂ Rn is called path connected if any two points
in X can be connected by a continuous path contained in X. More precisely, this means
that for any x0,x1 ∈ X, there exists a continuous path γ : [t0, t1] → Rn satisfying the
following properties.

(i) γ(t) ∈ X, ∀t ∈ [t0, t1].
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(ii) γ(t0) = x0, γ(t1) = x1.

ut

Remark 12.24. The above definition has some built-in flexibility. Note that if, for
some t0 < t1, there exists a continuous path γ : [t0, t1] → X such that γ(t0) = x0 and
γ(t1) = x1, then, for any s0 < s1, there exists a continuous path γ̃ : [s0, s1] → X such
that γ̃(s0) = x0 and γ̃(s1) = x1. To see this consider the linear function

` : [s0, s1]→ R, `(s) = t0 +
t1 − t0
s1 − s0

(s− s0).

This function is increasing,

`(s0) = t0, `(s1) = t0 +
t1 − t0
s1 − s0

(s1 − s0) = t0 + t1 − t0 = t1.

Now define γ̃ : [s0, s1]→ X by setting γ̃(s) = γ
(
`(s)

)
. Clearly

γ̃(s0) = γ
(
`(s0)

)
= γ(t0) = x0

and, similarly, γ̃(s1) = x1. ut

Proposition 12.25. Let n ∈ N. If X ⊂ Rn is convex, then X is path connected.

Proof. This should be intuitively very clear because in a convex set X, any two points
x0,x1 are connected by the line segment [x0,x1] which, by definition is contained in X.
Formally, the argument goes as follows. Consider the continuous path

γ : [0, 1]→ Rn, γ(t) = (1− t)x0 + tx1, ∀t ∈ [0, 1].

The image (or trajectory) of this continuous path is the line segment [x0,x1] which is
contained in X since X is assumed convex. ut

Proposition 12.26. Let X ⊂ R. The following statements are equivalent.

(i) X is path connected.

(ii) X is an interval.

Proof. The implication (ii)⇒ (i) is immediate. If X is an interval, then X is convex and
thus path connected according to the previous proposition.

Assume now that X is path connected. To prove that it is an interval we have to show
(see Exercise 12.12) that for any x0, x1 ∈ X, x0 < x1, the interval [x0, x1] is contained in
X.

Let x0, x1 ∈ X, x0 < x1. We have to show that if x0 ≤ u ≤ x1, then u ∈ X. Since X is
path connected there exists a continuous path γ : [t0, t1] → X ⊂ R such that γ(t0) = x0,
γ(t1) = x1. Since x0 ≤ u ≤ x1 we deduce from the intermediate value property that there
exists τ ∈ [t0, t1] such that u = γ(τ). Since γ(τ) ∈ X we deduce u ∈ X. ut



402 12. Continuity

12.2.2. Compactness.

Definition 12.27. Let n ∈ N. A subset K ⊂ Rn satisfies the Bolzano-Weierstrass
property or BW for brevity, if any sequence (pν)ν∈N of points in K contains a subsequence
that converges to a point p, also in K. ut

Example 12.28. The Bolzano-Weierstrass Theorem 4.29 shows that intervals in R of the
form [a, b] satisfy BW . ut

Proposition 12.29. Let m,n ∈ N. Suppose that K ⊂ Rm and L ⊂ Rn satisfy BW . Then
the Cartesian product K × L ⊂ Rm+n also satisfies BW .

Proof. Let (pν , qν) ∈ K × L, ν ∈ N , be a sequence of points in K × L. Since K satisfies
BW , the sequence (pν) of points in K contains a subsequence

(pνi) = pν1
, pν2

, . . .

that converges to a point p ∈ K. Since L satisfies BW , the subsequence (qνi) of points
in L contains a sub-subsequence (qµj ) that converges to a point q ∈ L.

The sub-subsequence (pµj ) of the subsequence (pνi) converges to the same limit p.

Thus, the subsequence (pµj , qµj ) of (pν , qν) converges to (p, q) ∈ K × L. ut

Definition 12.30. Let n ∈ N. An n-dimensional closed box (or closed rectangle) is a
subset of Rn of the form

[a1, b1]× · · · × [an, bn], a1 ≤ b1, . . . , an ≤ bn.

An open box in Rn is a set of the form (a1, b1)× · · · × (an, bn).

Note that the closed cubes are special examples of closed boxes.

Corollary 12.31. The closed boxes in Rn satisfy BW .

Proof. We argue by induction on n. For n = 1 this follows from the Bolzano-Weierstrass
Theorem 4.29. For the inductive step suppose that B ⊂ Rn+1 is a box,

B = [a1, b1]× · · · × [an, bn]︸ ︷︷ ︸
=B′

×[an+1, bn+1]

From the induction assumption we deduce that B′ ⊂ Rn satisfies BW . Proposition 12.29
now implies that B = B′ × [an+1, bn+1] satisfies BW . ut

Definition 12.32. Let n ∈ N. A set X ⊂ Rn is called bounded if it is contained in some
box B ⊂ Rn. ut

Proposition 12.33. Let n ∈ N and X ⊂ Rn. The following statements are equivalent.

(i) The set X is bounded.
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(ii) There exists R > 0 such that

‖x‖ ≤ R, ∀x ∈ X. (12.7)

Proof. (i) ⇒ (ii) Suppose that X is contained in the box

B = [a1, b1]× · · · × [an, bn]

Observe that there exists M > 0 large enough so that

[a1, b1], . . . , [an, bn] ⊂ [−M,M ].

Thus, for any x = (x1, . . . , xn) ∈ B, we have

|xi| ≤M, ∀i = 1, . . . , n

so that

‖x‖2 = |x1|2 + · · ·+ |xn|2 ≤ nM2.

Hence

‖x‖ ≤M
√
n, ∀x ∈ B.

In particular, this shows that X satisfies (12.7).

(ii) ⇒ (i). Suppose that X satisfies (12.7). Thus there exists R > 0 such that X is

contained in the closed Euclidean ball BR(0) which in turn is contained in the closed cube

CR(0). ut

Theorem 12.34 (Bolzano-Weierstrass). Let n ∈ N and X ⊂ Rn. The following state-
ments are equivalent.

(i) The set X satisfies BW .

(ii) The set X is closed and bounded.

Proof. (i) ⇒ (ii) Assume that X satisfies BW . We have to prove that X is bounded and
closed. To prove that X is closed we have to show that if (pν) is a sequence of points in
X that converges to some point p ∈ Rn, then p ∈ X.

Since X satisfies BW , the sequence (pν) contains a subsequence that converges to
a point p∗ ∈ X. Since the limit of any subsequence is equal to the limit of the whole
sequence, we deduce p = p∗ ∈ X.

To prove that X is bounded we argue by contradiction. Thus, the condition (12.7)
is violated. Hence, for any ν ∈ N there exists xν ∈ X such that ‖xν‖ > ν. Since X
satisfies BW , the sequence (xν) contains a subsequence (xνi)i∈N converging to x∗ ∈ X.
We deduce

lim
i→∞
‖xνi‖ = ‖x∗‖ <∞.

This is impossible since

‖xνi‖ > νi, lim
i→∞

νi =∞
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and thus

lim
i→∞
‖xνi‖ =∞.

(ii) ⇒ (i) Suppose that X is closed and bounded. Since X is bounded, it is contained
in a closed box B. Suppose now that (pν) is a sequence of points in X. According to
Corollary 12.31 the box B satisfies BW, so the sequence (pν) contains a subsequence (pνi)
that converges to a point p ∈ B. On the other hand the limit of any convergent sequence
of points in X is a point in X. Thus the limit of the sequence (pνi)i∈N must belong to X.
This shows that X satisfies BW . ut

Corollary 12.35. Let n ∈ N. For any R > 0 and any p ∈ Rn the closed ball BR(p) and

the closed cube CR(p) satisfy BW . ut

Proof. Indeed, the closed ball BR(p) and the closed cube CR(p) are closed and bounded.ut

Corollary 12.36 (Bolzano-Weierstrass). Let n ∈ N. If (xν) is a bounded sequence of
points in Rn, i.e.,

∃R > 0 such that ‖xν‖ ≤ R, ∀ν ∈ N,
then (xν) contains a convergent subsequence.

Proof. The sequence (xν) is contained in a closed ball which satisfies BW . ut

Definition 12.37. Let n ∈ N and X ⊂ Rn.

(i) A (possibly infinite) collection of subsets of Rn is said to cover X if their union
contains X.

(ii) The set X is said to satisfy the weak Heine-Borel1 property (or wHB for brevity)
if any collection of open boxes that covers X contains a finite subcollection that
covers X.

(iii) The set X is said to satisfy the Heine-Borel property (or HB for brevity) if any
collection of open sets that covers X contains a finite subcollection that covers
X.

ut

Often we use the expression “U is an open cover of X” to indicate that U is a collection
of open sets that covers X. Given an open cover U of X, we define subcover of U is a
subfamily of U that still covers X.

Example 12.38. The interval (0, 1] does not satisfy the HB property. Indeed, the family
of open sets

Un := (1/n, 2), n ≥ 2,

1Émile Borel (1871-1956) was a French mathematician and politician. As a mathematician, he was known for
his founding work in the areas of measure theory and probability.
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covers (0, 1], but no finite subfamily covers (0, 1]. Indeed if Un1 , . . . , Unk is a finite sub-
family, n1 < · · · < nk, then

Un1 ⊂ · · · ⊂ Unk , Un1 ∪ · · · ∪ Unk = Unk

and the interval Unk does not contain (0, 1]. ut

Lemma 12.39. A set satisfies wHB if and only if it satisfies HB.

Proof. Clearly HB ⇒ wHB so it suffices to show only that wHB ⇒ HB. Suppose
that the collection U of open sets covers X. Each open set U in the family U is the union
of a collection CU open cubes; see Exercise 11.35.

The family C of all the cubes in all the collections CU , U ∈ U covers X. Since X
satisfies wHB, there exists a finite subfamily F ⊂ C that covers X. Each cube C ∈ F is
contained in some open set U = UC of the family U. It follows that the finite subfamily{

UC ; C ∈ F
}
⊂ U

covers X.

ut

Theorem 12.40 (Heine-Borel). For any a, b ∈ R, the closed interval [a, b] satisfies HB.

Proof. It suffices to verify only the wHB property. Let’s observe that the open boxes
in R are the open intervals. Suppose that I := (Iα)α∈A is a collection of open intervals
that covers [a, b]. We have to prove that there exists a finite subcollection of I that covers
[a, b]. We define

X :=
{
x ∈ [a, b]; [a, x] is covered by some finite subcollection of I

}
.

Note first that a ∈ X because a is contained in some interval of the family I. Thus X is
nonempty and bounded above, and therefore it admits a supremum x∗ := supX. Note
that x∗ ∈ [a, b]. It suffices to prove that

x∗ ∈ X, (12.8a)

x∗ = b. (12.8b)

Proof of (12.8a). Observe that there exists an increasing sequence (xn) of points in X
such that

x∗ = lim
n→∞

xn.

Since x∗ ∈ [a, b] there exists an open interval I∗ in the family I that contains x∗. Since the
sequence (xn) converges to x∗ there exists k ∈ N such that xk ∈ I∗. The interval [a, xk] is
covered by finitely many intervals I1, . . . , IN ∈ I. Clearly [xk, x

∗] ⊂ I∗. Hence the finite
collection I∗, I1, . . . , IN ∈ I covers [a, x∗], i.e., x∗ ∈ X. ut
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Proof of (12.8b). We argue by contradiction. Suppose that x∗ 6= b. Hence x∗ < b. Since
x∗ ∈ X, the interval [a, x∗] is covered by finitely many open intervals I∗, I1, . . . , IN ∈ I,
where I∗ 3 x∗. Since I∗ is open, there exists ε > 0, such that ε < b−x∗ and [x∗, x∗+ε] ⊂ I∗.
This shows that the interval [a, x∗ + ε] is covered by the finite family I∗, I1, . . . , IN and
x∗ + ε ∈ [a, b]. Hence x∗ + ε ∈ X. The inequality x∗ + ε > x∗ contradicts the fact that
x∗ = supX. ut

The proof of Theorem 12.40 is now complete. ut

Proposition 12.41. Let m,n ∈ N. Suppose that K ⊂ Rm and L ⊂ Rn satisfy HB. Then
the Cartesian product K × L ⊂ Rm+n also satisfies HB.

Proof. Again it suffices to verify only the wHB property. Suppose that B is a collection of open boxes in Rm×n
that covers K × L. Each box B ∈ B is a product B = B′ ×B′′ where B′ is an open box in Rm and B′′ is an open

box in Rn. To see this note that each open box B ∈ B is a product of m+ n intervals

B = I1 × · · · × Im × Im+1 × · · · × Im+n.

Then

B′ = I1 × · · · × Im, B′′ = Im+1 × · · · × Im+n.

If you think of B as a rectangle in the xy-plane, then B′ would be its “shadow” on the x axis and B′′ would be

its “shadow” on the y-axis. For each x ∈ K we denote by Bx the subfamily of B consisting of boxes that intersect

{x} × L; see Figure 12.4.

K

L

K L

x

x{  }  L

Figure 12.4. From the collection B of open boxes covering K × L we concentrate on
the subcollection Bx consisting of boxes that intersect the slice {x} × L.
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Lemma 12.42. Fix x ∈ K ⊂ Rm. There exists an open box B̃x in Rm containing x and a finite subcollection

Fx ⊂ Bx that covers B̃x × L.

Proof of Lemma 12.42. The collection Bx covers {x} × L and thus the collection of open n-dimensional boxes{
B′′; B′ ×B′′ ∈ Bx

}
covers L. Since L satisfies HB, there exists a finite subfamily Fx ⊂ Bx such that the collection of n-dimensional
boxes {

B′′; B ∈ Fx}
covers L. For each B ∈ Fx, the m-dimensional box B′ contains x. The intersection of the family {B′; B′×B ∈ Fx}
is therefore a nonempty m-dimensional box B̃x that contains x. Since

B̃x ×B′′ ⊂ B′ ×B′′ = B, ∀B ∈ Fx,

we deduce that

B̃x × L ⊂
⋃

B∈Fx

B′x ×B′′ ⊂
⋃

B∈Fx

B

ut

For any x ∈ K choose an open box B̃x ⊂ Rm as in Lemma 12.42. The collection of boxes{
B̃x
}
x∈K

clearly covers K. Since K satisfies HB there exist finitely many points x1, . . . ,xν ∈ K such that the finite

subcollection {
B̃xj

}
1≤j≤ν

covers K. Note that each finite subfamily Fxj ⊂ B covers B̃xj × L so the finite family

F = Fx1 ∪ · · · ∪ Fxν ⊂ B

covers K × L.

ut

Corollary 12.43. Any closed box in Rn satisfies HB. ut

We can now state and prove the following very important result.

Theorem 12.44. Let n ∈ N and X ⊂ Rn. Then the following statements are equivalent.

(i) The set X is closed and bounded.

(ii) The set X satisfies BW .

(iii) The set X satisfies HB.

Proof. We already know that (i) ⇐⇒ (ii). Let us prove that (i) ⇒ (iii). Thus we want
to prove that if X is closed and bounded then X satisfies HB.

Observe first that since X is bounded X is contained in some closed cube C. Moreover,
since X is closed, the set U0 = Rn\X is open. Suppose that U is a family of open sets that
covers X. The family U∗ of open sets obtained from U by adding U0 to the mix covers
C. Indeed, U covers X and U0 covers the rest, C \X. The closed cube C satisfies HB so
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there exists a finite subfamily F∗ of U∗ that covers C. If F∗ does not contain the set U0

then clearly it is a finite subfamily of U that covers C and, a fortiori, X. If U0 belongs to
F∗, then the family F obtained from F∗ by removing U0 will cover X because U0 does not
cover any point on X.

(iii) ⇒ (i) To prove that X is bounded choose a family C of open cubes that covers X.
Since X satisfies HB, there exists a finite subfamily F ⊂ C that covers X. The union of
the cubes in the finite family F is contained in some large cube, hence X is contained in
a large cube and it is therefore bounded.

To prove that X is closed we argue by contradiction. Suppose that (xν) is a sequence
of points in X that converges to a point x∗ not in X. We set rν := dist(x∗,xν). Consider
the family of open sets

Uν = Rn \Brν (x∗), ν ∈ N.

Since rν → 0 we have ⋃
ν≥1

Uν = Rn \ {x∗} ⊃ X.

However, no finite subfamily of this family covers X. Indeed the union of the open sets
in such a finite family is the complement of a closed ball centered at x∗ and such a ball
contains infinitely many points in the sequence (xν). ut

Definition 12.45 (Compactness). Let n ∈ N. A set X ⊂ Rn is called compact if it
satisfies either one of the equivalent conditions (i), (ii) or (iii) in Theorem 12.44. ut

Corollary 12.46. Suppose that S ⊂ R is a nonempty compact subset of the real axis.
Then there exist s∗, s

∗ ∈ S such that s∗ ≤ s ≤ s∗, ∀s ∈ S. In other words,

inf S ∈ S, supS ∈ S .

Proof. We set

s∗ := inf S, s∗ := supS.

Since S is compact, it is bounded so that −∞ < s∗ ≤ s∗ < ∞. We want to prove that
s∗, s

∗ ∈ S.

Now choose a sequence of points (sν) in S such that sν → s∗. (The existence of such
a sequence is guaranteed by Lemma 6.13.)

Since S is compact, it is closed, so the limit of any convergent sequence of points in S
is also a point in S. Thus s∗ ∈ S. A similar argument shows that s∗ ∈ S. ut
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12.3. Topological properties of continuous maps

The continuous maps enjoy many useful properties not satisfied by many other types of
maps. The first property we want to discuss generalizes the intermediate value property
of continuous functions of one variable.

Theorem 12.47. Let m,n ∈ N and suppose that X ⊂ Rn is path connected. If F : X → Rm
is a continuous map, then its image F (X) is path connected.

Proof. We have to show that for any y0,y1 ∈ F (X) there exists a continuous path in
F (X) connecting y0 to y1.

Since y0,y1 ∈ F (X) there exist x0,x1 ∈ X such that F (x0) = y0 and F (x1) = y1.
Since X is path connected, there exists a continuous path γ : [t0, t1] → X such that
γ(t0) = x0 and γ(t1) = y1. We obtain a continuous path

F ◦ γ : [t0, t1]→ Rn

whose image is contained in the image F (X) of F and satisfying

F ◦ γ(ti) = F (γ(ti)) = F (xi) = yi, i = 0, 1.

Thus the continuous path F ◦ γ in F (X) connects y0 to y1. ut

Corollary 12.48. Let m,n ∈ N and suppose that X ⊂ Rn. If F : X → Rm is a continuous
map, and the image F (X) is not path connected, then X is not path connected. ut

Corollary 12.49 (Multi-dimensional intermediate value theorem). Let n ∈ N and suppose
that X ⊂ Rn is a path connected subset. If f : X → R is a continuous function, then
its image f(X) ⊂ R is an interval. In particular, if x0,x1 ∈ X and c ∈ R are such that
f(x0) < c < f(x1), then there exists x ∈ X such that f(x) = c.

Proof. Theorem 12.47 shows that f(X) ⊂ R is path connected while Proposition 12.26
shows that f(X) must be an interval. In particular, for any points x0,x1 ∈ X such that
f(x0) < f(x1), the interval [f(x0), f(x1)] ⊂ R is contained in the range f(X) of f . ut

Theorem 12.50. Let m,n ∈ N and X ⊂ Rn. If F : X → Rm is continuous and K ⊂ X
is compact, then F (K) is compact.

Proof. It suffices to prove that the set F (K) satisfies BW . Suppose that (yν)ν∈N is a
sequence in F (K). We have to show that it admits a subsequence that converges to a
point in F (K).

Since yν ∈ F (K), there exists xν ∈ K such that yν = F (xν). On the other hand, K
satisfies BW so the sequence (xν) admits a subsequence (xνi) that converges to a point
x∗ ∈ X. Since F is continuous we deduce

lim
i→∞

yνi = lim
i→∞

F (xνi) = F (x∗) ∈ F (K).
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ut

Corollary 12.51 (Weierstrass). Let n ∈ N and suppose that K ⊂ Rn is a nonempty
compact set. If f : K → R is continuous, then there exist x∗ and x∗ in K such that

f(x∗) ≤ f(x) ≤ f(x∗), ∀x ∈ K.

Proof. According to Theorem 12.50 the set f(K) ⊂ R is compact. Corollary 12.46 implies
that there exist s∗, s

∗ ∈ f(K) such that s∗ = inf f(K), s∗ = sup f(K). In particular,

s∗ ≤ f(x) ≤ s∗, ∀x ∈ K.

Since s∗, s
∗ ∈ f(K), there exists x∗,x

∗ ∈ K such that s∗ = f(x∗), s
∗ = f(x∗). ut

Definition 12.52. Let m,n ∈ N and X ⊂ Rn. A map F : X → Rm is called bounded if
its range F (X) is a bounded subset of Rm. ut

Corollary 12.53. Let m,n ∈ N. Suppose that K ⊂ Rn is a compact set and F : K → Rm
is a continuous map. Then F is a bounded map.

Proof. The range F (K) is compact, hence bounded. ut

Definition 12.54. Let n ∈ N. The diameter of a nonempty subset S ⊂ Rn is the quantity

diam(S) = sup
x,y∈S

‖x− y‖ ∈ [0,∞]. ut

We list below a few simple properties of the diameter. Their proofs are left to the
reader as an exercise.

Proposition 12.55. Let n ∈ N. Then the following hold.

(i) The set S ⊂ Rn is bounded if and only if diam(S) <∞.

(ii) If S1 ⊂ S2 ⊂ Rn, then diam(S1) ≤ diam(S2).

(iii) For any r > 0

diam(Br) = 2r, diam(Cr) = 2r
√
n,

where Br, Cr ⊂ Rn are the open ball and respectively the open cube of radius r
centered at 0 ∈ Rn.

ut

Definition 12.56. Let n,m ∈ N, and X ⊂ Rn. The oscillation of a function F : X → Rm
on a subset S is the quantity

osc(F , S) = sup
x,y∈S

‖F (x)− F (y)‖. ut
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The next result describes alternate characterizations of the oscillation of a scalar valued
function. Its proof is left to you as an exercise.

Proposition 12.57. Let n ∈ N, X ⊂ Rn. For any function f : X → R and any subset
S ⊂ X we have the equalities

osc(f, S) = sup
x∈S

f(x)− inf
y∈S

f(y) = sup
x,y∈S

(
f(x)− f(y)

)
= diam f(S). ut

Definition 12.58. Let n ∈ N, X ⊂ Rn. A function f : X → R is said to be uniformly
continuous on the subset Y ⊂ X if

∀ε > 0 ∃δ = δ(ε) > 0 such that ∀S ⊂ Y : diam(S) ≤ δ ⇒ osc(f, S) < ε. ut

Observe that the above uniform continuity condition can be rephrased in the following
equivalent way.

∀ε > 0 ∃δ = δ(ε) > 0 such that ∀y1,y2 ∈ Y : ‖y1 − y2‖ ≤ δ ⇒ |f(y1)− f(y2)| < ε.

Theorem 12.59 (Weierstrass). Let n ∈ N, X ⊂ Rn. Suppose that f : X → R is
continuous. Then f is uniformly continuous on any compact set K ⊂ X.

Proof. Let K be a compact subset of X. We argue by contradiction so we assume that
f is not uniformly continuous on K. Hence, there exists ε0 > 0 such that for any ν ∈ N
there exist a subset Sν ⊂ K such that

diam(Sν) ≤ 1

ν
and osc(f, Sν) ≥ ε0.

Thus, for any ν ∈ N, there exist xν ,yν ∈ Sν such that∣∣ f(xν)− f(yν)
∣∣ ≥ ε0

2
. (12.9)

Note that because xν ,yν ∈ Sν and diam(Sν) < 1
ν we have

dist(xν ,yν) <
1

ν
→ 0 as ν →∞.

Since K is compact, the sequence of points (xν) in K has a convergent subsequence (xνj )

lim
j→∞

xνj = x ∈ K.

Observe that

dist(yνj ,x) ≤ dist(yνj ,xνj )︸ ︷︷ ︸
< 1
νj

+ dist(xνj ,x)→ 0 as j →∞.

Thus the subsequence (yνj ) also converges to x. Since f is continuous at x we have

lim
j→∞

f(xνj ) = lim
j→∞

f(yνj ) = f(x)

so that
lim
j→∞

(
f(xνj )− f(yνj )

)
= 0.
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This contradicts (12.9). ut

Definition 12.60. Let m,n ∈ N and suppose that X ⊂ Rm, Y ⊂ Rn.

(i) A map F : X → Y is called a homeomorphism if it is continuous, bijective and
the inverse F−1 : Y → X is also continuous.

(ii) The setsX,Y are called homeomorphic if there exists a homeomorphism F : X → Y .

ut

Corollary 12.61. Let m,n ∈ N. Suppose that X ⊂ Rm and Y ⊂ Rn are homeomorphic
sets. Then the following hold.

(i) The set X is compact if and only if Y is.

(ii) The set X is path connected if and only if Y is.

Proof. Fix a homeomorphism F : X → Y . Then both F and F−1 are continuous and

Y = F (X), X = F−1(Y ).

The desired conclusions now follow from Theorem 12.47 and 12.50. ut

12.4. Continuous partitions of unity

We conclude this chapter by discussing a technical but very versatile result that will come
in handy later. First, we need to discuss a few more topological concepts.

Definition 12.62. Let n ∈ N and suppose that X ⊂ Rn.

(i) The closure of X, denoted by cl(X), is the intersection of all the closed subsets
of Rn that contain X.

(ii) The interior of X, denoted by int(X), is the union of all the open sets contained
in X.

(iii) The boundary of X, denoted ∂X, is the difference cl(X) \ int(X).

ut

In other words, the closure of a set X is the smallest closed subset containing X and
its interior is the largest open set contained in X. The proof of the following result is left
as an exercise.

Proposition 12.63. Let n ∈ N and suppose X ⊂ Rn. Then the following hold.

(i) A point x ∈ Rn belongs to the closure of X if and only if there exists a sequence
of points in X that converges to x.

(ii) A point x ∈ Rn belongs to the interior of X if and only if ∃r > 0 such that
Br(x) ⊂ X.
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(iii) ∂X = cl(X) ∩ cl(Rn \X).

ut

Example 12.64. Using the above proposition it is not hard to see that for any r > 0,
the closure of the open ball Br(0) ⊂ Rn is the closed ball Br(0). Moreover

∂Br(0) = ∂Br(0) := Σr(0) =
{
x ∈ Rn; ‖x‖ = r

}
. ut

Definition 12.65. Let n ∈ N. The support of a function f : Rn → R is the subset
supp(f) ⊂ Rn defined as the closure of the set of points where f is not zero,

supp(f) := cl
({
x ∈ Rn; f(x) 6= 0

})
.

We denote by Ccpt(Rn) the set of continuous functions on Rn with compact support. ut

Clearly, the function identically equal to zero has compact support: its support is
empty. The function which is equal to 1 at the origin and zero elsewhere has compact
support, but it is not continuous. It turns out that there are plenty of continuous functions
with compact support. The next result describes a simple recipe for producing many
examples of continuous functions Rn → R.

Proposition 12.66. Let n ∈ N.

(i) Suppose that C,C ′ ⊂ Rn are two closed subsets such that C∩C ′ = ∅. Then there
exists a continuous function f : Rn → [0, 1] such that

C = f−1(1), C ′ = f−1(0).

(ii) For any positive real numbers r < R and any x0 ∈ Rn there exists a continuous
function f : Rn → [0, 1] such that

f(y) =


1, y ∈ Br(x0),

0, y ∈ Rn \BR(x0).

Proof. (i) We have (see Exercise 12.22)

x ∈ C⇐⇒ dist(x, C) = 0, x ∈ C ′⇐⇒ dist(x, C ′) = 0.

Since C and C ′ are disjoint we deduce

dist(x, C) + dist(x, C ′) > 0, ∀x ∈ Rn.

Now define

f : Rn → R, f(x) =
dist(x, C ′)

dist(x, C) + dist(x, C ′)
.

The function f is continuous (see Exercise 12.22) and f(x) ∈ [0, 1], ∀x ∈ [0, 1]. Note that

f(x) = 0⇐⇒ dist(x, C ′) = 0⇐⇒x ∈ C ′,
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f(x) = 1⇐⇒ dist(x, C) = 0⇐⇒x ∈ C.
(ii) This is a special case of (i) corresponding to C = Br(x0) and C ′ = Rn \BR(x0). ut

Definition 12.67. Let n ∈ N, X ⊂ Rn and suppose that U is an open cover of X. A
continuous partition of unity on X, subordinated to the open cover U is a finite collection
of continuous functions χ1, . . . , χ` : Rn → R with the following properties.

(i) For any i = 1, . . . , `, there exists an open subset Ui in the collection U such that
suppχi ⊂ Ui.

(ii) χ1(x) + · · ·+ χ`(x) = 1, ∀x ∈ X.

The partition of unity χ1, . . . , χ` is called compactly supported if, additionally,

χ1, . . . , χ` ∈ Ccpt(Rn). ut

Theorem 12.68 (Continuous partitions of unity). Let n ∈ N and suppose that K ⊂ Rn
is a compact subset. Then, for any open cover U of K, there exists a compactly supported
partition of unity on K subordinated to U.

Proof. Since the collection U covers K we deduce that for any x ∈ K there exists an
open set Ux in the collection U such that x ∈ Ux. For any x ∈ K choose r(x), R(x) > 0
such that R(x) > r(x) and BR(x)(x) ⊂ Ux.

The family of open balls
(
Br(x)(x)

)
x∈K obviously covers K and, since K is compact,

we can find finitely many points x1, . . . ,x` such that the collection of open balls

Br(x1)(x1), . . . , Br(x`)(x`)

covers K. Using Proposition 12.66(ii) we deduce that, for any i = 1, . . . , ` there exists a
continuous function fi : Rn → [0, 1] such that

fi(y) =


1, y ∈ Br(xi)(xi),

0, y ∈ Rn \BR(xi)(xi).

Now define

χ1 := f1, χ2 := (1− f1)f2, χ3 := (1− f1)(1− f2)f3,

χj := (1− f1) · · · (1− fj−1)fj , ∀j = 2, . . . , `.

Note that

fi(y) = 0, ∀y ∈ Rn \BR(xi)(xi)⇒ χi(y) = 0, ∀y ∈ Rn \BR(xi)(xi).

In particular, the function χj has compact support contained in BR(xj)(xj). Since χj is

the product of functions with values in [0, 1], the function χj is also valued in [0, 1].

Now observe that

χ1 + χ2 = 1− (1− f1) + (1− f1)f2 = 1− (1− f1)(1− f2),

χ1 + χ2 + χ3 = 1− (1− f1)(1− f2) + (1− f1)(1− f2)f3
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= 1−
(

(1− f1)(1− f2)− (1− f1)(1− f2)f3

)
= 1− (1− f1)(1− f2)(1− f3).

We obtain inductively that

χ1 + χ2 + · · ·+ χ` = 1− (1− f1)(1− f2) · · · (1− f`).
Finally note that

x ∈
⋃̀
j=1

Br(xj)(xj)⇒ ∃i : x ∈ Br(xi)(xi)

⇒ ∃i : fi(x) = 1⇒
∏̀
j=1

(
1− fj(x)

)
= 0⇒

∑̀
j=1

χj(x) = 1.

ut
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12.5. Exercises

Exercise 12.1. Consider the function

f : R2 \ {0} → R, f(x, y) =
xy

x2 + y2
.

Decide whether the limit

lim
p→0

f(p)

exists. Justify your answer.

Hint: Analyze the behavior of f along the sequences

pν = (1/ν, 1/ν) and qν = (1/ν, 2/ν).

ut

Exercise 12.2. Let n ∈ N. Prove that the function f : Rn → R, f(x) = ‖x‖2 is not
Lipschitz. ut

Exercise 12.3. Let n ∈ N and suppose that

α : [a, b]→ Rn, β : [b, c]→ Rn

are two continuous paths such that α(b) = β(b), i.e., α ends where β begins. Define

α ∗ β : [a, c]→ Rn, α ∗ β(t) =

{
α(t), t ∈ [a, b],

β(t), t ∈ (b, c].

Prove that α ∗ β is a continuous path. ut

Exercise 12.4. (a) Consider a map F : Rn → Rm. Show that the following statements
are equivalent.

(i) The map F is continuous.

(ii) For any open set U ⊂ Rm, the preimage F−1(U) is open.

(iii) For any closed set C ⊂ Rm, the preimage F−1(C) is closed.

(b) Suppose that D is an open subset of Rn and F : D → Rm is a map. Show that the
following statements are equivalent.

(i) The map F is continuous.

(ii) For any open set U ⊂ Rm, the preimage F−1(U) is open.

Hint. (a) You need to understand very well the definition of preimage (1.3). ut

Exercise 12.5. Suppose that f : Rn → R is continuous and c ∈ R.

(i) Prove that the set E1 =
{
x ∈ Rn; f(x) < c

}
is open.

(ii) Prove that the set E2 =
{
x ∈ Rn; f(x) ≤ c

}
is closed.

(iii) Prove that the set E3 =
{
x ∈ Rn; f(x) = c

}
is closed.
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(iv) Find an example of a function f : R → R that is not continuous yet, for any
c ∈ R, the set

{
x ∈ R; f(x) ≤ c

}
is closed.

Hint. (i)-(iii) Use the previous exercise and Example 11.48. ut

Exercise 12.6. (a) Suppose that A ∈ Matm×n(R) and B ∈ Matn×p(R). Prove that

‖A‖2HS = tr(A>A) = tr(AA>),

and
‖A ·B‖HS ≤ ‖A‖HS · ‖B‖HS , (12.10)

where ‖−‖HS denotes the Hilbert-Schmidt norm defined in Remark 12.13 and “tr” denotes
the trace of a square matrix defined in Exercise 11.21.

(b) Compute ‖A‖HS , where A is the 2× 2 matrix

A =

[
1 2
3 4

]
.

(c) Show that if (Aν), (Bν) are two sequences in Matn(R) that converge (see Definition
12.14) to the matrices A and respectively B, then AνBν converges to AB.

Hint. (a) Denote by (A ·B)ij the (i, j)-entry of the product matrix A ·B. Use (11.15) to prove that∣∣ (A ·B)ij
∣∣ ≤ ∥∥ (Ai)↑

∥∥ · ‖Bj‖.
(c) Use the same strategy as in the proof of Proposition 11.68 . ut

Exercise 12.7. Suppose that (Aν)ν≥1 is a sequence of n× n matrices and A ∈ Matn(R).
Prove that the following statements are equivalent.

(i)
lim
ν→∞

‖Aν −A‖HS = 0.

(ii) For any x ∈ Rn
lim
ν→∞

Aνx = Ax.

(iii) For any x,y ∈ Rn
lim
ν→∞
〈Aνx,y〉 = 〈Ax,y〉.

(iv) If the entries of Aν are Aij(ν), 1 ≤ i, j ≤ n, and the entries of A are Aij , then

lim
ν→∞

Aij(ν) = Aij , ∀1 ≤ i, j ≤ n.

Hint. (i) ⇒ (ii) Use (12.10). (ii) ⇒ (iii) Use Cauchy-Schwarz. (iii) ⇒ (iv) Use Exercise 11.23. (iv) ⇒ (i) Use the

definition of the Frobenius norm. ut

Exercise 12.8. To a matrix R ∈ Matn×n(R) we associate the series of matrices

1 +R+R2 + · · ·
with partial sums

S0 = 1, S1 = 1 +R, S2 = 1 +R+R2, · · · .
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(i) Show that if ‖R‖HS < 1, then the sequence (SN ) is convergent to a matrix S
satisfying S(1−R) = (1−R)S = 1, i.e., 1−R is invertible and its inverse is S.

(ii) Prove that the matrix S above satisfies

‖S − 1‖HS ≤
‖R‖HS

1− ‖R‖HS
.

Hint: (i) +(ii) Use the results in Exercises 11.40 and 12.6. ut

Exercise 12.9. Suppose that A is an invertible n × n matrix. Prove that there exists
ε > 0 such that if B is an n×n matrix satisfying ‖A−B‖HS < ε, then B is also invertible.

Hint. Write C = A−B so that B = A−C = A(1−A−1C). Thus, to prove that B is invertible it suffices to show

that 1−A−1C is invertible. Prove that if ‖C‖HS < 1
‖A−1‖HS

, then ‖A−1C‖HS < 1 . To conclude invoke Exercise

12.8. ut

Exercise 12.10. Let n ∈ N and suppose that (Aν) is a sequence of invertible n × n
matrices that converges with respect to the Hilbert-Schmidt norm to an invertible matrix
A. Prove that

lim
ν→∞

‖A−1
ν −A−1‖HS = 0.

Hint: Write Cν := A−Aν , Rν := A−1Cν . Observe that Cν , Rν → 0, Aν = A(1−Rν) and for ν large

A−1
ν −A−1 = (1−Rν)−1A−1 −A−1 =

(
1 +Rν +R2

ν + · · ·
)
A−1 −A−1

=
(
Rν +R2

ν + · · ·
)
A−1.

ut

Exercise 12.11. Prove Theorem 12.22.

Hint. Mimic the proof of Theorem 6.10. ut

Exercise 12.12. Suppose that X is a nonempty subset of the real axis R. Prove that the
following statements are equivalent.

(i) The set X is an interval, i.e., it has the form

(a, b), [a, b), (a, b], [a, b], (a,∞), [a,∞), (−∞, b), or (−∞, b], or (−∞,∞).

(ii) If x0, x1 ∈ X and x0 < x1, then [x0, x1] ⊂ X.

(iii) The set X is convex.

Hint. Clearly (i) ⇒ (ii) and (ii) ⇐⇒ (iii). The tricky implication is (ii) ⇒ (i). Set m := inf X, M := supX. Show

that (ii) ⇒ (m,M) ⊂ X ⊂ [m,M ]. ut

Exercise 12.13. (i) Prove that the set R \ {0} ⊂ R is not path connected.

(ii) Prove that if L is a line in Rn and p ∈ L, then the set L \ {p} is not path
connected.
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(iii) Suppose that ξ : Rn → R is a nonzero linear functional. Prove that the set{
x ∈ Rn; ξ(x) 6= 0

}
is not path connected.

Hint. For (ii) consider a point q ∈ L \ {p} so that L = pq. Define f : R → L, f(t) = (1 − t)p + tq. Show that

f is bijective, Lipschitz and f−1 : L → R is also Lipschitz. Conclude using Corollary 12.61. For (iii) use (i) and

Corollary 12.49. ut

Exercise 12.14. Let n ∈ N, n > 1.

(i) Show that the punctured space Rn \ {0} is path connected.

(ii) Show that the unit Euclidean sphere

Σ1(0) :=
{
x ∈ Rn; ‖x‖ = 1

}
is path connected.

(iii) Show that for any r > 0 and any p ∈ Rn the Euclidean sphere of center p and
radius r, i.e., the set

Σr(p) :=
{
x ∈ Rn; ‖x− p‖ = r

}
,

is path connected.

(iv) Prove that for any positive numbers r < R the annulus

Ar,R :=
{
x ∈ Rn; r < ‖x‖ < R

}
is path connected but not convex.

Hint. (i) Let p, q ∈ Rn \ {0}. If the line pq does not contain 0 we’re done since the segment [p, q] will do the trick.

If 0 ∈ pq, then choose a point r ∈ Rn \ {0} that does not belong to this line. (You need to use the assumption

n > 1 to prove that such a point exists.) Then 0 6∈ pr. Travel from p to r on [p, r] and then from r to q on [r, q].

(Need to invoke Remark 12.24 and Exercise 12.3.) To prove (ii) use (i). To prove (iii) use (ii). To prove (iv) it helps

to first visualize the region Ar,R in the special case n = 2, r = 1, R = 2. Use (iii) to prove that this annulus is path

connected. ut

Exercise 12.15. Let n ∈ N and suppose that S1, S2 ⊂ Rn are two path connected subsets
such that S1 ∩ S2 6= ∅. Prove that S1 ∪ S2 is also path connected. ut

Exercise 12.16. Prove Proposition 12.55. ut

Exercise 12.17. Let n ∈ N. Suppose that (Kν)ν∈N is a sequence of nonempty compact
subsets of Rn such that

K1 ⊃ K2 ⊃ · · · ⊃ Kν ⊃ · · · .
Prove that ⋂

ν∈N
Kν 6= ∅,
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i.e.,

∃p ∈ Rn such that p ∈ Kν , ∀ν ∈ N.
Hint. For any ν ∈ N choose a point pν ∈ Kν . Show that a subsequence of (pν) is convergent and then prove that

its limit belongs to Kν for any ν. ut

Exercise 12.18. Let n ∈ N and suppose that A,B ⊂ Rn are nonempty. We regard A×B
as a subset of Rn × Rn = R2n and we consider the function

f : A×B → R, f(a, b) = ‖a− b‖.

Prove that f is continuous.

Hint. Use Proposition 12.6(ii). ut

Exercise 12.19. Let n ∈ N and suppose that K ⊂ Rn is a nonempty compact subset.
Recall (see Definition 12.54) that

diam(K) := sup
x,y∈K

‖x− y‖.

Prove that there exist x∗,y∗ ∈ K such that

diam(K) = ‖x∗ − y∗‖.

Hint. Use Exercise 12.18, Proposition 12.41, and Corollary 12.51. ut

Exercise 12.20. Prove Proposition 12.57. ut

Exercise 12.21. Let X ⊂ Rn, and f : X → R a Lipschitz function. Prove that f is
uniformly continuous on X. ut

Exercise 12.22. Let n ∈ N. Suppose that C ⊂ Rn is a nonempty closed subset. For
x ∈ Rn we set

dist(x, C) := inf
p∈C

dist(x,p).

(i) Prove that for any x ∈ Rn there exists y ∈ C such that

‖x− y‖ = dist(x, C).

(ii) Prove that the function f : Rn → R, f(x) = dist(x, C) is Lipschitz. More
precisely ∣∣ f(x)− f(y)

∣∣ ≤ ∥∥x− y ∥∥, ∀x,y ∈ Rn.
(iii) Prove that

C = f−1(0) =
{
x ∈ Rn; dist(x, C) = 0

}
.

Hint. (i) Show that there exists a sequence (yν) in C such that ‖x − yν‖ → dist(x, C). Next prove that this

sequence is bounded and thus it has a convergent subsequence. (ii) Use the triangle inequality, part (i) and the

definition of dist(x, C) to prove that L = 1 is a Lipschitz constant for f(x). (iii) Use (i). ut
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Exercise 12.23. Let n ∈ N and suppose that C ⊂ Rn is a closed, convex subset and
x0 ∈ Rn \ C. Set

r := dist(x0, C).

Prove that the sphere

Σr(x0) =
{
x ∈ Rn; ‖x− x0‖ = r

}
intersects the set C in exactly one point. This unique point of intersection is called the
projection of x0 on C and it is denoted by ProjC x0.

Hint. You need to use Exercise 12.22. ut

Exercise 12.24. Let U ⊂ Rn be an open set. Prove that the following statements are
equivalent.

(i) The set U is path connected.

(ii) Any p, q ∈ U can be joined by a broken line contained in U . More precisely,
this means that for any p, q ∈ U there exist points p0,p1, . . . ,pN ∈ U such that
p = p0, q = pN and all the line segments

[p0,p1], [p1,p2], . . . , [pN−1,pN ]

are contained in U .

Hint. (i)⇒ (ii) Set C = Rn \U and define ρ : Rn → [0,∞), ρ(x) = dist(x, C). Observe that ρ is Lipschitz and thus

continuous. Consider a continuous path γ : [0, 1]→ U such that γ(0) = p and γ(1) = q. Set r0 = inft∈[0,1] ρ(γ(t)).

Show that r0 > 0 and Br0 (γ(t)) ⊂ U , ∀t ∈ [0, 1]. Use the uniform continuity of γ : [0, 1] → U to show that, for N

sufficiently large, we have

‖γ(0)− γ(1/N) ‖ <
r0

2
, . . . ,

∥∥γ((N − 1)/N
)
− γ(1)

∥∥ < r0

2
,

and conclude that the broken line determined by the points

p0 = γ(0), p1 = γ(1/N), pi = γ(i/N), i = 1, . . . , N,

is contained in U . ut

Exercise 12.25. Suppose that f : Rn → R is a continuous function with the following
property: there exist A,B > 0 such that

f(x) ≥ A‖x‖ −B, ∀x ∈ Rn.

(i) Prove that for any R > 0 the set

{f ≤ R} :=
{
x ∈ Rn; f(x) ≤ R

}
is compact.

(ii) Prove that there exists x∗ ∈ Rn such that f(x∗) ≤ f(x), ∀x ∈ Rn.

Hint. (i) Show that the set {f ≤ R} is bounded. (ii) Prove that there exists a sequence (xν) in Rn such that

lim
ν→∞

f(xν) = inf
x∈Rn

f(x).

Deduce that the sequence f(xν) is bounded above and then, using (i), prove that the sequence (xν) is bounded

and thus it has a convergent subsequence. ut
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Exercise 12.26. Let n ∈ N, d ∈ R. We say that a function f : Rn → R is positively
homogeneous of degree d if

f(tx) = tdf(x), ∀t > 0, x ∈ Rn \ {0}.
(i) Suppose that f : Rn → R is a nonconstant, continuous and positively homoge-

neous function of degree d. Prove that d > 0.

(ii) Given d ∈ R construct a nonconstant function f : Rn → R that is positively
homogeneous of degree d and it is continuous at every point x ∈ Rn \ {0}.

Hint. (i). Fix x ∈ Rn \ {0} and consider the sequence f(ν−1x), ν ∈ N. ut

Exercise 12.27. Let n ∈ N and suppose that d > 0 and f : Rn → (0,∞) is continuous,
positively homogeneous of degree d > 0 and satisfies

f(x) > 0, ∀x ∈ Rn \ {0}.
(i) Prove that there exists c > 0 such that

f(x) ≥ c‖x‖d, ∀x ∈ Rn.
(ii) Prove that for any r > 0 the sublevel set

{f ≤ r} :=
{
x ∈ Rn; f(x) ≤ r

}
is compact.

Hint. (i) Consider the unit sphere

Σ1 :=
{
x ∈ Rn; ‖x‖ = 1

}
.

Use Corollary 12.51 to show that the infimum of f on Σ1 is strictly positive. (ii) Use (i). ut

Exercise 12.28. For any linear operator A : Rn → Rm we set

‖A‖ := sup
‖x‖=1

‖Ax‖.

(i) Show that if A : Rn → Rm is a linear operator, then ‖A‖ <∞ and

‖Ax‖ ≤ ‖A‖ · ‖x‖, ∀x ∈ Rn.
(ii) Show that if A : Rn → Rm and B : Rm → R` are linear operators, then

‖B ◦A‖ ≤ ‖B‖ · ‖A‖.
(iii) Show that the linear operator A : Rn → Rm is injective if and only if there exists

C > 0 such that

‖Ax‖ ≥ C‖x‖, ∀x ∈ Rn \ {0}.
(iv) Prove that if A,B : Rn → Rm are linear operators and t ∈ R then

‖A+B‖ ≤ ‖A‖+ ‖B‖, ‖tA‖ = |t| · ‖A‖.
Hint. (iii) Use Exercise 11.13 and Exercise 12.27(i) applied to the function f(x) = ‖Ax‖. ut

Exercise 12.29. Prove Proposition 12.63. ut
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Exercise 12.30. Let n ∈ N and X ⊂ Rn.

(i) Prove that the boundary ∂X is a closed subset of Rn.

(ii) Show that if X is bounded, then ∂X is compact.

ut

Exercise 12.31. Let n ∈ N and X ⊂ Rn. Prove that the following statements are
equivalent.

(i) cl(X) = Rn.

(ii) The set X is dense in Rn.

ut

Exercise 12.32. Find the closures, the interiors and the boundaries of the following sets.

(i) (0, 1) ⊂ R.

(ii) [0, 1] ⊂ R
(iii) (0, 1)× {0} ⊂ R2.

(iv)
{

(x, y) ∈ R2; 0 ≤ x, y ≤ 1
}
⊂ R2.

ut

Exercise 12.33. Suppose that O ⊂ Rn is an open subset and

K ⊂ R× O

is a compact subset. For any t ∈ R we set

Kt :=
{
x ∈ Rn : (t,x) ∈ K

}
, T :=

{
t ∈ R; Kt 6= ∅

}
.

(i) Show that T is compact.

(ii) Prove that there exists a compact set K ⊂ O such that

Kt ⊂ K, ∀t ∈ R.

ut
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Exercise* 12.1. Let n ∈ N and suppose that K ⊂ Rn is a nonempty subset. Prove that
the following statements are equivalent.

(i) The set K is compact

(ii) Any continuous function f : K → R is bounded.

ut
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Exercise* 12.2. Suppose that U ⊂ Rn is an open set and p, q ∈ U are points such that
the line segment [p, q] is contained in U . Prove that there exists an open convex set V
such that

[p, q] ⊂ V ⊂ U. ut

Exercise* 12.3. Show that the set

S :=

{
k

2m
; k ∈ Z, m ∈ Z, m ≥ 0

}
is dense in R. ut

Exercise* 12.4. Let n ∈ N and suppose that C ⊂ Rn is a closed, convex subset and
x0 ∈ Rn \ C. Prove that there exists a linear functional ξ : Rn → R and a real number c
such that

ξ(x0) > c > ξ(x), ∀x ∈ C.

Hint. You may want to use the result in Exercise 12.23. ut

Exercise* 12.5. Let n ∈ N and suppose that f : Rn → (0,∞) is continuous and positively
homogeneous of degree d > 0. Prove that the following statements are equivalent.

(i) The function f is uniformly continuous on Rn.

(ii) d ≤ 1.

ut

Exercise* 12.6. Let n ∈ N and suppose that ‖ − ‖∗ is a norm on the vector space Rn.

(i) Prove that there exists a constant C > 0 such that

‖x‖∗ ≤ C‖x‖, ∀x ∈ Rn,

where ‖x‖ denotes the Euclidean norm of x.

(ii) Prove that the function f : Rn → R, f(x) = ‖x‖∗ is continuous, i.e.,

lim
ν→∞

‖xν − x‖ = 0⇒ lim
ν→∞

‖xν‖∗ = ‖x‖∗.

(iii) Prove that

inf
{
‖x‖∗; ‖x‖ = 1

}
6= 0.

(iv) Prove that there exists c > 0 such that

‖x‖∗ ≥ c‖x‖, ∀x ∈ Rn.

ut

Exercise* 12.7. Suppose that E ⊂ Rn is an affine subspace.
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(i) Prove that there exists m ∈ N, a linear operator A : Rn → Rm and a vector
v ∈ Rm such that

E =
{
x ∈ Rn; Ax = v,

}
.

(ii) Prove that E is a closed subset of Rn.

ut

Exercise* 12.8. Suppose that T : R2 → R2 is a map satisfying the following conditions.

(i) T is continuous.

(ii) T is injective.

(iii) T (0) = 0, T (i) = i, T (j) = j.

(iv) For any line ` ⊂ R2, the image T (`) is also a line in R2 .

Prove that T (v) = v, ∀v ∈ R2. ut

Exercise* 12.9. Prove that R is not homeomorphic to R2. ut

Exercise* 12.10. Let n ∈ N and suppose that C1, . . . , Cν , . . . is a sequence of closed
subsets of Rn such that

Rn =
∞⋃
ν=1

Cν .

Prove that there exists ν ∈ N such that intCν 6= ∅. ut





Chapter 13

Multi-variable
differential calculus

The concept of differential of a one-variable function extends to functions of several vari-
ables. The several-variable situation adds new complexity and subtleties, and the goal of
the present chapter is to investigate them.

Recall that a function f : R → R is differentiable at a point x0 ∈ R if and only if it
admits a “best” linear approximation near x0. More geometrically, the graph of f , which
is a curve in R2, can be well approximated in a vicinity of the point p0 = (x0, y0) ∈ R2,
y0 = f(x0), by a straight line, the tangent line to the curve at the point p0. This tangent
line is graph of a function of the form L(x) = A(x− x0) + y0. The slope A of this line is
the derivative of f at x0.

Figure 13.1. A best linear approximation of the function f(x, y) = x2 + y2 near the point (2, 1).

427



428 13. Multi-variable differential calculus

We want to extend this approach to maps F : Rn → Rm. The graph of such map is
an m-dimensional “curved” surface in Rn × Rm. We seek to find a “best” approximation
of this graph near p0 = (x0,y0), y0 = F (x0), by a “straight” or “flat” m-dimensional
surface; see Figure 13.1 where n = 2, m = 1. The “straight” surfaces in an Euclidean
space are precisely the affine subspaces and we seek to approximate the graph of F near
p0 by an affine subspace described as the graph of a map L : Rn → Rm of the form
L(x) = A(x− x0) + y0, where A : Rn → Rm is a linear operator. The concept of Fréchet
derivative formalizes the above heuristics.

13.1. The differential of a map at a point

Suppose that m,n ∈ N and U ⊂ Rn is an open subset. Since U is open, we deduce that for
any point x0 ∈ U there exists r = r(x0) > 0 such that the open ball Br(x0) is contained
in U . This means that (see Figure 13.2)

x0 + h ∈ U, ∀‖h‖ < r.

x

h

x + h
0

0

U

Figure 13.2. An open set.

Definition 13.1. Suppose that F : U → Rm is a map and x0 ∈ U . We say that F is
Fréchet1 differentiable at x0 if there exists a linear operator L : Rn → Rm such that

lim
h→0

1

‖h‖

(
F (x0 + h)− F (x0)− Lh

)
= 0 . (13.1)

ut
1Named after Maurice René Fréchet (1878-1973), a French mathematician. He made major contributions to

point-set topology and introduced the concept of compactness; see Wikipedia.
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Remark 13.2. Observe that if F is differentiable at x0, then there exists exactly one
linear operator L : Rn → Rm satisfying the condition (13.1). More precisely, for any
h ∈ Rn \ 0 we have

Lh = lim
t→0

1

t

(
F (x0 + th)− F (x0)

)
. (13.2)

Indeed, consider a sequence of real numbers tν → 0, tν 6= 0. Set hν = tνh. Note that

lim
ν→∞

hν = 0

so that x0 + hν ∈ U , for large ν. We have Lhν = tνLh and

lim
ν→∞

∥∥∥∥ 1

tν

(
F (x0 + tνh)− F (x0)

)
− Lh

∥∥∥∥
= ‖h‖ lim

ν→∞

∥∥∥∥ 1

tν‖h‖

(
F (x0 + tνh)− F (x0)− tνLh

)∥∥∥∥
= ‖h‖ lim

ν→∞

1

|tν | · ‖h‖

∥∥∥(F (x0 + tνh)− F (x0)− tνLh
)∥∥∥

(|tν | · ‖h‖ = ‖tνh‖ = ‖hν‖)

= ‖h‖ lim
ν→∞

1

‖hν‖

∥∥∥(F (x0 + hν)− F (x0)− Lhν
)∥∥∥ (13.1)

= 0. ut

Definition 13.3. The unique linear operator L : Rn → Rm such that the differentiability
condition (13.1) or (13.6) is satisfied is called the (Fréchet) differential of F at x0 and it
is denoted by dF (x0). ut

The equality (13.2) shows that the Fréchet differential dF (x0) is determined uniquely
by the equality

dF (x0)h = lim
t→0

1

t

(
F (x0 + th)− F (x0)

)
, ∀h ∈ Rn . (13.3)

Remark 13.4. (a) Suppose that F : U → Rm is differentiable at x0 and L := dF (x0).
The main point of Definition 13.1 is that, for small h, the variation

∆hF (x0) = F (x0 + h)− F (x0)

is very well approximated by the linear quantity Lh. For h ∈ Rn the error of this
approximation is

R(h) := F (x0 + h)− F (x0)− Lh.
The differentiability condition is equivalent to the fact that the error R(h) is o(h), where
o(h) stands for “a lot smaller” than h as h→ 0. More precisely

R(h) = o(h) as h→ 0⇐⇒ lim
h→0

1

‖h‖
R(h) = 0 . (13.4)
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One can prove(see Exercise 13.1) that the condition (13.4) is equivalent to the existence
of a function

ϕ : [0, r)→ [0,∞)

such that

lim
t↘0

ϕ(t) = 0 and ‖R(h)‖ ≤ ϕ
(
‖h‖

)
‖h‖, ∀‖h‖ < r. (13.5)

The equality (13.4) can be rewritten as

F (x0 + h)− F (x0) = L(h) + o(h) as h→ 0,

or, if we set x := x0 + h

F (x)− F (x0) = L(x− x0) + o(x− x0) as x→ x0. (13.6)

This last equality can be taken as a definition of the Fréchet differential: the linear operator
L : Rn → Rm is the Fréchet differential of F at x0 iff it satisfies (13.6).

(b) By definition, the differential dF (x0) is a linear operator Rn → Rm and, as such, it is
represented by an m×n matrix sometimes called the Jacobian matrix of F at x0 denoted
by

JF (x0) or
∂F

∂x
(x0) .

The n columns of the matrix JF (x0) consist of the vectors

dF (x0)e1, . . . , dF (x0)en ∈ Rm,

where {e1, . . . , en} is the natural basis of Rn and

dF (x0)ej = lim
t→0

1

t

(
F (x0 + tej)− F (x0)

)
, ∀j = 1, . . . , n. (13.7)

ut

Definition 13.5. Let m,n ∈ N, assume that U ⊂ Rn is an open set. If F : U → Rm is
Fréchet differentiable at x0 and L : Rn → Rm is its Fréchet derivative, then the function
L = LF ,x0 : Rn → Rm defined by

L(x) = F (x0) + L(x− x0) (13.8)

is called the linearization or the linear approximation of F at x0. ut

Note that the equality (13.4) where h = x − x0 (equivalently, x = x0 + h), implies
that

F (x)− L(x) = o
(
x− x0) as x→ x0

i.e.,

lim
x→x0

‖F (x)− L(x)‖
‖x− x0‖

= 0.

This shows that, when x→ x0, the difference F (x)−L(x) is a lot smaller than the very
small quantity ‖x− x0‖.
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The equality (13.4) implies the following result.

Proposition 13.6. If U ⊂ Rn is open, x0 ∈ U and the map F : U → Rm is Fréchet
differentiable at x0, then it is continuous at x0.

Proof. Using the notation from Remark 13.2 we can write

F (x0 + h) = F (x0) + Lh+R(h).

Since L is a linear operator, it is a continuous map and thus

lim
h→0

Lh = 0.

On the other hand, (13.4) shows that

lim
h→0

R(h) = 0.

Hence

lim
h→0

F (x0 + h) = lim
h→0

(
F (x0) + Lh+R(h)

)
= F (x0).

ut

Example 13.7. Before we proceed with the general theory let us look at a few special
cases

(a) Suppose that m = n = 1 and U ⊂ R is an interval. In this case F : U → R is a
function of one real variable, F = F (x). If F is differentiable at x0, then the differential
dF (x0) is a linear operator R1 → R1 and, as such, it is described by a 1 × 1 matrix, i.e.,
a real number.

We see that F is differentiable at x0 if and only if there exists a real number m such
that

lim
h→0

1

|h|

(
F (x0 + h)− F (x0)−mh

)
= 0.

This happens if and only if F is differentiable at x0 in the sense of Definition 7.2 and m
is the derivative of F at x0, m = F ′(x0).

(b) Suppose that m > 1, n = 1 and U is an interval so that F : U → Rm is a vector valued
function depending on a single real variable x ∈ U ⊂ R

F (x) =

 F 1(x)
...

Fm(x)

 .
If F is differentiable at x0 ∈ U , then the differential of dF (x0) is described by an m × 1
matrix, i.e., a matrix consists of one column of height m. We have

F (x+ h)− F (x) =

 F 1(x0 + h)− F 1(x0)
...

Fm(x0 + h)− Fm(x0)
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We deduce that F is differentiable at x0 if and only if the functions F 1, . . . , Fm are
differentiable at x0 and

dF (x0) =


dF 1

dx (x0)
...

dFm

dx (x0)

 .
(c) If L : Rn → Rm is a linear map, then L is Fréchet differentiable at any x0 ∈ Rn.
Moreover, the differential at x0 is the operator L itself. ut

Deciding when a function or a map is Fréchet differentiable at a point x0 takes a bit of
work. We will describe in the following sections some simple ways of recognizing Fréchet
differentiable maps.

13.2. Partial derivatives and Fréchet differentials

Suppose that U ⊂ Rn is an open set and F : U → Rm. The limits in the right-hand side
of (13.3) play a very important role in differential calculus and for this reason they were
given a special name.

Definition 13.8. Let x0 ∈ U and v ∈ Rn \ {0}. We say that F is differentiable along the
vector v at x0 if the limit

∂vF (x0) =
∂F (x0)

∂v
:= lim

t→0

1

t

(
F (x0 + tv)− F (x0)

)
(13.9)

exists. This limit is called the derivative of F along the vector v at the point x0.

If e1, . . . , en is the natural basis of Rn, then the derivatives of F along e1, . . . , en
(when they exist) are called the first-order partial derivatives of F at x0 and are denoted
by

∂x1F (x0) =
∂F (x0)

∂x1
:=

∂F (x0)

∂e1
, . . . , ∂xnF (x0) =

∂F (x0)

∂xn
:=

∂F (x0)

∂en
.

We will refer to ∂xiF as the partial derivative of the map F with respect to the variable
xi. Often we will use the alternate notation

F ′xi :=
∂F

∂xi
. ut

Remark 13.9. Suppose that F : U → R is a real valued map depending on n real
variables, F = F (x1, . . . , xn). You should think of F as measuring some physical quantity
at the point x such as temperature or pressure.

In this case the partial derivatives of F at x0 are real numbers. They can be computed
as follows. Assume that x0 = [x1

0, . . . , x
n
0 ]>. Then, for any t ∈ R sufficiently small we have

x0 + tek =
[
x1

0, . . . , x
k−1
0 , xk0 + t, xk+1

0 , . . . , xn0
]>
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and

F (x0 + tek)− F (x0)

t
=
F (x1

0, . . . , x
k−1
0 , xk0 + t, xk+1

0 , . . . , . . . xn0 )− F (x1
0, . . . , x

k
0, . . . , x

n
0 )

t
.

Thus, when computing the partial derivative ∂F
∂xk

we treat the variables xi, i 6= k, as

constants, we regard F as a function of a single variable xk and we derivate as such.

Equivalently, consider the function gk(t) = F (x0 + tek), |t| sufficiently small. Then

F ′xk(x0) = g′k(0).

In other words, if we think of F as measuring say the temperature at a point x, then
F ′
xk

(x0) is the rate of change in the temperature as we travel through the point x0, at
unit speed, in the direction of the k-th axis of Rn.

More generally, for any vector v 6= 0, the image of the path γ : R→ Rn, γ(t) = x0+tv,
is the line `x0,v through x0 in the direction v. Think of γ as describing the motion of
a particle in Rn traveling with constant velocity v. Next, think of a map F : U → Rm
as associating m different physical quantities (e.g., pressure, temperature, external forces,
etc.) to each point in U . These quantities can be measured by various sensors attached
to the moving particle.

The derivative ∂vF (x0) measures the “infinitesimal rate of change” in the quantities
aggregated in F as the moving particle travels through x0. As an object ∂vF (x0) is an
m-dimensional vector. ut

Proposition 13.10. If F : U → Rm is Fréchet differentiable at x0, then F is differen-
tiable along any direction v and

∂vF (x0) = dF (x0)v . (13.10)

In particular,

F ′xj (x0) =
∂F

∂xj
(x0) = ∂ejF (x0) = dF (x0)ej , ∀j = 1, . . . , n,

and, if v = [v1, . . . , vn]>, then

∂vF (x0) = v1∂F (x0)

∂x1
+ · · ·+ vn

∂F (x0)

∂xn
. (13.11)

Proof. The equality (13.10) is in fact the equality (13.3) in disguise. To prove (13.11)
observe first that the equality v = [v1, . . . , vn]> signifies that

v = v1e1 + · · ·+ vnen.

From (13.10) and the linearity of dF (x0) we deduce

∂vF (x0) = dF (x0)(v1e1 + · · ·+ vnen) = v1dF (x0)e1 + · · ·+ vndF (x0)en

= v1∂F (x0)

∂x1
+ · · ·+ vn

∂F (x0)

∂xn
.

ut
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Remark 13.11. If F : U → R is differentiable, then its differential is represented by a
1× n matrix, i.e., a matrix consisting of a single row of length n. Its entries are the real
numbers

dF (x0)e1 =
∂F

∂x1
(x0), . . . , dF (x0)en =

∂F

∂xn
(x0).

In other words, the differential dF (x0) is described by the row vector

dF (x0) =

[
∂F

∂x1
(x0), . . . ,

∂F

∂xn
(x0)

]
. (13.12)

Viewed as a linear form Rn → R, the differential dF (x0) admits the alternate description

dF (x0) =
∂F

∂x1
(x0)e1 + · · ·+ ∂F

∂xn
(x0)en =

n∑
j=1

∂F

∂xj
(x0)ej , (13.13)

where we recall that ej denotes the linear functional Rn → R given by

ej(x) = xj .

In terms of row vectors we have

e1 = [1, 0, 0, . . . 0], e2 = [0, 1, 0, . . . , 0], . . . . ut

Example 13.12. For example, if n = 3,

x := x1, y := x2, z := x3, x0 = (x0, y0, z0)

and

F : R3 → R, F (x, y, z) = e3x+4y+5z,

then

∂F

∂x
(x0) = 3e3x0+4y0+5z0 ,

∂F

∂y
(x0) = 4e3x0+4y0+5z0 ,

∂F

∂z
(x0) = 5e3x0+4y0+5z0 .

If x0 = 0 = (0, 0, 0), then the differential dF (0), if it exists,2 must be the single row
matrix

dF (0) = [3, 4, 5] = 3e1 + 4e2 + 5e3.

In particular, for any vector v = (v1, v2, v3) ∈ R3 \ {0}, we have

∂vF (0)
(13.11)

= 3v1 + 4v2 + 5v3. ut

We saw that the differentiability of a map at a point x0 guarantees the existence of
derivatives at x0 in any direction. We want to investigate the extent to which a converse
is true. To do this we first need to clarify a bit the concept of differentiability.

2We will see a bit later in Example 13.18 that the differential does indeed exist.
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Proposition 13.13. Let m,n ∈ N and suppose that U ⊂ Rn is an open set. Consider a
map

F : U → Rm, F (x) =

 F 1(x)
...

Fm(x)

 , x ∈ U.
Then the following statements are equivalent.

(i) The map F is Fréchet differentiable at x0 ∈ U .

(ii) Each of the scalar valued functions F 1, . . . , Fm : U → R is Fréchet differentiable
at x0.

Proof. (i) ⇒ (ii) Suppose that F is differentiable at x0. We denote by L its differential.
We identify L with an m× n matrix. For i = 1, . . . ,m we denote by Li the i-th row of L
and we view Li as a linear map Li : Rn → R. We will show that Li is the differential of
F i at x0. For h ∈ Rn sufficiently small we have

1

‖h‖

(
F (x0 + h)− F (x0)− Lh

)
=

1

‖h‖

 F 1(x0 + h)− F 1(x0)− L1h
...

Fm(x0 + h)− Fm(x0)− Lmh

 . (13.14)

We deduce

lim
h→0

1

‖h‖

(
F (x0 + h)− F (x0)− Lh

)
= 0

⇐⇒ lim
h→0

1

‖h‖

(
F i(x0 + h)− F i(x0)− Lih

)
= 0, ∀i = 1, . . . ,m.

(13.15)

The top line of this equivalence states the differentiability of F at x0 and the bottom
line of this equivalence amounts to the differentiability at x0 of each of the components
F 1, . . . , Fm.

(ii) ⇒ (i) Suppose that each of the functions F i is differentiable at x0. We denote by
Li the differential of F i at x0. This is a linear map Rn → R which we identify with a row
of length n. Denote by L the m× n matrix with i-th row is Li, ∀i = 1, . . . ,m.

The matrix L satisfies the equality (13.14) and the equivalence (13.15) holds as well.
This proves (i).

ut

Example 13.14. Suppose that m,n ∈ N and U ⊂ Rn is an open set. If the map is
differentiable at x0 ∈ U , then the differential dF (x0) is represented by the m×n Jacobian
matrix JF (x0) with columns

dF (x0)e1 =
∂F (x0)

∂x1
, . . . , dF (x0)en =

∂F (x0)

∂xn
.
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Let F 1, . . . , Fm be the components of F , so that

F (x) =

 F 1(x)
...

Fm(x)

 ,
Each component F j , viewed as a function F j : U → R is differentiable at x0. For any
j = 1, . . . , n we have

∂F (x0)

∂xj
= lim

t→0

1

t

(
F (x0 + tej)− F (x0)

)

= lim
t→0

1

t

 F 1(x0 + tej)− F 1(x0)
...

Fm(x0 + tej)− Fm(x0)

 =



∂F 1(x0)
∂xj

...

∂Fm(x0)
∂xj

 .
Hence, the Jacobian matrix of F at x0 is

∂F

∂x
(x0) = JF (x0) =



∂F 1(x0)
∂x1 · · · ∂F 1(x0)

∂xn

...
...

...

∂Fm(x0)
∂x1 · · · ∂Fm(x0)

∂xn

 .

Using the equality (13.12) we see that the first row of JF (x0) is the differential of F 1 at
x0, the second row of JF (x0) is the differential of F 2 at x0 etc. Thus we can describe the
Jacobian JF in the simplified form

JF =


dF 1

dF 2

...
dFm

 . ut

Proposition 13.10 shows that the maps F : U → Rm that are differentiable at a point
x0 have a special property: they admit partial derivatives at x0. However, the existence
of partial derivatives at x0 is not enough to guarantee the Fréchet differentiability at
x0. The next result describes one very simple and useful condition guaranteeing Fréchet
differentiability.

Theorem 13.15. Let m,n ∈ N and U ⊂ Rn open set. Suppose F : U → Rm is a map
and x0 is a point in U satisfying the following conditions.

(i) There exists r > 0 such that Br(x0) ⊂ U and the map F admits partial deriva-
tives at any point x ∈ Br(x0).
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(ii) For any j = 1, . . . , n

∂F (x0)

∂xj
= lim
x→x0

∂F (x)

∂xj
.

Then the map F is Fréchet differentiable at x0.

Proof. According to Proposition 13.13 it suffices to consider only the case m = 1, i.e., F is a real valued function,

F : U → R. Denote by L the linear map

L : Rn → R, Lh =

n∑
j=1

∂F (x0)

∂xj
hj .

We want to prove that L is the Fréchet differential of F at x0, i.e.,

lim
h→0

1

‖h‖

∣∣∣F (x0 + h)− F (x0)− Lh
∣∣ = 0. (13.16)

Given h = h1e1 + · · ·+ hnen, ‖h‖ < r
2

, we set (see Figure 13.3)

h1 := h1e1, h2 = h1e1 + h2e2, hj := h1e1 + · · ·+ hjej , . . . , j = 1, . . . , n,

xj = x0 + hj , j = 1, . . . , n.

h

h
h

x

x

xx0 1

1 1

2

2

2
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Figure 13.3. Zig-zagging from x0 to xn = x+ h, n = 3.

We have

F (x0 + h)− F (x0) = F (xn)− F (xn−1) + F (xn−1)− F (xn−2) + · · ·+ F (x1)− F (x0).

For each j = 1, . . . , n define3

gj : (−r/2, r/2)→ R, gj(t) = F (xj−1 + tej).

Note that,

xj = xj−1 + hjej , F (xj−1) = gj(0), F (xj) = gj(h
j)

Since F admits partial derivatives at every x ∈ Br(x0) we deduce that the function gj is differentiable and

g′j(t) =
∂F (xj−1 + tej)

∂xj
. (13.17)

The Lagrange mean value theorem implies that there exists τj in the interval [0, hj ] such that

F (xj)− F (xj−1) = gj(h
j)− gj(0) = g′j(τj)h

j .

3Observe that xj−1 + tej ∈ U , ∀|t| < r/2.
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We set yj = yj(h) = xj−1 + τjek. Note that yj is situated on the line segment connecting xj−1 to xj . From

(13.17) we deduce

F (xj)− F (xj−1) =
∂F (yj)

∂xk
hj .

Let us observe that

‖hj‖ ≤ ‖h‖, ∀j = 1, . . . , n

proving that

dist(xj ,x0) ≤ ‖h‖, ∀j = 1, . . . , n.

Thus all the points x0,x1, . . . ,xn = x0 + h lie in B‖h‖(x0), the closed Euclidean ball of center x0 and radius

‖h‖. This is a convex subset, and since yj is situated on the line segment [xj−1,xj ], it is also contained B‖h‖(x0).

Hence

lim
h→0

yj(h) = x0, ∀j = 1, . . . , n. (13.18)

We can now put together all the facts above. We have

F (x0 + h)− F (x0) =

n∑
j=1

∂F (yj)

∂xk
hj

F (x0 + h)− F (x0)− Lh =

n∑
j=1

(
∂F (yj)

∂xk
−
∂F (x0)

∂xj

)
hj ,

so that ∣∣∣F (x0 + h)− F (x0)− Lh
∣∣∣ ≤ n∑

j=1

∣∣∣∣∂F (yj)

∂xk
−
∂F (x0)

∂xj

∣∣∣∣ · |hj |
(use the Cauchy-Schwarz inequality)

≤

√∣∣∣∣∂F (yj)

∂xk
−
∂F (x0)

∂xj

∣∣∣∣2 · ‖h‖.
Hence

1

‖h‖

∣∣∣F (x0 + h)− F (x0)− Lh
∣∣∣ ≤

√∣∣∣∣∂F (yj)

∂xk
−
∂F (x0)

∂xj

∣∣∣∣2.
If we let h→ 0, and take (13.18) into account, we obtain the desired conclusion, (13.14). ut

Definition 13.16. Let m,n ∈ N, U ⊂ Rn an open set, and F : U → Rm a map.

(i) We say that the map F : U → Rm is Fréchet differentiable on U if it is Fréchet
differentiable at every point x ∈ U .

(ii) We say that F is continuously differentiable, or C1, on U , if it admits first order
partial derivatives at any x ∈ U and, for any j = 1, . . . , n, the function

U 3 x 7→ ∂F (x)

∂xj
∈ Rm

is continuous.

ut
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- We will denote by C1(U,Rm) the set of C1-maps F : U → Rm. For simplicity we will
write C1(U) instead of C1(U,R).

From Theorem 13.15 we obtain the following very useful result.

Corollary 13.17. Let m,n ∈ N and U ⊂ Rn. If the map F : U → Rm is C1 on U , then
it is Fréchet differentiable on U . Moreover, if e1, . . . , en is the canonical basis of Rn, then

dF (x)ej =
∂F (x)

∂xj
, ∀x ∈ U, ∀j = 1, . . . , n. ut

Example 13.18. (a) Consider a linear functional

ξ : Rn → R, ξ(x) =

n∑
j=1

ξjx
j .

We deduce that, for any x ∈ Rn, and any j = 1, . . . , n,

∂ξ(x)

∂xj
= ξj .

Thus the functions

Rn 3 x 7→ ∂ξ(x)

∂xj
∈ R

are constant and, in particular, continuous. Corollary 13.17 implies that the linear function
ξ is differentiable on Rn, and its differential at a point x is represented by the row vector

[ξ1, . . . , ξn].

This is the same row vector that represents ξ. Thus we have the equality of linear functions

dξ(x) = ξ, ∀x ∈ Rn. (13.19)

At this point it is worth mentioning a classical convention that we will use frequently in
the sequel.

Note that for any j = 1, . . . , n, the linear functional ej associates to the vector x
its j-th coordinate xj . We can rephrase this by saying that ej is the function xj , i.e.,
ej(x) = xj . We write this in the less precise fashion ej = xj . The equality (13.19) applied
to the linear functional ej yields the classical convention

dxj = dej = ej . (13.20)

If now f : Rn → R is a C1-function, then it is differentiable everywhere and, according to
(13.13), its differential at x ∈ Rn is the linear functional

df(x) =
n∑
j=1

∂f(x)

∂xj
ej =

∂f(x)

∂x1
e1 + · · ·+ ∂f(x)

∂xn
en.

Using the convention (13.20) we obtain another frequently used convention/notation

df =
n∑
j=1

∂f

∂xj
dxj =

∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn. (13.21)
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The right-hand side of the above equality is classically referred to as the total differential
of the function f . Moreover, in the above equality we interpret both sides as functions on
Rn with values in the space Hom(Rn,R) of linear functionals on Rn.

For example, if n = 1, so f is a function of a single real variable, then the above
equality takes the known form (7.6)

df =
df

dx
dx = f ′(x)dx.

(b) Consider the function r : R2 \ {0} → R, r(x, y) =
√
x2 + y2. For fixed y the function

x 7→
√
x2 + y2 is differentiable as long as x2 + y2 6= 0. Its derivative is

∂r

∂x
=

x√
x2 + y2

=
x

r
.

A similar argument shows that ∂r
∂y exists as long as x2 + y2 6= 0 and we have

∂r

∂y
=

y√
x2 + y2

=
y

r
.

Thus the function r is differentiable at every point in R2 \ {0} and

dr =
x√

x2 + y2
dx+

y√
x2 + y2

dy.

The associated Jacobian matrix is the single row matrix

Jr =

[
x√

x2 + y2

y√
x2 + y2

]
.

The differential of r at the point(x0, y0) = (3, 4) is therefore represented by the row vector[3

5
,
4

5

]
.

(c) Consider again the function

F : R3 → R, F (x, y, z) = e3x+4y+5z

we discussed in Remark 13.11(b). The function F admits partial derivatives

∂F

∂x
= 3e3x+4y+5z,

∂F

∂y
= 4e3x+4y+5z,

∂F

∂z
= 5e3x+4y+5z

which are continuous functions. Thus F ∈ C1(R3) and, in particular, it is Fréchet differ-
entiable on R3. Moreover

dF = 3e3x+4y+5z dx+ 4e3x+4y+5z dy + 5e3x+4y+5z dz.

Again, we interpret both sides of the above equality as functions R3 → Hom(R3,R).

(d) Consider the map F : R2 → R2 defined by

R2 3
[
r
θ

]
F7→
[
x
y

]
=

[
r cos θ
r sin θ

]
∈ R2.
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You should read the above as follows: the components of the map F are two functions
called x and y depending on two variables (r, θ) and

x(r, θ) = r cos θ, y(r, θ) = r sin θ.

Clearly the functions x, y are C1 on their domains and the Jacobian matrix of F is

JF =

 ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

 =

[
cos θ −r sin θ
sin θ r cos θ

]
.

In particular for (r, θ) = (1, π/2) we have

JF (1, π/2) =

[
0 −1
1 0

]
.

If v = [3, 4]>, then

∂vF (1, π/2) =

[
0 −1
1 0

]
·
[

3
4

]
=

[
−4
3

]
. ut

Example 13.19 (Linearizations). Suppose that n ∈ N, U ⊂ Rn is an open set and
f : U → R is a C1-function. Then, according to Definition 13.5, the linearization (or
linear approximation) of f at x0 is the affine function

L : Rn → R, L(x) = f(x0) + df(x0)(x− x0).

To see how this looks concretely, consider the function f : R2 → R, f(x, y) = x2 + y2. We
have

∂xf = 2x, ∂yf = 2y.

Let us find the linear approximation of this function at the point (x0, y0) = (2, 1). We
have

f(x0, y0) = 22 + 12 = 5, ∂xf(x0, y0) = 4, ∂yf(x0, y0) = 2.

The differential df(x0, y0) is thus described by the row vector [4, 2]. The linearization of
f at (2, 1) is the affine function

L(x, y) = f(x0, y0) + ∂xf(x0, y0)(x− x0) + ∂yf(x0, y0)(y − y0)

= 5 + 4(x− 2) + 2(y − 1) = 4x+ 2y − 5.

The surface in Figure 13.1 is the graph of f , while the plane in the same figure is the
graph of L. ut

Definition 13.20 (Gradient). Let n ∈ N. Suppose that U ⊂ Rn is an open set and
f : U → R is a function differentiable at x0. The gradient of f at x0 is the vector df(x0)↑
dual to the differential of f at x0. We denote by ∇f(x0) the gradient of f at x0. The
symbol ∇ is pronounced nabla.4 ut

4The name nabla originates from an ancient stringed musical instrument shaped as a harp.
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The above definition is rather dense. Let us unpack it. The differential df(x0) of f at
x0 is a linear form Rn → R (or covector) represented by the single row matrix[

∂f(x0)

∂x1
, . . . ,

∂f(x0)

∂xn

]
.

As explained in (11.20a) the dual of this covector is the (column) vector
∂f(x0)
∂x1

...
∂f(x0)
∂xn

 =: ∇f(x0).

Using (13.11) we deduce that, for any v ∈ Rn \ {0} we have

∂vf(x0) = ∂x1f(x0)v1 + · · ·+ ∂xnf(x0)vn,

i.e.,

∂vf(x0) = df(x0)v = 〈∇f(x0),v〉, ∀v ∈ Rn \ {0} . (13.22)

The construction of the gradient might appear to the uninitiated as “much ado about
nothing” because all we have done was take a row and then transform it into a column.
Temporarily it is difficult to justify this algebraic contortion. For now, please take it as
an article of faith that there is a method to this “madness.”

Example 13.21. Consider the function f : R2 → R, f(x, y) = x2 + y2. Then

df(x, y) = 2xdx+ 2ydy, ∇f(x, y) =

[
2x
2y

]
.

The correspondence R2 3 (x, y) 7→ ∇f(x, y) ∈ R2 is often viewed as a vector field on R2

in that it assigns an “arrow” (or vector) to each point of R2. ut

Example 13.22. We define a direction in Rn to be a unit length vector n, ‖n‖ = 1.
Observe that any nonzero vector v ∈ Rn determines a direction

n = n(v) =
1

‖v‖
v.

A point x0 ∈ Rn and a direction n canonically determine a path

γx0,n : R→ Rn, γx0,n(t) = x0 + tn

whose image is the line through x0 in the direction n.

Given an open set U ⊂ Rn, a C1-function f : U → R, a point x0 and a direction n,
we define the derivative of f in the direction n at x0 to be the derivative of f along the
vector n. From (13.22) we deduce that

∂nf(x0) = 〈∇f(x0),n〉.
Suppose that ∇f(x0) 6= 0 and let θ ∈ [0, π] be the angle between the vectors ∇f(x0) and
n. We have

∂nf(x0) = 〈∇f(x0),n〉 = ‖∇f(x0)‖ cos θ ≤ ‖∇f(x0)‖.



13.3. The chain rule 443

Above, we have equality if and only if θ = 0. Thus ∂nf(x0) takes its highest possible value
if and only if n points in the same direction as ∇f(x0) or, equivalently, n is the direction
determined by the gradient vector ∇f(x0). This shows that the direction determined by
the gradient of a function at a point is the direction of fastest growth of the function at
that given point. ut

13.3. The chain rule

We can now state and prove a key result in several variable calculus.

Theorem 13.23 (Chain rule). Let `,m, n ∈ N. Suppose that we are given open sets
U ⊂ Rn and V ⊂ Rm, maps F : U → Rm, G : V → R`, and a point u0 ∈ U satisfying the
following conditions.

(i) F (U) ⊂ V .

(ii) F is differentiable at u0 and G is differentiable at v0 := F (u0).

Then the composition G ◦ F : U → R` is differentiable at u0 and

d(G ◦ F )(u0) = dG(v0) ◦ dF (u0). (13.23)

Idea of proof. SetA := dF (u0), B := dG(v0) so thatA ∈ Hom(Rn,Rm), B ∈ Hom(Rm,R`).
From the definition of Fréchet differential we deduce

G
(
F (u)

)
−G

(
F (u0)

)
≈ B

(
F (u)− F (u0)

)
,

F (u)− F (u0) ≈ A(u− u0).

Hence

G
(
F (u)

)
−G

(
F (u0)

)
≈ B ◦A

(
u− u0

)
.

This shows that B ◦A is the Fréchet differential of G ◦ F at u0.

ut

The above argument is an almost complete proof capturing the essence of the main
idea. We present the missing details below.

Proof. We set A := dF (u0) and B := dG(v0). We have to prove that

lim
h→0

1

‖h‖
∥∥G(F (u0 + h) )−G(v0)−B(Ah)

∥∥ = 0. (13.24)

We set

Th := F (u0 + h)− F (u0) = F (u0 + h)− v0

and we deduce

G(F (u0 + h) )−G(v0)−B(Ah) = G(v0 + Th)−G(v0)−B(Ah)

= G(v0 + Th)−G(v0)−B(Th) +B(Th−Ah).

Set

RF (h) := F (u0 + h)− F (u0)−Ah, RG(k) := G(v0 + k)−G(v0)−Bk.
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Since F is differentiable at u0 and G is differentiable at v0 we deduce from (13.5) that there exist r > 0 and

functions ϕF , ϕG : [0, r)→ R such that

0 = ϕF (0) = lim
t↘0

ϕF (t), 0 = ϕG(0) = lim
t↘0

ϕG(t), (13.25a)

‖RF (h)‖ ≤ ϕF (‖h‖)‖h‖, ‖RG(k)‖ ≤ ϕG(‖k‖)‖k‖, ∀‖h‖, ‖k‖ < r. (13.25b)

Note that

Th−Ah = F (u0 + h)− F (u0)−Ah = RF (h),

G(v0 + Th)−G(v0)−B(Th) = RG(Th),

and

G(F (u0 + h) )−G(v0)−B(Ah) = RG(Th) +B(RF (h) )

= RG(Ah+RF (h) ) +B(RF (h) ).

Hence ∥∥G(F (u0 + h) )−G(v0)−B(Ah)
∥∥ ≤ ∥∥RG(Ah+RF (h) )

∥∥+ ‖B(RF (h) )‖

≤
∥∥RG(Ah+RF (h) )

∥∥+
∥∥B ∥∥

HS
·
∥∥RF (h) )

∥∥
(13.25b)

≤ ϕG(Ah+RF (h) )‖Ah+RF (h)‖+ ϕF (‖h‖)‖B‖HS · ‖h‖
(13.25b)

≤ ϕG(Ah+RF (h) )
(
‖A‖HS + ϕF (‖h‖)

)
‖h‖+ ϕF (‖h‖)‖B‖HS · ‖h‖,

and thus
1

‖h‖
∥∥G(F (u0 + h))−G(v0)−B(Ah)

∥∥ ≤ ϕG(Ah+RF (h)
)(
‖A‖HS + ϕF (‖h‖)

)
+ϕF (‖h‖)‖B‖HS .

The conclusion (13.24) is obtained by letting h→ 0 in the above inequality and invoking (13.25a). ut

Let us rewrite the chain rule (13.23) in a less precise, but more intuitive manner.

We denote by (ui)1≤i≤n the Euclidean coordinates on Rn, by (vj)1≤j≤m the Euclidean

coordinates on Rm and by (xk)1≤k≤` the Euclidean coordinates in R`. The map F is
described by m functions depending on the variables (ui)

vj = F j(u1, . . . , un), j = 1, . . . ,m,

while the map G is described by ` functions depending on the variables (vj)

xk = Gk(v1, . . . , vm), k = 1, . . . , `.

The differential of F at u0 is described by the m× n Jacobian matrix JF with entries

(JF )ji =
∂F j

∂ui
=
∂vj

∂ui
.

The differential of G at v0 = F (u0) is described by the ` ×m Jacobian matrix JG with
entries

(JG)kj =
∂Gk

∂vj
=
∂xk

∂vj
.

The composition G ◦ F is described by ` functions depending on the variables (ui)

xk = Gk
(
F 1(u1, . . . , un), . . . , Fm(u1, . . . , un)

)
, k = 1, . . . , `.
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The differential of G ◦ F at u0 is described by the `× n matrix JG◦F with entries

(JG◦F )ki =
∂xk

∂ui
.

The chain rule (13.23) states that

JG◦F (u0) = JG(v0)JF (u0) = JG
(
F (u0)

)
JF (u0), (13.26)

or, equivalently,

∂xk

∂ui
=

m∑
j=1

∂xk

∂vj
· ∂v

j

∂ui
=
∂xk

∂v1
· ∂v

1

∂ui
+ · · ·+ ∂xk

∂vm
· ∂v

m

∂ui
. (13.27)

Example 13.24. Consider the function

f : R2 → R, f(x, y) = (x2 + y2 + 1)sin(xy).

This is the composition of two C1-maps

(x, y) 7→ (u, v) =
(

1 + x2 + y2, sin(xy)
)
, (u, v) 7→ f = uv.

Then
∂f

∂x
=
∂f

∂u
· ∂u
∂x

+
∂f

∂v
· ∂v
∂x

= vuv−1 · (2x) + uv lnu · y cos(xy) = uv ·
(v
u
· (2x) + (lnu) · y cos(xy)

)
= (x2 + y2 + 1)sin(xy)

(
2x sin(xy)

x2 + y2 + 1
+ y cos(xy) ln(x2 + y2 + 1)

)
. ut

Example 13.25. Suppose that f : R2 → R is a differentiable function depending on
two variables f = f(x, y). Suppose additionally that x, y are themselves functions of two
variables

x = x(r, θ) = r cos θ, y = y(r, θ) = r sin θ. (13.28)

We want to compute the partial derivatives ∂f
∂r and ∂f

∂θ . First, let us give a geometric
interpretation to the functions (13.28).

If we fix r, say r = 4, then we get a path

θ 7→
(

4 cos θ, 4 sin θ
)
∈ R2.

This describes the motion of a point in the plane with constant angular velocity along the
circle of radius 4 centered at the origin; see the thick orange circle in Figure 13.4. If we
keep θ fixed, θ = θ0, then the resulting path

r 7→
(
r cos θ0, r sin θ0

)
describes the motion with speed 1 along a ray emanating at the origin that makes angle
θ0 with the x-axis.
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Figure 13.4. Polar grid.

We get two families of curves in the plane: the family of curves obtained by fixing r
(circles centered at the origin) and the family of curves obtained by fixing θ (rays). These
two families form a curvilinear grid in the plane (see Figure 13.4) known as the polar grid.

The function f depends on the variables x, y, which themselves depend on the quan-
tities r, θ. ∂f

∂r measures how fast is f changing when we travel at unit speed along a ray,

while ∂f
∂θ measures how fast is f changing when we travel along a circle at constant angular

velocity 1rad/sec. The chain rule shows that

∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
=
∂f

∂x
cos θ +

∂f

∂y
sin θ (13.29a)

∂f

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ. (13.29b)

Suppose for example that f(x, y) = x2 + y2. Note that if x, y depend on r, θ as in (13.28),
then x2 + y2 = r2 and thus

∂f

∂r
= 2r.

On the other hand (13.29a) implies that

∂f

∂r
= 2x cos θ + 2y sin θ

(13.28)
= 2r cos2 θ + 2r sin2 θ = 2r. ut

Remark 13.26 (The naturality of the differential). We want to describe a remarkable
“accident” which is extremely important in differential geometry and theoretical physics.
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Suppose that f is a differentiable function depending on the n variables x1, . . . , xn.
Using the convention (13.21) we have

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn . (13.30)

Suppose that the quantities x1, . . . , xn themselves depend differentiably on a number of
variables

xi = xi(u1, . . . , um), i = 1, . . . , n. (13.31)

Through this new dependence we can view the quantity f as a function of the variables
u1, . . . , um and, as such, we have

df =
∂f

∂u1
du1 + · · ·+ ∂f

∂um
dum. (13.32)

? How do we reconcile (13.30) with (13.32)?

The chain rule comes to the rescue. To see that (13.30) and (13.32) are compatible
(noncontradictory) regard the quantities dx1, . . . , dxn as the differentials of the functions
in (13.31), i.e.,

dxi =
∂xi

∂u1
du1 + · · ·+ ∂xi

∂um
dum, i = 1, . . . , n.

The equality (13.30) becomes

df =
∂f

∂x1

(
∂x1

∂u1
du1 + · · ·+ ∂x1

∂um
dum

)
+ · · ·+ ∂f

∂xn

(
∂xn

∂u1
du1 + · · ·+ ∂xn

∂um
dum

)

=

(
∂f

∂x1

∂x1

∂u1
+ · · ·+ ∂f

∂xn
∂xn

∂u1

)
︸ ︷︷ ︸

=:q1

du1 + · · ·+
(
∂f

∂x1

∂x1

∂um
+ · · ·+ ∂f

∂xn
∂xn

∂um

)
︸ ︷︷ ︸

=:qm

dum.

Hence

df = q1du
1 + · · ·+ qmdu

m. (13.33)

The chain rule (13.27) shows that

q1 =
∂f

∂u1
, . . . , qm =

∂f

∂um

so the equality (13.33) is none other than (13.32) in disguise. ut

Let us discuss a few simple but useful applications of the chain rule.

Definition 13.27 (Differentiable paths). Let n ∈ N. A differentiable path in Rn is a
differentiable map γ : I → Rn, where I ⊂ R is an interval. ut
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A differentiable path γ : (a, b)→ Rn is described by n differentiable functions

xi : (a, b)→ R, i = 1, . . . , n,

such that

γ(t) =


x1(t)
x2(t)

...
xn(t)

 .
The differential of the map γ is an n×1 matrix, i.e., a matrix consisting of a single column
of height n. This matrix is

d

dt
γ(t) =



dx1(t)
dt

dx2(t)
dt
...

dxn(t)
dt


We will adopt a convention frequently used by physicists and will denote by an upper dot
“ ˙ ” the time derivatives. With this convention we can rewrite the above equality as

γ̇(t) =



ẋ1(t)

ẋ2(t)
...

ẋn(t)


.

If we think of γ as describing the motion of a point in Rn, then the vector γ̇(t) is the
velocity of that moving point at the moment of time t.

Proposition 13.28 (Derivatives along paths). Let n ∈ N. Assume that U ⊂ Rn is an
open set, f : U → R is a Fréchet differentiable function and γ : (a, b)→ U a differentiable
path. Then

d

dt
f
(
γ(t)

)
=
〈
∇f
(
γ(t)

)
, γ̇(t)

〉
, ∀t ∈ (a, b) , (13.34)

where we recall that ∇f(x) denotes the gradient of f at x. The quantity 〈∇f(γ), γ̇〉 is
called the derivative of f along the path γ.

Proof. As explained above, the path γ is described by n differentiable functions

γ(t) =
(
x1(t), . . . , xn(t)

)
.

We have

f
(
γ(t)

)
= f

(
x1(t), . . . , xn(t)

)
.
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Using the chain rule (13.27) we deduce

d

dt
f
(
γ(t)

)
=
∂f(γ(t))

∂x1

dx1(t)

dt
+ · · ·+ ∂f(γ(t))

∂xn
dxn(t)

dt

=
∂f(γ)

∂x1
ẋ1 + · · ·+ ∂f(γ)

∂xn
ẋn = 〈∇f(γ), γ̇〉.

ut

If we think of the function f : U → R as a physical quantity associated to each point
in U (say temperature) and of the path γ as describing the motion of a point in U , then
the derivative of f along the path is the rate of change of f (per unit of time) during the
motion.

Example 13.29 (Euler identity). Suppose that f : Rn → R is positively homogeneous of
degree k, i.e.,

f(tx) = tkf(x), ∀t > 0, ∀x ∈ Rn \ {0}.

If f is differentiable on Rn \ {0}, then f satisfies Euler’s identity〈
x,∇f(x)

〉
= kf(x), ∀x ∈ Rn \ {0}. (13.35)

To prove the above identity, fix x ∈ Rn \ {0} and consider the path

γx : (0,∞)→ Rn, γx(t) = tx, ∀t > 0.

Observe that

f
(
γx(t)

)
= f(tx) = tkf(x), γ̇x(t) = x, ∀t > 0.

Thus
d

dt
f
(
γx(t)

)
= ktk−1f(x), ∀t > 0.

On the other hand, the derivative of f along γx(t) is given by (13.34)

d

dt
f
(
γx(t)

)
=
〈
γ̇x(t),∇f(γx(t) )

〉
=
〈
x,∇f(tx)

〉
.

We deduce 〈
x,∇f(tx)

〉
= ktk−1f(x), ∀t > 0.

If we set t = 1 in the above equality we obtain Euler’s identity (13.35). ut

Theorem 13.30 (Lagrange mean value theorem). Suppose that U ⊂ Rn is an open set and
f : U → R is a differentiable function. Then, for any x0,x1 ∈ U such that [x0,x1] ⊂ U ,
there exists a point p on the line segment [x0,x1] such that

f(x1)− f(x0) = 〈∇f(p),x1 − x0〉.
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Proof. Consider the restriction of f to the line segment [x0,x1], i.e., the function g : [0, 1]→ R

g(t) = f
(
x0 + t(x1 − x0)

)
.

According to the 1-dimensional Lagrange mean value theorem there exists τ ∈ (0, 1) such
that

f(x1)− f(x0) = g(1)− g(0) = g′(τ).

On the other hand, the derivative of f along the path t 7→ x0 + t(x1 − x0) is

g′(t) =
〈
∇f(x0 + t(x1 − x0) ),x1 − x0

〉
.

This yields the desired conclusion with p = x0 + τ(x1 − x0). ut

Corollary 13.31. Suppose that U ⊂ Rn is an open convex set and f : U → R is a
differentiable function. If there exists C > 0 such that ‖∇f(x)‖ ≤ C, ∀x ∈ U , then

|f(x)− f(y)| ≤ C‖x− y‖, ∀x,y ∈ U. (13.36)

Proof. Let x,y ∈ U . The mean value theorem shows that there exists a point p on the
line segment [x,y] such that

|f(x)− f(y)| =
∣∣〈∇f(p),x− y〉

∣∣.
The desired conclusion now follows by invoking the Cauchy-Schwarz inequality∣∣〈∇f(p),x− y〉

∣∣ ≤ ‖∇f(p)‖ · ‖x− y‖ ≤ C‖x− y‖.

ut

Corollary 13.32. Suppose that U ⊂ Rn is an open and path connected set and f : U → R
is a differentiable function such that ∇f(x) = 0, ∀x ∈ U . Then the function f is constant.

Proof. Fix p0 ∈ U . Let q be an arbitrary point in U . Since U is path connected, Exercise
12.24 shows that there exist points p1, . . . ,pN such that q = pN and the line segments
[pi−1,pi], i = 1, . . . , N , are contained in U . Corollary 13.31 then implies

f(p0) = f(p1) = f(p2) = · · · = f(pN−1) = f(pN ) = f(q).

We have thus proved that f(q) = f(p0), ∀q ∈ U , i.e., f is constant. ut

Corollary 13.33. Suppose that U ⊂ Rn is an open convex set and F : U → Rm is a
C1-map. Suppose that there exists a constant C > 0 such that ‖JF (x)‖HS ≤ C, ∀x ∈ U ,
where ‖ − ‖HS denotes the Hilbert-Schmidt norm of an m× n matrix; see Remark 12.13.
Then

‖F (x)− F (y)‖ ≤ C
√
m‖x− y‖, ∀x,y ∈ U. (13.37)

Proof. Denote by F 1, . . . , Fm the components of F . Note that

‖JF (x)‖2HS =
m∑
i=1

‖∇F i(x)‖2, ∀x ∈ Rn.
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Hence

‖∇F i(x)‖ ≤ ‖JF (x)‖HS , ∀x ∈ U, i = 1, . . . ,m.

Then, for any x,y ∈ U we have

‖F (x)− F (y)‖2 =
m∑
i=1

‖F i(x)− F i(y)‖2
(13.36)

≤
m∑
i=1

C2‖x− y‖2 = C2m‖x− y‖2.

ut

Definition 13.34 (Vector fields). Let n ∈ N.

(i) A vector field on a set S ⊂ Rn is a map

V : S → Rn, S 3 x 7→ V (x).

(ii) An integral curve or flow line of a vector field V on a set S ⊂ Rn is a differentiable
path γ : (a, b)→ Rn such that

γ(t) ∈ S, γ̇(t) = V
(
γ(t)

)
, ∀t ∈ (a, b). (13.38)

ut

Let us emphasize a one aspect in the definition of a vector field that you may overlook.
The domain of the vector field, i.e., set S, lives inside the space Rn and V takes values in
the same vector space Rn. Intuitively, a vector field V on a set S ⊂ Rn associates to each
point x ∈ S a vector V (x) ∈ Rn that should be visualized as an arrow V (x) originating
at x. The result is a “hairy” region S, with one “hair” V (x) at each location x ∈ S; see
Figure 13.5.

An integral curve of the vector field V is then a path γ(t) in S whose velocity γ̇(t) at
each point γ(t) is equal to V

(
γ(t)

)
: this is precisely the arrow the vector field associates

to γ(t). In particular, this arrow is tangent to the path at this point; see the blue curves
in Figure 13.5.

A vector field V on S is determined by n functions on S

V (x) =

 V 1(x)
...

V n(x)

 , ∀x ∈ S, V i : S → R, i = 1, . . . , n.

An integral curve γ : (a, b) → S ⊂ Rn of V is then given by n functions x1(t), . . . , xn(t),
t ∈ (a, b) satisfying the system of differential equations

ẋ1(t) = V 1
(
x1(t), . . . , xn(t)

)
...

...
...

ẋn(t) = V n
(
x1(t), . . . , xn(t)

) . (13.39)
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Figure 13.5. The vector field V (x, y) = (2x,−2y) on the square
S = [−2, 2]× [−2, 2] ⊂ R2 and two integral curves of this vector field.

Example 13.35 (Gradient vector fields). Suppose that U ⊂ Rn is an open set and
f : U → R is a smooth function. The gradient of f defines a vector field on U ,

U 3 x 7→ ∇f(x) ∈ Rn.

This vector field is called the gradient vector field of (or associated to) the function f .
Such a function f is called a potential of the gradient vector field.

The vector field depicted in Figure 13.5 is the gradient vector field of the function
f(x, y) = x2 − y2,

∇f(x, y) = [2x,−2y]>,

The integral curves of this vector field are differentiable maps

R 3 t 7→
[
x(t)
y(t)

]
∈ R2

satisfying the system of differential equations{
ẋ = 2x
ẏ = −2y

.

Arguing as in Example 8.51 we deduce that the solutions of the first equations have the
form x(t) = ae2t, a constant, while the solutions of the second equation are y(t) = be−2t,
b constant.
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Figure 13.6. A non-gradient vector field on the square S = [−2, 2]× [−2, 2] ⊂ R2.

The vector field

R2 3 [x, y]> 7→ V (x, y) =

[
−y
x

]
∈ R2 (13.40)

depicted in Figure 13.6 is not the gradient of any function. Exercise 13.19 asks you to
prove this. ut

Definition 13.36. Suppose that V is a vector field on the set S ⊂ Rn. A prime integral
or conservation law of V is a continuous function f : S → R that is constant along the
flow lines of V , i.e., for any integral curve γ : (a, b)→ S of V , the function

(a, b) 3 t 7→ f(γ(t)) ∈ R

is constant. ut

Proposition 13.37. Suppose that V is a vector field on the open set U ⊂ Rn and
f : U → R is a differentiable function such that〈

∇f(x),V (x)
〉

= 0, ∀x ∈ U.
Then f is a prime integral of V .

Proof. Let γ : (a, b)→ U be an integral curve of V . Then

γ̇(t) = V (γ(t) ),

and
d

dt
f(γ(t) ) = 〈∇f(γ(t) ), γ̇(t) 〉 =

〈
∇f
(
γ(t)

)
,V
(
γ(t)

) 〉
= 0.

ut
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13.4. Higher order partial derivatives

Let U ⊂ Rn be an open set and f : U → R be a function such that the partial derivatives
∂x1f(x), . . . , ∂xnf(x) exist at every point x ∈ U . We obtain n new functions

∂x1f, . . . , ∂xnf : U → R. (13.41)

We say that f admits second order partial derivatives on U if each of the functions (13.41)
admit partial derivatives on U . We say that f admits third order partial derivatives on U
if each of the functions (13.41) admit second order partial derivatives on U . Inductively,
if k ∈ N, we say that f admits partial derivatives of order k on U if each of the functions
(13.41) admit partial derivatives of order k − 1 on U .

Recall that f is said to be C1 on U if the functions (13.41) are continuous on U . We
say that f is C2 on U if the functions (13.41) are C1 on U . We say that f is C3 on U if
the functions (13.41) are C2 on U . Inductively, if k ∈ N, we say that f is Ck on U if the
functions (13.41) are Ck−1 on U . We will write f ∈ Ck(U) to indicate that f is Ck on U .
We say that the function f is smooth or C∞ on U , and we denote this f ∈ C∞(U) if

f ∈ Ck(U), ∀k ∈ N.

Note that Ck(U) stands for the collection of all functions f : U → R that are Ck on
U . This collection is a vector space.

Suppose that f : U → R is a function that admits second order derivatives on U .
Thus, each of the first order derivatives ∂xjf , j = 1, . . . , n, admits in its turn first order
derivatives. We denote

∂2
xkxjf or

∂2f

∂xk∂xj

the partial derivative of the function ∂xjf with respect to the variable xk, i.e.,

∂2
xkxjf := ∂xk

(
∂xjf

)
.

More generally, if f is a Ck-function, then for any i1, . . . , ik ∈ {1, . . . , n} we define induc-
tively

∂k
xik ···xi1f := ∂xik

(
∂k−1

xik−1 ···xi1
f = ∂xik

)
.

We have the following important result.

Theorem 13.38 (Partial derivatives commute). Let n ∈ N and suppose that U ⊂ Rn is
an open set. Then for any function f ∈ C2(U) we have

∂2
xkxjf(x) = ∂2

xjxkf(x), ∀x ∈ U, ∀j, k = 1, . . . , n.

Proof. The result is obviously true when j = k so it suffices to consider the case j 6= k,
say j < k. Fix a point a ∈ U . We have to prove that

∂2
xkxjf(a) = ∂2

xjxkf(a). (13.42)
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We have

∂xjf(x) = lim
s→0

f(x+ sej)− f(x)

s
, ∀x ∈ U (13.43a)

∂xkf(x) = lim
t→0

f(x+ tek)− f(x)

t
, ∀x ∈ U (13.43b)

∂2
xkxjf(a) = lim

t→0

∂xjf(a+ tek)− ∂xjf(a)

t

(13.43a)
= lim

t→0

(
lim
s→0

1

t
· f(a+ tek + sej)− f(a+ tek)− f(a+ sej) + f(a)

s

)
.

Similarly

∂2
xjxkf(a) = lim

s→0

∂xkf(a+ sej)− ∂xkf(a)

s

(13.43a)
= lim

s→0

(
lim
t→0

1

s
· f(a+ tek + sej)− f(a+ sej)− f(a+ tek) + f(a)

t

)
.

If we denote by Q(s, t), s, t 6= 0, the quantity

Q(s, t) := f(a+ tek + sej)− f(a+ tek)− f(a+ sej) + f(a)

then we see that (13.42) is equivalent with the equality

lim
s→0

(
lim
t→0

Q(s, t)

st

)
= lim

t→0

(
lim
s→0

Q(s, t)

st

)
. (13.44)

The two sides above are examples of iterated limits, and they differ only in the order
we take the limits. It suggests that Theorem 13.38 is at least plausible. However, the
complete proof of (13.44) is not trivial and requires a bit of sweat.

a a

a a
s,t

s,0

0,t

Figure 13.7. The rectangle Rs,t at a spanned by the vectors sej and tek.

For simplicity, for s, t ∈ R we set (see Figure 13.7)

as,t := a+ sej + tek.
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Denote by Rs,t the rectangle with vertices a,as,0,a0,t,as,t. Note also that

Q(s, t) = f(as,t)− f(a0,t)− f(as,0) + f(a),

and that st is the area of this rectangle.

Applying the Lagrange Mean Value Theorem to the function λ 7→ gt(λ) we deduce that, for any s, t small,

there exists λ= λs,t ∈ (0, s) such that
Q(s, t)

s
=
gt(s)− gt(0)

s

= g′t(λ) = ∂xj f(a+ λej + tek)− ∂xj f(a+ λej) = ∂xj f(aλ,t)− ∂xj f(aλ,0).

Applying the Lagrange Mean Value Theorem to the function

h(µ) = ∂xj f(a+ µek + λs,tej)

we deduce that there exists µ= µs,t in the interval (0, t) such that

Q(s, t)

st
=
∂xj f(a+ tek + λs,tej)− ∂xj f(a+ λs,tej)

t
=
h(t)− h(0)

t

= h′(µs,t) = ∂2
xkxj

f(a+ µs,tek + λs,tej) = ∂2
xkxj

f(a
λ,µ

).

We denote by ps,t the point a+ µs,tek + λs,tej . Thus

Q(s, t)

st
= ∂2

xkxj
f(ps,t). (13.45)

Applying the Lagrange Mean Value Theorem to the function β 7→ us(β) = Q(s, β) we deduce that for every s, t

sufficiently small there exists β= βs,t in (0, t) such that

Q(s, t)

t
=
us(t)− us(0)

t
= u′s(β) = ∂xkf(a+ sej +βek)− ∂xkf(a+βek).

Applying the Lagrange Mean Value Theorem to the function

α 7→ v(α) = ∂xkf(a+ αej +βek)

we deduce that there exists α= αs,t in the interval (0, s) such that

Q(s, t)

st
=
us(t)− us(0)

st
=
∂xkf(a+ sej +βek)− ∂xkf(a+βek)

s

=
v(s)− v(0)

s
= v′(α) = ∂2

xjxk
f(a+αej +βek).

We denote by qs,t the point a+ αs,tej + βs,tek. Thus

Q(s, t)

st
= ∂2

xjxk
f(qs,t). (13.46)

In particular, we deduce

∂2
xkxj

f(ps,t) =
Q(s, t)

st
= ∂2

xjxk
f(qs,t). (13.47)

Note that since α, λ ∈ (0, s), β, µ ∈ (0, t) we have

dist(a,ps,t) =

√
λ
2

+µ2 ≤
√
s2 + t2, (13.48a)

dist(a, qs,t) =

√
α2 +β

2 ≤
√
s2 + t2. (13.48b)

Fix r > 0 sufficiently small such that the closed ball Br(a) is contained in U . Since the functions

∂2
xkxj

f, ∂2
xjxk

f : U → R

are continuous, they are continuous at a. Hence, for any ε > 0, there exists δ = δ(ε) > 0 such that

∀x ∈ U, dist(a,x) < δ(ε)⇒
∣∣ ∂2
xkxj

f(a)− ∂2
xkxj

(x)
∣∣ < ε

2
,∣∣ ∂2

xjxk
f(a)− ∂2

xjxk
(x)

∣∣ < ε

2
.

(13.49)
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Fix ε > 0. Choose s, t > 0 small enough such that
√
s2 + t2 < δ(ε) and Rs,t ⊂ Br(a). The points ps,t and qs,t

belong to the rectangle Rs,t and thus, also to U . We deduce∣∣ ∂2
xkxj

f(a)− ∂2fxjxk (a)
∣∣

≤
∣∣ ∂2
xkxj

f(a)− ∂2
xkxj

f(ps,t) |+
∣∣ ∂2
xkxj

f(ps,t)− ∂2
xjxk

f(qst)
∣∣ +

∣∣ ∂2
xjxk

f(qst)− ∂2fxjxk (a)
∣∣

(13.47)
=

∣∣ ∂2
xkxj

f(a)− ∂2
xkxj

f(ps,t) |+
∣∣ ∂2
xjxk

f(qst)− ∂2fxjxk (a)
∣∣

( use (13.48a, 13.48b,13.49))

<
ε

2
+
ε

2
= ε.

This shows that ∣∣ ∂2
xkxj

f(a)− ∂2fxjxk (a)
∣∣ < ε, ∀ε > 0.

This proves (13.42). ut

Example 13.39 (Gradient vector fields again). Suppose that U ⊂ Rn is an open set and
V : U → Rn is a C1-vector field

V (x1, . . . , xn) =

 V 1(x1, . . . , xn)
...

V n(x1, . . . , xn)

 .
Let us show that

V is a gradient vector field ⇒ ∂xjV
i = ∂xiV

j , ∀x ∈ U, i 6= j . (13.50)

Indeed, if V is the gradient of some function f : U → R, then

V i = ∂xif, ∀i.

In particular this shows that the function f is C2 since its partial derivatives are C1. We
deduce

∂xjV
i = ∂xj (∂xif) = ∂xi(∂xjf) = ∂xiV

j .

For example, if V (x, y) is a gradient vector field on R2

V (x, y) =

[
P (x, y)
Q(x, y)

]
= P (x, y)i+Q(x, y)j,

then
∂P

∂y
=
∂Q

∂x
.

Similarly, if V (x, y, z) is a gradient vector field on R3

V (x, y, z) =

 P (x, y, z)
Q(x, y, z)
R(x, y, z)

 = P (x, y, z)i+Q(x, y, z)j +R(x, y, z)k,

then
∂P

∂y
=
∂Q

∂x
,
∂R

∂y
=
∂Q

∂z
,
∂P

∂z
=
∂R

∂x
.
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The converse of (13.50) is not true. More precisely, there exist open sets U ⊂ Rn and C1

vector fields V : U → Rn satisfying (13.50) yet they are not gradient vector fields.

A famous example is the vector field

Θ : R2 \ {0} → R2, Θ(x, y) =

[
P (x, y)
Q(x, y)

]
:=

 − y
x2+y2

x
x2+y2


Indeed

∂yP = − 1

x2 + y2
+

2y2

(x2 + y2)2
=
−(x2 + y2) + 2y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

∂xQ =
1

x2 + y2
− 2x2

(x2 + y2)2
=

(x2 + y2)− 2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

The reason why Θ is not a gradient vector field is rather subtle and can be properly ex-
plained once we introduce the concept of integration along paths. What is more surprising,
H. Poincaré proved that if U ⊂ Rn is an open convex set and V → Rn is a C1 vector field
satisfying (13.50), then V is a gradient vector field. Thus, for any open convex subset
C ⊂ R2 \ {0} there exists a C2 function fC : C → R such that

Θ(x) = ∇fC(x), ∀x ∈ C.
We cannot however find a function f : R2 \ {0} → R such that Θ = ∇f ! ut

Example 13.40. Suppose that f : R2 → R is a C3 function of two variables x, y. Then
∂yf is a C2 function and we have

∂3
xyyf = ∂2

xy

(
∂yf

)
= ∂2

yx

(
∂yf

)
= ∂3

yxyf = ∂y
(
∂2
xyf

)
= ∂y

(
∂2
yxf

)
= ∂3

yyxf .

If additionally f is C4, then a similar argument shows

∂4
xxyyf = ∂4

xyxyf = ∂4
yxxyf = ∂4

yxyxf = ∂4
yyxxf = ∂4

xyyxf.

It is now time to introduce a more convenient notation. Fix n ∈ N. A multi-index of
dimension n is an n-tuple

α = (α1, . . . , αn), α1, . . . , αn ∈ Z≥0.

The size of the multi-index α is the nonnegative integer

|α| := α1 + · · ·+ αn.

Suppose now that m ∈ N, U ⊂ Rn is an open set and f : U → R is a Cm-function. Given
k ≤ m we define

∂kx1f := ∂kx1···x1f, . . . , ∂
k
xnf := ∂kxn···xnf.

Thus, instead of ∂2
x1x1 we will write ∂2

x1f . We define ∂0
x1f := f .

For any multi-index α of dimension n and size |α| ≤ m we set

∂αx f := ∂α1

x1 ∂
α2

x2 · · · ∂αnxn f.
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13.5. Exercises

Exercise 13.1. Let m,n ∈ N, U ⊂ Rn , x0 ∈ U and F : U → Rm a map. Assume U is
open. Prove that the following statements are equivalent.

(i) The map F is Fréchet differentiable at x0.

(ii) There exists a linear operator L : Rn → Rm with the following property:

∀ε > 0, ∃δ = δ(ε) > 0 : ∀h ∈ Rn, ‖h‖ < δ ⇒
∥∥F (x0 + h)− F (x0)− Lh

∥∥ ≤ ε‖h‖.
(iii) There exists a linear operator L : Rn → Rm, a number r > 0 such that

Br(x0) ⊂ U and a function ϕ : [0, r)→ [0,∞) with the following properties∥∥F (x0 + h)− F (x0)− Lh
∥∥ ≤ ϕ( ‖h‖ )‖h‖.

lim
t↘0

ϕ(t) = 0 = ϕ(0).

Hint. For (ii) ⇒ (iii) use

ϕ(t) := sup
‖h‖=t

1

‖h‖
∥∥F (x0 + h)− F (x0)− Lh

∥∥, t > 0.

ut

Exercise 13.2. Consider the map F : R3 → R2 given by

F (x, y, z) =

[
x3 + y3 + z3

xyz

]
.

(i) Show that F is differentiable at any point (x0, y0, z0) ∈ R3.

(ii) Find the Jacobian matrix of F at the point (x0, y0, z0) = (1, 1, 1).

ut

Exercise 13.3. Compute the Jacobian matrices of the maps F : R2 → R2,G,H : R3 → R3

defined by [
r
θ

]
F7→
[
x
y

]
=

[
r cos θ
r sin θ

]
, ρ

θ
ϕ

 G7→

 x
y
z

 =

 ρ sinϕ cos θ
ρ sinϕ sin θ
ρ cosϕ

 ,
 r
θ
z

 H7→

 x
y
z

 =

 r cos θ
r sin θ
z

 . ut

Exercise 13.4. Show that the function f : R2 → R, f(x, y) = 2xy is C1 and then find its
linear approximation at the point (x0, y0) = (1, 1).

Hint. Use Example 13.19 as inspiration. ut

Exercise 13.5. Let n ∈ N and suppose that A is a symmetric n× n matrix. Define

qA : Rn → R, qA(x) =
1

2
〈Ax,x〉, ∀x ∈ Rn.
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Prove that

∇qA(x) = Ax, ∀x ∈ Rn.
Hint. You need to use the results in Exercise 11.24. ut

Exercise 13.6. A function f : Rn → R is called homogeneous of degree 1, if

f(tx) = tf(x), ∀t ∈ R, x ∈ Rn.

(i) Prove that if f : Rn → R is homogeneous of degree 1, then for any v ∈ Rn \ {0},
the function f is differentiable along v at 0.

(ii) Show that the function

f : R2 → R, f(x, y) =

{
x3−y3

x2+y2 , (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

is homogeneous of degree 1, it is continuous at 0, but it is not Fréchet differen-
tiable at 0.

(iii) Prove that if f : Rn → R is homogeneous of degree 1 and Fréchet differentiable
at 0, then f is linear.

ut

Exercise 13.7. Let m,n ∈ N. Suppose that U is an open subset of Rn, I ⊂ R is an open
interval,γ : I → U is a C1-path and F : U → Rm is a C1-map. Let ω : I → Rm denote
the C1-path ω(t) = F

(
γ(t) ). Prove that

ω̇(t) = dF
(
γ(t)

)
γ̇(t), ∀t ∈ I. ut

Exercise 13.8. Let a, b ∈ R, a < b and suppose that α,β : (a, b)→ R3 are two C1-paths.
Prove that

d

dt

(
α(t)× β(t)

)
= α̇(t)× β(t) +α(t)× β̇(t).

Hint. Use (11.22). ut

Exercise 13.9. Let f : Rn → R, f(x) = ‖x‖2 and suppose that α,β : (−1, 1) → Rn are
two differentiable paths.

(i) Show that

d

dt

〈
α(t),β(t)

〉
=
〈
α̇(t),β(t)

〉
+
〈
α(t), β̇(t)

〉
, ∀t ∈ (−1, 1).

(ii) Compute the gradient ∇f . Hint. Compare with Exercise 13.5.

(iii) Compute d
dt‖α(t)‖2.

(iv) Show that the function t 7→ ‖α(t)‖ is constant if and only if α(t) ⊥ α̇(t),
∀t ∈ (−1, 1).

(v) What can you say about the motion described by the pathα(t) whenα(t) ⊥ α̇(t),
∀t?
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ut

Exercise 13.10. Let f : Rn \ {0} → R be a function that is positively homogeneous of
degree k, i.e.,

f(tx) = tkf(x), ∀t > 0, x ∈ Rn \ {0}.
Show that if f is differentiable, then the partial derivatives ∂f

∂xi
, i = 1, . . . , n, are positively

homogeneous of degree k − 1. ut

Exercise 13.11. Suppose that the path

γ : R→ R2, γ(t) =

[
x(t)
y(t)

]
∈ R2

is an integral curve of the vector field V defined in (13.40).

(i) Prove that ‖γ(t)‖ = ‖γ(0)‖, ∀t.
(ii) Deduce from the above that ẋ(t)2 + x(t)2 = ẋ(0)2 + x(0)2, ∀t.
(iii) Prove that ẍ = −x, where f̈ denotes the second order time derivative of a

function f .

(iv) Given that γ(0) = (1, 0) determine γ(t).

Hint. For (i)-(iii) use the differential equations (13.39). (iv) Compare with Exercise 7.16. ut

Exercise 13.12. Prove that the function r : Rn \ {0} → R, r(x) = ‖x‖, is C1 and then
describe its differential. ut

Exercise 13.13. Let n ∈ N. Fix a C1-function U : Rn \ {0} → R. Suppose that I is an
open interval of the real axis and

γ : I → Rn \ {0}, t 7→ γ(t) = [x1(t), . . . , xn(t)]>,

is a C2-path satisfying Newton’s (2nd Law of Dynamics) differential equations

γ̈(t) = −∇U
(
γ(t)

)
, ∀t ∈ I.

(i) (Conservation of energy) Prove that the function E : I → R

E(t) =
1

2
‖γ̇(t)‖2 + U

(
γ(t)

)
,

is constant.

(ii) (Conservation of momenta) Suppose that there exists a C1-function f : (0,∞)→ R
such that

U(x) = f(‖x‖), ∀x ∈ Rn \ {0}.
Prove that for, any 1 ≤ k < ` ≤ n, the function P k` : I → R

P k`(t) = ẋk(t)x`(t)− ẋ`(t)xk(t)

is constant.
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ut

Exercise 13.14. Let k, n ∈ N.

(i) Prove that if f : Rn → R and u : R → R are Ck-functions, then so is their
composition u ◦ f : Rn → R.

(ii) Let n ∈ N and r > 0. Prove that for any 0 < r < R there exists a nonzero
function f ∈ C∞(Rn) such that f(x) = 1 if ‖x‖ ≤ r and f(x) = 0, if ‖x‖ ≥ R.

(iii) Let n ∈ N. Suppose that K ⊂ Rn is a compact set and U is an open cover of K.
Prove that there exist compactly supported smooth functions

χ1, . . . , χ` : Rn → [0,∞)

with the following properties.
• For any i = 1, . . . , ` there exists an open set U = Ui in the family U such

that suppχi ⊂ Ui.
• χ1(x) + · · ·+ χ`(x) = 1, ∀x ∈ K.

Hint. (i) Argue by induction on k. (ii) Use the result proved in Exercise 7.8 to construct a smooth function

u : R→ [0,∞) such that u(s) = 1 if s ≤ 0 and u(s) = 0 if s ≥ 1. Then, for a < b, define

ua,b : R→ [0,∞), ua,b(t) = u

(
t− a
b− a

)
and show that ua,b is smooth and satisfies ua,b(t) = 1 if t ≤ a and ua,b(t) = 0 if t > b. Finally, set f(x) = ua,b(‖x‖2)

with a = r2, b = R2 and then show that f will do the trick. (iii) Use (ii) and imitate the proof of Theorem 12.68.

ut

Exercise 13.15. Let n ∈ N. For any open set O ⊂ Rn we define the Laplacian to be the
map

∆ : C2(O)→ C(O), (∆f)(x) =
n∑
k=1

∂2
xkf(x). (13.51)

(i) Show that, ∀f, g ∈ C2(O), we have

∆(f + g) = ∆f + ∆g,

∆(fg) = f∆g + 2〈∇f,∇g〉+ g∆f

(ii) Show

∆‖x‖p = p(p+ n− 2)‖x‖p−2, ∀x ∈ Rn \ {0}, p ∈ R.

ut

Exercise 13.16. Let n ∈ N, n ≥ 2. Consider the function U : Rn \ {0} → R

U(x) =

{
log ‖x‖, n = 2,

1
‖x‖n−2 , n > 2.

Compute ∆U(x), where ∆ is the Laplacian defined as in (13.51). ut



13.6. Exercises for extra credit 463

Exercise 13.17. Let n ∈ N and consider the function K : (0,∞)× Rn → R given by

K(t,x) = t−n/2e−
‖x‖2

4t .

Compute

∂tK −∆xK = ∂tK −
(
∂2
x1K + · · ·+ ∂2

xnK
)
.

ut

Exercise 13.18. Suppose that f, g : R→ R are C2 functions. Define

w : R2 → R, w(t, x) = f(x+ t) + g(x− t).

Compute

∂2
tw − ∂2

xw. ut

Exercise 13.19. Show that the vector field

V : R2 → R2, V (x, y) =

[
−y
x

]
is not a gradient vector field.

Hint. Have a look at Example 13.39. ut

13.6. Exercises for extra credit

Exercise* 13.1. Let n ∈ N and denote by Mat∗n(R) the set of invertible n× n matrices.

(i) Prove that Mat∗n(R) is open (in Matn(R)).

(ii) Prove that the map F : Mat∗n(R)→ Matn(R) given by

F (A) = A−1,

is differentiable and then compute its differential at A0 ∈ Mat∗n(R).

ut

Exercise* 13.2. Let k, n ∈ N and U ⊂ Rn be an open subset. Prove that the collection
Ck(U) of functions that are Ck on U is a real vector space. Moreover, show that this
vector is infinite dimensional. ut

Exercise* 13.3. Let n ∈ N and suppose that A is an n× n matrix.

(i) Prove that for any x ∈ Rn the series

∞∑
k=0

1

k!
Akx = x+Ax+

1

2!
A2x+

1

3!
A3x+ · · ·

is absolutely convergent.
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(ii) Prove that for any x ∈ Rn the path

γ : R→ Rn, γ(t) =
∞∑
k=0

1

k!
(tA)kx

is differentiable and

γ̇(t) = Aγ(t), ∀t ∈ R.
(iii) Compute γ(t) when n = 2,

x =

[
x1

x2

]
and A =

[
λ1 0
0 λ2

]
.



Chapter 14

Applications of
multi-variable
differential calculus

We present below a few of the most frequently encountered applications of multi-dimensional
differential calculus.

14.1. Taylor formula

Just like functions of one real variable, the differentiable functions of several variables can
be well approximated by certain explicit polynomials. We present in this section two such
approximation formulæ that are used frequently in applications. We refer to [4, §2.8] for
more general results.

Fix n ∈ N, an open set U ⊂ Rn and a point x0 ∈ U . Then there exists r0 > 0 such
that Br0(x0) ⊂ U . Suppose that f : U → R is a differentiable function.

Theorem 14.1 (Multidimensional Taylor formula). (a) If the function f is C2, then for
any h = (h1, . . . , hn) ∈ Rn such that ‖h‖ < r0 we have

f(x0 + h) = f(x0) +

n∑
i=1

∂xif(x0)hi +R1(x0,h), (14.1)

where the remainder R1(x0,h) is described by the integral formula

R1(x0,h) =

∫ 1

0
(1− t)ρ2(x0,h, t)dt, ρ2(x0,h, t) =

n∑
i,j=1

∂2
xixjf(x0 + th)hihj . (14.2)

465
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Moreover, there exists a constant C > 0, independent of h , such that∣∣R1(x0,h)
∣∣ ≤ C‖h‖2, ∀‖h‖ < r0. (14.3)

(b) If the function f is C3, then for any h = (h1, . . . , hn) ∈ Rn such that ‖h‖ < r0 we
have

f(x0 + h) = f(x0) +
n∑
i=1

∂xif(x0)hi +
1

2

n∑
i,j=1

∂2
xixjf(x0)hihj +R2(x0,h), (14.4)

where the remainder R2(x0,h) is described by the integral formula

R2(x0,h) =
1

2!

∫ 1

0
(1− t)2ρ3(x0,h, t)dt,

ρ3(x0,h, t) =
n∑

i,j,k=1

∂3
xixjxkf(x0 + th)hihjhk.

(14.5)

Moreover, there exists a constant C > 0, independent of h , such that∣∣R2(x0,h)
∣∣ ≤ C‖h‖3, ∀‖h‖ < r0. (14.6)

Proof. We prove only (b). The case (a) is similar and involves simpler computations. Fix
h ∈ Rn such that ‖h‖ < r0. Consider the C3-function

g : [−1, 1]→ R, g(t) = f(x0 + th).

Using the one dimensional Taylor formula with integral remainder, Proposition 9.51, we
deduce

g(1) = g(0) + g′(0) +
1

2
g′′(0) +R2, R2 =

1

2!

∫ 1

0
g(3)(t)(1− t)2dt. (14.7)

Using the chain rule (13.34) repeatedly we deduce

g′(t) =

n∑
i=1

∂xif(x0 + th)hi, g′′(t) =

n∑
i,j=1

∂2
xixjf(x0 + th)hihj ,

g(3)(t) =
n∑

i,j,k=1

∂3
xixjxkf(x0 + th)hihjhk.

Using these equalities in (14.7) we obtain (14.4) and (14.5). It remains to prove (14.6).

Observe that |hi| ≤ ‖h‖ for any i = 1, . . . , n. Hence

|ρ3(x0,h, t)| ≤
n∑

i,j,k=1

∣∣ ∂3
xixjxkf(x0 + th)hihjhk

∣∣ ≤ ‖h‖3 n∑
i,j,k=1

∣∣ ∂3
xixjxkf(x0 + th)

∣∣.
For each i, j, k = 1, . . . , n we set

Mi,j,k = sup
x∈Br0 (x0)

∣∣ ∂3
xixjxkf(x)

∣∣.
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The quantity Mi,j,k is finite since the function ∂3
xixjxk

f(x) is continuous on the compact

set Br0(x0). We set

M := max
i,j,k

Mi,j,k.

Clearly, the number M is independent of h. We deduce that for any ‖h‖ < r0 we have

|ρ3(x0,h, t)| ≤ ‖h‖3
n∑

i,jk=1

Mi,j,k ≤ ‖h‖3
n∑

i,j,k=1

M = Mn3‖h‖3.

Hence

|R2(x0,h)| ≤ 1

2

∫ 1

0
(1− t)2 |ρ3(x0,h, t)|dt ≤

Mn3

2
‖h‖3.

ut

Definition 14.2. The n× n matrix H(f,x0) with entries

H(f,x0)ij = ∂2
xixjf(x0), 1 ≤ i, j ≤ n,

is called the Hessian of f at x0.1 ut

Since partial derivatives commute, we see that the Hessian is a symmetric matrix, i.e.,

∂2
xixjf(x0) = ∂2

xjxif(x0).

The matrix H(f,x0) defines a linear operator Rn → Rn given by

H(f,x0)h =
( n∑
j=1

H(f,x0)1jh
j
)
e1 + · · ·+

( n∑
j=1

H(f,x0)njh
j
)
en

=
n∑
i=1

( n∑
j=1

H(f,x0)ijh
j
)
ei, ∀h ∈ Rn.

We deduce that
n∑

i,j=1

∂2
xixjf(x0)hihj =

〈
h,H(f,x0)h

〉
. (14.8)

We can rewrite the equality (14.4) in the more compact form

f(x0 + h) = f(x0) +
〈
∇f(x0),h

〉
+

1

2

〈
h,H(f,x0)h

〉
+R2(x0,h) . (14.9)

1Note that when describing the Hessian matrix both indices are subscripts. This differs from the way we

described the matrix associated to an operator where one index is a superscript, the other is a subscript. This
discrepancy is a reflection of the fact that the Hessian of a function is intrinsically a different beast than a linear
operator.
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Example 14.3. Consider the function

f : R2 → R, f(x, y) = 3x2 + 4xy + 5y2.

Then

∂2
xf = 6, ∂2

xyf = 4, ∂2
yf = 10.

The Hessian of f at 0 is the symmetric 2× 2-matrix

H(f,0) =

[
6 4
4 10

]
. ut

14.2. Extrema of functions of several variables

Fix a natural number n.

Definition 14.4. Let X ⊂ Rn and x0 ∈ X. Fix a function f : X → R.

(i) The point x0 is said to be a local minimum of the function if there exists r > 0
with the following property

∀x ∈ X dist(x,x0) < r ⇒ f(x0) ≤ f(x),

(ii) The point x0 is said to be a local maximum of the function f if there exists r > 0
with the following property

∀x ∈ X dist(x,x0) < r ⇒ f(x0) ≥ f(x).

(iii) The point x0 is said to be a local extremum of the function f if it is either a
local minimum or a local maximum of f .

ut

The one-dimensional Fermat Principle2 (Theorem 7.24) has the following multi-dimensional
counterpart.

Theorem 14.5 (Multidimensional Fermat Principle). Suppose that U ⊂ Rn is an open

set and f : U → R is a C1-function. If x0 ∈ U is a local extremum of f , then df(x0) = 0,
i.e.,

∂x1f(x0) = · · · = ∂xnf(x0) = 0.

Proof. Assume for simplicity that x0 is a local minimum of f . (When x0 is a local
maximum of f , then it is a local minimum of −f .) Fix r > 0 sufficiently small with the
following properties.

• Br(x0) ⊂ U .

• f(x0) ≤ f(x), ∀x ∈ Br(x0).

2See this beautiful lecture by Richard Feynmann http://www.feynmanlectures.caltech.edu/II_19.html

http://www.feynmanlectures.caltech.edu/II_19.html
http://www.feynmanlectures.caltech.edu/II_19.html
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Fix a vector h ∈ Rn. For ε > 0 sufficiently small, the line segment [x0 − εh,x0 + εh]
is contained in the ball Br(x0). Consider now the function

g : [−ε, ε]→ R, g(t) = f(x0 + th).

We can identify g with the restriction of f to the line segment [x0 − εh,x0 + εh]. Note
that g(0) = f(x0) ≤ f(x0 + th) = g(t), ∀t ∈ [−ε, ε]. Thus 0 is a minimum point of g and
the one-dimensional Fermat principle implies that g′(0) = 0. The chain rule (13.34) now
implies 〈

∇f(x0),h
〉

= g′(0) = 0.

We have thus shown that
〈
∇f(x0),h

〉
= 0, for any vector h ∈ Rn. If we choose

h = ∇f(x0), then we deduce

‖∇f(x0)‖2 =
〈
∇f(x0),∇f(x0)

〉
= 0.

ut

Definition 14.6. Let U ⊂ Rn be an open set. A critical point of a differentiable function
f : U → R is a point x0 ∈ U such that df(x0) = 0. ut

We can rephrase Theorem 14.5 as follows.

If U ⊂ Rn is an open set, and x0 ∈ U is a local extremum of a C1-function f : U → R,
then x0 must be a critical point of f .

We know now that the local extrema of a C1-function f : U → R, if any, are located
among the critical points of f . We want to address a sort of converse. Suppose that
x0 ∈ U is a critical point. Is there any way of deciding whether x0 is a local min, max or
neither?

To answer this question we need to introduce some more terminology.

Definition 14.7. Suppose that A is a symmetric n× n matrix A. We denote by aij the
entry located on the i-th row and j-th column.

(i) The quadratic function associated to A is the function QA : Rn → R given by

QA(h) = 〈h, Ah〉 =

n∑
i,j=1

aijh
ihj .

(ii) The matrix A is called positive definite if

QA(h) > 0, ∀h ∈ Rn \ {0}.
(iii) The matrix A is called negative definite if

QA(h) < 0, ∀h ∈ Rn \ {0}.
(iv) The matrix A is called indefinite if there exist h0,h1 ∈ Rn \ {0} such that

QA(h0) < 0 < QA(h1).
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ut

Let us observe that the quadratic function associated to a symmetric n× n matrix A
is homogeneous of degree 2, i.e.,

QA(th) = t2QA(h), ∀t ∈ R, h ∈ Rn. (14.10)

Example 14.8. Suppose that n = 2,

A =

[
a b
b c

]
, h =

[
x
y

]
,

Then

Ah =

[
ax+ by
bx+ cy

]
, QA(h) = 〈h, Ah〉 = x(ax+ by) + y(bx+ cy) = ax2 + 2bxy + cy2. ut

Theorem 14.9. Let U ⊂ R be an open set and f : U → R a C3-function. Suppose that
x0 is a critical point of f . Denote by A the Hessian of f at x0, A := H(f,x0). Then the
following hold.

(i) If A is positive definite, then x0 is a local minimum of f .

(ii) If A is negative definite, then x0 is a local maximum of f .

(iii) If A is indefinite, then x0 is not a local extremum of f .

Proof. The above claims are immediate consequences of Taylor’s formula (14.4). Fix

r > 0 sufficiently small such that Br(x0) ⊂ U . According to (14.4) for any h such that
‖h‖ < r we have

f(x0 + h) = f(x0) +
1

2
QA(h) +R2(x0,h). (14.11)

Moreover, there exists C > 0 such that

|R2(x0,h)| ≤ C‖h‖3, ∀‖h‖ < r. (14.12)

To prove (i) we need to use the following very useful technical fact whose proof is
outlined in Exercise 14.5.

Lemma 14.10. Suppose that A is a symmetric, positive definite matrix. Then there exists
m > 0 such that

QA(h) ≥ m‖h‖2, ∀h ∈ Rn. ut

Suppose now that A = H(f,x0) is positive definite. Choose a number m > 0 as in
Lemma 14.10. From (14.11) and (14.12) we deduce

f(x0 + h) ≥ f(x0) +
m

2
‖h‖2 − C‖h‖3 = f(x0) + ‖h‖2

( m
2
− C‖h‖

)
.

Choose ε > 0 smaller than both r and m
2C . Then, for any h such that ‖h‖ < ε we have

x0 + h ∈ Bε(x0),
m

2
− C‖h‖ > 0.
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Thus for any h such that ‖h‖ < ε we have f(x0 + h) > f(x0). This proves that x0 is a
local minimum of f .

The statement (ii) reduces to (i) by observing that the Hessian of −f at x0 is −A and
it is positive definite. Thus x0 is a local minimum of −f , therefore a local maximum of f .

To prove (iii) choose vectors h0,h1 such that

QA(h0) < 0 < QA(h1).

For t > 0 sufficiently small we have x0 + th0,x0 + th1 ∈ Br(x0) and

f(x0 + th0) = f(x0) +
1

2
QA(th0) +R2(x0, th0)

(14.10)
= f(x0) +

t2

2
QA(h0) +R2(x0, th0)

≤ f(x0) +
t2

2
QA(h0) + Ct3‖h0‖3 = f(x0) +

t2

2

(
QA(h0) + 2tC‖h0‖

)
︸ ︷︷ ︸

=:u(t)

.

Observe that

lim
t→0

u(t) = QA(h0) < 0

so u(t) is negative for t sufficiently small. Thus, for all t sufficiently small we have

f(x0 + th0) < f(x0),

so x0 cannot be a local minimum. Similarly

f(x0 + th1) = f(x0) +
1

2
QA(th1) +R2(x0, th1) = f(x0) +

t2

2
QA(h1) +R2(x0, th1)

≥ f(x0) +
t2

2
QA(h1)− Ct3‖h1‖

(14.10)
= f(x0) +

t2

2

(
QA(h1)− 2Ct‖h1‖

)
︸ ︷︷ ︸

=:v(t)

.

Observe that

lim
t→0

v(t) = QA(h1) > 0

so v(t) > 0 for all t sufficiently small. Hence, for all t sufficiently small we have

f(x0 + th1) > f(x0)

so x0 cannot be a local maximum either.

ut

Remark 14.11. Deciding when a symmetric matrix A is positive/negative definite or
indefinite is a nontrivial task. All the known techniques rely on more linear algebra than
we are prepared to assume at this point. It is known that all the eigenvalues of a real
symmetric matrix are real. The matrix A is positive/negative definite if all its eigenvalues
are positive/negative. The matrix A is indefinite if it admits both positive and negative
eigenvalues.

If the dimension of the matrix A is small one can conceive faster ad-hoc methods of
deciding if S is positive/negative definite. In Exercise 14.6 we describe a simple method
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of deciding when a 2× 2 symmetric matrix is positive/negative definite. This is a special
case of a theorem of J.J. Sylvester3.[20, Chap. 7]. ut

Example 14.12. Consider the function

f : (0,∞)× (0,∞)→ R, f(x, y) = x3y2(6− x− y).

The critical points of f are found solving the system of equations ∂xf = ∂yf = 0, i.e.,{
3x2y2(6− x− y)− x3y2 = 0
2x3y(6− x− y)− x3y2 = 0.

(14.13)

The first equality in (14.13) can be rewritten as

x2y2
(

3(6− x− y)− x
)

= 0.

Since x, y > 0 we deduce

18− 3x− 3y − x = 0⇒ 4x+ 3y = 18.

The second equality in (14.13) can be rewritten as

x3y
(

2(6− x− y)− y
)

= 0

and we conclude as above that

2x+ 3y = 12.

Hence

2x = (4x+ 3y)− (2x+ 3y) = 18− 12 = 6⇒ x = 3.

Using this information in the equality 2x+ 3y = 12 we deduce 3y = 6 so y = 2. Thus, the
only critical point of f is (3, 2). Let us find the Hessian at this point. We have

∂xf = x2y2
(
3(6− x− y)− x

)
= x2y2

(
18− 4x− 3y

)
,

∂yf = x3y
(

2(6− x− y)− y
)

= x3y
(

12− 2x− 3y
)
,

∂2
xxf = 2xy2(18− 4x− 3y)− 4x2y2, ∂2

xyf = 2x2y(18− 4x− 3y)− 3x2y2,

∂2
yyf = 3x2(12− 2x− 3y)− 3x3y.

Hence

∂2
xxf(3, 2) = −4 · 32 · 22 = −144, ∂2

yy(3, 2) = −3 · 33 · 2 = −162,

∂2
xyf(3, 2) = −3 · 32 · 22 = −108.

Hence, the Hessian of f at (3, 2) is

A :=

[
−144 −108
−108 −162

]
.

3J.J. Sylvester was an English mathematician. He made fundamental contributions to matrix theory, invariant

theory, number theory, partition theory, and combinatorics. He played a leadership role in American mathematics
in the later half of the 19th century as a professor at the Johns Hopkins University and as founder of the American
Journal of Mathematics. https://en.wikipedia.org/wiki/James_Joseph_Sylvester

https://en.wikipedia.org/wiki/James_Joseph_Sylvester
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To decide whether the matrixA is positive/negative definite we use the criterion in Exercise
14.6. Note that −144 < 0 and

detA = (−144)(−162)− (−108)2 = 144 · 162− (108)2 = 11644 > 0.

Hence A is negative definite and thus the stationary point (3, 2) is a local maximum. ut

14.3. Diffeomorphisms and the inverse function
theorem

We can now discuss a classical theorem that plays a key role in modern differential ge-
ometry/topology. The remainder of this chapter assumes familiarity with basic linear
algebra concepts such as linear combinations, linear independence, rank and determinant
of a matrix.

We begin by introducing a key concept.

Definition 14.13 (Diffeomorphisms). Let n ∈ N, k ∈ N∪{∞} and suppose that U ⊂ Rn
is an open set. A map F : U → Rn is called a Ck-diffeomorphism if the following hold.

• The map F is injective and its range F (U) is also an open subset of Rn.

• The inverse map F−1 : F (U)→ U is also Ck.

ut

Example 14.14. (a) Any invertible linear map L : Rn → Rn is a diffeomorphism.

(b) The bijective C1-map f : R → R, f(x) = x3 is not a diffeomorphism because its
inverse is not differentiable at 0. ut

Example 14.15. The map

F : (0,∞)× (0, 2π)→ R2, F (r, θ) =

[
x
y

]
=

[
r cos θ
r sin θ

]
is a C1-diffeomorphism. Indeed, it is a C1 map. To see that it is injective observe that if

x = r cos θ, y = r sin θ

then

x2 + y2 = r2 ⇒ r =
√
x2 + y2.

Thus, r > 0 is uniquely determined by (x, y). Note that (x/r, y/r) is a point on the unit
circle, it is not equal to (1, 0) and uniquely determines the angle θ; recall the trigonometric
circle in Section 5.6.

This proves that F is injective and the range is the plane R2 with the nonnegative
x-semiaxis removed. Hence the range is open. One can show directly that F−1 is C1, but
this is a rather tedious job. Fortunately there is a faster alternate approach that relies on
the main theorem of this section, namely, the inverse function theorem. We will present
this approach after we discuss this very important theorem. ut
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We have the following useful consequence of the chain rule. Its proof is left to the
reader as an exercise.

Proposition 14.16. Let n ∈ N. Suppose that U ⊂ Rn is an open set and F : U → Rn
is a C1-diffeomorphism. If x0 ∈ U and y0 = F (x0), then the differential dF (x0) of F at
x0 is invertible and

dF−1(y0) = dF (x0)−1. ut

The above result gives a necessary condition for a map to be a diffeomorphism, namely
its differential has to be invertible. The next result is a very versatile criterion for recog-
nizing diffeomorphisms. Roughly speaking, it states that maps with invertible differentials
are very close to being diffeomorphisms.

Theorem 14.17 (Inverse function theorem). Let n ∈ N, k ∈ N ∪ {∞}. Suppose that
U ⊂ Rn is an open set and F : U → Rn is a Ck-map. If x0 ∈ U is such that the
differential dF (x0) : Rn → Rn is invertible, then there exists an open neighborhood V of
x0 with the following properties.

(i) V ⊂ U .

(ii) The restriction of F to V defines a Ck-diffeomorphism F : V → Rn.

Proof. For simplicity we consider only the case k = 1. The case k > 1 follows inductively from this special case,
[4, Prop. 3.2.9]. We follow closely the approach in the proof of [17, Thm. 2-11]. Denote by L the differential of F

at x0 and set y0 := F (x0). We begin with an apparently very special case.

A. The differential L is the identity operator Rn → Rn. We complete the proof in several steps.

Step 1. We prove that there exists r > 0 such that the closed ball Br(x0) is contained in U and the restriction of

F to this closed ball is injective.

Using the definition of the differential we can write

F (x0 + h) = F (x0) + h+R(h) = y0 + h+R(h), (14.14)

where

lim
‖h‖→0

1

‖h‖
R(h) = 0. (14.15)

Observe that

F (x0 + h1) = F (x0 + h2)
(14.14)⇐⇒ R(h1)−R(h2) = −

(
h1 − h2).

We will show that the last equality above cannot happen if h1,h2 are sufficiently small and h1 6= h2.

The correspondence x 7→ JF (x) is continuous and the Jacobian matrix JF (x0) is invertible. Thus, for x close

to x0 the Jacobian JF (x) is also invertible; see Exercise 12.9. Fix a radius r0 > 0 such that B2r0 (x0) ⊂ U and

JF (x) is invertible ∀x ∈ B2r0 (x0). (14.16)

Observe that for ‖h‖ ≤ 2r0 we have R(h) = F (x0 + h)− h− y0. This proves that the map R : B2r0 (0) → Rn is
differentiable and

JR(h) = JF (x0 + h)− 1 = JF (x0 + h)− JF (x0).

Since the map F is C1 we have

lim
h→0

‖JF (x0 + h)− JF (x0)‖HS = 0,
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where ‖−‖HS denotes the Frobenius norm of a matrix described in Remark 12.13. Fix a very small positive constant

~,

~ <
1

10n
. (14.17)

There exists r < r0 sufficiently small such that

‖JR(h)‖HS = ‖JF (x0 + h)− JF (x0)‖HS < ~, ∀‖h‖ < 2r. (14.18)

Corollary 13.33 implies that

‖F (x0 + h1)− F (x0 + h2)− (h1 − h2)‖ = ‖R(h1)−R(h2)‖
(14.18)

≤ ~
√
n‖h1 − h2‖

(14.17)
< ‖h1 − h2‖, ∀h1,h2 ∈ B2r(0), h1 6= h2.

(14.19)

This proves that if ‖h1‖, ‖h2‖ < 2r and h1 6= h2, then

F (x0 + h1)− F (x0 + h2)− (h1 − h2) = R(h1)−R(h2) 6= −
(
h1 − h2).

Hence

F (x0 + h1)− F (x0 + h2) 6= 0.

In particular, this shows that the restriction of F on Br(x0) ⊂ B2r(x0) ⊂ U is injective.

B B
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r r
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Figure 14.1. The map F is injective on Br(x0), and the image of this ball contains a
small ball Bδ(y0).

The sphere

Σr(x0) =
{
x ∈ Rn; ‖x− x0‖ = r

}
is compact, and thus its image F

(
Σr(x0)

)
is also compact; see Figure 14.1. Because of the injectivity of F on

Br(x0), the point y0 = F (x0) does not belong to the image F
(

Σr(x0)
)

of this sphere. Hence,

dist
(
y0,F

(
Σr(x0)

) )
> 0,

so there exists δ > 0 such that

‖y0 − F (x)‖ > 2δ, ∀x ∈ Σr(x0). (14.20)
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Step 2. We will prove that Bδ(y0) ⊂ F
(
Br(x0)

)
, i.e.,

∀y ∈ Bδ(y0), ∃h ∈ Rn such that ‖h‖ < r and y = F (x0 + h). (14.21)

To do this, let y ∈ Bδ(y0) and consider the function

gy : Br(x0)→ R, gy(x) = ‖y − F (x)‖2.

The function gy is continuous and the closed ball Br(x0) is compact and thus gy admits a global minimum

z ∈ Br(x0), gy(z) ≤ gy(x), ∀x ∈ Br(x0).

Let us first observe that z ∈ Br(x0). We argue by contradiction. If z ∈ Σr(x0), then

‖y − F (z)‖ ≥ ‖y0 − F (z)‖ − ‖y0 − y‖
(14.20)
> 2δ − ‖y0 − y‖︸ ︷︷ ︸

<δ

> δ > ‖y − F (x0)‖.

Hence

gy(z) > gy(x0), ∀z ∈ Σr(x0)

proving that the absolute minimum z of gy is achieved somewhere inside the open ball Br(x0). The multidimensional

Fermat principle then implies

∇gy(z) = 0⇐⇒ JF (z)
(
y − F (z)

)
= 0.

On the other hand, according to (14.16), the differential dF (z) is invertible. We deduce from the above equality
that y = F (z) for some z ∈ Br(x0).

Since F : U → Rn is continuous the preimage F−1
(
Bδ(y0)

)
is open (see Exercise 12.4(b)) and so is the set

V := F−1
(
Bδ(y0)

)
∩Br(x0).

The above discussion shows that the resulting map F : V → Bδ(y0) is bijective.

Step 3. We prove that the inverse G := F−1 : Bδ(y0)→ V is Lipschitz continuous.

Let y∗,y ∈ Bδ(y0) We set x := G(y), x∗ = G(y∗). Then x = x0 +h, x∗ = x0 +h∗. From (14.19) we deduce

‖x− x∗‖ − ‖y − y∗‖ ≤ ‖y − y∗ − (x− x∗)‖ = ‖R(h)−R(h∗)‖
(14.19)

≤ ~
√
n‖h− h∗‖

(14.17)

≤
1

10
√
n
‖h− h∗‖ =

1

10
√
n
‖x− x∗‖ ≤

1

10
‖x− x∗‖.

We deduce that

‖G(y)−G(y∗)‖ = ‖x− x∗‖ ≤
10

9
‖y − y∗‖.

Step 4. We prove that the inverse G := F−1 : Bδ(y0)→ V is differentiable.

Fix y∗ ∈ Bδ(y0). There exists x∗ ∈ V such that F (x∗) = y∗. Proposition 14.16 suggests that the differential

of G at y∗ should be the inverse of the differential of F at x0. For y ∈ Bδ(y0) we set

R(y,y∗) :=
(
G(y)−G(y∗)− dF (x∗)

−1(y − y∗)
)
.

We have to prove that

lim
y→y∗

‖R(y,y∗)‖
‖y − y∗‖

= 0.

Observe first that

dF (x∗)R(y,y∗) = dF (x∗)
(
G(y)−G(y∗)

)
− (y − y∗)

= dF (x∗)
(
G(y)−G(y∗)

)
−
(
F (G(y) )− F (G(y∗) )

)
︸ ︷︷ ︸

=:Q(y,y∗)

.

Since F is differentiable at x∗ we have

lim
y→y∗

‖Q(y,y∗)‖
‖G(y)−G(y∗)‖

= 0. (14.22)
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On the other hand,

‖G(y)−G(y∗)‖ ≤
10

9
‖y − y∗‖

so that
10

9

‖Q(y,y∗)‖
‖G(y)−G(y∗)‖

≥
‖Q(y,y∗)‖
‖y − y∗‖

We deduce that
‖dF (x∗)R(y,y∗)‖

‖y − y∗‖
≤

10

9

‖Q(y,y∗)‖
‖G(y)−G(y∗)‖

.

On the other hand, since dF (x∗) is invertible, we deduce from Exercise 12.28(iii) that there exists a constant C > 0

such that

C‖h‖ ≤ ‖dF (x∗)h‖, ∀h ∈ Rn.
We conclude that

C
‖R(y,y∗)‖
‖y − y∗‖

≤
10

9

‖Q(y,y∗)‖
‖G(y)−G(y∗)‖

.

Invoking the Squeezing Principle and (14.22) we deduce from the above

lim
y→y∗

‖R(y,y∗)‖
‖y − y∗‖

= 0.

This proves the differentiability of G at y∗.

Step 5. We finally prove that map G is C1. We have to show that the map y 7→ JG(y) is continuous, i.e., the map

y 7→ JF
(
G(y)

)−1

is continuous. This follows from Exercise 12.10.

B. We now discuss the general case when we do not assume that dF (x0) = 1. Set L = dF (x0). Define

Φ : U → Rn, Φ = L−1 ◦ F .

The chain rule implies that

dΦ = dL−1 ◦ dF = L−1 ◦ dF = 1.

From Case A we deduce that there exists an open neighborhood V of x0 contained in U such that the restriction

of Φ to V is a diffeomorphism. From the equality F = L ◦ Φ we deduce that the restriction of F to V is also a
diffeomorphism.

ut

Remark 14.18. (a) The assumption that dF (x0) is invertible is equivalent with the
condition

det JF (x0) 6= 0.

This is easier to verify especially when n is not too large.

(b) If V ⊂ Rn is an open neighborhood of x0 satisfying the conditions (i) and (ii) in The-
orem 14.17, then any smaller open neighborhood W ⊂ V of x0 satisfies these conditions.

ut

We have the following useful consequence of the inverse function theorem. Its proof is
left to you as an exercise.

Corollary 14.19. Let n ∈ N. Suppose that U is an open subset of Rn and F : U → Rn
is a C1-map satisfying the following conditions.
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(i) The map F is injective.

(ii) For any x ∈ U , the differential dF (x) : Rn → Rn is bijective.

Then the map F is a C1-diffeomorphism. ut

Remark 14.20. The condition (ii) in the above corollary is equivalent with the condition

det JF (x) 6= 0, ∀x ∈ U.

This is easier to verify especially when n is not too large. ut

Example 14.21. Consider again the map

F : (0,∞)× (0, 2π)→ R2, F (r, θ) =

[
x
y

]
=

[
r cos θ
r sin θ

]
in Example 14.15. We have seen there that it is injective. According to Corollary 14.19,
to prove that it is a diffeomorphism it suffices to show that for any (r, θ) ∈ (0,∞)× (0, 2π)
the Jacobian matrix JF (r, θ) is invertible. We have

JF (r, θ) =

 ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

 =

[
cos θ −r sin θ
sin θ r cos θ

]
.

The determinant of the above matrix is

det JF = (cos θ) · (r cos θ)− (−r sin θ) · (sin θ) = r cos2 θ + r sin2 θ = r > 0.

Thus the matrix JF (r, θ) is invertible for any (r, θ) ∈ (0,∞)× (0, 2π). ut

Example 14.22. The transformation F in Example 14.21 is often referred to as the
change to polar coordinates. A function u depending on the Cartesian coordinates (x, y)
can be transformed to a function depending on the coordinates (r, θ), u(x, y) = u(r cos θ, r sin θ).
Often in physics and geometry one is faced with the problem of transforming various quan-
tities expressed in the (x, y)-coordinates to quantities expressed in the polar coordinates
(r, θ). We discuss below one such important example.

Suppose u = u(x, y) is a C2-function. We are deliberately vague about the domain of
definition of u since this details is irrelevant to the computations we are about to perform.
Its Laplacian is the function

∆u =
∂2u

∂x2
+
∂2u

∂y2
.

We want to express the Laplacian in polar coordinates. The chain rule, cleverly deployed,
will do the trick.

Note first that for any function (or quantity) q depending on the variables (x, y),
q = q(x, y), we have

∂q

∂x
=
∂q

∂r

∂r

∂x
+
∂q

∂θ

∂θ

∂x
, (14.23a)
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∂q

∂y
=
∂q

∂r

∂r

∂y
+
∂q

∂θ

∂θ

∂y
. (14.23b)

Let us concentrate first on the x-derivative. We rewrite (14.23a) in the form,

∂q

∂x
=
∂r

∂x

∂q

∂r
+
∂θ

∂x

∂q

∂θ
.

Since the exact nature of the quantity q is not important in the sequel, we will drop the
letter q from our notations. Hence, the above equality becomes

∂

∂x
=
∂r

∂x

∂

∂r
+
∂θ

∂x

∂

∂θ
. (14.24)

From the equalities r2 = x2 + y2, x = r cos θ and y = r sin θ we deduce

∂xr =
x

r
= cos θ, ∂yr =

y

r
= sin θ. (14.25)

Derivating the equality y = r sin θ with respect to x we deduce

0 = ∂xr(sin θ) + r(cos θ)∂xθ = cos θ sin θ + (r cos θ)∂xθ = cos θ
(

sin θ + r∂xθ
)

⇒ ∂xθ = −sin θ

r
.

Hence (14.24) becomes

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
. (14.26)

Then
∂2u

∂x2
=

∂

∂x

∂u

∂x
=
(

cos θ
∂

∂r
− sin θ

r

∂

∂θ

)(
cos θ

∂u

∂r
− sin θ

r

∂u

∂θ

)
= cos θ

∂

∂r

(
cos θ

∂u

∂r
− sin θ

r

∂u

∂θ

)
− sin θ

r

∂

∂θ

(
cos θ

∂u

∂r
− sin θ

r

∂u

∂θ

)
= cos θ

(
cos θ

∂2u

∂r2
+

sin θ

r2

∂u

∂θ
− sin θ

r

∂2u

∂r∂θ

)
− sin θ

r

(
− sin θ

∂u

∂r
+ cos θ

∂2u

∂θ∂r
− sin θ

r

∂2u

∂θ2

)
= cos2 θ∂2

ru+
sin θ cos θ

r2
∂θu− 2

sin θ cos θ

r
∂2
rθu+

sin2 θ

r
∂ru+

sin2 θ

r2
∂2
θu.

Arguing in a similar fashion we have

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
.

Derivating with respect to y the equality x = r cos θ we deduce in similar fashion that
∂yθ = cos θ

r so that

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ
,

∂2u

∂y2
=
(

sin θ
∂

∂r
+

cos θ

r

∂

∂θ

)(
sin θ

∂u

∂r
+

cos θ

r

∂u

∂θ

)
= sin θ

∂

∂r

(
sin θ

∂u

∂r
+

cos θ

r

∂u

∂θ

)
+

cos θ

r

∂

∂θ

(
sin θ

∂u

∂r
+

cos θ

r

∂u

∂θ

)
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= sin θ
(

sin θ
∂2u

∂r2
−cos θ

r2

∂u

∂θ
+

cos θ

r

∂2u

∂r∂θ

)
+

cos θ

r

(
cos θ

∂u

∂r
+sin θ

∂2u

∂θ∂r
−sin θ

r

∂u

∂θ
+

cos θ

r

∂2u

∂θ2

)
= sin2 θ∂2

ru−
sin θ cos θ

r2
∂θu+

2 sin θ cos θ

r
∂2
rθu+

cos2 θ

r
∂ru+

cos2 θ

r2
∂2
θu.

Putting together all of the above we deduce

∆u = ∂2
ru+

1

r
∂ru+

1

r2
∂2
θu =

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂u

∂θ2
. (14.27)

To see how this works in practice, consider the special case u = (x2 + y2)
p
2 . Since

x2 + y2 = r2 we deduce u = rp and

∆u = ∂2
r

(
rp
)

+
1

r
∂r
(
rp
)

= p(p− 1)rp−2 + prp−2 = p2rp−2. ut

14.4. The implicit function theorem

To understand the meaning of the implicit function theorem it is useful to start with a
simple example.

Example 14.23. Consider the function f : R2 → R, f(x, y) = x2 + y2 − 1. The level set

f−1(0) =
{

(x, y) ∈ R2; f(x, y) = 1
}

is the circle C1 of radius 1 centered at the origin of R2. This curve cannot be the graph of
any function, but portions of it are graphs. For example, the part of C1 above the x-axis{

(x, y) ∈ C1; y > 0
}
,

is the graph of a function. To see this, we solve for y the equality x2 + y2 = 1, and since
y > 0, we obtain the unique solution

y =
√

1− x2.

We say that the function
√

1− x2 is a function defined implicitly by the equality f(x, y).

This is not an isolated phenomenon. The implicit function theorem states that for
many equations of the type f(x, y) = const the solution set is locally the graph of a
function g, although we cannot describe g as explicitly as in the above simple example.ut

Theorem 14.24 (Implicit function theorem.Version 1). Let m,n ∈ N. Suppose that

O ⊂ Rn × Rm

is an open set, F = F (u,v) : O→ Rm is a C1 map and (u0,v0) ∈ O is a point satisfying
the following properties.

(i) F (u0,v0) = 0.

(ii) The restriction of the differential dF (0, (v0) to the subspace

0× Rm ⊂ Rn × Rm

induces an invertible linear map 0× Rm → Rm.
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Then there exists an open neighborhood U of u0 ∈ Rn, an open neighborhood V of
v0 ∈ Rm and a C1-map G : U → V with the following properties

• U × V ⊂ O.

• If (u,v) ∈ U × V , then F (u,v) = 0 if and only if v = G(u).

In other words, for any u ∈ U , the equation F (u,v) = 0 has a unique solution v ∈ V .
This unique solution is denoted by G(u). We say that G is the function implicitly defined
by the equation F (u,v) = 0.

Proof. If we represent L := dF (u0,v0) as an m × (n + m) matrix, then it has a block
decomposition

L =

[
∂F

∂u
,
∂F

∂v

]
= [A B],

where A is an m× n matrix and B is a m×m matrix. The matrix B = ∂F
∂v describes the

restriction of L to the subspace 0× Rm and assumption (ii) implies that B is invertible.

Consider the new map H : O→ Rn × Rm,

H(u,v) =
(
u,F (u,v)

)
.

The differential of H at (v0,u0) is a linear map T : Rm×Rn → Rm×Rn described by an
(m+ n)× (m+ n)-matrix with block decomposition

T =

 1n 0

∂F
∂u

∂F
∂v

 =

[
1n 0
A B

]
.

Since B is invertible, we deduce that T is also invertible since detT = detB 6= 0. Note
that H(u0,v0) = (u0,0).

From the inverse function theorem we deduce that there exists an open neighborhood
W of (u0,v0) contained in O such that the restriction of H to W is a diffeomorphism. By
making W smaller as in Remark 14.18, we can assume that W has the form W = U × V ,
where U ⊂ Rn is an open neighborhood of u0 in Rn and V ⊂ Rm is an open neighborhood
of v0 in Rm.

We denote by W the image of U × V via H, W := H(U × V ). Let Φ : W → U × V
denote the inverse of H : U × V →W. The diffeomorphism Φ has the form

Φ(x,y) = (u,v) =
(

Ψ(x,y),Ξ(x,y)
)
∈ U × V ⊂ Rn × Rm,

where

Ψ : W→ Rn, Ξ : W→ Rm

are C1-maps. Note that if (x,y) ∈W and,

(u,v) = Φ(x,y) =
(

Ψ(x,y),Ξ(x,y)
)
,

then

(x,y) = H(u,v) =
(
u,F (u,v)

)
.
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=
(

Ψ(x,y),F
(
Φ(x,y),Ξ(x,y)

) )
.

We deduce that u = x, i.e., Ξ(x,y) = v. Hence the inverse Φ has the form

Φ(x,y) = (u,v) =
(
x,Ξ(x,y)

)
,

where

u = x, y = F (u,v),

Note that

F (u,v) = 0⇐⇒ (x,y) = H(u,v) = (u,0)

⇐⇒ (u,v) = Φ(u,0) =
(
u,Ξ(u,0)

)
.

The sought out map G is then

G(u) = Ξ(u,0).

ut

y

(  ,   )
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00
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Φ

W

F=0

W=V  U

u

u

u

v

v

H

Figure 14.2. The map Φ sends a portion of the subspace 0×Rn bijectively to a portion
of the zero set {F = 0}.

Remark 14.25. (a) The above proof shows that there exist
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• an open set W ⊂ Rn × Rm containing (u0,0),

• an open neighborhood V of v0 in Rm,

• an open neighborhood U of u0 in Rn, and

• a diffeomorphism Φ : W→ Rn × Rm,

with the following properties.

(i) Φ(u0,0) = (u0,v0), Φ(W) = U × V .

(ii) The diffeomorphism Φ maps the part of the plane Rn × 0 contained in W bijec-
tively to the part of the set F = 0 contained in U × V .

(b) The assumption (ii) in the statement of the Implicit Function Theorem can be rephrased
in a more convenient way. In the proof this was used to conclude that the (n + m) ×m
matrix JF representing dF (x0,y0) has the property that the matrix B determined by the
columns and the last m rows is invertible. The condition (ii) is then equivalent with the
condition

detB 6= 0.

Note that if F 1, . . . , Fm are the components of F and v1, . . . , vm are the components of
v, then B is the m×m matrix with entries

Bi
j =

∂F i

∂vj
, 1 ≤ i, j ≤ m.

The condition implies that dF (u0,v0) is surjective.

If we assume only that the differential dF (u0,v0) : Rn+m → Rm is surjective, then
the m× (n+m)-matrix representing this linear operator has maximal rank m and thus,
there exist m columns so that the matrix determined by these columns and all the m rows
is invertible; see e.g. [20, Thm. 6.1]. If we reorder the components of a vector in Rn+m

we can then assume that these m columns are the last m-columns.

(c) Note that the surjectivity of the linear operator dF (u0,v0) : Rn+m → Rm is equivalent
with the linear independence of the m rows of JF (u0,v0). If F 1, . . . , Fm are the compo-
nents of F , then the rows of JF describe the differentials dF 1, . . . , dFn and we see that
the rows are linearly independent if and only if the gradients ∇F 1, . . . ,∇Fm are linearly
independent. ut

In view of the last remark, we can give an equivalent but more flexible formulation of
Theorem 14.24. First, let us introduce some convenient terminology. A codimension m
coordinate subspace of an Euclidean space Rn is a linear subspace of Rn described by the
vanishing of a given group of m coordinates.

For example, the subspace of R5 of the form

S =
{ (
x1, 0, x3, x4, 0

)
; x1, x3, x4 ∈ R

}



484 14. Applications of multi-variable differential calculus

is a codimension 2 coordinate subspace described by the vanishing of the coordinates
x2, x5. It is naturally isomorphic to R3 = R5−2. The codimension 3 subspace{

(0, x2, 0, 0, x5); x2, x5 ∈ R
}

described by the vanishing of the coordinates x1, x3, x4 is none other than S⊥, the or-
thogonal complement of S. It is naturally isomorphic to R2. Note that we have a natural
decomposition

(x1, x2, x3, x4, x5) = (x1, 0, x3, x4, 0)︸ ︷︷ ︸
∈S

+ (0, x2, 0, 0, x5)︸ ︷︷ ︸
∈S⊥

.

In general, a codimension m coordinate subspace of RN is naturally isomorphic to RN−m
and thus has dimension N − m. The orthogonal complement S⊥ is another coordinate
subspace of codimension N −m. Moreover any z ∈ RN admits a unique decomposition of
the form

z = u+ v, u ∈ S, v ∈ S⊥.

The vectors u,v are called the projections of z on S and respectively S⊥.

Theorem 14.26 (Implicit function theorem.Version 2). Let m,n ∈ N and set N := n+m.
Suppose that O ⊂ RN is an open set, F = F (x) : O → Rm is a C1 map and p0 ∈ O is a
point satisfying the following properties.

(i) F (p0) = 0.

(ii) The differential L = dF (p0) : RN → Rm is surjective.

Set n = N −m. Label the coordinates (xi)1≤i≤N of x ∈ RN so that

det

[
∂F i

∂xn+j
(p0)

]
1≤i,j≤m

6= 0.

Denote by S the codimension m coordinate plane defined by the equations

xn+1 = · · · = xn+m = 0.

Then there exist

• an open ball U ⊂ S centered at u0, the projection of p0 on S,

• an open ball V ⊂ S⊥ centered at v0, the projection of p0 on S⊥ and a C1-map
G : U → V

with the following properties:

• V × U ⊂ O;

• If (v,u) ∈ U × V , then F (u,V ) = 0 if and only if v = G(u).

ut
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Remark 14.27. Under the assumptions of the above theorem, we say that we can solve
for xn+1, . . . , xn+m in terms of the remaining variables x1, . . . , xn. The map G is then
described by m functions g1, . . . , gm, depending on the “free” variables x1, . . . , xn, such
that

xm+1 = g1
(
x1, . . . , xn

)
, . . . , xm = gm

(
x1, . . . , xn

)
,

if and only if

F 1
(
x1, . . . , xm, xm+1, . . . , xm+n

)
= · · · = Fm

(
x1, . . . , xm, xm+1, . . . , xm+n

)
= 0,

where F 1(x), . . . , Fm(x) are the components of F (x) ∈ R. In the notation of the above
theorem we have

v = (xn+1, . . . , xn+m), u =
(
x1, . . . , xn

)
. ut

Example 14.28. Consider a function f : Rn+1 → R. We denote by (x0, x1, . . . , xn) the
Cartesian coordinates Rn+1. Consider the zero set of f ,

Zf :=
{

(x0, x1, . . . , xn) ∈ Rn+1; f(x0, x1, . . . , xn) = 0
}
.

Assume for some x0 = (x0
0, x

1
0, . . . , x

n
0 ) we have x0 ∈ Zf and the differential of f at x0 is

surjective as a linear map Rn+1 → R.

The differential of f at x0 is the 1× (n+ 1) matrix[
∂x0f(x0), ∂x1f(x0), . . . , ∂xnf(x0)

]
.

The differential of df(0) is surjective if and only if it is nonzero, i.e., one of the partial
derivatives

∂x0f(x0), ∂x1f(x0), . . . , ∂xnf(x0)

is nonzero. Without loss of generality we can assume that ∂x0f(x0) 6= 0.

Consider the coordinate subspace S described by x0 = 0. Explicitly,

S =
{

(0, x1, . . . , xn); x1, . . . , xn ∈ R
}
.

Loosely speaking, the implicit function theorem says that, in a neighborhood of x0, we
can solve the equation

f(x0, x1, . . . , xn) = 0

uniquely for x0 in terms of x1, . . . , xn.

More precisely, the implicit function theorem states that there exists an open (n-
dimensional) ball Bn in S ∼= Rn centered at u0 = (x1

0, . . . ,x
n
0 ), an open interval I ⊂ R

containing v0 = x0
0, and a C1-function g : B → I such that

(x0, x1, . . . , xn) ∈ I ×Bn and f(x0, x1, . . . , xn) = 0⇐⇒x0 = g(x1, . . . , xn).

The function g is only locally defined, and it is called the implicit function determined by
the equation

f(x0, x1, . . . , xn) = 0,
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i.e.,

f(x0, x1, . . . , xn) = 0⇐⇒x0 = g(x1, . . . , xn)⇐⇒f
(
g(x1, . . . , xn), x1, . . . , xn

)
= 0.

(14.28)
We often express this by saying that, in an open neighborhood of x0, along the zero set
Zf the coordinate x0 is a function of the remaining coordinates

x0 = x0(x1, . . . , xn)

and thus, locally, Z is the graph of a C1-function depending on the n variables (x1, . . . , xn).

From the equality f(x0, x1, . . . , xn) = 0 we can determine the partial derivatives of x0

at u0, when x0 is viewed as a function of (x1, . . . , xn) . Derivating the equality

f(x0, x1, . . . , xn) = 0

with respect to xi, i = 1, . . . , n, while keeping in mind that x0 is really a function of the
variables x1, . . . , xn, we deduce from the chain rule that

f ′x0

∂x0

∂xi
+ f ′xi = 0⇒ ∂x0

∂xi
= −

f ′
xi

f ′
x0

.

Hence

∂x0

∂xi
(u0) = g′xi(u0) = −

f ′
xi

(
x0

0,u0

)
f ′
x0

(
x0

0,u0

) . (14.29)

ut

Example 14.29. Consider subset

Z =
{

(x, y, z) ∈ R3; 2xyz = 2
}
.

A portion of this set is depicted in Figure 14.3.

Figure 14.3. The surface in R3 described by the equation 2xyz = 2.
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Note that Z 6= ∅ since (1, 1, 1) ∈ Z. Equivalently, Z is the zero set of the function
f : R3 → R, f(x, y, z) = 2xyz − 2. Note that

∂f

∂z
= xy2xyz ln 2,

∂f

∂z
(1, 1, 1) = 2 ln 2.

The implicit function theorem shows that there exists a small open ball B in R2 centered
at (1, 1), an open interval I ⊂ R centered at 1 and a C1-function g : B → I such that

(x, y, z) ∈ Z ∩
(
B × I

)
⇐⇒z = g(x, y).

In other words, in an open neighborhood of (1, 1, 1), the set Z is the graph of a C1-function
z = z(x, y). Let us compute the partial derivatives of z(x, y) at (1, 1).

Derivating with respect to x the equality 2xyz = 2 in which we treat z as a function
of the variables (x, y) we deduce

(yz + x∂xz)2
xyz ln 2 = 0⇒ x

∂z

∂x
+ zy = 0⇒ ∂z

∂x
= −zy

x
.

When (x, y) = (1, 1), we have z = 1 and we deduce

∂z

∂x
(1, 1) = −1.

We can give an alternate verification of this equality. Namely, observe that we can solve
for z explicitly the equality 2xyz = 2. More precisely, we have

log2

(
2xyz

)
= log2(2)⇒ xyz = 1⇒ z =

1

xy
⇒ ∂z

∂x
= − 1

x2y
⇒ ∂z

∂x
(1, 1) = −1. ut

Example 14.30. Consider the map

F : R3 → R2, F (x, y, z) =

[
u
v

]
=

[
xyz − 2

x+ y + z − 4

]
.

The zero set Z of F consists of the points (x, y, z) ∈ R3 satisfying the equations

xyz = 2, x+ y + z = 4. (14.30)

Note that (1, 1, 2) ∈ Z. The Jacobian of the map F at a point (x, y, z) ∈ R3 is the
2× 3-matrix

J = J(x, y, z) =

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

 =

[
yz xz xy
1 1 1

]
.

Consider the minor of the above matrix determined by the y and z columns,

det

 xz xy

1 1

 = xz − xy = x(y − z).

Note that this minor is nonzero at the point (x, y, z) = (1, 1, 2). The implicit function
theorem then implies that, near (1, 1, 2) we can solve (14.30) for y, z in terms of x. In other
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words, there exists a tiny (open) box B centered at (1, 1, 2) such that the intersection of
Z with B coincides with the graph of a C1-map

I 3 x 7→
(
y(x), z(x)

)
∈ R2,

where I is some open interval on the x-axis centered at x = 1. To find the derivatives of
y(x) and z(x) at x = 1 we derivate (14.30) with respect to x keeping in mind that y and
z depend on x. We deduce

yz + xzy′ + xyz′ = 0, 1 + y′ + z′ = 0.

At the point (z, y, z) = (1, 1, 2) we have yz = xz = 2, xy = 1, and the above equations
become {

2y′ + z′ = −2
y′ + z′ = −1.

Note that the matrix of this linear system is the sub-matrix of J(1, 1, 2) corresponding to
the y, z columns. This matrix is nondegenerate so we can solve uniquely the above system.
In fact, if we subtract the second equation from the first we deduce y′ = −1. Using this
information in the 2nd equation we deduce z′ = 0. Hence

y′(x)
∣∣
x=1

= −1, z′(x)
∣∣
x=1

= 0. ut

14.5. Submanifolds of Rn

The implicit function theorem discussed in the previous section leads to a very important
concept that clarifies and generalizes our intuitive concepts of curves and surfaces.

14.5.1. Definition and basic examples. A submanifold of dimension m in the n-
dimensional Euclidean space Rn is a set that locally “feels” like an m-dimensional vector
subspace of Rn. This is not very precise and we will address this lack of precision in
Definition 14.31. Before we do this we want to build some intuition. Let us consider a
controversy that plagued the humanity for centuries.

We now know that the surface of the Earth is spherical, but this was not what people
initially believed. Anybody that walked in a wide open field could see clearly that the
Earth is “obviously flat” as far as the eyes can see. The problem is that “as far as the
eyes can see” is not far enough when compared to the size of the Earth. Our eyesight can
only reach as far as the horizon: this is where the Earth’s surface begins “to bend”.

This phenomenon is not restricted to spheres. Take a surface in R3, say the surface in
Figure 14.4. Any tiny region on this surface is nearly flat, and it can appear to be so to
an inhabitant on this surface.

Another way to express it is to say that any tiny region on this surface together with
a tiny region around it but outside the surface can be straightened so it now looks like a
tiny region of the vector subspace R2 sitting in R3.
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Figure 14.4. The surface z = −x3 + x2 − 2y2 + 3x− 4y, |x|, |y| < 2.

For example, the origin (0, 0, 0) lives on the surface depicted in Figure 14.4. In Figure
14.5 we depicted the image of the tiny region |x|, |y| < 0.2 of this surface containing the
origin magnified by a factor of 10. In fact, if we push the magnification factor to ∞, then
this tiny region will approach a two-dimensional vector subspace of R3 that is intimately
related to the surface namely, the plane tangent to the surface at the origin.

Figure 14.5. The tiny region of the surface z = −x3 +x2−2y2 +3x−4y corresponding
to |x|, |y| < 0.2 could seem flat under magnification.

The local straightening property is indeed the defining feature of a surface in R3. The
next definition is a mouthful but it describes in precise terms the essential features of
a surface and its higher dimensional cousins, the submanifolds of Euclidean spaces. Let
n ∈ N, m ∈ N0, m ≤ n and k ∈ N ∪ {∞}.

Definition 14.31 (Submanifolds). An m-dimensional Ck-submanifold of Rn is a subset
X ⊂ Rn such that, for any p0 ∈ X, there exists a pair (U,Ψ) with the following properties.
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(i) U is an open neighborhood of p0 in Rn,

(ii) Ψ : U→ Rn is a Ck-diffeomorphism. We set q0 := Ψ(p0), U := Ψ
(
U
)
.

(iii) If Rm × 0 denotes the coordinate subspace

Rm × 0 =
{(

x1, . . . , xm, xm+1, . . . , xn
)
∈ Rn; xm+1 = · · · = xn = 0

}
,

then q0 ∈ Rm × 0 and Ψ
(
X ∩ U

)
=
(
Rm × 0

)
∩ U .

An open set U as above is called a coordinate neighborhood of p0 adapted to X. The pair
(U,Ψ) is called a straightening diffeomorphism near p0. The induced map Ψ : X∩U→ Rm
is called a local coordinate chart of X at p0. The inverse map Ψ−1 :

(
Rm×0

)
∩U → X ∩U

is called a local parametrization of X near p0; see Figure 14.6. ut

X

U
U

Ψ

p
0

Figure 14.6. The map Ψ straightens the “curved” portion of X located in U.

Remark 14.32. (a) A local chart maps a piece of the m-dimensional submanifold X bijec-
tively onto an open subset of the “flat” m-dimensional space Rm. A local parametrization
of X “deforms” an open subset of the “flat” m-dimenisonal space Rm bijectively onto a
piece of the m-dimensional submanifold.

Intuitively, a 1-dimensional submanifold of R3 is a curve, while a 2-dimensional sub-
manifold of R3 is a surface.

(b) If X ⊂ Rn is an m-dimensional submanifold, p0 ∈ X and U is a coordinate neighbor-
hood of p0 adapted to X, then any open neighborhood V of p0 in Rn such that V ⊂ U is
also a coordinate neighborhood of p0 adapted to X. ut

Example 14.33. (a) A point in Rn is a 0-dimensional submanifold of Rn. An open subset
of Rn is an n-dimensional submanifold of Rn.4 ut

Our next result is a direct consequence of the inverse function theorem and describes
an alternate characterization of submanifolds.

4Can you verify this claim?
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Proposition 14.34 (Parametric description of a submanifold). Let m,n ∈ N, m < n.
Suppose that U ⊂ Rm is an open set and

Φ : U → Rn, Φ(u) =

 Φ1(u)
...

Φn(u)


is a Ck-parametrization, i.e., a Ck-map satisfying the following properties.

(i) The map Φ is injective.

(ii) The map Φ is an immersion, i.e., for any u ∈ U the n×m Jacobian matrix

JΦ :=
(
∂ujΦ

i(u)
)

1≤i≤n
1≤j≤m

has maximal rank m, i.e., it is injective when viewed as a linear operator Rm → Rn.

(iii) The inverse Φ−1 : Φ(U)→ U is continuous.

Then the following hold.

(A) The set X = Φ(U) is an m-dimensional Ck-submanifold of Rn. (The map Φ is
referred to as a parametrization of X.)

(B) If ` ∈ N, V ⊂ R` is an open set and G : V → Rn is a Ck-map such that
G(V ) ⊂ X, then the map Φ−1 ◦G : V → U is Ck.

Proof. Fix u0 ∈ U and set x0 := Φ(u0). The Jacobian matrix JΦ(u0) is an n×m matrix with (maximal) rank m.

Thus (see [20, Thm.6.1]) there exist m rows such that the matrix determined by these rows and all the m columns

of JΦ(x0) is invertible. Without loss of generality we can assume that these m rows are the first m rows. We denote
by JmΦ (u0) this m×m matrix. Define

F : U × Rn−m → Rn, F (u,v) =



Φ1(u)
...

Φm(u)
Φm+1(u) + v1

...

Φn(u) + vn


.

Note that F (u0,0) = Φ(u0) = p0. The Jacobian matrix of F and (u0,0) is the n × n matrix with the block

decomposition

JF (u0,0) =

 JmΦ (u0) 0m×(n−m)

A(n−m)×m 1n−m

 ,
where 0m×(n−m) denotes the m × (n −m) matrix with all entries equal to 0 and A(n−m)×m is an (n −m) ×m
matrix whose explicit description is irrelevant for our argument.

Since det JmΦ (u0) is invertible, we deduce that det JF (u0,0) 6= 0, so JF (u0,0) is invertible. We can then apply

the Inverse Function Theorem to conclude that there exists ρ > 0 sufficiently small such that the restriction of F
to the open set Bmρ (u0) × Bn−mρ (0) ⊂ Rm × Rn−m is a diffeomorphism. Since F−1 is continuous, there an open

neighborhood O of p0 in Rn such that
O ∩ Φ(U) = Φ

(
Bmρ (u0)

)
Now choose r < ρ sufficiently small so that, if Wr = Bmr (u0)×Bn−mr (0), then Wr := F (Wr) ⊂ O.
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The inverse Ψ : Wr → Wr ⊂ Rm × Rn−m = Rn is a local straightening of X = Φ(U) around Φ(u0). It sends

Wr ∩X to the m-dimensional ball Bmr (u0)× 0n−m ⊂ Rm × Rn−m.

Suppose G is as in the statement of the proposition. Fix v0 ∈ V. Then there exists u0 ∈ U such that

Φ(u0) = G(v0). Choose a local straightening Ψ of X around Φ(u0). Now observe that the restriction Φ−1 ◦G to
the open neighborhood G−1(W) of v0 is equal to Ψ ◦G. ut

Remark 14.35. A C1-map Φ : I → Rn, I ⊂ R interval, is an immersion if and only if
the derivative Φ′(t) is nonzero for any t ∈ I. ut

Example 14.36. (a) Let p ∈ Rn, v ∈ Rn \ {0}. The line `p,v is a 1-dimensional subman-
ifold. To see this consider the map

γ : R→ Rn, γ(t) = p+ tv.

This is an immersion since γ̇(t) = v 6= 0, ∀t ∈ R. It is also an injection since v 6= 0.
According to (11.5), the image of γ is the line `p,v. The inverse

γ−1 : `p,v → R

is given by

γ−1(q) =
1

‖v‖
〈q − p,v〉.

The above map is clearly continuous.

(b) Consider the map Φ : (0, π)→ R2,

Φ(θ) = (cos θ, sin θ).

This map is injective (why?) and it is an immersion since

Φ′(θ) = (− sin θ, cos θ), ‖Φ′(θ)‖2 = 1 6= 0.

Its image is the half circle centered at the origin and contained in the upper half space
{y > 0}. Its inverse associates to a point (x, y) on this circle the angle θ = arccosx ∈ (0, π).
The map (x, y) 7→ arccosx is obviously continuous.

(c) A helix H in R3 is a curve described by the parametrization (see Figure 14.7)

α : (0, 1)→ R3, α(t) =
(
r cos(at), r sin(at), bt

)
,

where r, a, b are fixed nonzero real numbers r > 0. Note that the above map is an
immersion since

‖α̇(t)‖2 = a2r2 sin2 t+ a2r2 cos2 t+ b2 = a2r2 + b2 6= 0.

The map α is clearly injective since its third component bt is such. Its inverse associates
to a point (x, y, z) on the helix, the real number t = z/b. The map (x, y, z) 7→ z/b is
obviously continuous. In Figure 14.7 we have depicted an example of helix with r = 1,
a = 4π, b = 1.
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Figure 14.7. The helix described by the parametrization
(

cos(4πt), sin(4πt), 2t
)

is
winding up a cylinder of radius r = 1. During one second, it winds twice around the
cylinder while climbing up 2 units of distance.

(d) Consider the map Φ : (−π, π)× (−π, π)→ R3 given by

Φ(θ, ϕ) =

 (3 + cosϕ) cos θ
(3 + cosϕ) sin θ

sinϕ

 .

Figure 14.8. A two-dimensional torus in R3.

This is an injective immersion; see Exercise 14.13. Its image is the torus in Figure
14.8. ut
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Corollary 14.37 (Graphical description of a submanifold). Let m, k ∈ N. Suppose that
U ⊂ Rm is an open set and F : Rm → Rk is a C1-map. Then the graph of F ,

ΓF :=
{

(x,F (x)
)
∈ Rm × Rk; x ∈ U

}
⊂ Rm × Rk ∼= Rm+k,

is an m-dimensional C1-submanifold of Rm × Rk.

Figure 14.9. The graph of the map f : (−2, 2) × (−2, 2) → R,
f(x, y) = 3x2 + sin(3x2 + 3y2) is a 2-dimensional submanifold of R3.

Proof. 5 Observe that the map Φ : Rm → Rm+k , Φ(x) =
(
x,F (x)

)
is a parametrization.

The conclusion now follows from Proposition 14.34. ut

Remark 14.38. The condition (iii) in Proposition 14.34 is difficult to verify in concrete
situations. However, the parametrizations play an important role in integration problems
and it would be desirable to have a simple way of recognizing them. We mention below,
without proof, one such method.

Suppose that X ⊂ Rn is an m-dimensional submanifold, U ⊂ Rm is an open set and
Φ : U → Rn is an injective immersion such that Φ(U) ⊂ X. Then Φ is a parametrization,
i.e., it satisfies assumption (iii) in Proposition 14.34. ut

The implicit function theorem coupled with the above corollary imply immediately
the following result. We let the reader supply the proof.

Proposition 14.39 (Implicit description of a submanifold). Let k,m, n ∈ N, m < n.
Suppose that U is an open subset of Rn and F : U → Rm is a Ck-map satisfying

∀x ∈ U : F (x) = 0⇒ the differential dF (x) : Rn → Rm is surjective. (14.31)

5Remember the simple trick used in this proof. It will come in handy later.
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Then the set

{F = 0} :=
{
x ∈ U ⊂ Rn;F (x) = 0

}
is an (n−m)-dimensional Ck-submanifold of Rn. ut

Remark 14.40. Let us rephrase the above result in, hopefully, more intuitive terms.

Recall that an m × n matrix m < n has maximal rank if and only if its rows are
linearly independent. The differential dF (x) : Rn → Rm is surjective if and only if it has
maximal rank m. Denote by F 1, . . . , Fm the components map F : U → Rm. Then the
rows of JF (x) correspond to the gradients of the components F j .

The zero set {F = 0} is a subset U ⊂ Rn described by m equations in n unknowns

F 1(x1, . . . , xn) = 0, · · · , Fm(x1, . . . , xn) = 0.

The condition (14.31) is equivalent with the following transversality property.

If x ∈ U and F 1(x) = · · · = Fm(x) = 0, then the gradients ∇F 1(x), . . . ,∇Fm(x) are
linearly independent.

The above result shows that if the transversality condition is satisfied, then the com-
mon zero locus

Z(F 1, . . . , Fm) :=
{
x ∈ U ; F 1(x) = · · · = Fm(x) = 0

}
is a Ck-submanifold of Rn of dimension n−m. In this case we say that the submanifold
Z(F 1, . . . , Fm) Z is cut out transversally by the equations F j(x) = 0, j = 1, . . . ,m.

Note that the transversality is automatically satisfied if F (x) is a submersion, i.e., for
any x ∈ U , the differential dF : Rn → Rm is surjective.

As an illustration, consider the situation in Example 14.30. There we proved that the
equations

xyz = 2, x+ y + z = 4

satisfy the transversality conditions in a small open neighborhood U of the point (1, 1, 2).
Thus in this neighborhood these equations describe a submanifold of dimension 3−2 = 1,
i.e., a curve. ut

From Propositions 14.34 and 14.39 we deduce the following useful characterization of
submanifolds.

Theorem 14.41. Let m,n ∈ N, m < n, and X ⊂ Rn. The following statements are
equivalent.

(i) The set X is an m-dimensional submanifold of Rn.

(ii) For any x0 ∈ X there exists an open neighborhood V of x0 and a submersion
F : V → Rn−m such that

V ∩X =
{
x ∈ V ; F (x) = 0

}
.
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(iii) For any x0 ∈ X there exists an open neighborhood V of x0, an open neighborhood
U of 0 in Rm and a parametrization Φ : U → Rn such that

V ∩X = Φ
(
U
)
.

ut

Outline of the proof. Proposition 14.34 shows that (iii) ⇒ (i) while Proposition 14.39
shows that (ii) ⇒ (i). The opposite implications (i) ⇒ (ii) and (i) ⇒ (iii) follow from the
definition of a submanifold. ut

Example 14.42 (The unit circle). The unit circle is the closed subset of R2 defined by

S1 :=
{

(x, y) ∈ R2; x2 + y2 = 1
}
.

Then S1 is a curve in R2, i.e., a 1-dimensional submanifold of R2. To see this consider the
smooth function

f : R2 → R, f(x, y) = x2 + y2 − 1.

Then S1 can be identified with the level set {f = 0}. Note that df = 2xdx+ 2ydy. Hence
if (x0, y0) ∈ S1, then at least one of the coordinates x0, y0 is nonzero so that df(x0, y0) 6= 0
proving that the differential df(x0, y0) : R2 → R is surjective. The implicit function
theorem then implies that S1 is a 1-dimensional submanifold of R2. There are several
ways of constructing useful local coordinates.

For example, in the region y > 0 the correspondence

S1 ∩ {y > 0} → R, (x, y) 7→ x

is a local coordinate chart. The corresponding parametrization is the map

(−1, 1)→ S1 ∩ {y > 0}, x 7→
(
x,
√

1− x2
)
.

This follows from the fact that the portion S1 ∩ {y > 0} is the graph of the smooth map

F : (−1, 1)→ R, F (x) =
√

1− x2.

Another very convenient choice is that of polar coordinates.

The location of a point p = (x, y) in the Cartesian plane R2, other than the origin 0, is

uniquely determined by two parameters: the distance to the origin r = ‖p‖ =
√
x2 + y2,

and the angle θ the vector p makes with the x-axis, measured counterclockwisely ; see
Figure 14.10.



14.5. Submanifolds of Rn 497

A

r

θ

p=(x,y)

Figure 14.10. Constructing the polar coordinates.

The Cartesian coordinates x, y are related to the parameters r, θ via the equalities{
x = r cos θ
y = r sin θ.

(14.32)

Exercise 14.11 shows that the map

Ψ : (0,∞)× (0, 2π)→ R2, (r, θ) 7→ (r cos θ, r sin θ)

is a diffeomorphism whose image is the region R2
∗, the plane R2 with the nonnegative

x-semiaxis removed. The parameters (r, θ) are called polar coordinates. Denote by S1
∗

the circle S1 with the point A = (1, 0) removed; see Figure 14.10. The inverse of the
diffeomorphism Ψ maps S1 to a portion line r = 1 in the (r, θ) plane. The correspondence
that associates to a point p ∈ S1

∗ the angle θ is a local coordinate chart. ut

Example 14.43 (The unit sphere). The unit sphere is the closed subset S2 of R3 defined
by

S2 :=
{

(x, y, z) ∈ R3; x2 + y2 + z2 = 1
}
.

Arguing exactly as in the case of the unit circle, we can invoke the implicit function
theorem to deduce that S2 is a surface in R3, i.e., 2-dimensional submanifold of R3.

Besides the Cartesian coordinates in R3 there are two other particularly useful choices
of coordinates. To describe them pick a point p = (x, y, z) ∈ R3 not situated on the z-axis.
Note that the location of p is completely known if we know the altitude z of p and the
location of the projection of p on the (x, y)-plane. We denote by q this projection so that
q = (x, y) ∈ R2; see Figure 14.11.

The location of q is completely determined by its polar coordinates (r, θ) so that the
location of p is completely determined if we know the parameters r, θ, z. These parameters
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are called the cylindrical coordinates in R3. The Cartesian coordinates are related to the
cylindrical coordinates via the equalities

x = r cos θ
y = r sin θ
z = z.

(14.33)

x

y

z

p

q

ρ

θ

ϕ

r

Figure 14.11. Constructing the cylindrical and spherical coordinates.

Observe that if we know the distance ρ of p to the origin, ρ = ‖p‖ =
√
x2 + y2 + z2,

and the angle ϕ ∈ (0, π) the vector p makes with the z-axis, then we can determine the
altitude z via the equality z = ρ cosϕ and the parameter r via the equality r = ρ sinϕ;
see Figure 14.11. This shows that the parameters r, θ, ϕ uniquely determine the location
of p. These parameters are called the spherical coordinates in R3.

The Cartesian coordinates are related to the spherical coordinates via the equalities
x = ρ sinϕ cos θ
y = ρ sinϕ sin θ
z = ρ cosϕ.

(14.34)

Exercise 14.11 shows that the equalities (14.33) and (14.34) describe diffeomorphisms
defined on certain open subsets of R3. Note that in spherical coordinates the unit sphere
S2 is described by the very simple equation ρ = 1. The position of a point on S2 not
situated at the poles is completely determined by the two angles ϕ and θ. Intuitively, ϕ
gives the Latitude of the point, while θ determines the Longitude. ut
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14.5.2. Tangent spaces.

Definition 14.44. Let m,n ∈ N, m ≤ n, suppose that X ⊂ Rn is an m-dimensional
submanifold of Rn and x0 ∈ X.

(i) A path in X through x0 is a C1-path γ : I → Rn, I ⊂ R open interval, such that
0 ∈ I, γ(0) = x0 and γ(I) ⊂ X; see Figure 14.12.

(ii) A vector v ∈ Rn is said to be tangent to X at x0 if there exists a path γ : I → Rn
in X through x0 such that γ̇(0) = v. We denote by Tx0X the set of vectors
tangent to X at x0. We will refer to Tx0X as the tangent space to X at x0.

ut

X

x
0

g

Figure 14.12. A path γ in the surface X ⊂ R3 through a point x0 ∈ X. The velocity
of γ at x0 is, by definition, a vector tangent to X at x0.

Example 14.45. Let m,n ∈ N, m < n. Denote by Rm × 0 the subspace of Rn defined
by the equations xm+1 = · · · = xn = 0. Fix an open set U ⊂ Rn and denote by Y the
intersection Y := U ∩ (Rm × 0). Then Y is an m-dimensional submanifold of Rn. We
want to prove that

Ty0
Y = Rm × 0, ∀y0 ∈ Y. (14.35)

In particular Ty0
Y is a vector subspace of Rn.

Clearly Ty0
Y ⊂ Rm×0. To see this observe that if γ : I → Rn is a path in Y through

y0, then it has the form

γ(t) =



γ1(t)
...

γm(t)
0
...
0


∈ Rn.

In particular, γ̇(0) ∈ Rm × 0.
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To prove that Rm × 0 ⊂ Ty0
Y consider a vector

v =



v1

...
vm

0
...
0


∈ Rm × 0.

Then, there exists ε > 0 sufficiently small such that x0 + tv ∈ U , ∀t ∈ (−ε, ε). The path

γ : (−ε, ε)→ Rn, γ(t) = x0 + tv

is in Y through y0 and γ̇(0) = v, i.e., v ∈ Ty0
Y . ut

The above example is a manifestation of a more general phenomenon.

Proposition 14.46. Let m,n ∈ N and suppose that X ⊂ Rn is an m-dimensional C1-
submanifold. Then for any x0 ∈ X the tangent space Tx0X is an m-dimensional vector
subspace of Rn.

Proof. Let x0 ∈ X. Fix a straightening diffeomorphism Ψ : U→ Rn of X at x0 and set
U := Ψ(U). Denote by Φ the inverse Ψ−1 : U → Rn and by L the differential of Φ at
(u0,0). Then Ψ(x0) = (u0,0) ∈ Rm × 0 ⊂ Rn. Note that ω is a path in X through x0 if
and only if γ := Ψ ◦ ω is a path in Rm × 0 through (u0,0). Moreover ω = Φ ◦ γ. Thus
any path ω in X through x0 has the form ω = Φ ◦ γ for some path γ in Rm × 0 through
(u0,0) and (see Exercise 13.7)

ω̇(0) = Lγ̇(0).

This proves that

Tx0X = L
(
Tx0,0Rm × 0

) (14.35)
= L

(
Rm × 0

)
.

Thus Tx0X is the image of the m-dimensional vector subspace Rm× 0 via the linear map
L. Since L is injective, the image also has dimension m. ut

The above proof leads to the following useful consequence.

Corollary 14.47. Let m,n ∈ N, m < n. Suppose that U ⊂ Rm is open and Φ : U → Rn
is a parametrization (see Proposition 14.34) with image X = Φ(U). If u0 ∈ U and
x0 = Φ(u0), then the tangent space Tx0X is equal to the range of the differential dΦ(u0),
i.e.,

Tx0X = dΦ(u0)Rm.
In particular, the vectors

∂u1Φ(u0), ∂u2Φ(u0), . . . , ∂umΦ(u0)

form a basis of Tx0X. ut
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Proposition 14.48. Let m,n ∈ N, m < n. Suppose that V ⊂ Rn is open and F : V → Rm
is a C1-map such that, for any x ∈ X = F−1(0), the differential dF : Rn → Rm is onto,
so the Jacobian matrix JF (x) has rank m. Then X is a smooth submanifold of Rn of
dimension n−m and

∀x0 ∈ X, Tx0X = ker dF (x0) =
{
v ∈ Rn; dF (x0)v = 0

}
.

Proof. The fact that X is a smooth submanifold of dimension n − m follows from the
implicit function theorem; see Proposition 14.39. Let x0 ∈ X. The range R

(
dF (x0)

)
of the linear operator dF (x0) : Rn → Rm has dimension m since this linear operator is
surjective. We deduce

dim ker dF (x0) = n− dimR
(
dF (x0)

)
= n−m = dimTx0X.

Hence it suffices to show that Tx0X ⊂ ker dF (x0).

Let v ∈ Tx0X. Thus, there exists a C1-path γ : (−ε, ε) → Rn such that γ(t) ∈ X,
∀t ∈ (−ε, ε), γ(0) = x0, γ̇(0) = v and consequently

F
(
γ(t)

)
= 0, ∀t ∈ (−ε, ε).

Derivating the last equality at t = 0 using the chain rule we deduce

0 =
d

dt

∣∣∣
t=0
F
(
γ(t)

)
= dF

(
γ(0)

)
γ̇(0) = dF (x0)v ⇒ v ∈ ker dF (x0).

ut

Remark 14.49. The last result has a more geometric equivalent reformulation. The map
F in Proposition 14.48 has m components,

F (x) =

 F 1(x)
...

Fm(x)

 .
The differential of F is represented by the m× n matrix

dF (x) =

 dF 1(x)
...

dFm(x)

 ,
where the i-th row describes the differential of F i. Note that

v ∈ ker dF (x)⇐⇒ dF i(x)(v) = 0, ∀i = 1, . . . ,m

⇐⇒〈∇F i(x),v〉 = 0, ∀i = 1, . . . , n−m⇐⇒v ⊥ ∇F i(x), ∀i = 1, . . . ,m

⇐⇒ v1∂x1F i(x0) + v2∂x2F i(x0) + · · ·+ vn∂xnF
i(x0) = 0, ∀i = 1, . . . ,m ut
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To put the above remark in its proper geometric perspective we need to survey a few
linear algebra facts. For a given vector subspace V ⊂ Rn we denote by V ⊥ the set of
vectors x ∈ Rn such that x ⊥ v, ∀v ∈ V . The set V ⊥ is called the orthogonal complement
of V in Rn. Often we will use the notation x ⊥ V to indicate x ∈ V ⊥. The orthogonal
complement enjoys several useful properties.

Proposition 14.50. Let n ∈ N and suppose that V is a vector subspace of Rn. Then the
following hold.

(i) The orthogonal complement V ⊥ is also a vector subspace of Rn. Moreover, if
the vectors v1, . . . ,vm span V , then

x ∈ V ⊥⇐⇒x ⊥ vi, ∀i = 1, . . . ,m.

(ii) For any x ∈ Rn there exists a unique v = v(x) ∈ V such that x−v ∈ V ⊥. This
vector is called the orthogonal projection of x on V .

(iii) dimV + dimV ⊥ = n = dimRn.

(iv) (V ⊥)⊥ = V .

ut

For a proof of the above proposition and additional information we refer to [20, Sec.
5.3].

Corollary 14.51. Let k, n ∈ N, k < n. Suppose that U ⊂ Rn is an open set and

F 1, . . . , F k : U → R

are C1-functions. Set

X :=
{
x ∈ Rn; F 1(x) = · · · = F k(x) = 0

}
.

Assume that

for any x ∈ X, the vectors ∇F 1(x), . . . ,∇F k(x) are linearly independent . (14.36)

Then the following hold.

(i) The subset X is a C1-submanifold of dimension m = n− k.

(ii) For any x ∈ X we have

TxX = span
{
∇F 1(x), . . . ,∇F k(x)

}⊥
.

(iii) For any x ∈ X, v ∈ Rn we have

v ⊥ TxX⇐⇒v ∈ {∇F 1(x), . . . ,∇F k(x)
}
. (14.37)
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Proof. Consider the map F : U → Rk,

F (x) =

 F 1(x)
...

F k(x)

 .
The Jacobian matrix JF (x) that represents dF (x) is a k × n matrix and its rows are
described by the differentials dF 1(x), . . . , dF k(x); see Example 13.14. The assumption
(14.36) shows that for x ∈ X the (row) rank of the matrix JF (x) is k. This implies that,
for any x ∈ X, the operator JF (x) is onto; see [20, Sec. 2.7]. Proposition 14.48 now
implies that X is a C1-submanifold of dimension m = n− k.

From Remark 14.49 and Proposition 14.50(i) we deduce

TxX =
(

span
{
∇F 1(x), . . . ,∇F k(x)

} )⊥
.

The equivalence (14.37) is now a consequence of Proposition 14.50(iv). ut

Example 14.52 (Hypersurfaces). A hypersurface in Rn is a C1-submanifold of dimension
n− 1. We can use Corollary 14.51 to produce hypersurfaces as follows.

Suppose that U ⊂ Rn is an open subset and f : U → R is a C1-function such that

∀x ∈ U, f(x) = 0⇒ ∇f(x) 6= 0 .

Then the zero set of f ,

X :=
{
u ∈ U ; f(u) = 0

}
is a hypersurface in Rn. Moreover, for all x0 ∈ X, the tangent space of X at x0 is a
hyperplane (through 0) and ∇f(x0) is a normal vector of this hyperplane. In particular,
it is described by the equation

Tx0X =
{
v ∈ Rn; 〈∇f(x0),v〉 = 0

}
.

As an example, consider a C1-function h : R2 → R. As we know, its graph

Γh :=
{

(x, y, z) ∈ R3; z = h(x, y)
}

is a hypersurface in R3. If we define f : R3 → R, f(x, y, z) = h(x, y) − z, we see that we
can alternatively characterize Γh as the zero set of f .

Note that for any (x0, y0, z0) ∈ R3 we have

∇f(x0, y0, z0) =

 ∂xh(x0, y0)
∂yh(x0, y0)
−1

 6= 0.

Thus the tangent space to Γh at p0 = (x0, y0, z0), z0 = h(x0, y0) consists of the vectors

ṙ =

 ẋ
ẏ
ż

 ∈ R3
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such that 〈∇f(p0), ṙ〉 = 0, i.e.,

∂xh(x0, y0)ẋ+ ∂yh(x0, y0)ẏ − ż⇐⇒ ż = ∂xh(x0, y0)ẋ+ ∂yh(x0, y0)ẏ.

We see that Tp0
Γh is the graph of the differential

dh(x0, y0) : R2 → R, dh(x0, y0)(ẋ, ẏ) = ∂xh(x0, y0)ẋ+ ∂yh(x0, y0)ẏ.

As an even more concrete example consider the sphere

Σ :=
{

(x, y, z) ∈ R3; x2 + y2 + z2 = 3
}
.

It is the zero set of the function f(x, y, z) = x2 + y2 + z2 − 3. Note that

∇f(x, y, z) =

 2x
2y
2z

 6= 0, ∀(x, y, z) 6= 0.

This shows that Σ is a hypersurface in R3. The point p0 = (1, 1, 1) lives on this sphere
and

Tp0
Σ = {ṙ = (ẋ, ẏ, ż) ∈ R3; ẋ+ ẏ + ż = 0

}
.

We treat the equality ẋ + ẏ + ż = 0 as a homogeneous linear system consisting of one
equation in the three unknowns ẋ, ẏ, ż. We see that the solutions of this system satisfy
ẋ = −ẏ − ż so that  ẋ

ẏ
ż

 =

 −ẏ − żẏ
ż

 = ẏ

 −1
1
0

+ ż

 −1
0
1


where ẏ, ż are arbitrary. This shows that the vectors −1

1
0

 ,
 −1

0
1


form a basis of Tp0

Σ. ut

Example 14.53. Consider the map

F : R4 → R2, F (x) =

[
F 1(x)
F 2(x)

]
=

 ‖x‖2 − 1

x1 + x2 + x3 + x4 − 1


and the set

S :=
{
x ∈ R4; F (x) = 0

}
.

In more concrete terms, S is the locus of points x ∈ R4 satisfying the equations{
‖x‖2 = 1

x1 + x2 + x3 + x4 = 1.

Let us observe first that S 6= ∅ since the basic vectors e1, . . . , e4 ∈ R4 belong to S. We
will prove that S is a 2-dimensional submanifold. In view of Corollary 14.51 it suffices
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to verify that for any x ∈ S the gradients ∇F 1(x) and ∇F 2(x) are linearly independent,
i.e., they are not collinear.

Observe that

∇F 1(x) = 2x, ∇F 2(x) =


1
1
1
1

 .
Note that if ∇F 1(x) and ∇F 2(x) were collinear, then

x1 = x2 = x3 = x4 = c.

Since x ∈ S we deduce 4c2 = 1 and 4c = 1. This is obviously impossible. Hence S is a
2-dimensional submanifold. To find the tangent space of S at e1 = (1, 0, 0, 0) observe first
that

∇F 1(e1) = 2e1 = (2, 0, 0, 0), ∇F 2(e1) = (1, 1, 1, 1),

and we deduce that Te1S consists of vectors (ẋ1, ẋ2, ẋ3, ẋ4) satisfying the homogeneous
linear system

ẋ1 = 0
ẋ1 + ẋ2 + ẋ3 + ẋ4 = 0.

This system is equivalent with the system in upper echelon form

2ẋ1 = 0
ẋ2 + ẋ3 + ẋ4 = 0.

The general solution of the last system is
ẋ1

ẋ2

ẋ3

ẋ4

 = ẋ3


0
−1

1
0

+ ẋ4


0
−1

0
1

 .
This shows that the vectors 

0
−1

1
0

 ,


0
−1

0
1


form a basis of the tangent space Te1S. ut

14.5.3. Lagrange multipliers. To understand the significance of the Lagrange multi-
plier theorem we consider simple question that can be addressed by it.

Example 14.54. Find the minimum of the cost function

h : R3 → R, h(x, y, z) = x+ y + z,

subject to the constraint

x2 + y2 + z2 = 3.
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Note that the above constraint equation defines a submanifold S in R3, more precisely,
the sphere of radius

√
3 centered at the origin. The question can now be rephrased as

asking to find the minimum value of the restriction of h to S.

If you think of h as describing say the temperature in R3 at a given moment, then the
question asks to find the coldest point on the sphere S. The Lagrange multiplier theorem
describes a simple criterion for recognizing (local) minima or maxima of functions defined
on a submanifold of Rn. ut

Theorem 14.55. Let n ∈ N. Suppose that S is a submanifold of Rn, O ⊂ Rn is an
open subset containing S and h : O → R is a C1 function. If x0 is a local minimum (or
maximum) of the restriction of h to S, then

∇h(x0) ⊥ Tx0S, i.e.,
〈
∇h(x0),v

〉
= 0, ∀v ∈ Tx0S.

Proof. Suppose that x0 is a local minimum of the restriction of h to S. (The local
maximum follows from this case applied to the function −h.) Let v ∈ Tx0S. We deduce
that there exists an open interval I ⊂ R containing 0 and a C1 path γ : I → Rn such that
γ(t) ∈ S, ∀t ∈ I and γ̇(0) = v.

Since x0 is a local minimum of h on S, there exists r > 0 such that

h(x0) ≤ h(x), ∀x ∈ Br(x0) ∩ S.

On the other hand, since γ is continuous and γ(0) = x0, there exists ε > 0 sufficiently
small such that (−ε, ε) ⊂ I and γ(t) ∈ Br(x0), ∀t ∈ (−ε, ε). Hence

h(γ(0)) = h(x0) ≤ h(γ(t)), ∀t ∈ (−ε, ε).

In other words, 0 ∈ I is a local minimum of the function h ◦ γ : I → R. Fermat’s theorem
then implies

0 =
d

dt

∣∣
t=0

h(γ(t))
(13.34)

=
〈
∇h(γ(0) ), γ̇(0)

〉
= 〈∇h(x0),v〉.

ut

Corollary 14.56 (Lagrange Multipliers Theorem). Let k, n ∈ N, k < n. Suppose that
O ⊂ Rn is an open set, and we are given C1-functions h, F 1, . . . , F k : O → R with the
property

F 1(x) = · · · = F k(x) = 0⇒ the vectors ∇F 1(x), . . . ,∇F k(x) are linearly independent .

(14.38)
If x0 ∈ O minimizes h subject to the constraints

F 1(x) = · · · = F k(x) = 0,

then there exist real numbers λ1, . . . , λk such that

∇h(x0) = λ1∇F 1(x0) + · · ·+ λk∇F k(x0).
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The real numbers λ1, . . . , λk are called Lagrange multipliers.6

Proof. In view of Corollary 14.51, the assumption (14.38) implies that the constrained
set

S :=
{
x ∈ Rn; F 1(x) = · · · = F k(x) = 0

}
is a submanifold of Rn of dimension n− k.

If x0 is a minimum of the restriction of h on S, then Theorem 14.55 shows that

∇h(x0) ∈ (Tx0S)⊥.

Corollary 14.51 implies that

∇h(x0) ∈ span
{
∇F 1(x0), . . . ,∇F k(x0)

}
= (Tx0S)⊥.

This implies the existence of numbers λ1, . . . , λk ∈ R such that

∇h(x0) = λ1∇F 1(x0) + · · ·+ λk∇F k(x0).

ut

Example 14.57. We want to find the minimum of the function

h : R3 → R, h(x, y, z) = x+ y + z,

subject to the constraint

x2 + y2 + z2 = 1.

The set S consisting of the points satisfying this constraint is the unit sphere in R3

centered at the origin. This is compact and, since h is continuous, its restriction to S has
an absolute minimum attained at some point p0 = (x0, y0, z0) .

Set f(x, y, z) := x2 + y2 + z2 − 1 so the constraint is described by the equation
f(x, y, z) = 0. Since

∇f(x, y, z) = 2

 x
y
z

 ,
we deduce that if x2 + y2 + z2 = 1, then ∇f(x, y, z) 6= 0 so (14.38) is satisfied.

Corollary 14.56 implies that there exists a Lagrange multiplier λ ∈ R such that

∇h(p0) = λ∇f(p0)⇐⇒(1, 1, 1) = λ(2x0, 2y0, 2z0).

We obtain the system of 4 equations
x2

0 + y2
0 + z2

0 = 1
1 = 2λx0

1 = 2λy0

1 = 2λz0,

6Observe that the number of Lagrange multipliers is equal to the number of constraints
F 1(x) = 0, . . . , Fk(x) = 0.
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in 4 unknowns, x0, y0, z0, λ. From the last 3 equations we deduce

x0 = y0 = z0 =
1

2λ
and

3 = (2λ)2(x2
0 + y2

0 + z2
0)⇒ 3 = 4λ2 ⇒ λ2 =

3

4
⇒ λ = ±

√
3

2
.

Thus p0 can only be one of the two points

p±0 = ± 1√
3

 1
1
1

 .
Since h(p−0 ) < 0 < h(p+

0 ) we deduce that the minimum of h subject to the constraint

x2 + y2 + z2 = 1 is −
√

3 and it is attained at the point p−0 . ut
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14.6. Exercises

Exercise 14.1. Let n ∈ N, r > 0 and suppose that f : Rn → R is a C1-function such
that f(x) = 0, ∀x ∈ Rn, ‖x‖ = r. Show that there exists x0 ∈ Rn such that

‖x0‖ < r and ∇f(x0) = 0.

Hint. Use the proof of Rolle’s Theorem 7.27 as inspiration. ut

Exercise 14.2. Consider the symmetric 3× 3-matrix

A =

 1 2 3
2 4 5
3 5 6

 .
Show that the associated quadratic function QA : R3 → R satisfies

QA(x, y, z) = x2 + 4y2 + 6z2 + 4xy + 6xz + 10yz, ∀x, y, z ∈ R. ut

Exercise 14.3. Suppose that A is a symmetric n × n matrix with associated quadratic
function QA. Prove that

∇QA(x) = 2Ax, H(QA,x) = 2A, ∀x ∈ Rn. ut

Exercise 14.4. Suppose that f : Rn → R is a C2-function and p0 ∈ Rn. Show that the
Hessian of f at p0 is equal to the Jacobian of the map ∇f : Rn → Rn at the same point.

ut

Exercise 14.5. Suppose that A is a symmetric, positive definite n × n matrix. Prove
that there exists m > 0 such that

QA(h) ≥ m‖h‖2, ∀h ∈ Rn.
Hint. Set

Σ1 :=
{
h ∈ Rn; ‖h‖ = 1

}
, m := inf

h∈Σ1

QA(h).

Show that Σ1 is compact and deduce that m > 0. Next, use (14.10) to prove that QA(h) ≥ m‖h‖2, ∀h. ut

Exercise 14.6. Consider the symmetric 2× 2-matrix

A =

[
a b
b c

]
.

(i) Prove that A is positive definite if and only if a > 0 and ac− b2 > 0.

(ii) Prove that A is negative definite if and only if a < 0 and ac− b2 > 0.

(iii) Prove that A is indefinite if and only if ac− b2 < 0.

Hint: (i) Investigate when QA(x, 1) > 0 for any x ∈ R. (ii) Investigate when QA(x, 1) < 0 for any x ∈ R. ut

Exercise 14.7. Let n ∈ N and suppose that U ⊂ Rn is an open and convex set. A
function f : U → R is called convex if

f(tp+ (1− t)q) ≤ tf(p) + (1− t)f(q), ∀t ∈ [0, 1], p, q ∈ U.
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(i) Prove that if the C1 function f : U → R is convex, then

f(q) ≥ f(p) + 〈∇f(p), q − p〉, ∀p, q ∈ U.

(ii) Prove that a C1 function f : U → R is convex if and only if

〈∇f(p)−∇f(q),p− q〉 ≥ 0, ∀p, q ∈ U.

(iii) Prove that a C2 function f : U → R is convex if and only if

〈H(f,p)v,v〉 ≥ 0, ∀p ∈ U, v ∈ Rn.

Hint: Have a look at Section 8.3. ut

Exercise 14.8. Consider the smooth function

f : (0,∞)× (0,∞)→ R, f(x, y) = xy +
1

x
+

1

y
.

(i) Show that the point p0 = (1, 1) is the only critical point of f .

(ii) Show that the point p0 = (1, 1) is a local minimum of f .

(iii) Prove that

f(x, y) ≥ 2
√
x+ y, ∀x, y > 0.

Hint: Use the inequality a2 + b2 ≥ 2ab, ∀a, b ∈ R.

(iv) Prove that the point p0 in (i) is the global minimum point of f , i.e.,

f(p0) < f(p), ∀p ∈ (0,∞)× (0,∞), p 6= p0.

Hint: Set µ := infx,y>0 f(x, y) ≥ 0. Choose a sequence (xn, yn) such that

xn, yn > 0, µ ≤ f(xn, yn) < µ+
1

n
, ∀n ≥ 1.

Prove that (xn, yn) is bounded. Conclude using Bolzano-Weierstrass.

ut

Exercise 14.9. Let n ∈ N and suppose that U, V ⊂ Rn are open sets.

(i) Prove that if G : V → Rn is a C1 diffeomorphism and W ⊂ V is an open set,
then G(W ) is also an open set.

(ii) Prove that if F : U → Rn and G : V → Rn are C1-diffeomorphisms and
F (U) ⊂ V , then the composition G ◦ F : U → Rn is also a C1-diffeomorphism.

ut

Exercise 14.10. Prove Corollary 14.19. ut

Exercise 14.11. Prove that the following maps are C1 diffeomorphisms,7 and then find
their ranges and inverses.

7Exercise 13.3 asks you to compute the Jacobian matrices of these maps.
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F : (0,∞)× (0, 2π)→ R2, F (r, θ) = [r cos θ, r sin θ]>,

G : (0,∞)× (0, 2π)× R→ R3, G(r, θ, z) = [r cos θ, r sin θ, z]>,

H : (0,∞)× (0, 2π)× (0, π)→ R3, H(ρ, θ, ϕ) = [ρ cosϕ cos θ, ρ cosϕ sin θ, ρ cosϕ]>.

Hint. Prove that each of the above maps and then show that Corollary 14.19 applies in each of these cases. ut

Exercise 14.12. Let m,n ∈ N, m < n. Prove that if S1, S2 are two codimension m
coordinate subspaces of Rn, then there exists a bijective linear map T : Rn → Rn such
that T (S1) = S2. ut

Exercise 14.13. Consider the map Φ : (−π, π)× (−π, π)→ R3 given by

Φ(θ, ϕ) =

 (2 + cosϕ) cos θ
(2 + cosϕ) sin θ

sinϕ

 .
Prove that Φ is an injective immersion. ut

Exercise 14.14. Prove Proposition 14.16. ut

Exercise 14.15. Consider the function f : R2 → R, f(x, y) = esin(xy) − 1.

(i) Show that f(1, 0) = 0.

(ii) Show that there exist open intervals I centered at 1 and J centered at 0 and a
C1-function g : I → R such that the intersection of the level set {f = 0} with
the rectangle I × J ⊂ R2 coincides with the graph of g.

(iii) Compute g′(1).

ut

Exercise 14.16. Show that the equation

xy − z log y + exz = 1

be solved uniquely in the form y = g(x, z) in an open neighborhood of (0, 1, 1). ut

Exercise 14.17. Show that the system of equations{
u2 + v2 − x2 − y = 0
u+ v − x2 + y = 0,

can be solved uniquely for (u, v) in terms of (x, y) in an open neighborhood of

(u0, v0, x0, y0) = (1, 2, 2, 1). ut
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Exercise 14.18. Consider the map

F : (0, 2π)× (0, π/2)→ R3, F (θ, ϕ) =

 sinϕ cos θ
sinϕ sin θ

cosϕ

 .
Show F is an injective immersion and then find its image. ut

Exercise 14.19. (a) Suppose that f : R→ (0,∞) is a C1-function. Its graph is the curve

Γf :=
{

(x, y) ∈ R2; y = f(x)
}
.

Denote by Sf the region in the space R3 swept when rotating Γf about the x axis; see
Figure 14.13. Show that Sf is 2-dimensional submanifold of R3.

Figure 14.13. The surface of revolution Sf , f(x) = x2 + 1.

(b) Suppose that 0 < a < b and h : (a, b)→ R is a C1-function. Denote by Σh the region
in the space R3 swept when rotating Γh about the y-axis; see Figure 14.14 in the special
case h(x) = (x− 1)(x− 2). Show that Σh is a 2-dimensional submanifold of R3.

Hint. (a) Show that Sf is described by the equation f(x)2 = y2 + z2 and then show that this equation satisfies

the assumptions of Proposition 14.39. (b) Show that Σh is the graph of a function depending on x, z i.e., it can be

described by an equation of the form y = F (x, z) for some C1-function F . ut

Exercise 14.20. Prove that the map F : (0,∞)× R→ R3 given by

F (r, t) =

 r cos t
r sin t
t


satisfies all the conditions (i)-(iii) in Proposition 14.34. (Its image is a helicoid and it is
depicted Figure 14.15.) ut
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Figure 14.14. The surface of revolution Σh, h(x) = (x− 1)(x− 2), x ∈ (1, 1.75).

Figure 14.15. A helicoid.

Exercise 14.21. Consider the function f : R3 → R, f(x, y, z) = xy − z log y + exz − 1.

(i) Show that there exists an open neighborhood U of p0 := (0, 1, 1) such that
∇f(p) 6= 0 ∀p ∈ U .

(ii) Let U be as above. Show that the set

Z =
{
p ∈ U ; f(p) = 0

}
is a 2-dimensional submanifold of R3 containing p0.

(iii) Find a basis of the tangent space Tp0
Z.

ut
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Exercise 14.22. Consider the map F : R4 → R2 given by

F (u, v, x, y) =

[
u2 + v2 − x2 − y
u+ v − x2 + y

]
.

Set p0 := (1, 2, 2, 1) ∈ R4.

(i) Show that there exists an open neighborhood U of p0 in R4 such that, ∀p ∈ U ,
the differential dF (p) is surjective as a linear map R4 → R2, i.e., the Jacobian
JF (p) has rank 2 for any p ∈ U .

(ii) Let U be as above. Show that the set

Z =
{
p ∈ U ; F (p) = 0

}
is a 2-dimensional submanifold of R4 containing p0.

(iii) Find a basis of the tangent space Tp0
Z.

Hint. (i) Use the main theorem in Sec.6, Chapter 3 of [20]. ut

Exercise 14.23. Show that the set

S :=
{

(x, y, z) ∈ R3; x2 + y2 − z2 = 1
}

is a 2-dimensional submanifold of R3 and then describe a basis of the tangent space to S
at the point p0 = (1, 1, 1). ut

Exercise 14.24. Let n ∈ N, U ⊂ Rn an open set and S ⊂ U a C1-submanifold of
dimension k. Prove that if F : U → Rn is a C1-diffeomorphism, then F (S) is also
C1-submanifold of Rn of dimension k.

Hint. Observe that F−1 : F (U) → Rn is a diffeomorphism. Use Exercise 14.9 to show that if (V,Ψ) is a

straightening diffeomorphism of S at p0, then (F (V ),Ψ ◦ F−1) is a straightening diffeomorphism of F (S) at

F (p0). ut

Exercise 14.25. Let n ∈ N.

(i) Prove that any vector subspace U ⊂ Rn is a submanifold of dimension dimU .

(ii) Suppose that X ⊂ Rn is a nonempty affine subspace and p0 ∈ X. Define
T : Rn → Rn, T (x) = x− p0. Show that U = T (X) is a vector subspace of Rn.

(iii) Prove that the above map T is a diffeomorphism with image Rn.

(iv) Deduce that X is a submanifold of Rn of dimension dimU .

Hint. (i) requires linear algebra, namely that a basis of U can be extended to a basis of Rn. (ii),(iii) are easy. For

(iv) use (i)-(iii) and Exercise 14.24. ut

Exercise 14.26. Let n ∈ N, n ≥ 2.

(i) Show that a hyperplane H of Rn is a submanifold of dimension n− 1.
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(ii) Let f : Rn → R is a C1-function and set

Zf :=
{
p ∈ Rn; f(p) = 0

}
.

Suppose that ∇f(p) 6= 0, ∀p ∈ Zf . According to Example 14.52 the zero set
Zf is a hypersurface of Rn, i.e., a submanifold of dimension n − 1. Fix a point
p0 ∈ Zf and set v0 := ∇f(p0). Describe explicitly in terms of p0 and v0 the
hyperplane of Rn satisfying

p0 ∈ H and Tp0
H = Tp0

Zf .

This hyperplane is called the affine tangent space of Zf at p0.

ut

Exercise 14.27. Let n ∈ N and suppose that U ⊂ Rn is an open set containing the origin
0. Consider a C1-function f : U → R. We set

c0 = f(0), ci := ∂xif(0), i = 1, . . . , n.

The graph of f ,

Γf :=
{

(x, y) ∈ U × R; y = f(x)
}
⊂ Rn+1,

is an n-dimensional submanifold of Rn+1. Note that the point p0 := ( 0, f(0) ) belongs to
the graph.

(i) Describe explicitly in terms of the constants c1, . . . , cn a basis of the tangent
space Tp0

Γf .

(ii) Describe explicitly in terms of the constants c0, c1, . . . , cn a hyperplaneH ⊂ Rn+1

such that

p0 ∈ H and Tp0
H = Tp0

Γf .

Hint. Observe that Γf can be described as the hypersurface of Rn+1 described in the coordinates (x1, . . . , xn, y)

by the equation f(x1, . . . , xn)− y = 0. ut

Exercise 14.28. Find the minimum of h(x, y, z, t) = t subject to the constraints

x2 + y2 + z2 + t2 = x+ y + z + t = 1.

Hint. Apply Corollary 14.56. You also need to use the results in Example 14.53. ut

Exercise 14.29. From among all rectangular parallelepipeds of given volume V > 0 find
the ones that have the least surface area. ut

Exercise 14.30. Determine the outer dimensions of a plastic box, with no lid, with walls
of a given thickness δ and a given internal volume V that requires the least amount of
plastic to produce. ut
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14.7. Exercises for extra credit

Exercise* 14.1. Let n ∈ N and suppose that f : Rn → R is a convex C1-function. Show
that the map

Φ : Rn → Rn, Φ(x) = x+∇f(x)

is surjective.

Hint. Use Exercise 12.25 to prove that for any y ∈ R the function fy : Rn → R, fy(x) = 1
2
‖x‖2 + f(x) − 〈y,x〉,

has at least one critical point. ut

Exercise* 14.2. Prove Proposition 14.39.

Hint. Use Version 2 of the implicit function theorem. ut

Exercise* 14.3 (Raleigh-Ritz). Let n ∈ N and suppose that A is a symmetric n × n
matrix. Define

qA : Rn → R, qA(x) = 〈Ax,x〉, ∀x ∈ Rn.
Set

µ := inf
‖x‖=1

qA(x).

(i) Show that there exists u ∈ Rn such that ‖u‖ = 1 and qA(u) = µ.

(ii) Use Lagrange multipliers to show that any vector u as above is an eigenvector
of A corresponding to the eigenvalue µ, i.e., Au = µu.

Hint. You may want to have a look at Exercise 13.5. ut



Chapter 15

Multidimensional
Riemann integration

In this chapter we want to extend the concept of Riemann integral to functions of several
variables. While there are many similarities, the higher dimensional situation displays
new phenomena and difficulties that do not have a 1-dimensional counterpart.

15.1. Riemann integrable functions of several
variables

15.1.1. The Riemann integral over a box. In this chapter, for simplicity, we define
a box in Rn to be a closed box in the sense of Definition 12.30, i.e., a closed set B of the
form

B = [a1, b1]× · · · × [an, bn], (15.1)

where a’s and b’s are real numbers satisfying a1 ≤ b1, . . . , an ≤ bn. Note that we allow the
possibility that ai = bi for some i’s. In particular, a set consisting of a single point is a
very special case of box.

A vertex of the box in (15.1) is a point x = (x1, . . . , xn) such that

xi = ai or xi = bi, ∀i = 1, . . . , n.

A facet of B is the set obtained by intersecting B with a coordinate hyperplane of the
form xi = ai or xi = bi.

1

The n-dimensional volume of the box B in (15.1) is the nonnegative real number

vol(B) = voln(B) := (b1 − a1)(b2 − a2) · · · (bn − an). (15.2)

1In dimension 2 a box is a rectangle and the facets are the boundary edges of that rectangle.

517
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The box B is called nondegenerate if voln(B) > 0, i.e., ai < bi, ∀i = 1, . . . , n. Note that
when n = 1, a box B in R is a compact interval and vol1(B) is precisely the length of the
interval B. In this case the facets of B are the endpoints of the interval B

Recall that the diameter of a set S ⊂ Rn is (see Definition 12.54 )

diam(S) = sup
x,y∈S

dist(x,y).

It is not hard to see that if B is the box in (15.1), then

diam(B) =
√

(b1 − a1)2 + · · ·+ (bn − an)2.

Note that the intersection of two boxes B,B′ is either empty, or another box. For example
if

B = I1 × · · · × In, B′ = I ′1 × · · · × I ′n,
the Ij , I

′
k ⊂ R are compact intervals, then B ∩B′ is the (possibly empty) box

(I1 ∩ I ′1)× · · · × (In ∩ I ′n).

chamber

Figure 15.1. A partition of a 2-dimensional box. The sum of the areas of the chambers
is equal to the area of the big box that contains them.

Definition 15.1. Let n ∈ N and suppose that

B = [a1, b1]× [a2, b2]× · · · × [an, bn] ⊂ Rn

is a nondegenerate box.

(a) A partition of B is an n-tuple P = (P 1, . . . ,P n), where, for each j = 1, . . . , n, P j , is
a partition of the interval [aj , bj ]; see Definition 9.1.

(b) A chamber of P is a box of the form I1 × · · · × In, where Ij ⊂ [aj , bj ] is an interval of
the partition P j . We denote by C (P ) the set of chambers of a partition P and by P(B)
the set of partitions of B.

(c) The mesh size or mesh of a partition P is the positive number

‖P ‖ := max
C∈C (P )

diam(C).

(d) A partition P ′ of B is said to be finer than another partition P , and we denote this
by P ′ � P , if any chamber of P ′ is contained in some chamber of P . ut
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The next result is immediate in dimension 1 and, although it is very intuitive, it takes
a bit more work in higher dimensions. We leave its proof to you as an exercise.

Lemma 15.2. Let n ∈ N. Suppose that B ⊂ Rn is a nondegenerate box and P is a
partition of B. Then (see Figure 15.1)

voln(B) =
∑

C∈C (P )

voln(C). (15.3)

ut

- In the sequel, for the sake of readability, we introduce the following notation:

mS(f) := inf
x∈S

f(x), MS(f) := sup
x∈S

f(x),

for any function f : X → R, and any S ⊂ X.

Definition 15.3. Let n ∈ N. Suppose that B ⊂ Rn is a nondegenerate box and f : B → R
is a bounded function.

(a) For any partition P of B we define the lower Darboux sum of f over P to be

S∗(f,P ) :=
∑

C∈C (P )

mC(f) voln(C).

The upper Darboux sum of f over P is

S∗(f,P ) :=
∑

C∈C (P )

MC(f) voln(C).

(b) The mean oscillation of f over a partition P of B is the real number

ω(f,P ) :=
∑

C∈C (P )

osc(f, C) voln(C). ut

Arguing as in the one-dimensional case (see Proposition 9.8) one can show that for
any nondegenerate box B ⊂ Rn, any bounded function f : B → R and any partition P of
B we have

mB(f) voln(B) ≤ S∗(f,P ) ≤ S∗(f,P ) ≤MB(f) voln(B), (15.4a)

ω(f,P ) = S∗(f,P )− S∗(f,P ). (15.4b)

Indeed

mB(f) voln(B)
(15.3)

=
∑

C∈C (P )

mB(f) voln(C)

(mB(f) ≤ mC(f), ∀C ∈ C (P ))

≤
∑

C∈C (P )

mC(f) voln(C) ≤
∑

C∈C (P )

MC(f) voln(C)
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(MC(f) ≤MB(f), ∀C ∈ C (P ))

≤
∑

C∈C (P )

MB(f) voln(C)
(15.3)

= MB(f) voln(B).

The next result is the higher dimensional counterpart of Proposition 9.12.

Lemma 15.4. Let n ∈ N. Assume that B ⊂ Rn is a nondegenerate box and P ,P ′ are
partitions of B such that P ′ is finer than P , P ′ � P . Then, for any bounded function
f : B → R we have

S∗(f,P ) ≤ S∗(f,P ′) ≤ S∗(f,P ′) ≤ S∗(f,P ), (15.5a)

ω(f,P ′) ≤ ω(f,P ). (15.5b)

Proof. We already know that S∗(f,P ′) ≤ S∗(f,P ′) so it suffices to prove

S∗(f,P ) ≤ S∗(f,P ′) and S∗(f,P ′) ≤ S∗(f,P ).

We will prove only the first one. The proof of the second inequality above is entirely similar, and it follows from
the first inequality applied to the function −f . Suppose that P = (Bα)α∈A.

For every chamber C ∈ C (P ) we denote by P ′C the collection of chambers of the partition P ′ that are contained
in C. Note that the collection P ′C is the collection of chambers of some partition of C. We have

S∗(f,P ′) =
∑

C′∈C(P ′)

MC′ (f) voln(C′) =
∑

C∈C(P )

 ∑
C′∈P ′

C

MC′ (f) voln(C′)


(MC′ (f) ≤MC(f) when C′ ⊂ C)

≤
∑

C∈C(P )

 ∑
C′∈P ′

C

MC(f) voln(C′)

 =
∑

C∈C(P )

MC(f)

 ∑
C′∈P ′

C

voln(C′)


(15.3)

=
∑

C∈C(P )

MC(f) voln(C) = S∗(f,P ).

This proves (15.5a). To prove (15.5b) note that

ω(f,P ′) = S∗(f,P ′)− S∗(f,P ′)
(15.5a)

≤ S∗(f,P )− S∗(f,P ) ≤ ω(f,P ).

ut

Consider a nondegenerate box

B = [a1, b1]× · · · × [an, bn] ⊂ Rn

and two partitions P ′,P ′′ of it. The intersection of a chamber C ′ ∈ C (P ′) with a chamber
C ′′ ∈ C (P ′′) is either empty, a degenerate box or a nondegenerate box. The collection of
all the possible nondegenerate boxes formed by such overlaps coincides with the collection
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of chambers of a new partition of B that we denote by P ′ ∨ P ′′. Equivalently if P ′ and
P ′′ are described by n-tuples of partitions of the intervals [aj , bj ],

P ′ = (P ′1, . . . ,P
′
n), P ′′ = (P ′′1, . . . ,P

′′
n),

then

P ′ ∨ P ′′ = (P ′1 ∨ P ′′1, . . . ,P ′n ∨ P ′′n),

where P ′j ∨ P ′′j is defined at page 258.

By construction, any chamber of P ′ ∨ P ′′ is contained both in a chamber of the
partition P ′ and in a chamber of P ′′. In other words,

P ′ ∨ P ′′ � P ′, P ′′.
Lemma 15.4 implies that, for any bounded function f : B → R we have

S∗(f,P
′) ≤ S∗(f,P ′ ∨ P ′′) ≤ S∗(f,P ′ ∨ P ′′) ≤ S∗(f,P ′′).

We have thus shown that

S∗(f,P
′) ≤ S∗(f,P ′′), ∀P ′,P ′′ ∈ P(B).

Hence, the collection of lower Darboux sums of f is bounded above by any upper Darboux
sum, and the collection of upper Darboux sums of f is bounded below by any lower
Darboux sum. We set∫

B

f(x)|dx| := sup
P∈P(B)

S∗(f,P ),

∫
B
f(x)|dx| := inf

P∈P(B)
S∗(f,P )

The number
∫
B
f(x)|dx| is called the lower Darboux integral of f over B, and the number∫

Bf(x)|dx| is called the upper Darboux integral of f over B. Note that∫
B

f(x)|dx| ≤
∫
B
f(x)|dx|.

Definition 15.5. Let n ∈ N. Suppose that B ⊂ Rn is a nondegenerate box and f : B → R
is a bounded function. The function f is called Riemann integrable over B if∫

B

f(x)|dx| =
∫
B
f(x)|dx|.

The common value of these numbers is called the Riemann integral of f over B and it is
denoted by ∫

B
f(x)|dx| or

∫
B
f(x1, . . . , xn)|dx1 · · · dxn|.

We denote by R(B) the set of Riemann integrable functions f : B → R. ut

Remark 15.6. When n = 1, and B = [a, b], a < b, then∫
[a,b]

f(x)|dx| =
∫ b

a
f(x)dx = −

∫ a

b
f(x)dx,
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where
∫ b
a f(x)dx is the usual 1-dimensional Riemann integral. For this reason we will set∫ b

a
f(x)|dx| =

∫ a

b
f(x)|dx| :=

∫
[a,b]

f(x)|dx|. ut

Example 15.7. Suppose f : B → R is a constant function, f(x) = c0, ∀x ∈ B. Then,
for any partition P of B, we have

S∗(f,P ) =
∑

C∈C (P )

c0 voln(C) = c0

∑
C∈C (P )

voln(C)
(15.3)

= c0 voln(B)

and, similarly,

S∗(f,P ) = c0 voln(B).

This proves that f is integrable and∫
B
c0|dx| = c0 voln(B). ut

Definition 15.8. Let n ∈ N and suppose that B ⊂ Rn is a nondegenerate box and
f : B → R is a bounded function. We define a sample of a partition P to be an assignment
ξ that associates to each chamber C of P a point ξC located in the chamber C. The
Riemann sum of f determined by the partition P and the sample ξ is the real number

S(f,P , ξ) :=
∑

C∈C (P )

f(ξC) voln(C). ut

From the definition of Riemann and Darboux sums we deduce immediately that, for
any partition P of B and any sample ξ of P we have

S∗(f,P ) ≤ S(f,P , ξ) ≤ S∗(f,P ).

Note also, that if f, g : B → R are two bounded functions, a, b ∈ R, P is a partition of B
and ξ is a sample of P , then

S
(
af + bg,P , ξ

)
= aS(f,P , ξ) + bS(g,P , ξ). (15.6)

Our next result suggests a method of approximation of Riemann integrals.

Proposition 15.9. Let n ∈ N. Suppose that B ⊂ Rn is a nondegenerate box and
f : B → R is a Riemann integrable function. Then, for any partition P of B and
any sample ξ of P , we have∣∣∣∣S(f,P , ξ)−

∫
B
f(x)|dx|

∣∣∣∣ ≤ ω(f,P ), (15.7a)

∣∣∣∣S∗(f,P )−
∫
B
f(x) |dx|

∣∣∣∣ , ∣∣∣∣S∗(f,P )−
∫
B
f(x) |dx|

∣∣∣∣ ≤ ω(f,P ). (15.7b)



15.1. Riemann integrable functions of several variables 523

Proof. We have

S∗(f,P ) ≤
∫
B
f(x) |dx| ≤ S∗(f,P )

and

S∗(f,P ) ≤ S(f,P , ξ) ≤ S∗(f,P ).

The conclusion follows by observing that the two numbers

S(f,P , ξ),

∫
B
f(x)|dx|

are both situated in the interval
[
S∗(f,P ),S∗(f,P )

]
of length ω(f,P ). ut

Our next result is a higher dimensional version of the Riemann-Darboux Theorem
9.17.

Theorem 15.10 (Riemann-Darboux). Let n ∈ N. Suppose that B ⊂ Rn is a nonde-
generate box and f : B → R is a bounded function. Then the following statements are
equivalent.

(i) The function f is Riemann-integrable over B.

(ii) For any ε > 0 there exists a partition P of B such that the mean oscillation of
f over P is < ε, i.e.,

ω(f,P ) < ε.

Proof. (i) ⇒ (ii). We know that f is Riemann integrable. We set

I :=

∫
B
f(x)|dx|.

We have ∫
B

f(x)|dx| = sup
P∈P(B)

S∗(f,P ) =

∫
B
f(x)|dx| = inf

P∈P(B)
S∗(f,P ) = I

Thus, for any ε > 0 there exists partitions P ′,P ′′ of B such that

I − ε

2
< S∗(f,P

′) ≤ I ≤ S∗(f,P ′′) < I +
ε

2
.

If we set P := P ′ ∨ P ′′, then we deduce

I − ε

2
<S∗(f,P

′)≤ S∗(f,P ) ≤ S∗(f,P ) ≤S∗(f,P ′′)< I +
ε

2
.

Hence

ω(f,P ) = S∗(f,P )− S∗(f,P ) < I +
ε

2
−
(
I − ε

2

)
= ε.

(ii) ⇒ (i) Let ε > 0. There exists a partition P of B such that

ω(f,P ) = S∗(f,P )− S∗(f,P ) < ε.
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On the other hand,

S∗(f,P ) ≤
∫
B

f(x)|dx| ≤
∫
B
f(x)|dx| ≤ S∗(f,P )

so that ∫
B
f(x)|dx| −

∫
B

f(x)|dx| ≤ S∗(f,P )− S∗(f,P ) < ε.

In other words

0 ≤
∫
B
f(x)|dx| −

∫
B

f(x)|dx| ≤ ε, ∀ε > 0,

i.e., ∫
B
f(x)|dx| −

∫
B

f(x)|dx| = 0

and thus the function f is Riemann integrable. ut

Corollary 15.11. Suppose that B ⊂ Rn is a nondegenerate box and f : B → R is a
continuous function. Then f is Riemann integrable over B.

Proof. The box B is compact and thus f is uniformly continuous. Thus, for any ε > 0
there exists δ(ε) > 0 such that, for any set S ⊂ B satisfying diam(S) < δ(ε) we have

osc(f, S) <
ε

voln(B)
.

Choose a partition P of B such that ‖P ‖ < δ(ε). In particular, we deduce that

osc(f, C) <
ε

voln(B)
, ∀C ∈ C (P ).

We have

ω(f,P ) =
∑

C∈C (P )

osc(f, C) voln(C) <
ε

voln(B)

∑
C∈C (P )

voln(C) = ε.

ut

Theorem 15.12. Suppose that B ⊂ Rn is a nondegenerate box and f1, . . . , fN : B → R
are Riemann integrable functions. Fix a positive constant R such that

|fi(x)| ≤ R, ∀i = 1, . . . , N, x ∈ B.

If

H : [−R,R]× · · · × [−R,R]︸ ︷︷ ︸
N

→ R

is a Lipschitz function, then the function

f : B → R, f(x) = H
(
f1(x), . . . , fN (x)

)
is also Riemann integrable.
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Proof. Fix a Lipschitz constant L > 0 of H, i.e.,

|H(y1)−H(y2)| ≤ L‖y1 − y2‖, ∀y ∈ [−R,R]× · · · [−R,R]︸ ︷︷ ︸
N

= CR(0) ⊂ RN .

Define F : Rn → CR(0)

F (x) =

 f1(x)
...

fN (x)

 .
We first prove that, for any subset S ⊂ B, we have

osc(f, S) ≤ L
√
N

N∑
i=1

osc(fi, S). (15.8)

Indeed, for any x1,x2 ∈ S, we have∣∣ f(x1)− f(x2)
∣∣ =

∣∣H(F (x1) )−H(F (x2) )
∣∣

≤ L
∥∥F (x1)− F (x2)

∥∥ ≤ L√N∥∥F (x1)− F (x2)
∥∥
∞

= L
√
N max

1≤i≤N

∣∣ fi(x1)− fi(x2)
∣∣ ≤ L√N N∑

i=1

osc(fi, S).

Since the functions fi are Riemann integrable, we deduce that, for any i = 1, . . . , N , and
for any ε > 0, we can find a partition P i of B such that

ω(fi,P i) <
ε

LN
√
N
. (15.9)

Choose a partition P that is finer than all the partitions P 1, . . . ,PN . E.g., we can choose

P = P 1 ∨ P 2 ∨ · · · ∨ PN .

We deduce from (15.5b) that

ω(fi,P ) <
ε

LN
√
N
, ∀i = 1, . . . , N.

We have

ω(f,P ) =
∑

C∈C (P )

osc(f, C) voln(C)
(15.8)

≤ L
√
N

∑
C∈C (P )

N∑
i=1

osc(fi, C) voln(C)

= L
√
N

N∑
i=1

 ∑
C∈C (P )

osc(fi, C) voln(C)

 = L
√
N

N∑
i=1

ω(fi,P )

(15.9)
< L

√
N

N∑
i=1

ε

LN
√
N

= ε.

This proves that f(x) is Riemann integrable. ut
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Theorem 15.13. Let n ∈ N and suppose that B ⊂ Rn is a nondegenerate box. Then the
following hold.

(i) If f, g ∈ R(B) and s, t ∈ R, then sf + tg ∈ R(B) and∫
B

(
sf(x) + tg(x)

)
|dx| = s

∫
B
f(x)|dx|+ t

∫
B
g(x) |dx|. (15.10)

(ii) If f, g ∈ R(B), then fg ∈ R(B).

(iii) If f, g ∈ R(B) and f(x) ≤ g(x), ∀x ∈ B, then∫
B
f(x)|dx| ≤

∫
B
g(x)|dx|.

(iv) If f ∈ R(B), then |f | ∈ R(B) and∣∣∣∣∫
B
f(x)|dx|

∣∣∣∣ ≤ ∫
B
|f(x)| |dx|.

Proof. (i) Let H : R2 → R be the linear function H(x, y) = sx+ ty. Then H is Lipschitz
and

sf(x) + tg(x) = H
(
f(x), g(x)

)
, ∀x ∈ B.

Theorem 15.12 now implies that sf(x) + tg(x) is Riemann integrable.

Arguing as in the proof of Theorem 15.12, we can find a sequence of partitions P ν ,
ν ∈ N of B such that

ω(sf + tg,P ν), ω(f,P ν), ω(g,P ν) <
1

ν
, ∀ν ∈ N.

Next, choose a sample ξ
ν

of P ν for any ν ∈ N. Proposition 15.9 now implies that

lim
ν→∞

S(f,P ν , ξν) =

∫
B
f(x)|dx|,

lim
ν→∞

S(g,P ν , ξν) =

∫
B
g(x)|dx|,

lim
ν→∞

S( sf + tg,P ν , ξν ) =

∫
B

(
sf(x) + tg(x)

)
|dx|

On the other hand

S( sf + tg,P ν , ξν ) = sS(f,P ν , ξν) + tS(g,P ν , ξν).

If we let ν →∞ in the last equality we obtain (15.10).

(ii) We begin by proving that for any u ∈ R(B), its square u2 is also Riemann integrable.
To see this, fix R > 0 such that |u(x)| ≤ R, ∀x ∈ B. The function H : [−R,R] → R,
H(t) = t2 is Lipschitz because, for any s, t ∈ [−R,R], we have

|H(s)−H(t)| = |s2 − t2| = |s+ t| · |s− t| ≤ (|s|+ |t|) · |t− s| ≤ 2R|s− t|.

Then u(x)2 = H(u(x) ) is Riemann integrable.
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To deal with the general case, note that, according to (i) f + g, f − g ∈ R(B). We
deduce that (f + g)2, (f − g)2 ∈ R(B) and thus

fg =
1

4

(
(f + g)2 − (f − g)2

)
∈ R(B).

(iii) The function g(x) − f(x) is Riemann integrable and nonnegative. In particular, we
deduce that, for any partition P of B we have

0 ≤ S∗(g − f,P ) ≤
∫
B

(
g(x)− f(x)

)
|dx| =

∫
B
g(x)|dx| −

∫
B
f(x)|dx|.

(iv) The function H : R → R, H(x) = |x| is Lipschitz and Theorem 15.12 implies that
|f | ∈ R(B) for any f ∈ R(B). Observe next that

−|f(x)| ≤ f(x) ≤ |f(x)|.

Using (i) and (iii) we deduce

−
∫
B
|f(x)||dx| ≤

∫
B
f(x)|dx| ≤

∫
B
|f(x)||dx|⇐⇒

∣∣∣∣∫
B
f(x)|dx|

∣∣∣∣ ≤ ∫
B
|f(x)||dx|.

ut

Proposition 15.14. Fix n ∈ N and a nondegenerate box B ⊂ Rn. If fν : B → R, ν ∈ N,
is a sequence of Riemann integrable functions that converges uniformly to the function
f : B → R, then f is also Riemann integrable and

lim
ν→∞

∫
B
fν(x)|dx| =

∫
B
f(x)|dx|. (15.11)

Proof. Let ~ > 0. Since fν converges uniformly to f , there exists N = N(~) such that

∀ν ≥ N(~), ∀x ∈ B : fν(x)− ~ < f(x) < fν(x) + ~. (15.12)

We deduce from the above inequality that for any box C ⊂ B and ν ≥ N(~) we have

mC(fν)− ~ ≤ mC(f) ≤MC(f) ≤MC(fν) + ~.

Hence, for any partition P of B we have

S∗(fν ,P )− ~ voln(B) ≤ S∗(f,P ) ≤ S∗(f,P ) ≤ S∗(fν ,P ) + ~ voln(B). (15.13)

In particular, for any partition P of B, we have

ω(f,P ) ≤ ω(fν ,P ) + 2~ voln(B), ∀ν ≥ N(~). (15.14)

Now let ε > 0. Choose ~ = ~(ε) such that

2~ voln(B) <
ε

2
.

Now fix a natural number ν > N(~(ε)), where N(~) is as in (15.12). Since fν is Riemann
integrable we can find a partition P ε of B such that

ω(fν ,P ε) <
ε

2
.
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We deduce from (15.14) that

ω(f,P ε) < ε

proving that f is Riemann integrable. From the inequalities (15.13) we can now conclude
that∫

B
fν(x)|dx| − ~ voln(B) ≤

∫
B
f(x)|dx| ≤

∫
B
fν(x)|dx|+ ~ voln(B), ∀ν ≥ N(~)

i.e., ∣∣∣∣∫
B
fν(x)|dx| −

∫
B
f(x)|dx|

∣∣∣∣ ≤ ~ voln(B), ∀ν ≥ N(~).

This last inequality proves (15.11). ut

Let us interrupt the flow of arguments to take stock of what we have achieved so far.

• We have defined concepts of Riemann integrability/integral associated to func-
tions of several variables defined on a box B.

• We showed that the set R(B) of functions that are Riemann integrable on B is
quite large: it contains all the continuous functions, and it is closed with respect
to the algebraic operations of addition and multiplication of functions.

• The uniform limits of Riemann integrable functions are Riemann integrable.

If we compare the current state of affairs with the one-dimensional situation we realize
that we have several glaring gaps in our developing story. First, our supply of Riemann
integrable functions is still “meagre” since, unlike the one-dimensional case, we have not
yet produced any example of a Riemann integrable function that is not continuous. Second,
we have not yet indicated any concrete and practical way of computing Riemann integrals
of functions of several variables.

The first issue is resolved by a remarkable result of Henri Lebesgue.2 To state it we
need to define the concept of negligible subset of Rn.

Definition 15.15. A subset S ⊂ Rn is called negligible if, for any ε > 0, there exists a
countable family (Bν)ν∈N of closed boxes in Rn that covers S and such that∑

ν∈N
voln(Bν) < ε. ut

Example 15.16. Suppose that f : [a, b]→ R is a Riemann integrable function. Then its
graph

Γf :=
{

(x, f(x) ) ∈ R2; x ∈ [a, b]
}

is a negligible subset of R2.

2 Henri Lebesgue (1875-1941) was a French mathematician famous for his theory of integration; see Wikipedia
for more details on his life and work.

https://en.wikipedia.org/wiki/Henri_Lebesgue
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To see this fix ε > 0 and choose a partition P of [a, b] such that ω(f,P ) < ε. Suppose that

P = a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

set

mi := inf
x∈[xi−1,xi]

f(x), Mi := sup
x∈[xi−1,xi]

f(x), i = 1, . . . , n.

For i = 1, . . . , n we denote by Bi the box [xi−1, xi]× [mi,Mi]. From the definition of mi and Mi we deduce that

Γf ⊂
n⋃
i=1

Bi,

n∑
i=1

vol2(Bi) =

n∑
i=1

(
Mi −mi

)(
xi − xi−1

)
= ω(f,P ) < ε.

This shows that, for any ε > 0 we can find a fine collection of rectangles that covers the graph and such that the

sum of their areas is < ε.

ut

In Exercise 15.7 we describe several examples of negligible sets, and some elementary
properties of such sets. We have the following result that vastly generalizes Corollary
15.11.

Theorem 15.17 (Lebesgue). Let n ∈ N and suppose that f : Rn → R is a bounded
function that is identically zero outside some box B ⊂ Rn. Then the following statements
are equivalent.

(i) The function f is Riemann integrable.

(ii) The set of points of discontinuity of f is negligible.

ut

For a proof we refer to [23, §11.1.2].

15.1.2. A conditional Fubini theorem. In this subsection we take a stab at the second
problem and we describe a very versatile result showing that, under certain conditions, one
can reduce the computation of an integral of a function of n-variables to the computation
of Riemann integrals of functions with fewer than n variables.

Theorem 15.18 (Fubini). Let m,n ∈ N. Suppose that

Bm = [a1, b1]× · · · × [am, bm]

is a nondegenerate box in Rm and

Bn = [am+1, bm+1]× · · · × [am+n, bm+n]

is a nondegenerate box in Rn. Suppose that
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• the function f : Bm ×Bn → R is Riemann integrable on the box

B = Bm ×Bn ⊂ Rm+n

and,

• for any x ∈ Bm, the function

Bn 3 y 7→ fx(y) := f(x,y) ∈ R

is Riemann integrable.

Then, the marginal (function)

Bm 3 x 7→M1
f (x) :=

∫
Bn
f(x,y)|dy| ∈ R

is Riemann integrable and

∫
Bm×Bn

f(x,y)|dxdy| =
∫
Bm

M1
f (x)|dx| =

∫
Bm

(∫
Bn
f(x,y)|dy|

)
|dx|. (15.15)

The last term in the above equality is called a repeated or iterated integral. Often, for
mnemonic purposes, we use the alternate notation∫

Bm
|dx|

(∫
Bn
f(x,y)|dy|

)
:=

∫
Bm

(∫
Bn
f(x,y)|dy|

)
|dx|.

Main idea behind Fubini Before we embark in the proof we want to explain the simple
principle behind this result. Suppose that we want to add all the numbers situated at the
nodes of a grid such as the one in Figure 15.2.

Figure 15.2. Adding numbers on a grid.
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Fubini says that one could proceed as follows: for each number k = 1, . . . , 10 on the
horizontal (or the first) margin there is a tower of grid nodes above it. Add the numbers
above it to obtain the value M1

k (the 1st marginal at k). Next add all these marginal
values M1

1 + . . .+M1
10 to recover the sum of all the numbers situated at nodes. One can

proceed in a similar fashion using the vertical margin, obtaining first a marginal M2.

Proof. We follow the approach in [17, Thm.3-10]. Consider a partition

P ε = (P 1, . . . ,Pm,Pm+1, . . . , . . . ,Pm+n)

of B. We denote by Pm the partition

(P 1, . . . ,Pm)

of Bm, and by P n the partition

(Pm+1, . . . , . . . ,Pm+n)

of Bn. Every chamber C of P is the Cartesian product of a chamber Cm of Pm and a
chamber Cn of P n. Moreover

volm+n(C) = volm(Cm) voln(Cn).

For simplicity we set Cm := C (Pm) and C n := C (P n). To simplify the exposition we
will continue to use the notation

mU (g) := inf
u∈U

g(u), MU (g) := sup
u∈U

g(u),

for any set U and for any bounded real valued function g defined on a set containing U .

We have

S∗(f,P ) =
∑

Cm∈Cm,
Cn∈Cn

mCm×Cn(f) · volm(Cm) voln(Cn)

=
∑

Cm∈Cm

( ∑
Cn∈Cn

mCm×Cn(f) · voln(Cn)

)
volm(Cm).

Now observe that for any Cm ∈ Cm, any Cn ∈ C n, and any x ∈ Cm we have

mCm×Cn(f) ≤ mCn(fx).

Hence, for any x ∈ Cm we have∑
Cn∈Cn

mCm×Cn(f) · voln(Cn) ≤
∑

Cn∈Cn

mCn(fx) · voln(Cn) = S∗(fx,P
n)

≤
∫
Bn
fx(y)|dy| = M1

f (x).

Thus ∑
Cn∈Cn

mCm×Cn(f) · voln(Cn) ≤ inf
x∈Cm

M1
f (x)



532 15. Multidimensional Riemann integration

so that

S∗(f,P ) =
∑

Cm∈Cm

( ∑
Cn∈Cn

mCm×Cn(f) · voln(Cn)

)
volm(Cm)

≤
∑

Cm∈Cm

inf
x∈Cm

M1
f (x) · volm(Cm) = S∗

(
M1
f ,P

m
)
.

A similar argument shows that

S∗
(
M1
f ,P

m
)
≤ S∗(f,P ).

Hence, for any partition P of Bm ×Bn we have

S∗(f,P ) ≤ S∗
(
M1
f ,P

m
)
≤ S∗

(
M1
f ,P

m
)
≤ S∗(f,P ).

We deduce from the above that∫
Bm×Bn

f(x,y)|dx||dy| ≤
∫
Bm

M1
f (x)|dx| ≤

∫
Bm

M1
f (x)|dx| ≤

∫
Bm×Bn

f(x,y)|dx||dy|.

Since f is Riemann integrable,∫
Bm×Bn

f(x,y)|dx||dy| =
∫
Bm×Bn

f(x,y)|dx||dy|

so all the above inequalities are in fact equalities. ut

Remark 15.19. (a) Note that when f : Bm×Bn → R is continuous, all the assumptions
in Theorem 15.18 are automatically satisfied. In particular, if f : [a1, b1]×· · ·×[an, bn]→ R
is continuous, then ∫

[a1,b1]×···×[an,bn]
f(x1, . . . , xn)|dx1 · · · dxn|

=

∫
[a1,b1]

|dx1|
∫

[a2,b2]×···×[an,bn]
f(x1, x2, . . . , xn)|dx2 · · · dxn|

=

∫
[a1,b1]

|dx1|
∫

[a2,b2]
|dx2|

∫
[a3,b3]×···×[an,bn]

f(x1, x2, x3, . . . , xn)|dx2 · · · dxn|

=

∫
[a1,b1]

|dx1|
∫

[a2,b2]
|dx2| · · ·

∫
[an,bn]

f(x1, x2, . . . , xn)|dxn|

=

∫ b1

a1

dx1

∫ b2

a2

dx2 · · ·
∫ bn

an

f(x1, x2, . . . , xn)dxn.

For example ∫
[0,π/2]×[0,π]

sin(x+ y)|dxdy| =
∫ π

2

0
dx

∫ π

0
sin(x+ y) dy

=

∫ π
2

0

(
− cos(x+ y)

∣∣y=π

y=0

)
dx =

∫ π
2

0

(
cosx− cos(π + x)

)
dx

=

∫ π
2

0
cosx dx−

∫ π
2

0
cos(x+ π)dx
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= sinx
∣∣∣x=π

2

x=0
− sin(x+ π)

∣∣∣x=π
2

x=0
= sin

π

2
− sin

3π

2
+ sinπ = 2.

(b) A completely similar argument shows that when f : Bm × Bn → R is Riemann
integrable and, for any y ∈ Bn, the function

fy : Bm → R, fy(x) = f(x,y),

is Riemann integrable, then the second marginal function

M2
f : Bn → R, M2

f (y) =

∫
Bn
fy(x)|dx|,

is Riemann integrable and we have∫
Bm×Bn

f(x,y)|dx| |dy| =
∫
Bn
M2
f (y)|dy| =

∫
Bn

(∫
Bm

f(x,y)|dx|
)
|dy|. (15.16)

ut

Remark 15.20 (Changing the order of integration). Suppose B = [a, b]× [c, d] ⊂∈ R2 is
a nondegenerate box and f : B → R is a Riemann integrable function such that for any
x ∈ [a, b] the function

[c, d] 3 y 7→ f(x, y)

is Riemann integrable and, for any y ∈ [c, d], the function

[a, b] 3 x 7→ f(x, y)

is Riemann integrable. We obtain in this fashion two marginals

M1
f : [a, b]→ R, M1

f (x) =

∫ d

c
f(x, y)dy

and,

M2
f : [c, d]→ R, M2

f (y) =

∫ b

a
f(x, y)dx.

Fubini’s theorem then implies that∫ b

a
M1
f (x)dx =

∫
[a,b]×[c,d]

f(x, y)|dxdy| =
∫ d

c
M2
f (y)dy.

Using the concrete definitions of the marginals we obtain the equality∫ b

a
dx

∫ d

c
f(x, y)dy =

∫ d

c
dy

∫ b

a
f(x, y)dx . (15.17)

This equality often leads to surprising conclusions and its commonly known as the changing-
the-order-of-integration trick. ut
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15.1.3. Functions Riemann integrable over Rn. Let n ∈ N and suppose that X ⊂ Rn
is an arbitrary set. For any function f : X → R we denote by f0 its extension by zero
outside X, i.e., f0 is defined on the entire space Rn, and

f0(x) =

{
f(x), x ∈ X,
0, x ∈ Rn \X.

Proposition 15.21. Suppose that B ⊂ Rn is a nondegenerate box and f : B → R is a
Riemann integrable function. Then, for any box B′ that contains B, the restriction f0

B′ of
f0 to B′ is Riemann integrable and∫

B′
f0
B′(x) |dx| =

∫
B
f(x)|dx|.

Proof. It is important to have a heuristic explanation why the above result is plausible.
We know that the Riemann integral can be very well approximated by appropriate Rie-
mann sums. Start with a partition P of the inside box B. Extend it in some way to a
partition P ′ of the surrounding box B′. Observe that a “typical” Riemann sum of f0

B′

associated to P ′ is equal to a Riemann sum of f associated to P since the value of f0

outside B is 0. Thus the Riemann integral of f over B ought to be arbitrarily close to the
Riemann integral of f0 over B′.

The set Df of points of discontinuity of f is negligible since f is Riemann integrable. The set of points of

discontinuity of f0
B′ is contained in the union Df ∪ ∂B. Since each of the faces of B is contained in a coordinate

hyperplane, we deduce from Exercise 15.7 that each facet is negligible. The boundary ∂B is the union of facets and

thus it is negligible; see Exercise 15.7. Hence f0
B′ is Riemann integrable.

Fix ε > 0. Now choose a partition P of B such that

ω(f,P ) <
ε

2
.

Now, extend P to a partition P ′ of B′. Since f0
B′ is Riemann integrable we can find a partition Q′ � P ′ of B′

such that

ω
(
f0
B′ Q

′) < ε

2
. (15.18)

The partition Q′ induces a partition Q of B that is finer than P . Thus

ω(f,Q) ≤ ω(f,P ) <
ε

2
. (15.19)

Now choose a sample ξ of Q′ such that, for each chamber C of Q′ not contained in B, the corresponding sample

ξ(C) is contained in the interior of C. In particular, this shows that f0
(
ξ(C)

)
= 0 for such a chamber and sample

point. We deduce

S(f0
B′ ,Q

′, ξ) =
∑

C∈C(Q′)

f0
(
ξ(C)

)
voln(C) =

∑
C∈C(Q′)
C⊂B

f
(
ξ(C)

)
voln(C)

=
∑

C∈C(Q)

f
(
ξ(C)

)
voln(C) = S(f,Q, ξ).

On the other hand, Proposition 15.9 coupled with (15.18) and (15.19) imply that∣∣∣∣∫
B′
f0
B′ (x)|dx| − S(f0

B′ ,Q
′, ξ)

∣∣∣∣ < ω
(
f0
B′ Q

′) < ε

2
,∣∣∣∣∫

B
f(x)|dx| − S(f,Q, ξ)

∣∣∣∣ < ω
(
f0
B′ Q

′) < ε

2
.
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Hence ∣∣∣∣∫
B′
f0
B′ (x)|dx| −

∫
B
f(x)|dx|

∣∣∣∣ < ε, ∀ε > 0,

and thus, ∫
B′
f0
B′ (x)|dx| =

∫
B
f(x)|dx|.

ut

Let us introduce an important concept.

Definition 15.22. Let n ∈ N. The indicator function of a subset S ⊂ Rn is the function

IS : Rn → R, IS(x) =

{
1, x ∈ S,
0, x ∈ Rn \ S.

In other words, IS is the extension by 0 of the function on S equal to the constant 1. ut

If B,B′ are nondegenerate boxes such that B ⊂ B′, then Proposition 15.21 shows
that the restriction of IB to B′ is Riemann integrable and it is discontinuous if B 6= B′.
Moreover ∫

B′
IB|B′(x)|dx| =

∫
B
|dx| = voln(B).

Definition 15.23. We say that a function f : Rn → R is Riemann integrable (over Rn)
if it satisfies the following conditions.

(i) There exists a nondegenerate box B ⊂ Rn such that f(x) = 0, ∀x ∈ Rn \B.

(ii) The restriction of f |B of f to B is Riemann integrable.

We set ∫
Rn
f(x)|dx| :=

∫
B
f |B(x)|dx|,

where B is a box satisfying the conditions (i) and (ii) above. We denote by Rn the set of
Riemann integrable functions f : Rn → R. ut

Remark 15.24. (a) From the definition we deduce that if f : Rn → R is Riemann
integrable, then it must have compact support.

(b) We need to verify the consistency of the above definition of the integral. More precisely,
we need to verify that, if f : Rn → R is Riemann integrable and B1, B2 are two boxes
satisfying the conditions (i)+(ii) in the Definition 15.23, then∫

B1

f |B1(x)|dx| =
∫
B2

f |B2(x)|dx|.

To prove this choose a box B such that B ⊃ B1 ∪ B2. Observe that the function f can
be identified with the extension by 0 of either functions f |B1 and f |B2 . From Proposition
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15.21 we now deduce that f |B is Riemann integrable (on B) and∫
B1

f |B1(x)|dx| =
∫
B
f |B(x)|dx| =

∫
B2

f |B2(x)|dx|.

We see that the indicator function of a nondegenerate (closed) box B ⊂ Rn is Riemann
integrable and ∫

Rn
IB(x)|dx| = voln(B).

(c) Theorem 15.13 shows that if f, g ∈ Rn and s, t ∈ R, then

sf + tg, fg ∈ Rn

and ∫
Rn

(
sf(x) + tg(x)

)
ds = s

∫
Rn
f(x)|dx|+ t

∫
Rn
g(x)|dx|.

If additionally f(x) ≤ g(x), ∀x ∈ Rn, then∫
Rn
f(x)|dx| ≤

∫
Rn
g(x)|dx|. ut

Recall that Ccpt(Rn) denotes the set of continuous functions Rn → R with compact
support.

Corollary 15.25. Let n ∈ N. Then Ccpt(Rn) ⊂ Rn, i.e., any compactly supported function
f : Rn → R is Riemann integrable.

Proof. Since the support of f is compact, there exists a (closed) box B ⊃ supp(f).
Thus B contains all the points where f is nonzero so that f is identically zero outside B.
Moreover since f is continuous, it is integrable on B.

ut

The compactly supported continuous functions play an important role in the theory
of Riemann integration due to the following approximation result.

Theorem 15.26. Let n ∈ N and suppose that f : Rn → R is a bounded function and U
is an open set containing the support of f . Then the following statements are equivalent.

(i) The function f is Riemann integrable (on Rn).

(ii) For any ε > 0 there exist functions g,G ∈ Ccpt(Rn) such that

supp(g), supp(G) ⊂ U,

g(x) ≤ f(x) ≤ G(x), ∀x ∈ Rn and 0 ≤
∫
Rn

(
G(x)− g(x)

)
|dx| < ε.

ut

The proof of this theorem is not extremely demanding but it would distract us from
the main “story”. The curious reader can find the details in [5, §6.9].
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15.1.4. Volume and Jordan measurability. The concept of Riemann integral can be
used to define the notion of n-dimensional volume. Intuitively, the n-dimensional volume
of subset S ⊂ Rn ought to be a nonnegative number voln(S) that satisfies the Inclusion-
Exclusion Principle

voln(S1 ∪ S2) = voln(S1) + voln(S2)− voln(S1 ∩ S2),

it “depends continuously” on S and, when S is a box, this notion of volume should
coincide with our original definition (15.2). Additionally, we would like this volume to stay
unchanged when we rigidly move S around Rn. (Typical examples of rigid transformations
are translations and rotations about an “axis”.)

The famous Banach-Tarski “paradox”3 shows that we cannot associate a notion of
n-dimensional volume with the above properties to all subsets of Rn. We can however
associate a notion of volume with these properties to many subsets of Rn.

Definition 15.27. (a) A bounded set S ⊂ Rn is called Jordan4 measurable if the indicator
function IS is Riemann integrable. We denote by J(Rn) the collection of Jordan measurable
subsets of Rn.

(b) The n-dimensional volume of a Jordan measurable set S ⊂ Rn is the nonnegative
number

voln(S) :=

∫
Rn
IS(x)|dx|. ut

Remark 15.28. If B is a (closed) box, then the volume of B as defined in the above
definition, coincides with the volume of B as defined in (15.2). This follows from Example
15.7 and Proposition 15.21. ut

We mention several useful consequences of the above result.

Corollary 15.29. A bounded subset S ⊂ Rn is Jordan measurable if and only if its
boundary ∂S is negligible.

Proof. Note that S is Jordan measurable if and only if its indicator function

IS : Rn → R, IS(x) =

{
1, x ∈ S,
0, x ∈ Rn \ S,

is Riemann integrable. According to Lebesgue’s theorem this happens if and only if the
set of points of discontinuity of IS is negligible. Now observe that the boundary of S is
precisely the set of discontinuities of IS . ut

Proposition 15.30. Let n ∈ N.

3Search Wikipedia for more details about this famous result.
4Named after the French mathematician Camille Jordan (1838-1922). See Wikipedia for more on Jordan.

https://en.wikipedia.org/wiki/Camille_Jordan
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(i) (Inclusion-Exclusion Principle) If S1, S2 ∈ J(Rn), then

S1 ∪ S2, S1 ∩ S2 ∈ J(Rn)

and

voln(S1 ∪ S2) = voln(S1) + voln(S2)− voln(S1 ∩ S2). (15.20)

(ii) (Monotonicity) If S1, S2 ∈ J(Rn) and S1 ⊂ S2, then

voln(S1) ≤ voln(S2).

Proof. (i) Since S1, S2 are bounded, there exists a box B that contains both S1 and S2.
We deduce that the restrictions to B of both functions IS1 and IS2 are Riemann integrable.
Thus the restrictions to B of the functions IS1 + IS2 and IS1IS2 are Riemann integrable.
Observing that

IS1∩S2 = IS1IS2 and IS1∪S2 = IS1 + IS2 − IS1∩S2

we deduce that S1 ∩ S2 and S1 ∪ S2 are Jordan measurable and

voln(S1 ∪ S2) =

∫
Rn

(
IS1(x) + IS2(x)− IS1∩S2(x)

)
|dx|

= voln(S1) + voln(S2)− voln(S1 ∩ S2).

(i) Note that

S1 ⊂ S2 ⇒ IS1(x) ≤ IS2(x), ∀x ∈ Rn ⇒
∫
Rn
IS1(x)|dx| ≤

∫
Rn
IS2(x)|dx|.

ut

Example 15.31 (Cavalieri’s Principle). Let n ∈ N. Consider a Jordan measurable set
S ⊂ R×Rn = R1+n. We denote by x0, . . . , xn the coordinates in R1+n. For any t ∈ R we
denote by St the intersection of S with the hyperplane {x0 = t}. We will refer to St as
the slice of S over t; see Figure 15.3.

Denote by S∗t the projection of St on the coordinate subspace {0} × Rn (pictured as
the vertical axis in Figure 15.3). More precisely

S∗t :=
{

(x1, . . . , xn) ∈ Rn; (t, x1, . . . , xn) ∈ St
}
.

Cavalieri’s principle states that if the all the (projected) slices S∗t ⊂ Rn are Jordan mea-
surable then

voln+1(S) =

∫
R

voln(S∗t )|dt|. (15.21)

This is an immediate consequence of the Fubini Theorem 15.18. Since S is bounded,
there exists a box

B = [a0, b0]× [a1, b1]× · · · × [an, bn]︸ ︷︷ ︸
B′

.
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SS
tt

t

B

*

Figure 15.3. Slicing a 2-dimensional region by vertical lines.

Let f : R1+n → R be the indicator function of S, f = IS . Note that f is zero outside the
box B. Since S is Jordan measurable, the restriction of f to B is Riemann integrable. For
any t ∈ R the function

R 3 (x1, . . . , xn) 7→ ft(x
1, . . . , xn) ∈ R

is the indicator function of S∗t ,

ft(x
1, . . . , xn) = IS∗t (x1, . . . , xn),

and thus it is Riemann integrable. Note that ft = 0 if t 6∈ [a0, b0]. The marginal function
is

Mf (t) =

∫
B′
ft(x

1, . . . , xn)dx1 · · · dxn = voln(S∗t ).

Fubini’s Theorem now implies

voln+1(S) =

∫
B
f(x0, x1, . . . , xn)|dx0dx1 · · · dxn| =

∫ b0

a0

voln(S∗t )|dt|. ut

15.1.5. The Riemann integral over arbitrary regions.

Definition 15.32. Let S ⊂ Rn. A bounded function f : S → R is called Riemann
integrable over S if f0, its extension by 0 to Rn, is Riemann integrable over Rn. In this
case we define the Riemann integral of f over the set S to be∫

S
f(x)|dx| :=

∫
Rn
f0(x)|dx|.

We denote by Rn(S) the set of Riemann integrable functions on S..

A function f : Rn → R is said to be Riemann integrable over S if fIS is integrable
over Rn. ut
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Remark 15.33. (a) Note that we can rephrase the above definition in a more concise
way,

f ∈ Rn(S)⇐⇒ f0IS ∈ Rn .

(b) Proposition 15.21 shows that, if B is a box, then the set R(B) of functions f : B → R
Riemann integrable in the sense of Definition 15.5 coincides with the set Rn(B) in the
above definition.

c) If f ∈ R(S), then ∫
S
f(x) |dx| =

∫
B
f0(x)IS(x) |dx|,

where B is any box in Rn that contains S. ut

Proposition 15.34. Let n ∈ N.

(i) (Additivity of integrals with respect to domains) Suppose that S1, S2 ⊂ Rn are
Jordan measurable sets and f : S1 ∪ S2 → R is Riemann integrable. Then the
restrictions of f to S1 and S2 are Riemann integrable and∫
S1∪S2

f(x)|dx| =
∫
S1

f(x)|dx|+
∫
S2

f(x)|dx| −
∫
S1∩S2

f(x)|dx|. (15.22)

(ii) (Monotonicity) If S is Jordan measurable and f, g : S → R are Riemann inte-
grable functions such that f(x) ≤ g(x), ∀x ∈ S, then∫

S
f(x)|dx| ≤

∫
S
g(x)|dx|. (15.23)

In particular ∣∣∣∣∫
S
f(x)|dx|

∣∣∣∣ ≤ ( sup
x∈S
|f(x)|

)
voln(S). (15.24)

Proof. (i) Observe that f0, IS1 , IS2 ∈ Rn so that

IS1f
0, IS2f

0 ∈ Rn,

f0 = IS1∪S2f
0 = IS1f

0 + IS2f
0 − IS1∩S2f

0.

The equality (15.22) follows by integrating over Rn the above equality.

(ii) The equality (15.23) follows from Remark 15.24(b) by observing that f0(x) ≤ g0(x),
∀x ∈ Rn. The inequality (15.24) follows by integrating over S the inequality

−
(

sup
x∈S
|f(x)|

)
≤ f(x) ≤

(
sup
x∈S
|f(x)|

)
, ∀x ∈ S.

ut
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Corollary 15.35. Let n ∈ N. Suppose that S1, S2 ⊂ Rn are Jordan measurable sets and
f : S1 ∪ S2 → R is Riemann integrable. If voln(S1 ∩ S2) = 0, then∫

S1∪S2

f(x)|dx| =
∫
S1

f(x)|dx|+
∫
S2

f(x)|dx|. (15.25)

Proof. From (15.24) we deduce that∫
S1∩S2

f(x)|dx| = 0.

We now see that (15.25) is a special case of (15.22). ut

Proposition 15.36. Suppose that K ⊂ Rn is a compact Jordan measurable set and
f : K → R is a continuous function. Then f is integrable over K.

Proof. Fix a box B that contains K. As usual, denote by f0 the extension by 0 of f .
Observe that the set of points of discontinuity of f0 is contained in the boundary ∂K
which is negligible since K is Jordan measurable. Lebesgue’s Theorem 15.17 then shows
that f0 is integrable. ut

The next two results are also consequences of Lebesgue’s Theorem. Their proofs are
left to you as an exercise.

Corollary 15.37. If f : Rn → R is Riemann integrable, then its support is a compact
Jordan measurable subset of Rn. ut

Corollary 15.38. Suppose that K ⊂ Rn is a compact Jordan measurable set, Z ⊂ Rn is
a negligible closed subset and f : K → R is a bounded function. Then the following are
equivalent.

(i) The function f is Riemann integrable over K.

(ii) The function f is Riemann integrable over K \ Z.

If either (i) or (ii) holds, then∫
K\Z

f(x) |dx| =
∫
K
f(x) |dx|. ut

15.2. Fubini theorem and iterated integrals

We now have at our disposal all the information we need to prove a version of the Fubini
Theorem 15.18 that involves easily verifiable assumptions.
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Figure 15.4. A simple type region in R3 with cross section K = [0, π] × [0, π], a flat
bottom β(x, y) = −2− x− y and curved top τ(x, y) = sin(x+ y).

15.2.1. An unconditional Fubini theorem. Before we can state the version of the
Fubini theorem most frequently used in applications we need to introduce a very versatile
concept.

Definition 15.39. Let n ∈ N. A compact set D ⊂ Rn+1 is called a domain of simple type
if there exist a compact Jordan measurable set K ⊂ Rn and continuous functions

β, τ : K → R

with the following properties

• β(x1, . . . , xn) ≤ τ(x1, . . . , xn), ∀(x1, . . . , xn) ∈ K.

• The point (x1, . . . , xn, y) ∈ Rn+1 belongs to D if and only if

(x1, . . . , xn) ∈ K and β(x1, . . . , xn) ≤ y ≤ τ(x1, . . . , xn).

We will denote this domain by D(K,β, τ). The region K is called the cross section of D,
the function β is called the bottom of D and the function τ is called the top of D; see
Figure 15.4. ut

Thus D(K,β, τ) is the region between the graphs of β and τ , where β sits at the
bottom and τ at the top.

Proposition 15.40. Let n ∈ N. Suppose that D = D(K,β, τ) ⊂ Rn+1 is a simple type
domain with cross section K ⊂ Rn and top/bottom functions τ, β : K → R. Then D is
compact and Jordan measurable.
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Proof. As usual we denote by mS(f) and MS(f) the infimum and respectively the supremum of a function

f : S → R. Note that

D(K,β, τ) ⊂ K × [mβ ,Mτ ]

so D(K,β, τ) is bounded. Since K is compact, we deduce that K is closed. The continuity of β, τ shows that

D(K,β, τ) is closed and thus compact.

Fix a box B ⊂ Rn that contains K. Set

B̂ = B × I, I := [mβ ,Mτ ], L = Mτ −mβ .

Fix a partition P = (P 1, . . . ,Pn) of B. The set of chambers C (P ) decomposes as

C (P ) = Ce(P ) ∪ Cb(P ) ∪ Ci(P ),

where Ce(P ) consists of chambers that do not intersect K, Ci(P ) consists of chambers located in the interior of K
and Cb(P ) consists of chambers that intersect both K and its complement. For ν ∈ N we denote by Uν the uniform

partition of I into ν sub-intervals of equal length L/ν. We denote by I1, . . . , Iν sub-intervals of the partition Uν .

We obtain a partition P̂ ν = (P 1, . . . ,Pn,Uν of B̂ = B × I. The chambers of P̂ ν have the form C × Ik,
C ∈ C (P ), k = 1, . . . , ν. Note that

osc(ID, C × Ik) = 0, ∀C ∈ Ce(P ), k = 1, . . . , ν,

and

osc(ID, C × Ik) ≤ 1, ∀C ∈ Cb(P ), k = 1, . . . , ν

In particular, we deduce that,

∀C ∈ Cb(P ),

ν∑
k=1

osc(ID, C × Ik) voln+1(C × Ik) ≤
ν∑
k=1

voln(C)
L

ν
= L voln(C).

If C ∈ Ci(P ), and Ik ⊂
(
MC(β),mC(τ)

)
, then osc(ID, C × Ik

)
= 0. We deduce that if osc(ID, C × Ik

)
= 1, then

Ik ⊂ Iν(C) :=

[
mC(β)−

L

ν
,MC(β) +

L

ν

]
∪
[
mC(τ)−

L

ν
,MC(τ) +

ν

ν

]
.

Hence, ∀C ∈ Ci(P ) we have

ν∑
k=1

osc(ID, C × Ik) voln+1(C × Ik) ≤ voln(C)
∑

k∈Iν(C)

vol1(Ik)

≤ voln(C) vol1
(
Iν(C)

)
=

(
osc(β,C) + osc(τ, C) +

4L

ν

)
voln(C).

Putting together all of the above we deduce

ω(ID, P̂ ν) =
∑

C∈Cb(P )

ν∑
k=1

osc(ID, C × Ik) voln+1(C × Ik)

+
∑

C∈Ci(P )

ν∑
k=1

osc(ID, C × Ik) voln+1(C × Ik)

≤ L
∑

C∈Cb(P )

voln(C) +
4L

ν

∑
C∈Ci(P )

voln(C)

︸ ︷︷ ︸
≤voln(B)

+
∑

C∈Ci(P )

(
osc(β,C) + osc(τ, C)

)
voln(C).

Hence

ω(ID, P̂ ν) ≤ L
∑

C∈Cb(P )

voln(C) +
4L voln(B)

ν

+
∑

C∈Ci(P )

(
osc(β,C) + osc(τ, C)

)
voln(C).

(15.26)
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Fix ε > 0. Since K is Jordan measurable, we can find a partition Qε of B such that∑
C∈Cb(Q

ε)

voln(C) = ω(IK ,Qε) <
ε

3
.

Choose ν = ν(ε) > 0 sufficiently large so that

4L

ν
voln(B) <

ε

3
.

Since β, τ : K → R are uniformly continuous, we can find δ = δ(ε) > 0 such that, for any set S ⊂ K with

diam(S) < δ we have

osc(β, S) + osc(τ, C) <
ε

3 voln(B)
.

Now choose a partition P ε of P such that P ε � Qε and ‖P ε‖ < δ(ε). We deduce from (15.26) that for ν > ν(ε)
we have

ω
(
ID, P̂

ε
ν

)
< ε.

ut

Theorem 15.41 (Fubini). Let n ∈ N and suppose D = D(K,β, τ) is a simple type domain
with cross section K and bottom/top functions β, τ : K → R. We denote by (x,y) the
coordinates in Rn+1 = Rn × R. If f : D → R is continuous, then f is integrable over D,
the marginal function

Mf : K → R, Mf (x) =

∫ τ(x)

β(x)
f(x, y)|dy|

is Riemann integrable and∫
D
f(x, y)|dxdy| =

∫
K
Mf (x)|dx| =

∫
K

(∫ τ(x)

β(x)
f(x, y) |dy|

)
|dx|. (15.27)

Proof. According to Proposition 15.40 the region D ⊂ Rn+1 is compact and Jordan
measurable. Proposition 15.36 now implies that f is Riemann integrable on D.

Fix a box in B ⊂ Rn and a compact interval I = [m,M ] ⊂ R such that

β(x), τ(x) ∈ I, ∀x ∈ K.
Then the box B′ = B × [m,M ] ⊂ Rn+1 contains D and the extension f0 is Riemann
integrable on B′. Next observe that for any x ∈ B the function

f0
x : I → R, f0

x(y) = f(x, y)

is Riemann integrable. Indeed, if x ∈ B \K, then f0
x is identically 0. On the other hand,

if x ∈ K, then

f0
x(y) =

{
f(x, y), y ∈ [β(x), τ(x)],

0, y ∈ [m,β(x)) ∪ (τ(x),M ].

The continuity of f coupled with Corollary 9.27 imply the Riemann integrability of f0
x.

We can now apply the conditional Fubini Theorem 15.18 to the function f0 : B′ → R.
Note that the marginal function M1

f0 is Riemann integrable on B and coincides with the
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extension by 0 of the marginal function Mf : K → R, i.e., M1
f0 = (Mf )0. Thus Mf is

Riemann integrable on K. We deduce∫
B′
f(x, y)|dxdy| =

∫
B×I

f0(x, y)|dxdy|

=

∫
B
M1
f0(x)|dx| =

∫
B

(M1
f )0(x)|dx| =

∫
K
M1
f (x)|dx|.

ut

Remark 15.42. (a) The last integral in (15.27) is an example of iterated or repeated
integral.

(b) In the definition of simple type domains in Rn+1 the last coordinate xn+1 plays a
distinguished role. We did this only to simplify the notation in the various proofs. The
results we proved above hold for regions D ⊂ Rn+1 of the type

D =
{

(x1, . . . , xn+1) ∈ Rn+1; x ∈ K, β(x) ≤ xj ≤ τ(x)
}

where

x := (x1, . . . , xj−1, xj+1, . . . , xn+1) ∈ Rn.
We will refer to domains of this type as domains of simple type with respect to the xj-axis.
We want to point out that a given domain could be of simple type with respect to many
axes.

Theorem 15.41 has an obvious extension to domains that are simple type with respect
to an arbitrary axis xj : replace y by xj everywhere in the statement and the proof of this
theorem. ut

15.2.2. Some applications. Theorem 15.41 is best understood by witnessing it at work.

Example 15.43. Consider the triangle T in Figure 15.5. Its vertices have coordinates
(0, 0), (1, 1), (0, 2). It is limited by the y-axis and the lines y = x, y = 2− x. This triangle
is a domain of simple type with respect to both x and y-axis.

Viewed as a simple type domain with respect to the y-axis it has description

T =
{

(x, y) ∈ R2; x ∈ [0, 1], β(x) ≤ y ≤ τ(x)
}
,

where β(x) = x and τ(x) = 2− x.

Viewed as a simple type domain with respect to the x-axis it has description

T =
{

(x, y) ∈ R2; y ∈ [0, 2], β(y) ≤ x ≤ τ(y)
}
,

where β(y) = 0 and

τ(y) =

{
y, y ∈ [0, 1],

2− y, y ∈ (1, 2].
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Figure 15.5. An isosceles triangle in the plane.

Consider a continuous function f : T → R. Using Fubini’s theorem we deduce∫ 1

0

(∫ 2−x

x
f(x, y)|dy|

)
|dx| =

∫
T
f(x, y)|dxdy|

=

∫ 1

0

(∫ y

0
f(x, y)|dx|

)
|dy|+

∫ 2

1

(∫ 2−y

0
f(x, y) |dx|

)
|dy|. ut

Our next application is another version of Cavalieri’s Principle.

Proposition 15.44. Let n ∈ N. Suppose that K ⊂ Rn is a compact Jordan measurable
set and β, τ : K→ R continuous functions such that

β(x) ≤ τ(x), ∀x ∈ K.
Then the (n+ 1)-dimensional volume of the region D(K,β, τ) ⊂ Rn+1 between the graphs
of β and τ is

voln+1

(
D(K,β, τ)

)
=

∫
K

(
τ(x)− β(x)

)
|dx|. (15.28)

In particular, for any continuous function h : K → R, the (n+ 1)-dimensional volume of
the graph Γh of h is 0

voln+1(Γh) = 0. (15.29)

Proof. The equality (15.28) is the special case of (15.27) corresponding to f = 1. The
equality (15.29) follows from (15.28) by choosing β = τ = h. ut

Example 15.45. For every n ∈ N we denote by T n the n-dimensional simplex 5 defined
by the conditions

T n :=
{
x ∈ Rn; xi ≥ 0, ∀i = 1, . . . , n, x1 + · · ·+ xn ≤ 1

}
.

5The concept of simplex is the higher dimensional generalization of the more familiar concepts of triangles and
tetrahedra.
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The region T n can be alternatively described as the region

T n :=
{

(x∗, x
n) ∈ Rn; x∗ ∈ T n−1, 0 ≤ xn ≤ 1− (x1 + · · ·+ xn−1)

}
,

where x∗ := (x1, . . . , xn−1).

Figure 15.6. The tetrahedron T 3.

Observe that T 1 = [0, 1], that T 2 is a domain of simple type in R2 with respect to
the x2 axis, with bottom 0 and top 1 − x1 and cross section T 1 and thus T 2 is compact
and Jordan measurable. We deduce inductively that T n is simple type with respect to
the xn-axis, with bottom 0, top 1− (x1 + · · ·+ xn−1) and cross section T n−1 and thus T n
is compact and Jordan measurable. We want to compute its volume.

To keep the insanity at bay we introduce the simplifying notation

sk = sk(x
1, . . . , xk) := x1 + · · ·+ xk.

Note that sk = sk−1 + xk and

T k =
{

(x1, . . . , xk) ∈ Rk; (x1, . . . , xk−1) ∈ T k−1, 0 ≤ xk ≤ 1− sk−1

}
.

For any k ∈ N and s ∈ R we set

Ik(s) :=

∫ 1−s

0
(1− s− x)kdx.

Making the change in variables u := 1− s− x we deduce

Ik(s) = −
∫ 0

1−s
ukdu =

1

k
(1− s)k. (15.30)

Using Fubini’s Theorem (15.27) and the equality (15.30) we deduce

voln(T n)
(15.27)

=

∫
Tn−1

(
1− sn−1

)
|dx1 · · · dxn−1|
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(15.27)
=

∫
Tn−2

(∫ 1−sn−2

0

(
1− ( sn−2 + xn−1 )

)
dxn−1

)
|dx1 · · · dxn−2|

=

∫
Tn−2

(∫ 1−sn−2

0

(
(1− sn−2)− xn−1

)
dxn−1

)
︸ ︷︷ ︸

I1(sn−2)

|dx1 · · · dxn−2|

(15.30)
=

1

2

∫
Tn−2

(1− sn−2)2|dx1 · · · dxn−2|

(15.27)
=

1

2

∫
Tn−3

(∫ 1−sn−3

0

(
(1− sn−3)− xn−2

)2
dxn−2

)
︸ ︷︷ ︸

I2(sn−3)

|dx1 · · · dxn−3|

(15.30)
=

1

2 · 3

∫
Tn−3

(
1− sn−3

)3|dx1 · · · dxn−3|.

Continuing in this fashion we deduce

voln(T n) =
1

k!

∫
Tn−k

(
1− sn−k

)k|dx1 · · · dxn−k|, ∀k = 1, . . . , n.

In particular, if we let k = n− 1, we deduce

voln(T n) =
1

(n− 1)!

∫
T 1

(
1− s1

)n−1|dx1| = 1

(n− 1)!

∫ 1

0

(
1− x1

)n−1
dx1 =

1

n!
. ut

15.3. Change in variables formula

In the last section of this chapter we discuss a fundamental result in the theory of inte-
gration of functions of several variables. The importance of change-in-variables formula
goes beyond its applications to the computation of many concrete integrals. It will serve
as a guiding principle when defining the integral over “curved” spaces, i.e., submanifolds.

15.3.1. Formulation and some classical examples. Let n ∈ N and suppose that
U ⊂ Rn is open and Φ : U → Rn is a C1-diffeomorphism

U 3 x 7→ y =

 y1

...
yn

 =

 Φ1(x)
...

Φn(x)

 .
We denote by JΦ(x) the Jacobian matrix of Φ at the point x ∈ U . We set V := Φ(U) so
V is an open subset of the target space Rn.

Theorem 15.46. Suppose that f : V → R is a bounded function that vanishes outside a
compact subset K ⊂ V . Then the following hold.
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U

V

Φ

Φ (  )
-1

K

K

Figure 15.7. A diffeomorphism Φ : U → V .

(i) The function f is integrable if and only if the function

V 3 x 7→ f
(

Φ(x)
)
|det JΦ(x)| ∈ R

is Riemann integrable.

(ii) We have the change in variables formula (see 15.7)∫
V
f(y)|dy| =

∫
U
f
(

Φ(x)
) ∣∣det JΦ(x)

∣∣ |dx| . (15.31)

ut

Remark 15.47. (a) We say that Φ changes the “old” variables (or coordinates) y1, . . . , yn

on V to the “new” variables (or coordinates) x1, . . . , xn on U . The change is described by
the equations

yk = Φk(x1, . . . , xn), k = 1, . . . , n.

Thus the “old” variables y are expressed as functions of the “new” variables x. We often
use the slightly ambiguous but more suggestive notation

y = y(x)
(

= Φ(x)
)
,

to express the dependence of the “old” coordinates y on the “new” coordinates x. The
inverse transformation Φ−1(y) is often replaced by the simpler and more intuitive notation

x = x(y)
(

= Φ−1(y)
)
,

indicating that x depends on y via the unspecified transformation Φ−1.
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Frequently we will use the more intuitive notation∣∣∣∣∂y∂x
∣∣∣∣ := |det JΦ|.

In concrete applications we are given a compact Jordan measurable subset K ⊂ V and a
Riemann integrable function f : K → R. The change of variables formula applied to the
function IK(y)f(y) can then be rewritten in the more intuitive form (Figure 15.31)∫

K
f(y)|dy| =

∫
Φ−1(K)

f
(
y(x)

) ∣∣∣∣∂y∂x
∣∣∣∣ |dx| . (15.32)

Implicit in the above equality is the conclusion that the compact Φ−1(K) is also Jordan
measurable.

(b) Let us observe that if in (15.31) we set g(x) := f
(

Φ(x)
)
, then we can rewrite this

equality in the form ∫
V
g
(
x(y)

)
|dy| =

∫
U
g(x)

∣∣∣∣∂y∂x
∣∣∣∣ |dx| . (15.33)

Clearly (15.33) is equivalent to (15.31). ut

We will present an outline of the proof in the next subsection. The best way of
understanding how it works is through concrete examples.

Example 15.48 (The volume of a parallelepiped). Let n ∈ N. Suppose that we are given
n linearly independent vectors v1, . . . ,vn ∈ Rn.

The parallelepiped spanned by v1, . . . ,vn is the set P (v1, . . . ,vn) ⊂ Rn consisting of
all the vectors y of the form

y = x1v1 + · · ·+ xnvn, x1, . . . , xn ∈ [0, 1]. (15.34)

We want to prove that P (v1, . . . ,vn) is Jordan measurable and then compute its volume.
To this end consider the linear map V : Rn → Rn uniquely determined by the requirements

V ej = vj , ∀j = 1, . . . , n.

In other words, the columns of the matrix representing V are given by the (column)
vectors v1, . . . ,vn. Since the vectors v1, . . . ,vn are linearly independent the operator V
is invertible and thus defines a diffeomorphism Rn → Rn. Being linear, the operator V
coincides with its differential at every x ∈ Rn so

JV = V det JV = detV.

We denote by C the cube C = [0, 1]n ⊂ Rn. The equation (15.34) can be written in the
form

y ∈ P (v1, . . . ,vn)⇐⇒y = x1V e1 + · · ·+ xnV en, x = (x1, . . . , xn) ∈ [0, 1]n = C.
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In other words, P = V (C). In particular, this shows that P is compact. The equality
P = V (C) translates into an equality of indicator functions

IP (V x) = IC(x).

Theorem 15.46 implies that P is Jordan measurable and

voln
(
P (v1, . . . ,vn)

)
=

∫
Rn
IP (y)|dy| =

∫
Rn
IC(x)| detV ||dx| = |detV | . (15.35)

When n = 2, and v1,v2 ∈ Rn are not collinear, then P (v1,v2) is the parallelogram
spanned by v1 and v2. For example, if

v1 =

[
1
2

]
, v2 =

[
3
4

]
,

then

V =

[
1 3
2 4

]
, detV = 1 · 4− 2 · 3 = −2, area

(
P (v1,v2) ) = |detV | = 2. ut

Example 15.49 (Polar coordinates). Consider the map

Φ : R2 → R2, (r, θ) 7→ (x, y) = (r cos θ, r sin θ).

The geometric significance of this map was explained in Example 14.42 and can be seen
in Figure 15.8.

The location of a point p ∈ R2 \ {0} can be indicated using the “old” Cartesian
coordinates, or the “new” polar coordinates (r, θ), where r = dist(p,0) and θ is the angle
between the line segment [0,p] and the x-axis, measured counterclockwisely.

A

r

θ

p=(x,y)

Figure 15.8. Constructing the polar coordinates.
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The Jacobian of this map is

JΦ =

 ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

 =

[
cos θ −r sin θ
sin θ r cos θ

]
so

det JΦ = r. (15.36)

Let us observe that, for any T ∈ R, the restriction of Φ to the region (0,∞)× (T, T + 2π)
produces a bijection onto R2

∗ := the plane R2 with the nonnegative x-semiaxis removed.
We will work exclusively with the restriction

Φpolar := Φ
∣∣
[0,∞)×[0,2π]

.

Note two “problems” with Φpolar.

• The domain [0,∞)× [0, 2π] is not an open subset of R2.

• The map Φpolar is not injective, but its restriction to the open subset (0,∞)×(0, 2π)
is injective.

For every Jordan measurable compact set K ⊂ R2 we set

Kpolar := Φ−1
polar(K) =

{
(r, θ) ∈ [0,∞)× [0, 2π]; (r cos θ, r sin θ) ∈ K

}
. (15.37)

Observe that Kpolar is compact. If K does not intersect the nonnegative x-semiaxis, then
Theorem 15.46 applies directly to this situation and shows that if f = f(x, y) : K → R is
Riemann integrable, then so is the function

f ◦ Φpolar : Kpolar → R, f ◦ Φpolar(r, θ) = f(r cos θ, r sin θ),

and we have ∫
Kpolar

f(r cos θ, r sin θ)r|drdθ| =
∫
K
f(x, y)|dxdy| . (15.38)

When K does intersect this semi-axis Theorem 15.46 does not apply directly because of
the above two “problems”. However the equality (15.38) continues to hold even in this
case. This requires a separate argument.

Since we will be frequently confronted with such problems, we state below a general
result that deals with these situations. We refer the curious reader to [15, Thm. XX.4.7]
or [23, Sec. 11.5.7, Thm.2 ] for a proof of this result.

Theorem 15.50. Let n ∈ N. We are given a compact Jordan measurable set K ⊂ Rn,
an open set U ⊃ K and a C1 map Φ : U → Rn. Suppose that the restriction of Φ to
the interior of K is a diffeomorphism. If f : Φ(K)→ R, is Riemann integrable, then the
function

K 3 x 7→ f
(

Φ(x)
)
|det JΦ(x)| ∈ R
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is Riemann integrable and∫
Φ(K)

f(y)|dy| =
∫
K
f
(

Φ(x)
)∣∣ det JΦ(x)

∣∣|dx| . (15.39)

ut

Here is an immediate application of the above result. Suppose that K = KR is the
rectangle (see Figure 15.9)

K = KR :=
{

(r, θ) ∈ R2; r ∈ [0, R], θ ∈ [0, 2π]
}

We have a differentiable map Φ : R2 → R2,

Φ(r, θ) = (r cos θ, r sin θ).

and Φ(K) = D = DR is the closed disk (in R2) of radius R centered at the origin,

DR =
{

(x, y) ∈ R2; x2 + y2 ≤ R2
}
.

Using the terminology in (15.37) we have K = Dpolar. The boundary S of K is depicted

K D

Φ

S
Z

Figure 15.9. The polar coordinate change transformation sends a rectangle U to a disk V .

in red on Figure 15.9. The interior of K is K \ S. The induced map Φ : K \ S → R2 is
a diffeomorphism with image the complement of the set Z also depicted in red on Figure
15.9. Theorem 15.50 implies that for any Riemann integrable function f : D → R , the
function

K 3 (r, θ) 7→ f(r cos θ, r sin θ) ∈ R
is Riemann integrable and we have∫

D
f(x, y)|dxdy| =

∫
K
f(r cos θ, sin θ)r|drdθ|. (15.40)

More generally, suppose that S is a compact, Jordan measurable subset of the (x, y)-plane.
Since S is bounded, it is contained in some closed disk DR of radius R, centered at the
origin. Form the associated closed rectangle KR in the (r, θ)-plane

KR =
{

(r, θ); r ∈ [0, R], θ ∈ [0, 2π]
}
.
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Suppose that f : S → R is a Riemann integrable function. As usual, we denote by f0 the
extension by 0 of f and by IDR the indicator function of DR. Note that f0 = f0IDR . By
definition ∫

S
f |dxdy| =

∫
R2

IDRf
0|dxdy| =

∫
DR

f0|dxdy|.

Applying (15.40) to the function f0 : DR → R we deduce∫
Spolar

f(r cos θ, r sin θ)r|drdθ| =
∫
S
f(x, y)|dxdy| , (15.41)

where Spolar is defined as in (15.37).

To see how (15.41) works in practice, consider the continuous function

f : R2 \ {0} → R, f(x, y) = log(x2 + y2),

where log denotes the natural logarithm. We want to compute the integral of this function
over the annulus

A :=
{
p ∈ R2; 1 ≤ dist(p,0) ≤ 2

}
.

Then
Apolar =

{
(r, θ); r ∈ [1, 2], θ ∈ [0, 2π]

}
and

log(x2 + y2) = log(r2) = 2 log r.

We deduce ∫
A

log(x2 + y2)|dxdy| =
∫

1≤r≤2,
0≤θ≤2π

2(log r)r|drdθ|

(use Fubini)

= 2

∫ 2

1

(∫ 2π

0
|dθ|
)
r log r|dr| = 2π

∫ 2

1
2r log rdr.

We have ∫ 2

1
2r log rdr =

∫ 2

1
log rd(r2) = (r2 log r)

∣∣∣r=2

r=1
−
∫ 2

1
r2d(log r)

= 4 log 2−
∫ 2

1
rdr = 4 log 2− 1

2

(
r2
∣∣∣r=2

r=1

)
= 4 log 2− 3

2
.

Thus ∫
A

log(x2 + y2)dxdy = π
(

8 log 2− 3
)
. ut

Example 15.51 (Cylindrical and spherical coordinates). Denote by O the open subset of
R3 obtained by removing the half-plane H contained in the xz-plane defined by

H :=
{

(x, y, z) ∈ R3; y = 0, x ≥ 0
}
. (15.42)

The location of a point p ∈ O is determined either by its Cartesian coordinates (x, y, z), or
by its altitude and the location of its projection q on the xy-plane. In turn, this projection
is determined by its polar coordinates (r, θ); see Figure 15.10.
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x

y

z

p

q

ρ

θ

ϕ

r

Figure 15.10. Constructing the cylindrical and spherical coordinates.

The cylindrical coordinates (r, θ, z) are related to the Cartesian coordinates via the
equalities 

x = r cos θ
y = r sin θ
z = z,

r > 0, θ ∈ (0, 2π), z ∈ R.

The above equalities define a transformation

ΦCart←cyl : [0,∞)× [0, 2π]× R→ R3, (r, θ, z) 7→

 x
y
z

 =

 r cos θ
r sin θ
z

 ,
whose restriction to the open set (0,∞) × (0, 2π) × R is a diffeomorphism with image
O = R3 \H, where H is the half-plane in (15.42). The Jacobian matrix of the transfor-
mation ΦCart←cyl is

JCart←cyl :=

 cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

 .
We have

det JCart←cyl = det

[
cos θ −r sin θ
sin θ r cos θ

]
= r . (15.43)

Alternatively, the location of a point p ∈ O is determined if we know the distance
ρ to the origin ρ = ‖p‖, the angle ϕ ∈ (0, π) the line 0p makes with the z-axis, and
the polar coordinate θ of the projection of p on the xy-plane; see Figure 15.10. The
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parameters ρ, ϕ, θ are called the spherical coordinates of p. The spherical coordinates
(ρ, ϕ, θ) determine the cylindrical coordinates (r, θ, z) via the equalities

r = ρ sinϕ, θ = θ, z = ρ cosϕ.

The Jacobian matrix of the transformation Φcyl←sph(ρ, ϕ, θ) = (r, θ, z) is

Jcyl←sph =


∂r
∂ρ

∂r
∂ϕ

∂r
∂θ

∂θ
∂ρ

∂θ
∂ϕ

∂θ
∂θ

∂z
∂ρ

∂z
∂ϕ

∂z
∂θ

 =

 sinϕ ρ cosϕ 0
0 0 1

cosϕ −ρ sinϕ 0

 .
Expanding along the second row we deduce

det Jcyl←sph = −det

[
sinϕ ρ cosϕ
cosϕ −ρ sinϕ

]
= ρ. (15.44)

We deduce that the Cartesian coordinates (x, y, z) are related to the spherical coordinates
(ρ, ϕ, θ) via the equalities

x = ρ sinϕ cos θ
y = ρ sinϕ sin θ
z = ρ cosϕ,

, ρ > 0, θ ∈ (0, 2π), ϕ ∈ (0, π).

The above equations define a transformation

ΦCart←cyl : [0,∞)× [0, 2π)× R→ R3, (ρ, ϕ, θ) 7→

 x
y
x

 =

 ρ sinϕ cos θ
ρ sinϕ sin θ
ρ cosϕ

 .
The restriction of ΦCart←sph to the open set (0,∞) × (0, π) × (0, 2π) is a diffeomorphism
with image O. The Jacobian matrix of the above transformation is

JCart←sph =


∂x
∂ρ

∂x
∂ϕ

∂x
∂θ

∂y
∂ρ

∂y
∂ϕ

∂y
∂θ

∂z
∂ρ

∂z
∂ϕ

∂z
∂θ

 =


sinϕ cos θ ρ cosϕ cos θ −ρ sinϕ sin θ

sinϕ sin θ ρ cosϕ sin θ ρ sinϕ cos θ

cosϕ −ρ sinϕ 0

 .
Since ΦCart←sph = ΦCart←cyl ◦ Φcyl←sph we deduce from the chain rule that

JCart←sph = JCart←cyl · Jcyl←sph.

Hence det JCart←sph = det JCart←cyl det Jcyl←sph. Using (15.43) and (15.44) we deduce

det JCart←sph = rρ = ρ2 sinϕ . (15.45)

Let us see how we can use these facts in concrete situations. Suppose that K ⊂ R3 is a
compact measurable set contained in some large ball BR(0) ⊂ R3. We set

Kcyl :=
{

(r, θ, z) ∈ [0,∞)× [0, 2π]× R; ΦCart←cyl(r, θ, z) ∈ K
}
,
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Ksph :=
{

(r, ϕ, z) ∈ [0, π]× [0, 2π]× R; ΦCart←sph(r, ϕ, θ) ∈ K
}
.

Suppose that f : K → R is a Riemann integrable function. If K does not intersect the
“forbidden” half-plane H, then Theorem 15.46 applies and yields∫

K
f(x, y, z)dxdydz =

∫
Kcyl

f(r cos θ, r sin θ, z)rdrdθdz . (15.46a)

∫
K
f(x, y, z) |dxdydz| =

∫
Ksph

f(ρ sinϕ cos θ, ρ sinϕ sin θ, ρ cosϕ)ρ2 sinϕ |dρdϕdθ| .

(15.46b)
If K does intersect the “forbidden” half-plane H, then using Theorem 15.50 we deduce as
in Example 15.49 that (15.46a) and (15.46b) continue to hold in this case as well. Let us
see how the above formulæ work in concrete situations.

Fix a number ϕ0 ∈ (0, π/2). The locus of points in R3 such that ϕ = ϕ0 describes a
circular cone; Fig 15.11. The z-axis is a symmetry axis of this cone.

Figure 15.11. A cone.

If we set m0 := tanϕ0, then we observe that, along the surface of this cone the
cylindrical coordinates coordinates r, z satisfy

m0 = tanϕ0 =
r

z
r = m0z.

The “inside part” of this cone is described by the inequality
r

z
≤ m0⇐⇒ r ≤ m0z.

Consider two positive numbers z0 < z1 and denote by R = R(m0, z0, z1) the region inside
this cone contained between the horizontal planes z = z0 and z = z1; see Figure 15.12.

We want to compute the volume of this truncated cone. In cylindrical coordinates it
corresponds to the region Rcyl described by the inequalities

0 ≤ r ≤ m0z, z0 ≤ z ≤ z1, 0 ≤ θ ≤ 2π.
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Figure 15.12. A truncated cone.

Using the change in variables formula (15.46a)

vol3(R) =

∫
R
|dxdydz| =

∫
(θ,z)∈[0,2π]×[z0,z1]

0≤r≤m0z

r |drdθdz|

=

∫ 2π

0

(∫ z1

z0

(∫ m0z

0
rdr

)
dz

)
dθ

=

∫ 2π

0

(∫ z1

z0

1

2
(m0z)

2dz

)
dθ =

m2
0

2

∫ 2π

0

(
z3

1 − z3
0

3
dθ

)
=
πm2

0

3

(
z3

1 − z3
0

)
.

To see the spherical coordinates at work, it is useful to relate them to more familiar notions.
Note that the surface ρ = const is a sphere. The surface ϕ = const is a cone while the
surface θ = const is a half-plane with edge z-axis. Since z = ρ cosϕ we deduce that in
spherical coordinates the truncated cone R corresponds to the region Rsph described by
the inequalities

0 ≤ ϕ ≤ ϕ0, θ ∈ [0, 2π], z0 ≤ ρ cosϕ ≤ z1.

We deduce

vol3(R) =

∫
Rsph

ρ2 sinϕ|dρdϕdθ|

=

∫ 2π

0

(∫ ϕ0

0

(∫ z1
cosϕ

z0
cosϕ

ρ2dρ

)
sinϕdϕ

)
dθ =

z3
1 − z3

0

3

∫ 2π

0

(∫ ϕ0

0

sinϕ

cos3 ϕ
dϕ

)
dθ

(make the change in variables u = cosϕ)

=
z3

1 − z3
0

3

∫ 2π

0

(∫ 1

cosϕ0

1

u3
du

)
dθ =

z3
1 − z3

0

6

∫ 2π

0

(
1

cos2 ϕ0
− 1

)
︸ ︷︷ ︸

=tan2 ϕ0=m2
0

dθ

=
πm2

0(z3
1 − z3

0)

3
.
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This is in perfect agreement with the computation using cylindrical coordinates.

To verify the validity of these computations, we present an alternate computation
based on Cavalieri’s principle. The intersection of the region R with the horizontal plane
z = t is a disk Rt of radius rt = m0t. We have

vol2(Rt) = π(m0t)
2.

Then

vol3(R) =

∫ z1

z0

vol2(Rt)dt = πm2
0

∫ z1

z0

t2dt =
πm2

0

3

(
z3

1 − z3
0

)
.

Let us rewrite this volume formula in a more familiar form. The bottom of the truncated
cone R is a disk of radius r0 = m0z0 and the top is a disk of radius r1 = m0z1. We denote
by h the height of this truncated cone h := z1 − z0. Then

vol3(R) =
π

3
(z1 − z0)

(
(m0z1)2 + (m0z1)(m0z0) + (m0z0)2

)
=
πh

3

(
r2

1 + r1r0 + r2
0

)
.

ut

Example 15.52 (Spherical coordinates in arbitrary dimensions). Let n ∈ N, n ≥ 2. We
will construct inductively spherical coordinates on Rn.

For n = 2, these are versions of the polar coordinates (r, θ). Define (ρ2, θ2) via the
well known equalities

x1 = ρ2 cos θ2, x2 = ρ2 sin θ2, ρ2 = ‖x‖, θ2 ∈ [0, 2π]. (15.47)

Observe that the numbers ρ2 and θ2 completely determine the location of the point x in
R2.

Suppose now that we have constructed the spherical coordinates θ2, . . . , θn, ρn on Rn.
In particular, the coordinates x1, . . . , xn are functions depending on these coordinates,

x1 = f1(θ2, . . . , θn−1, ρn), . . . , xn = fn(θ2, . . . , θn−1, ρn), (15.48a)

ρn(x) = ‖x‖, ∀x ∈ Rn. (15.48b)

We will construct spherical coordinates θ2, . . . , θn, θn+1, ρn+1 on Rn.

For x = (x1, . . . , xn, xn+1) ∈ Rn+1 we denote by x is projection onto the coordinate
hyperplane Rn × {0} = {xn+1 = 0} and we think of x as a point in Rn; see Figure 15.13.
In other words, we have

x =
(
x1, . . . , xn︸ ︷︷ ︸

x

, xn+1
)

=
(
x, xn+1

)
.

We denote by ρn+1 the distance from x to the origin, i.e.,

ρn+1 = ‖x‖ =
√

(x0)2 + (x1)2 + · · ·+ (xn)2.

Observe that the location of x is completely determined once we know x0 and the location
of x in Rn; see Figure 15.13. According to the induction assumption the location of x
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is completely determined by the previously defined spherical coordinates (θ2, . . . , θn, ρn),
ρn = ‖x‖.

x

x

x

x

ρ

ρθ

θ

1
2

2

2

33

3

Figure 15.13. Constructing spherical coordinates in n dimensions.

For x ∈ Rn+1 \ {0} denote by θn+1 = θn+1(x) ∈ [0, π] the angle the vector x maxes
with the xn+1-axis. More precisely, we have

xn+1 = 〈x, en+1〉 = ‖x‖ · ‖en+1‖ cos θn+1 = ρn+1 cos θn+1.

We have (see Figure 15.13)

ρ2
n+1 = ‖x‖2 = (x1)2 + · · ·+ (xn)2 + (xn+1)2 = ‖x‖2 + (xn+1)2 = ρ2

n+1 + ρ2
n+1 cos2 θn+1.

We deduce

ρ2
n = ρ2

n+1 − ρ2
n+1 cos2 θn+1 = ρ2

n+1 sin2 θn+1.

Since θn+1 ∈ [0, π], we have sin θn+1 ≥ 0 and thus

ρn = ρn+1 sin θn+1 .

This shows that the quantities (ρn+1, θn+1) determine the coordinate x0 and the spherical
coordinate ρn of x. Thus, the quantities

θ2, . . . , θn, θn+1, ρn+1 sin θn+1

completely determine the location of x in Rn+1. More precisely, using (15.48a) we obtain
equalities

x1 = f1(θ2, . . . , θn−1), ρn+1 sin θn+1)
...

...
...

xn = fn(θ2, . . . , θn−1, ρn+1 sin θn+1)
xn+1 = ρn+1 cos θn+1,

(15.49)
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where

ρn+1 > 0, θ2 ∈ [0, 2π], θ3, . . . , θn+1 ∈ [0, π] .

Let us see more explicitly the manner in which the spherical coordinates θ2, . . . , θn+1, ρn+1

determined the Cartesian coordinates x1, . . . , xn+1. Using (15.47) we deduce that, for
n+ 1 = 3 we have

x1 = ρ3 sin θ3 cos θ2, x2 = ρ3 sin θ3 sin θ2, x3 = ρ3 cos θ3.

We recognize here an old “friend”, the spherical coordinates in R3, ρ = ρ3, θ = θ2, ϕ = θ3;
see Figure 15.13. Using these freshly obtained equalities and the inductive scheme (15.49)
we deduce that for n+ 1 = 4 we have

x1 = ρ4 sin θ4 sin θ3 cos θ2,

x2 = ρ4 sin θ4 sin θ3 sin θ2,

x3 = ρ4 sin θ4 cos θ3,

x4 = ρ4 cos θ4.

The general pattern should be clear

x1 = ρn sin θn · · · sin θ4 sin θ3 cos θ2,
x2 = ρn sin θn · · · sin θ4 sin θ3 sin θ2,
x3 = ρn sin θn · · · sin θ4 · · · cos θ3,
...

...
...

xn−1 = ρn sin θn cos θn−1,
xn = ρn cos θn.

(15.50)

We interpret the above equalities as defining a map Φn = Φn(θ2, · · · θn, ρn) from an open
subset of a vector space with coordinates (θ2, . . . , θn, ρn) to another vector space with
coordinates (x1, . . . , xn). We want to compute δn := det JΦn .

We will achieve this inductively by observing that we can write Φn+1 as a composition


θ2
...

θn+1

ρn+1

 Ψn+17→


θ2
...
θn
ρn
xn+1

 =


θ2
...

θn
ρn+1 sin θn+1

ρn+1 cos θn+1

 ,


θ2
...

θn
ρn
xn+1


Φ̂n7→
[

x

xn+1

]
=

[
Φn(θ2, . . . , θn, ρn)

xn+1

]

From the equality

Φn+1 = Φ̂n ◦Ψn+1

and the chain rule we deduce

det JΦn+1
= det JΦ̂n

· det JΨn+1
.
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A simple computation6 shows that

det JΦ̂n
= det JΦn , det JΨn+1

= ρn+1. (15.51)

Hence

δn+1 = ρn+1δn = ρn+1ρnδn−1 = · · · ρn+1ρn · · · ρ3δ2

= ρn+1ρn · · · ρ3ρ2.

From the equalities

ρn = ρn+1 sin θn+1, ρ2 = ρ3 sin θ3

we deduce

δ2 = ρ2, δ3 = ρ2
3 sin θ3, δ4 = ρ4ρ

2
3 sin θ3 = ρ3

4(sin θ4)2 sin θ3,

and, in general,

det JΦn+1 = δn+1 = ρnn+1(sin θn+1)n−1(sin θn)n−2 · · · sin θ3 . (15.52)

Note that since θ3, . . . , θn ∈ (0, π) we deduce that detJΦn+1 > 0 so det JΦn+1 = |det JΦn+1 |.
ut

Example 15.53 (The volume of the unit n-dimensional ball). Denote by ωn the volume
of the closed unit n-dimensional ball

Bn
1 (0) :=

{
x ∈ Rn; ‖x‖ ≤ 1

}
.

Consider the box

Bn :=
{

(θ2, θn, ρn) ∈ Rn, θ2 ∈ [0, 2π], θ3, . . . , θn ∈ [0, π], ρn ∈ [0, 1]
}
.

The transformation Φn sends this box to the closed unit n-dimensional ball Bn
1 (0).

The equality (15.52) shows that the determinant of the Jacobian of Φn is bounded on
Bn. Applying Theorem 15.50 we deduce that

ωn = voln
(
Bn

1 (0)
)

=

∫
Bn

ρn−1
n (sin θn)n−2(sin θn−1)n−3 · · · sin θ3|dθ2dθ3 · · · dθndρn|

(set ρ := ρn and use Fubini)

=

(∫ 1

0
ρn−1dρ

)(∫ 2π

0
dθ2

)(∫ π

0
sin θ3dθ3

)
· · ·
(∫ π

0
(sin θn)n−2dθn

)
=

2π

n

(∫ π

0
sin θdθ

)
· · ·
(∫ π

0
(sin θ)n−2dθ

)
.

If we set

Jk :=

∫ π

0
(sin θ)kdθ,

then we deduce

ωn =
2π

n
J1J2 · · · Jn−2.

Using the equality
sin(π − θ) = sin θ, ∀θ ∈ R

6You need to perform this simple computation.
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we deduce ∫ π

0
(sin θ)kdθ =

∫ π
2

0
(sin θ)kdθ +

∫ π

π
2

(sin θ)kdθ = 2

∫ π
2

0
(sin θ)kdθ︸ ︷︷ ︸

=:Ik

.

Hence

ωn =
2n−1π

n
I1I2 · · · In−2 (15.53)

We have compute the integrals Ik earlier in (9.47).

I2j =
π

2

(2j − 1)!!

(2j)!!
, I2j−1 =

(2j − 2)!!

(2j − 1)!!
,

where the bi-factorial n!! is defined in (9.46).

Thus, if n = 2k, then

I1 · · · In−2 = (I1I2) · · · (I2k−3I2k−2) =

k−1∏
j=1

I2j−1I2j =
(π

2

)k−1
k−1∏
j=1

(2j − 2)!!

(2j)!!
=

=
(π

2

)k−1 1

((2k − 2)!!
=

πk−1

22k−2(k − 1)!
.

For n = 2k + 1 we have

I1 · · · In−2 = (I1I2) · · · (I2k−3I2k−2)I2k−1 =
(π

2

)k−1 1

((2k − 2)!!
·

(2k − 2)!!

(2k − 1)!!

=
(π

2

)k−1 1

(2k − 1)!!
.

Using (15.53) we deduce

ω2k =
πk

k!
, ω2k+1 =

2k+1πk

(2k + 1)!!
. (15.54)

We list below the values of ωn for small n.

n 0 1 2 3 4 5

ωn 1 2 π 4π
3

π2

2
8π2

15

.

Let us mention one simple consequence of the above computations that will come in handy
later.

nωn =

(∫ 2π

0
dθ2

)(∫ π

0
sin θ3 dθ3

)
· · ·
(∫ π

0
(sin θn)n−2 dθn

)
. (15.55)

ut

Example 15.54 (Integrals of radially symmetric functions). Here is another useful ap-
plication of the n-dimensional spherical coordinates. For 0 ≤ r < R define

A(r,R) = An(r,R) =
{
x ∈ Rn; r ≤ ‖x‖ ≤ R

}
.
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Suppose that f : A(r,R) → R is a continuous radially symmetric function. This means
that there exists u : [r,R]→ R is a continuous function such that

f(x) = u
(
‖x‖

)
, ∀x ∈ Rn.

We want to show that∫
An(r,R)

u(‖x‖)|dx| =
∫
r≤‖x‖≤R

u(‖x‖) |dx| = nωn

∫ R

r
u(ρ)ρn−1dρ . (15.56)

When n = 2 this formula reads∫
r≤
√
x2+y2≤R

u
(√

x2 + y2
)
|dxdy| = 2π

∫ R

r
tu(t)dt,

and when n = 3 it reads∫
r≤
√
x2+y2+z2≤R

u
(√

x2 + y2 + z2
)
|dxdydz| = 4π

∫ R

r
t2u(t)dt.

To prove (15.56) we use the n-dimensional spherical coordinates (θ2, . . . , θn, ρ = ρn). We
deduce∫

An(r,R)
u(‖x‖)|dx| =

∫
r≤ρ≤R

θ2∈[0,2π] θ3,...,θn∈[0,π]

u(ρ)ρn−1

 n∏
j=2

(sin θj)
j−2

 |dθ2dθ3 · · · dθndρ|

=

(∫ R

r
u(ρ)ρn−1dρ

)(∫ 2π

0
dθ2

)(∫ π

0
sin θ3dθ3

)
· · ·
(∫ π

0
(sin θn)n−2dθn

)
(15.55)

= nωn

∫ R

r
u(ρ)ρn−1dρ. ut

15.3.2. Proof of the change of variables formula. We will carry the proof of the
change in variables formula (15.31) or, equivalently, (15.33), in several steps that we
describe loosely below.

Step 1. (De)composition. If the change in variables formula is valid for the diffeomor-
phisms Φ0,Φ1, then it is valid for their composition Φ1 ◦ Φ0, whenever this composition
makes sense.

Step 2. Localization. Suppose that the diffeomorphism Φ : U → Rn has the property
that, for any p ∈ U , there exists an open neighborhood Op of p such that Op ⊂ U and the
restriction of Φ to Op is a diffeomorphism satisfying Theorem 15.46. We will show that
the entire diffeomorphism Φ satisfies this theorem. This step uses the partition of unity
trick.

Step 3. Elementary diffeomorphism. We describe a class of so called elementary diffeo-
morphisms for which the change in variables holds. In conjunction with Step 1 we deduce
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that the change in variable formula holds for quasi-elementary diffeomorphisms, i.e., dif-
feomorphisms that are compositions of several elementary ones. This step uses Fubini’s
theorem coupled with the one-dimensional change in variables formula.

Step 4. Everything is (quasi)elementary. We show that for any diffeomorphism Φ : U → Rn,
(U open subset in Rn) and for any x ∈ U , there exists a tiny open neighborhood O of x
such that O ⊂ U and the restriction of Φ to O is a quasi-elementary diffeomorphism. This
step relies on the inverse function theorem.

Clearly Steps 1-4 imply the validity of Theorem 15.46. We present the details below.
For simplicity we consider only the case when the integrand f in (15.31) is a continuous
function that vanishes outside a compact set K ⊂ V . The general case follows from this
special case by using Theorem 15.26.

Step 1. Let Φ : U0 → Rn, Ψ : U1 → Rn be two diffeomorphisms satisfying Theorem 15.46
such that Φ(U0) ⊂ U1. We want to prove that Ψ ◦ Φ also satisfies this theorem. Set

V1 := Φ(U0), V2 := Ψ(V1).

Suppose that f : V2 → R is continuous and vanishes outside a compact set K2 ⊂ V2. The
function

g : V1 → R, g(y) = f
(

Ψ(y)
)∣∣ det JΨ(y)

∣∣
is continuous and vanishes outside the compact set K1 := Ψ−1(K2) ⊂ V1. Since Ψ satisfies
Theorem 15.46 we deduce that∫

V2

f(z)|dz| =
∫
V1

g(y)|dy|. (15.57)

Similarly, the function

h : U0 → R, h(x) = g
(

Φ(x)
)∣∣ det JΦ(x)

∣∣
is continuous and vanishes outside the compact set K0 = Φ−1(K1) ⊂ U0. Since Φ satisfies
Theorem 15.46 we conclude that∫

V1

g(y)|dy| =
∫
U0

h(x)|dx|. (15.58)

Now observe that

h(x) = f
(

Ψ ◦ Φ(x)
)
·
∣∣ det JΨ(Φ(x))

∣∣ · ∣∣ det JΦ(x)
∣∣

The chain rule (13.26) implies that

JΨ◦Φ(x) = JΨ(Φ(x))JΦ(x)

so ∣∣ det JΨ◦Φ(x)
∣∣ =

∣∣ det JΨ(Φ(x))
∣∣ · ∣∣ det JΦ(x)

∣∣
and

h(x) = f
(

Ψ ◦ Φ(x)
)
·
∣∣ det JΨ◦Φ(x)

∣∣.
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We deduce from (15.57) and (15.58) that∫
V2

f(z)|dz| =
∫
U0

f
(

Ψ ◦ Φ(x)
)
·
∣∣ det JΨ◦Φ(x)

∣∣|dx|.
This shows that Ψ ◦ Φ satisfies Theorem 15.46

Step 2. Suppose that Φ : U → Rn is a diffeomorphism such that, for any point p ∈ U
there exists an open neighborhood Op of p with the following properties.

(i) Op ⊂ U . Set Ôp := Φ(Op).

(ii) Any continuous function g : V → R that vanishes outside a compact set Cp ⊂ Ôp
satisfies the change in variables formula (15.33).

We will show that this condition implies that any continuous function g : V → R that
vanishes outside a compact set C ⊂ V satisfies the change in variables formula (15.33).

The collection of open sets
{
Ôp
}
p∈Φ−1(C)

is an open cover of C. Fix a compactly

supported partition of unity on K subordinated to this open cover. This consists of
finitely many compactly supported continuous functions

χ1, . . . , χ` : Rn → [0, 1]

satisfying the following properties.

• For any j = 1, . . . , ` there exists pj ∈ C such that suppχj ⊂ Ôpj .

• χ1(y) + · · ·+ χ`(y) = 1, ∀y ∈ C.

Set gj := χjg. Observe that since g(y) = 0, ∀y ∈ V \ C, we have

g1(y) + · · ·+ g`(y) =
(
χ1(y) + · · ·+ χ`(y)

)
g(y) = g(y), ∀y ∈ V.

Clearly gj is continuous and supported on a compact set contained in Opj . It satisfies the

change-in-variables formula (15.33)∫
V
gj(x)

∣∣ det JΦ(x)
∣∣|dx| = ∫

Φ(Opj )
gj(y)|dx|

=

∫
Opj

gj
(

Φ(x)
) ∣∣ det JΦ(x)

∣∣|dy| = ∫
U
gj
(

Φ(x)
) ∣∣ det JΦ(x)

∣∣ |dx|.
Summing these equalities we deduce∫

U
g
(

Φ(x)
)∣∣ det JΦ(x)

∣∣|dx| = ∑̀
j=1

∫
U
gj
(
Φ(x)

)∣∣ det JΦ(x)
∣∣|dx|

=
∑̀
j=1

∫
V
gj(y )|dy| =

∫
V
g(y )|dy|.

This proves that the diffeomorphism Φ satisfies the change-in-variables formula (15.33).
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Step 3. Let j ∈ {1, . . . n}. We say that a diffeomorphism

Φ : U → Rn, U 3 x 7→ y = Φ(x) =


Φ1(x)
Φ2(x)

...
Φn(x)


is j-elementary if, for any i 6= j, we have

Φi(x1, . . . , xn) = xi.

Note that the inverse of a j-elementary diffeomorphism is also a j-elementary diffeomor-
phism. We say that Φ is elementary if it is j-elementary for some index j = 1, . . . , n. We
will show that if Φ : U → Rn is elementary, then it satisfies Theorem 15.46. To complete
this we rely on the localization trick discussed in Step 2. Assume for simplicity that Φ is
1-elementary, i.e.,

Φ(x) =


ϕ(x1, . . . , xn)

x2

...
xn


where ϕ : U → R is a C1 function. The Jacobian matrix of Φ is

JΦ(x) =



ϕ′x1(x) ϕ′x2(x) ϕ′x3(x) ϕ′x4(x) · · · ϕ′xn(x)

0 1 0 0 · · · 0

0 0 1 0 · · · 0
...

...
...

. . .
. . .

...
...

...
...

...
. . .

...

0 0 0 0 · · · 1


Observe that

det JΦ(x) = ϕ′x1(x). (15.59)

Since Φ is a diffeomorphism, we deduce detJΦ(x) 6= 0, ∀x ∈ U , i.e.,

ϕ′x1(x) 6= 0, ∀x ∈ U.

Let p ∈ U . We want to show that there exists an open neighborhood Op of p in U such
that the restriction of Φ to that neighborhood satisfies Theorem 15.46.

Fix r > 0 small enough such that the open cube C2r(p) (see Definition 11.54) is
contained in U . We will prove that the restriction of Φ to Cr(p) satisfies the change-in-
variables formula.
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The cube C2r(p) is connected and the continuous function ϕ′x1 does not vanish in this

cube. Hence it must have constant sign. Assume for simplicity that7

ϕ′x1(x) > 0, ∀x ∈ C2r(p).

Note that
Cr(p) =

{
x ∈ Rn; |xi − pi| < r, ∀i = 1, . . . , n

}
.

For any x = (x1, . . . , xn) we set x := (x2, . . . , xn) and denote by C ′r(p) ⊂ Rn−1 the open
(n− 1)-dimensional cube of radius r centered at p. Using this notation we have

Cr(p) =
{

(x1,x) ∈ R× Rn−1; x1 ∈ (p1 − r, p1 + r), x∈ C ′r(p)
}
.

For each x ∈ C ′r(p) the function x1 7→ ϕ(x1,x) sends the interval (p1 − r, p1 + r) to the
interval

Ix :=
{
y1 ∈ R; ϕ(p1 − r,x) < y1 < ϕ(p1 + r,x)

}
.

We deduce that the image of Cr(p) via Φ is the simple-type domain

C (r,p) =
{

(y1,y) ∈ R× Rn−1; ϕ(p1 − r,y) < y1 < ϕ(p1 + r,y), y ∈ C ′r(p)
}
.

Suppose that f : C (r,p) → R is a continuous function that vanishes outside a compact
set K ⊂ C (r,p). Using Fubini’s theorem we deduce∫

C (r,p)
f(y)dy =

∫
C′r(p)

(∫ ϕ(p1+r,x)

ϕ(p1−r,x)
f(y1,y)dy1

)
dy.

Fix x and thus y = x. Using the one-dimensional change-in-variables formula (9.52) we
deduce ∫ ϕ(p1+r,x)

ϕ(p1−r,x)
f(y1,y)dy1 =

∫ p1+r

p1−r
f
(
ϕ(x1,x),y)ϕ′x1(x1,y)dx1.

Hence ∫
C (r,p)

f(y)dy =

∫
C′r(p))

(∫ p1+r

p1−r
f
(
ϕ(x1,x),y)ϕ′x1(x1,y)dx1

)
dy.

(rename by x the variables y)

=

∫
C′r(p))

(∫ p1+r

p1−r
f
(
ϕ(x1,x),x

)
ϕ′x1(x1,x)dx1

)
dx

(use Fubini again)

=

∫
Cr(p)

f
(
ϕ(x1),x

)
ϕ′x1(x1,x)|dx| (15.59)

=

∫
Cr(p)

f
(

Φ(x)
)
·
∣∣ det JΦ(x)

∣∣|dx|.
Step 4. To give you a taste of the main idea we consider first the special case n = 2.
Then, Φ(x) has the form

x =

[
x1

x2

]
7→ Φ(x) =

[
y1

y2

]
=

[
φ1(x1, x2)
φ2(x1, x2)

]
.

7The case ϕ′
x1
< 0 is dealt with in a similar fashion.
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The Jacobian matrix of Φ is

JΦ =

 ∂φ1

∂x1
∂φ1

∂x2

∂φ2

∂x1
∂φ2

∂x2

 .
Since Φ is a diffeomorphism, det JΦ(p) 6= 0 so at least one of the entries ∂φi

∂xj
must be

nonzero at p. After a possible relabeling of the variables y and/or x we can assume that
∂φ1

∂x1 6= 0. The implicit function theorem shows that in the equation

y1 − φ1(x1, x2) = 0

we can locally solve for x1 in terms of y1 and x2, i.e., we can regard x1 as an implicitly
defined C1-function depending on the variables y1, x2,

x1 = ψ1(y1, x2)⇐⇒ y1 = φ1
(
ψ1(y1, x2), x2

)
. (15.60)

This shows that the map

x =

[
x1

x2

]
7→ Φ1(x) =

[
y1

x2

]
=

[
φ1(x1, x2)

x2

]
is a 1-elementary diffeomorphism defined on an open neighborhood U1 and its inverse,
denoted by Υ1, is the 1-elementary diffeomorphism described explicitly by[

y1

x2

]
Υ17→
[
x1

x2

]
=

[
ψ1(y1, x2)

x2

]
.

Now consider the composition Ψ2 = Φ ◦Υ1. More precisely,[
y1

x2

]
Υ17→
[
x1

x2

]
Φ7→
[
y1

y2

]
(15.60)

=

[
y1

φ2
(
ψ1(y1, x2), x2

) ] .
This shows that Ψ2 is 2-elementary. The equality Ψ2 = Φ ◦Υ1 = Φ ◦ Φ−1

1 implies that

Φ = Ψ2 ◦ Φ1,

i.e., locally, Φ is the composition of elementary diffeomorphisms.

We outline now how the above approach extends to arbitrary n, referring for details to [22, Sec. 8.6.4]. Given a
diffeomorphism Φ : U → Rn and a point p ∈ U one shows, using the implicit function theorem, that there exist

elementary diffeomorphisms Ψn, . . . ,Ψ1 such that Ψ1 is defined on an open neighborhood O of p and

Φ(x) = Ψn ◦Ψn−1 ◦ · · · ◦Ψ1(x), ∀x ∈ O

This process proceeds gradually. First, using the inverse function theorem one constructs an open neighborhood

Un−1 of p in U and a diffeomorphism Φn−1 : Un−1 → Rn with the following two properties.

(A) The n-th component of Φn−1 has the special form Φnn−1(x) = xn, ∀x ∈ Un−1.

(B) The diffeomorphism Ψn := Φ ◦ Φ−1
n−1 is n-elementary.

Note that Φ = Ψn◦Φn−1. Proceeding inductively, again relying on the implicit function theorem, one constructs
open sets

Un ⊃ Un−1 ⊃ Un−2 ⊃ · · · ⊃ U1 3 p
and, for any k = 2, . . . , n, diffeomorphisms Φk : Uk → Rn, with the following properties.

• Φn = Φ.
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• If Φjk is the j-th component of Ψk, then

Φjk(x) = xj , ∀j > k, x ∈ Uk. (15.61)

• The diffeomorphism Ψk := Φk ◦ Φ−1
k−1 is k-elementary.

We deduce

Φ(x) = Φn =
(
Φn ◦ Φ−1

n−1

)
◦
(
Φn−1 ◦ Φ−1

n−2

)
◦ · · · ◦

(
Φ2 ◦ Φ−1

1

)
◦ Φ1

= Ψn ◦ · · · ◦Ψ2 ◦ Φ1(x), ∀x ∈ U1.

By construction, the diffeomorphism Ψk is k-elementary, ∀k ≥ 2, while (15.61) with k = 1, shows that Φ1 is

1-elementary.

This completes our outline of the proof of the change-in-variables formula (15.31). For
a different, more intuitive but more laborious approach we refer to [15, §XX.4]

15.4. Improper integrals

Concrete problems arising in mathematics and natural science force us to integrate func-
tions that are not covered by the theory developed so far. For example, we might want
to integrate an unbounded function, or we might want to integrate a function over an
unbounded region. The goal of this section is to explain how to handle such issues. Let
use first introduce a notation.

- For any set A ⊂ Rn we denote by J(A) the collection of Jordan measurable subsets of
A and by Jc(A) the collection of compact Jordan measurable subsets of A.

15.4.1. Locally integrable functions. Let n ∈ N and suppose that U ⊂ Rn is an open
set.

Definition 15.55. A function f : U → R is called locally integrable if, for any x ∈ U ,
there exists a closed box B = Bx such that Bx ⊂ U , x ∈ int(Bx) and the restriction of
f to Bx is Riemann integrable. ut

Example 15.56. (a) Any continuous function f : U → R is locally integrable.

(b) If the open set U ⊂ Rn is Jordan measurable, then any Riemann integrable function
f : U → R is also locally integrable. ut

Proposition 15.57. For any function f : U → R the following statements are equivalent.

(i) The function f is locally integrable.

(ii) For any compact Jordan measurable set K ⊂ U , the restriction of f to K is
Riemann integrable on K.
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Proof. Clearly (ii) ⇒ (i) since any closed box is compact and Jordan measurable. Let us
prove (i) ⇒ (ii). Suppose that K ⊂ U is compact and Jordan measurable. For any x ∈ K
choose a closed box Bx satisfying the conditions in Definition 15.55. Consider a partition
of unity on K subordinated to the open cover{

int(Bx); x ∈ K
}
x∈K

.

Recall (see Definition 12.67) that this consists of a finite collection of compactly supported
continuous functions

χ1, . . . , χ` : Rn → R
with the following properties;

χ1(x) + · · ·+ χ`(x) = 1, ∀x ∈ K, (15.62a)

∀i = 1, . . . , ` ∃xi ∈ K suppχi ⊂ int(Bxi). (15.62b)

Denote by f0 the extension of f by 0. The functions IBxif
0 are Riemann integrable and

so are the functions

χiIBxif
0 (15.62a)

= χif
0.

Hence χ1f
0 + · · ·+χ`f

0 is Riemann integrable. Since K is Jordan measurable, we deduce
that the function

IK
(
χ1 + · · ·+ χ`

)
f0 (15.62b)

= IKf
0

is also Riemann integrable. ut

Definition 15.58. A compact exhaustion of U is a sequence of compact sets (Kν)ν∈N
with the following properties.

(i) Kν ⊂ int(Kν+1), ∀ν ∈ N.

(ii)

U =
⋃
ν∈N

Kν .

The compact exhaustion (Kν)ν∈N is called Jordan measurable if all the compact sets
Kν are Jordan measurable. ut

Observe that if (Kν)ν∈N is a compact exhaustion of the open set U , then the collection
of interiors (intKν)ν∈N is increasing and covers U , i.e.,

intK1 ⊂ intK2 ⊂ · · · ⊂ intKν ⊂ intKν+1 ⊂ · · · ,
⋃
ν≥1

intKν = U.

Example 15.59. The collection

Kν =
{
x ∈ Rn; ‖x‖ ≤ ν

}
, ν ∈ N,

is a Jordan measurable compact exhaustion of Rn. The collection

Kν =
{
x ∈ Rn;

1

ν
≤ ‖x‖ ≤ 1− 1

ν

}
, ν ∈ N,
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is a Jordan measurable compact exhaustion of B1(0) \ {0}. ut

Proposition 15.60. Any open U ⊂ Rn set admits Jordan measurable compact exhaus-
tions.

Proof. Denote by C the complement of U in Rn, C := Rn \ U . By definition, C is a closed set. For ν ∈ N we set

Kν := Bν(0) ∩
{
x ∈ Rn; dist(x, C) ≥

1

ν

}
.

Clearly Kν is closed as the intersection of two closed sets. It is bounded since it is contained in the closed ball of

radius ν. Hence Kν is compact. Note that Kν is contained in U since x ∈ U = Rn \C if and only if dist(x, C) > 0.
Obviously

U =
⋃
ν∈N

Kν .

Note that

Kν ⊂ Bν+1(0) ∩
{
x ∈ Rn; dist(x, C) >

1

ν + 1

}
⊂ int(Kν+1)

Hence the collection (Kν)ν∈N is a compact exhaustion of U . However, it may not be Jordan measurable. We can

modify it to a Jordan measurable one as follows.

Since Kν is compact there exist finitely many closed boxes contained in int(Kν+1) such that their interiors

cover Kν . Denote by K̃ν the union of these finitely many closed boxes. Clearly K̃ν is compact and Jordan
measurable, and

Kν ⊂ K̃ν ⊂ Kν+1 ⊂ K̃ν+1.

The collection (K̃ν)ν∈N is a Jordan measurable compact exhaustion of U . ut

Proposition 15.61. Suppose that U ⊂ Rn is a Jordan measurable open set and f : U → R
is a Riemann integrable function. Then, for any Jordan measurable compact exhaustion
(Kν)ν∈N of U we have ∫

U
f(x)|dx| = lim

ν→∞

∫
Kν

f(x)|dx|. (15.63)

Proof. Fix a Jordan measurable compact exhaustion (Kν)ν∈N and set

M := sup
x∈U
|f(x)|.

Since f is Riemann integrable, hence bounded, and therefore M <∞. Fix ε > 0.

Since U is Jordan measurable, its boundary is negligible. We can thus cover ∂U with finitely many open boxes
such that their union ∆ε has volume < ε

M
. The set Sε := U \∆ε. Observe that Sε ⊂ U is closed8 and bounded so

it is compact. The increasing collection of open sets int(Kν), ν ∈ N, is an open cover of the compact set Sε and
thus there exists N = N(ε) such that Sε ⊂ Kν for all ν ≥ N(ε). Note that this implies

U \Kν ⊂ U \ Sε ⊂ ∆(ε)

so that

voln(U \Kν) ≤ voln(∆ε) <
ε

M
, ∀ν ≥ N(ε).

8Why?
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For ν ≥ N(ε) we have ∣∣∣∣∫
U
f(x)|dx| −

∫
Kν

f(x)|dx|
∣∣∣∣ =

∣∣∣∣∣
∫
U\Kν

f(x)|dx|

∣∣∣∣∣ ≤
∫
U\Kν

|f(x)||dx|

≤
∫
U\Kν

M |dx| = M voln(U \Kν) < ε.

This proves (15.63). ut

15.4.2. Absolutely integrable functions. Let U ⊂ Rn be an open set. Recall that for
any A ⊂ Rn we denoted by Jc(A) the collection of compact, Jordan measurable subsets
of A.

Definition 15.62. A locally integrable function f : U → R is called absolutely integrable
if

sup
K∈Jc(U)

∫
K
|f(x)| |dx| <∞.

We will denote by Ra(U) the collection of absolutely integrable functions f : U → R. ut

Proposition 15.63. Let f : U → R be a locally integrable function. Then the following
statements are equivalent.

(i) The function f is absolutely integrable.

(ii) For any Jordan measurable compact exhaustion (Kν)ν∈N of U the sequence∫
Kν

|f(x)| |dx|

is bounded

(iii) There exists a Jordan measurable compact exhaustion (Kν)ν∈N of U such that
the sequence ∫

Kν

|f(x)| |dx|

is bounded.

Moreover, if any of the above conditions is satisfied, then

lim
ν→∞

∫
Kν

|f(x)| |dx| = sup
K∈Jc(U)

∫
K
|f(x)| |dx|.

Proof. Clearly (i)⇒ (ii)⇒ (iii). We only have to prove (iii)⇒ (i). Suppose that (Kν)ν∈N
is a Jordan measurable compact exhaustion of U such that the sequence∫

Kν

|f(x)| |dx|
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is bounded. We denote by L its supremum. We have to prove that,

sup
K∈Jc(U)

∫
K
|f(x)| |dx| = L.

Since for every ν we have∫
Kν

|f(x)| |dx| ≤ sup
K∈Jc(U)

∫
K
|f(x)| |dx

we deduce

L = sup
ν

∫
Kν

|f(x)| |dx| ≤ sup
K∈Jc(U)

∫
K
|f(x)| |dx| =: L∗.

To prove that L∗ ≤ L it suffices to show that, for any K ∈ Jc(U) we can find ν ∈ N such
that K ⊂ int(Kν). Indeed, if this were the case we would have∫

K
|f(x)| |dx| ≤

∫
Kν

|f(x)| |dx| ≤ L.

To prove the claim note that the increasing collection of open sets int(Kν), ν ∈ N, is an
open cover of U and thus also of the compact set K. Thus there exist natural numbers
ν1 < · · · < ν` such that the finite collection int(Kν1), . . . , int(Kν`) covers K. Since

int(Kν1) ⊂ · · · ⊂ int(Kν`)

we deduce K ⊂ int(Kν`).

The last conclusion of the proposition follows by observing that the sequence∫
Kν

|f(x)| |dx|, ν ∈ N,

is nondecreasing so

lim
ν→∞

∫
Kν

|f(x)| |dx| = sup
ν∈N

∫
Kν

|f(x)| |dx| = L = L∗.

ut

Definition 15.64. Suppose that f : U → [0,∞) is a nonnegative locally integrable
function. We set ∫ ∗

U
|f(x)| |dx| := sup

K∈Jc(U)

∫
K
|f(x)| |dx|. ut

Remark 15.65. Note that if U is Jordan measurable and f : U → [0,∞) is integrable,
then it is absolutely integrable. Moreover, Propositions 15.61 and 15.63 show that∫ ∗

U
f(x)|dx| =

∫
U
f(x)dx. ut
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To proceed we need to introduce a useful trick. For any x ∈ R we set

x+ := max(x, 0), x− := max(−x, 0) = (−x)+.

We will refer to x± as the positive/negative part of x. For example,

(2)+ = 2, (2)− = 0, (−3)+ = 0, (−3)− = 3.

Note that

x = x+ − x−, |x| = x+ + x−, ∀x ∈ R.
The functions x 7→ x± can be given the alternate descriptions

x+ =
|x|+ x

2
, x− =

|x| − x
2

, ∀x ∈ R .

This shows that the functions x 7→ x± are Lipschitz since they are linear combinations of
the Lipschitz functions x 7→ x and x 7→ |x|.

Suppose now that U is an open set and f : U → R is absolutely integrable Theorem
15.12 implies that the functions f± : U → R, f±(x) = f(x)±, are locally integrable. From
the equality

|f(x)| = f+(x) + f−(x), ∀x ∈ U,
we deduce that the functions f± are also absolutely integrable. The equality f = f+− f−
suggests the following concept.

Definition 15.66. Suppose that the function f : U → R is absolutely integrable. We set∫ ∗∗
U

f(x)|dx| :=
∫ ∗
U
f+(x) |dx| −

∫ ∗
U
f−(x) |dx|.

We say that
∫ ∗∗
U f(x)|dx| is the improper integral over U of the absolutely integrable

function f : U → R. ut

Remark 15.67. (a) If f : U → R is absolutely integrable, then, for any Jordan measurable
compact exhaustion (Kν)ν∈N of U we have∫ ∗∗

U
f(x)|dx| = lim

ν→∞

∫
Kν

f+(x) |dx| − lim
ν→∞

∫
Kν

f−(x) |dx| = lim
ν→∞

∫
Kν

f(x)|dx|. (15.64)

(b) If f : U → [0,∞) is absolutely integrable, then we deduce from the equality f = f+

that ∫ ∗∗
U

f(x) |dx| :=
∫ ∗
U
f+(x) |dx| =

∫ ∗
U
f(x) |dx|.

(c) If U is Jordan measurable, and f : U → R is Riemann integrable, then we deduce from
Remark 15.65 that ∫ ∗∗

U
f(x) |dx| =

∫
U
f(x) |dx|. ut
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- In view of the above remarks, and in order to control the proliferation of notations for
closely related concepts, we will continue to use the notation

∫
U f(x) |dx| when referring

to the improper integral of f over U .

Theorem 15.68 (Comparison principle). Suppose that f, F : U → R are locally integrable
functions such that

|f(x)| ≤ |F (x)|, ∀x ∈ U,
(i) If F is absolutely integrable, then f is also absolutely integrable.

(ii) If f is not absolutely integrable, then neither is F .

Proof. Clearly (i) ⇐⇒ (ii) so it suffices to prove (i). We have∫
K

∣∣ f(x)
∣∣ |dx| ≤ ∫

K

∣∣F (x)
∣∣ |dx|, ∀K ∈ Jc(U)

so

sup
K∈Jc(U)

∫
K

∣∣ f(x)
∣∣ |dx| ≤ sup

K∈Jc(U)

∫
K

∣∣F (x)
∣∣ |dx| <∞.

ut

15.4.3. Examples. We want to discuss a few simple but important examples.

Example 15.69. Fix n ∈ N. For α > 0 define

pα : Rn \ {0} → R, pα(x) = ‖x‖−α.
Suppose that U is the punctured unit ball in Rn,

U =
{
x ∈ Rn; 0 < ‖x‖ < 1

}
.

The collection of annuli

Kν :=

{
x ∈ Rn;

1

ν
≤ ‖x‖ ≤ 1− 1

ν

}
, ν ∈ N

is a Jordan measurable compact exhaustion of U . Using (15.56) we deduce that

∫
Kν

pα(x)|dx| = nωn

∫ 1− 1
ν

1
ν

ρn−1−αdρ = nωn ×


1

n−αρ
n−α

∣∣∣1−1/ν

1/ν
, α 6= n,

log ρ
∣∣∣1−1/ν

1/ν
, α = n.

The last quantity has a finite limit as ν → ∞ if and only if α < n. We deduce that the
function pα(x) is absolutely convergent on U if and only if α < n.

Fix β > 0. Consider now the complement in Rn of the closed unit ball,

V :=
{
x ∈ Rn; ‖x‖ > 1

}
.
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Figure 15.14. The graph of p1(x) = ‖x‖−1, x ∈ R2 \ {0}.

The collection of annuli

Cν :=

{
x ∈ Rn; 1 +

1

ν
≤ ‖x‖ ≤ ν

}
, ν ∈ N

is a Jordan measurable compact exhaustion of V . We deduce as above that

∫
Cν

pβ(x)|dx| = nωn ×


1

n−βρ
n−β

∣∣∣ν
1+1/ν

, β 6= n,

log ρ
∣∣∣ν
1+1/ν

, β = n.

The last quantity has a finite limit as ν →∞ if and only if β > n, so the function pβ(x)
is absolutely convergent on V if and only if β > n. ut

Example 15.70 (Gaussian integrals). Consider the function

f : R2 → R, f(x, y) = e−x
2−y2

.

It is locally integrable since it is continuous. To investigate if it is absolutely integrable
consider the disks

Dν :=
{

(x, y) ∈ R2;
√
x2 + y2 ≤ ν

}
, ν ∈ N.

Using polar coordinates x = r cos θ, y = r sin θ we deduce∫
Dν

f(x, y)|dxdy| =
∫ 2π

0

(∫ ν

0
e−r

2
rdr

)
dθ

= 2π

∫ ν

0
e−r

2
rdr = π

∫ ν

0
e−r

2
d(r2)

u=r2

= π

∫ ν2

0
e−udu
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= π
(

1− e−ν2 )
.

Since (Dν)ν∈N is a Jordan measurable compact exhaustion of R2 we deduce that∫
R2

e−x
2−y2

dxdy = lim
ν→∞

∫
Dν

e−x
2−y2

dxdy = π.

On the other hand, if we set Sν = [−ν, ν]× [−ν, ν] we deduce

π =

∫
R2

e−x
2−y2 |dxdy| = lim

ν→∞

∫
Sν

e−x
2−y2 |dxdy|

= lim
ν→∞

∫ ν

−ν

(∫ ν

−ν
e−x

2
e−y

2
dx

)
dy = lim

ν→∞

(∫ ν

−ν
e−x

2
dx

)(∫ ν

−ν
e−y

2
dy

)
= lim

ν→∞

(∫ ν

ν
e−x

2
dx

)2

=

(∫
R
e−x

2
dx

)2

.

We have thus obtained the following famous result∫
R
e−x

2
dx =

√
π (15.65)

ut

Example 15.71 (The volume of the unit n-dimensional ball). We want to have another
look at ωn, the volume of the unit ball in Rn. We will obtain a new description for ωn
using an elegant trick of H. Weyl that is based by computing the integral

In :=

∫
Rn
e−‖x‖

2 |dx|

in two different ways. Note first that

In =

∫
Rn
e−x

2
1−···−x2

n |dx1 · · · dxn| =
∫
Rn
e−x

2
1 · · · e−x2

n |dx1 · · · dxn|

(use Fubini)

=

(∫
R
e−x

2
1dx1

)
· · ·
(∫

R
e−x

2
ndxn

)
=

(∫
R
e−x

2
dx

)n
(15.65)

= π
n
2 .

On the other hand, the function e−‖x‖
2

is radially symmetric and we deduce from (15.56)
that

In = nωn

∫ ∞
0

e−ρ
2
ρn−1dρ

ρ=
√
t

=
nωn

2

∫ ∞
0

e−tt
n
2
−1dt.

At this point we want to recall the definition of the Gamma function (9.70)

Γ(x) :=

∫ ∞
0

e−ttx−1dt, x > 0.

Thus

π
n
2 = In =

nωn
2

Γ
(n

2

)
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We deduce

ωn =
π
n
2

n
2 Γ
(
n
2

) .
This can be simplified a bit by using the identity (9.72)

Γ(x+ 1) = xΓ(x), ∀x > 0.

We deduce
n

2
Γ
(n

2

)
= Γ

(n
2

+ 1
)
,

and thus

ωn =
π
n
2

Γ
(
n
2 + 1

) . (15.66)

To see how this relates to (15.54) we use again the identity (9.72) and we deduce

Γ(m) = m! ∀m ∈ N

Γ
(2n+ 1

2

)
=

2n− 1

2
Γ
(2n− 1

2

)
= · · · = (2n− 1)!!

2n−1
Γ(1/2).

On the other hand

Γ(1/2) =

∫ ∞
0

e−tt−1/2dt
t=x2

= 2

∫ ∞
0

e−x
2
dx

(15.65)
=
√
π.

ut

Example 15.72 (Euler’s Beta function). For x, y > 0 we set

B(x, y) :=

∫ 1

0
tx−1(1− t)y−1dt. (15.67)

This integral is convergent since x− 1, y − 1 > −1. The resulting function

(0,∞)× (0,∞) 3 (x, y) 7→ B(x, y) ∈ (0,∞),

is known as Euler’s Beta function.

If we make the change in variables in the integral (15.67)

u =
t

1− t
,

then we observe that u = 0 when t = 0 and u→∞ as t↗ 1. Moreover, we have

(1− t)u = t⇒ u = t(1 + u)⇒ t =
u

1 + u
= 1− 1

1 + u

⇒ 1− t =
1

1 + u
, dt =

1

(1 + u)2
du,

tx−1(1− t)y−1dt =

(
u

1 + u

)x−1( 1

1 + u

)y−1 1

(1 + u)2
du =

ux−1

(1 + u)x+y
du,
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so that

B(x, y) =

∫ ∞
0

ux−1

(1 + u)x+y
du, ∀x, y > 0. (15.68)

Using (9.74) we deduce

1

(1 + u)x+y
=

1

Γ(x+ y)

∫ ∞
0

sx+y−1e−(1+u)sds.

Using this in (15.68) we deduce

B(x, y) =
1

Γ(x+ y)

∫ ∞
0

ux−1

(∫ ∞
0

sx+y−1e−(1+u)sds

)
du

=
1

Γ(x+ y)

∫ ∞
0

(∫ ∞
0

ux−1sx+y−1e−(1+u)sds

)
︸ ︷︷ ︸

=:I

du.
(15.69)

At this point we want to invoke Fubini’s theorem which allows us to conclude that we can
interchange the order of integration so that

I :=

∫ ∞
0

(∫ ∞
0

ux−1sx+y−1e−(1+u)sds

)
du =

∫ ∞
0

(∫ ∞
0

sx+y−1ux−1e−(1+u)sdu

)
ds

=

∫ ∞
0

sx+y−1

(∫ ∞
0

ux−1e−(1+u)sdu

)
ds =

∫ ∞
0

sx+y−1

(∫ ∞
0

ux−1e−se−sudu

)
ds

=

∫ ∞
0

e−ssx+y−1

(∫ ∞
0

ux−1e−sudu

)
︸ ︷︷ ︸

(9.74)
=

Γ(x)
sx

ds

=

∫ ∞
0

e−ssx+y−1 Γ(x)

sx
ds = Γ(x)

∫ ∞
0

sy−1e−sds = Γ(x)Γ(y).

Thus
I = Γ(x)Γ(y),

and

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. ut

Remark 15.73. The Gamma and Beta functions are ubiquitous in mathematics. They
belong to the category of so called special functions. The facts we have presented barely
scratch the surface of the beautiful theory of these functions. There are many sources
from which to learn about the Gamma function but, as entry point in this theory no
source comes close to the little gem [1] by Emil Artin.9 First published 1931 in German,
it remains to the day an example of beautiful mathematical writing. ut

9Emil Artin (1898-1962) was one of the most influential mathematicians of the 20th century. He was Professor

at the University of Hamburg Germany until 1937 when he was forced to emigrate to US due to the political tensions
in Germany at that time. His first US position was at the University of Notre Dame where, coincidently, the present
book was also born.
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15.5. Exercises

Exercise 15.1. Prove Lemma 15.2.

Hint. The proof is not hard, but it takes some thinking to write down a short and precise exposition. Start with

the case n = 2 and then argue by induction on n. ut

Exercise 15.2. Consider the triangle

T :=
{

(x, y) ∈ R2; x, y ≥ 0, x+ y ≤ 1
}

and the function

f : [0, 1]× [0, 1]→ R, f(x, y) =

{
1, (x, y) ∈ T,
0, (x, y) 6∈ T.

For each n ∈ N denote by P n the partition of [0, 1]× [0, 1],

P n =
(
Ux
n,U

y
n),

whereUx
n is the uniform partition of order n of the interval [0, 1] on the x-axis (see Example

9.2) and Uy
n is the uniform partition of order n of the interval [0, 1] on the y-axis.

Compute ω(f,P n) and then show that

lim
n→∞

ω(f,P n) = 0.

Hint. To understand what is going on investigate first the partition P 4 depicted in Figure 15.15. ut

Figure 15.15. The partition P 4 of the square [0, 1]× [0, 1]. The triangle T is described
by the shaded area.

Exercise 15.3. Let n ∈ N and suppose that B := [a1, b1] × · · · · · · × [an, bn] ⊂ Rn is a
closed nondegenerate box. For any Riemann integrable function f : B → R we define its
mean on B to be the real number

Mean(f) :=
1

voln(B)

∫
B
f(x)|dx|.
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(i) Prove that for any Riemann integrable function f : B → R we have

inf
x∈B

f(x) ≤ Mean(f) ≤ sup
x∈B

f(x).

(ii) Prove that for any continuous function f : B → R there exists x∈ B such that

f(x) = Mean(f).

Hint. (ii) Use (i) and Corollary 12.49. ut

Exercise 15.4. Denote by Cnr the closed cube in Rn of radius r centered at 0,

Cnr =
{
x ∈ Rn; |xi| ≤ r, ∀i = 1, . . . , n

}
.

Suppose that f : Cn1 → R is a continuous function. Prove that

lim
r↘0

1

voln
(
Cnr
) ∫

Cnr

f(x)|dx| = f(0).

Hint. Use Exercise 15.3(ii). ut

Exercise 15.5. Suppose that B ⊂ Rn is a nondegenerate closed box and f, g : B → R
are Riemann integrable functions. Fix p, q ∈ (1,∞) such that

1

p
+

1

q
= 1.

(i) Prove that there exists C > 0 such that, for any partition P of B, we have

ω(|f |p,P ) < Cω(f,P ), ω(|g|q,P ) < Cω(g,P )

(ii) Prove that there exists a sequence of partitions (Pν)ν∈N of B such that

lim
ν→∞

ω(f,Pν) = lim
ν→∞

ω(g,Pν) = 0.

(iii) Prove that∣∣∣∣∫
B
f(x)g(x)|dx|

∣∣∣∣ ≤ (∫
B
|f(x)|p|dx|

) 1
p
(∫

B
|g(x)|q|dx|

) 1
q

. (15.70)

Hint. (i) Have a look at the proof of (15.8). (iii) Use Proposition 15.9 coupled with (i) and (ii) to reduce (15.70)

to (8.23). ut

Exercise 15.6. Fix n ∈ N

(i) Show that a subset S ⊂ Rn is negligible (see Definition 15.15) if and only if, for
any ε > 0, there exists a sequence (Bν)ν≥1 of closed boxes such that

S ⊂
⋃
ν≥1

int(Bν) and
∑
ν≥1

voln(Bν) < ε.
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(ii) Show that if the compact subset S ⊂ Rn is negligible, then for any ε > 0 there
exists finitely many closed boxes B1, . . . , BN such that

S ⊂
N⋃
ν=1

int(Bν) and

N∑
ν=1

voln(Bν) < ε.

Hint. (i) Observe that for any closed box B and any ~ > 0 there exists a closed box B′ such that B ⊂ int(B′) and

voln(B′)− voln(B) < ~. ut

Exercise 15.7. Prove that the following sets are negligible.

(i) A subset of a negligible subset.

(ii) The union of a sequence (Nν)ν≥1 of negligible subsets of Rn.

(iii) The coordinate hyperplane

H i
t :=

{
(x1, x2, . . . , xn) ∈ Rn xi = t

}
⊂ Rn,

where i ∈ {1, . . . , n} and t is a fixed real number.

Hint. (ii) For ν = 1, 2, . . . cover Nν by a countable family of boxes Bν,1, Bν,2, . . . , such that

∞∑
k=1

voln(Bν,k) <
ε

2ν
.

Then use the fact that the set N× N is countable; see Example 3.17. (iii) Use (ii). ut

Exercise 15.8. Suppose that f : [a, b]→ [0,∞) and g : [c, d]→ [0,∞) are two nonnegative
Riemann integrable functions. Define

h : [a, b]× [c, d]→ R, h(x, y) = f(x)g(y).

Prove that h is Riemann integrable and∫
[a,b]×[c,d]

h(x, y)|dxdy| =
(∫ b

a
f(x)dx

)(∫ d

c
g(y)dy

)
.

Hint.Choose a partition P = (P x,P y) of the box [a, b]× [c, d] and express the Darboux sum S∗(h,P ) in terms of

S∗(f,P x) and S∗(g,P y). Do the same for the upper Darboux sums. ut

Exercise 15.9. Let B = [0, 1]× [1, 2] ⊂ R2. Using Theorem 15.18 compute∫
B

1

(x1 + x2)2
|dx1dx2|. ut

Exercise 15.10. Consider a nondegenerate box B ⊂ Rn, a continuous function f : B → R
and a continuous convex function Φ : R→ R. Prove that

Φ

(
1

voln(B)

∫
B
f(x) |dx|

)
≤ 1

voln(B)

∫
B

Φ
(
f(x)

)
|dx|.

Hint. Use Riemann sums and Jensen’s inequality (8.16). ut

Exercise 15.11. (a) Let a, b ∈ R, a < b. For any ε > 0 construct explicitly a continuous
function gε : [a, b]→ R satisfying the following properties.
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(i) gε(a) = gε(b) = 0.

(ii) 0 ≤ gε(x) ≤ 1, ∀x ∈ [a, b].

(iii) ∫ b

a
dx− ε ≤

∫ b

a
gε(x)dx ≤

∫ b

a
dx.

(b) Let n ∈ N and suppose that B = [a1, b1]×· · ·× [an, bn] ⊂ Rn is a closed nondegenerate
box. Prove that, for any ε > 0 there exists a continuous function hε : B → R satisfying
the following conditions.

(i) hε(x) = 0 for any point x the boundary of B, i.e., a point x = (x1, . . . , xn) such
that xi = ai or xi = bi for some i = 1, . . . , n.

(ii) 0 ≤ hε(x) ≤ 1, ∀x ∈ B.

(iii) ∫
B
|dx| − ε ≤

∫
B
hε(x)|dx| ≤

∫
B
|dx|.

Hint. (a) Think of a function whose graph looks like a trapezoid. (b) Seek hε of the form

hε(x
1, . . . , xn) = g1

ε(x1) · · · gnε (xn),

where gε : [ai, bi]→ R are chosen as in (a). Use Fubini to reach the desired conclusion. ut

Exercise 15.12. Let n ∈ N and suppose that B = [a1, b1]× · · · × [an, bn] ⊂ Rn is a closed
nondegenerate box. Suppose that f : B → [0,∞) is a nonnegative Riemann integrable
function. Prove that, for any ε > 0 there exists a continuous function hε : B → R
satisfying the following conditions.

(i) hε(x) = 0 for any point x on the boundary of B, i.e., a point x = (x1, . . . , xn)
such that xi = ai or xi = bi for some i = 1, . . . , n.

(ii) 0 ≤ hε(x) ≤ f(x), ∀x ∈ B.

(iii) ∫
B
f(x)|dx| − ε ≤

∫
B
hε(x)|dx| ≤

∫
B
f(x)|dx|.

Hint. Choose a partition P of B such that the mean oscillation ω(f,P ) is very small. Next use Exercise 15.11 (b)

on each chamber of the partition P . ut

Exercise 15.13. Let n,N ∈ N and suppose that that S1, . . . , SN ⊂ Rn are Jordan
measurable sets. Prove that their union is also Jordan measurable and

voln

(
N⋃
k=1

Sk

)
≤

N∑
k=1

voln(Sk).

Hint. Argue by induction using Proposition 15.30. ut

Exercise 15.14. (a) Suppose that K ⊂ Rn is compact. Prove that K negligible if and
only if it is Jordan measurable and voln(K) = 0.
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(b) Suppose that B ⊂ Rn is a closed nondegenerate box. Prove that int(B) is Jordan
measurable and

voln
(
int(B)

)
= voln(B).

Hint. (a) If K is negligible use Corollary 15.29 to prove that it is Jordan measurable. To show that voln(K) = 0

use Exercises 15.6 and 15.13. Conversely, suppose that K is Jordan measurable and voln(K) = 0. Choose a box B

containing K. Then
∫
B IK(x)|dx| = 0. Thus for ε > 0 one can choose a partition P ε of B such that S∗(IK ,P ε) < ε.

Use this partition to show that you can cover K by finitely many boxes whose volumes add up to less than ε. (b)

Invoke Proposition 15.21 and Lebesgue’s Theorem to conclude that ∂B is negligible and then use (a). ut

Exercise 15.15. Suppose that f : [a, b]× [a, b]→ R is a continuous function. Prove that∫ b

a
dy

∫ y

a
f(x, y) dx =

∫ b

a
dx

∫ b

x
f(x, y) dy.

Hint. Compute the double integral
∫
C f(x, y)dxdy in two different ways for a suitable Jordan measurable set

C ⊂ [a, b]× [a, b]. ut

Exercise 15.16. Denote by T the triangle in the plane determined by the lines

y = 2x, y =
x

2
, x+ y = 6.

(i) Find the coordinates of the vertices of this triangle.

(ii) Draw a picture of this triangle.

(iii) Compute the integral ∫
T
xy |dxdy|.

ut

Exercise 15.17. Find the area of the region R ⊂ R2 defined as the intersection of the
disks of radius 1 centered at the vertices of the square [0, 1]× [0, 1]; see Figure 15.16.

Exercise 15.18. Consider the box B = [a1, b1]×[a2, b2] ⊂ R2 and suppose that f : B → R
is continuous function. Define

F : B → R, F
(
x, y
)

=

∫
[a1,x]×[a2,y]

f(s, t)|dsdt|.

Show that the restriction of F to the interior of B is C1 and then compute the partial
derivatives ∂F

∂x , ∂F
∂y . ut

Exercise 15.19. Suppose that B ⊂ Rn is a closed nondegenerate box and f : B → R is
a continuous function such that f(x) ≥ 0, ∀x ∈ B. Prove that the following statements
are equivalent.

(i) f(x) = 0, ∀x ∈ B.



586 15. Multidimensional Riemann integration

Figure 15.16. The overlap of 4 disks centered at the vertices of a square.

(ii) ∫
B
f(x) |dx| = 0.

ut

Exercise 15.20. Let n ∈ N and r > 0.

(i) Prove that the n-dimensional closed ball

Bn
r (0) :=

{
x ∈ Rn; ‖x‖ ≤ r

}
,

is Jordan measurable.

(ii) Prove that the sphere

Σr(0) :=
{
x ∈ Rn; ‖x‖ = r

}
,

is Jordan measurable and voln(Σr(0)) = 0.

(iii) Prove that the n-dimensional open ball

Bn
r (0) :=

{
x ∈ Rn; ‖x‖ < r

}
,

is Jordan measurable and

voln
(
Bn
r (0)

)
= voln

(
Bn
r (0)

)
Hint. (i) Use induction on n and Proposition 15.40. (ii) Use Corollary 15.29. Conclude using Exercise 15.14 and

Proposition 15.30(i). (iii) Follows from (i) and (ii). ut

Exercise 15.21. For any n ∈ N and r > 0 denote by ωn(r) the n-dimensional volume
of the n-dimensional ball Bn

r (0) ⊂ Rn. For simplicity, set ωn := ωn(1), so that ωn is the
volume of the unit ball in Rn.

(i) Show that ωn(r) = ωnr
n.
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(ii) Use Cavalieri’s Principle to show that

ωn := 2ωn−1

∫ 1

0

(
1− x2

)n−1
2 dx.

(iii) Prove that ωn satisfies the equalities (15.54).

Hint. (i) Use the change-in-variables formula for the diffeomorphism Φ : Rn → Rn, Φ(x) = rx that sends B1(0)

onto Br(0). (iii) Relate the integral in (ii) to the integrals (9.44) and (9.45). Then proceed by induction on n. ut

Exercise 15.22. Prove that Lebesgue’s Theorem 15.17 implies Corollary 15.38. ut

Exercise 15.23. Fix a continuous function f : R→ R and define recursively the sequence
of functions Fn : R→ R, n = 0, 1, 2 . . . ,

F0(x) = f(x), Fn(x) =
1

n!

∫ x

0
(x− y)nf(y)dy, n ≥ 1.

(i) Show that, for all n ∈ N, Fn ∈ C1(R), Fn(0) = 0 and F ′n(x) = Fn−1(x), ∀x ∈ R.

(ii) Show that if (Gn)n≥1 is a sequence of C1-functions on R such that

Gn(0) = 0, ∀n ≥ 1, G′1(x) = f(x),

G′n+1(x) = Gn(x), ∀n ≥ 1, x ∈ R,
then Gn(x) = Fn(x), ∀n ≥ 1, x ∈ R.

(iii) Show∫ x

0
dx1

∫ x1

0
dx2 · · ·

∫ xn−1

0
f(xn)dxn =

1

n!

∫ x

0
(x− y)nf(y)dy.

ut

Exercise 15.24. Suppose that K ⊂ R2 is a compact Jordan measurable set that is
symmetric with respect to the y-axis, i.e.,

(x, y) ∈ K ⇐⇒ (−x, y) ∈ K.

Let f : R2 → R be a continuous function that is odd in the x-variable, i.e.,

f(−x, y) = −f(x, y), ∀(, x, y) ∈ K.

(i) Prove that ∫
K
f(x, y)|dxdy| = 0.

(ii) Let

D :=
{

(x, y) ∈ R2; x2 + y2 ≤ 1
}
.

Compute ∫
D
x23y24|dxdy| and

∫
D

(xy)24|dxdy|.

Hint. (i) Use the change-in-variables formula. For (ii) you need to use the equalities (9.47) in Example 9.50. ut



588 15. Multidimensional Riemann integration

Exercise 15.25. Let n ∈ N and suppose that K ⊂ Rn is a compact, Jordan measurable
set.

(i) Suppose that L : Rn → Rn is a linear isomorphism. Prove that

voln
(
L(K)

)
= | detL| voln(K).

(ii) Suppose that A : Rn → Rn is a linear isometry, i.e., A is a linear operator and

〈Ax, Ay〉 = 〈x,y〉, ∀x,y ∈ Rn.

Show that

voln
(
A(K)

)
= voln(K).

(iii) Let v ∈ Rn and define Tv : Rn → Rn, Tv(x) = v + x. Show that

voln
(
Tv(K)

)
= voln(K).

Hint. (ii) Use Exercise 11.25 and (i). ut

Exercise 15.26. Let n ∈ N and suppose that a1, a2, . . . , , an > 0. Consider the ellipsoid

Σ(a1, . . . , an) :=
{
x ∈ Rn;

n∑
j=1

(xj)2

a2
j

≤ 1
}

(i) Prove that

voln
(

Σ(a1, . . . , an)
)

= ωna1 · · · an,
where ωn is the volume of the unit ball in Rn.

(ii) Show that ∫
Σ(a1,...,an)

x1x2 · · ·xn |dx1 · · · dxn| = 0.

Hint. (i) Make the change in variables xi = aiy
i. (ii) Make the change in variables x1 = −y1, x2 = y2, . . . , xn = yn.

ut

Exercise 15.27. Let m,n ∈ R and suppose that ρ : Rm×Rn → R is a continuous function.
We denote by t = (t1, . . . , tm) the Euclidean coordinates in Rm and by x = (x1, . . . , xn

the Euclidean coordinates on Rn. Fix a Riemann integrable function f : Rn → R. (Note
in particular that f must have compact support.) Define

f̂ : Rm → R, f̂(t) =

∫
Rn
ρ(t,x)f(x)|dx|.

(i) Show that f̂ is continuous.

(ii) Suppose additionally that ρ is C1. Show that f̂ is also C1 and

∂f̂

∂tk
(t) =

∫
Rn

∂ρ

∂tk
(t,x)f(x)|dx|.
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Hint. Fix (closed) box B such that supp f ⊂ B. (i) Prove that if tν → t as ν → ∞, then the functions

x 7→ ρ(tν ,x)f(x) converge uniformly on B to the function x 7→ ρ(t,x)f(x). Conclude using Proposition 15.14.

(ii) Use Lagrange’s Mean Value Theorem 13.30 and the fact that the partial derivatives of ρ are bounded on the

compact subsets of Rm × Rn. ut

Exercise 15.28. Suppose that ρ : Rn → R is a nonnegative, compactly supported contin-
uous function such that ∫

Rn
ρ(x) |dx| = 1. (15.71)

Given a Riemann integrable function f and ε > 0 we define fε : Rn → R,

fε(x) = ε−n
∫
Rn
ρ
(
ε−1(x− y)

)
f(y) |dy|.

(i) Prove that

fε(x) = ε−n
∫
Rn
ρ
(
ε−1z

)
f(x− z) |dz| =

∫
Rn
ρ(z)f(x− εz) |dz|.

(ii) Prove that the function fε is continuous and compactly supported.

(iii) Show that ∫
Rn
fε(x) |dx| =

∫
Rn
f(x) |dx|.

(iv) Show that if, additionally, f is continuous, then

lim
ε→0

fε(x) = f(x), ∀x ∈ R.

Hint. (i) Use the change in variables formula. (ii) Use Exercise 15.27(i). (iii) Use (i), (15.71) and Fubini. (iv) Use

(15.71) and Proposition 15.14. ut

Exercise 15.29. Show that the improper integral∫
0<x<y

(y2 − x2)e−ydxdy

is absolutely convergent and then compute its value.
Hint. First draw the region R := {0 < x < y}. Note that in the region R the function f(x, y) = (y2 − x2)e−y is
positive. Consider the compact exhaustion

Kν :=
{

(x, y) ∈ R2; 1/ν ≤ x, y − x ≥ 1/ν, y ≤ ν
}
, ν ∈ N,

compute the integrals

Iν =

∫
Kν

(y2 − x2)e−y |dxdy|,

and study the limit of Iν as ν →∞. ut

Exercise 15.30. Fix n ∈ N and a continuous function f : R → R. For c > 0 we denote
by T cn the simplex

T cn :=
{
x ∈ Rn; x1, . . . , xn ≥ 0, x1 + · · ·+ xn ≤ c

}
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(i) Prove that

voln(T cn) =
cn

n!
(ii) Show that∫

T cn

f(x1 + · · ·+ xn) |dx| = 1

(n− 1)!

∫ c

0
f(t)tn−1dt.

(iii) Show that the integral∫
x1,...,xn≥0

sin
(
π(x1 + · · ·+ xn)

)
|dx|

is not absolutely convergent.

Hint. (i) Reduce to Example 15.45 via the change in variables xi = cyi, i = 1, . . . , n. (ii) Make the change in

variables u1 = x1, . . . , un−1 = xn−1, un = x1 + · · ·+ xn and then use Fubini coupled with (i). For (iii) use (ii). ut

Exercise 15.31. Let n ∈ N, n > 1. Show that, for any R > 0 the n-dimensional improper
integral ∫

0<‖x‖≤R
ln ‖x‖ |dx|

is absolutely convergent and then compute its value. ut

Exercise 15.32. Prove the equalities (15.51). ut

15.6. Exercises for extra credit

Exercise* 15.1. (a) Consider a degree (n− 1) polynomial

P (x) = an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0, an−1 6= 0.

Compute the determinant of the following matrix.

V =


1 1 · · · 1
x1 x2 · · · xn
...

...
...

...

xn−2
1 xn−2

2 · · · xn−2
n

P (x1) P (x2) · · · P (xn)

 .
(b) Compute the determinants of the following n× n matrices

A =


1 1 · · · 1
x1 x2 · · · xn
...

...
...

...

xn−2
1 xn−2

2 · · · xn−2
n

x2x3 · · ·xn x1x3x4 · · ·xn · · · x1x2 · · ·xn−1

 ,
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and

B =


1 1 · · · 1
x1 x2 · · · xn
...

...
...

...

xn−2
1 xn−2

2 · · · xn−2
n

(x2 + x3 + · · ·+ xn)n−1 (x1 + x3 + x4 + · · ·+ xn)n−1 · · · (x1 + x2 + · · ·+ xn−1)n−1

 .
ut

Exercise* 15.2. Suppose that A = (aij)1≤i,j≤n is an n× n matrix with complex entries.

(a) Fix complex numbers x1, . . . , xn, y1, . . . , yn and consider the n × n matrix B with
entries

bij = xiyjaij .

Show that

detB = (x1y1 · · ·xnyn) detA.

(b) Suppose that C is the n× n matrix with entries

cij = (−1)i+jaij .

Show that detC = detA. ut

Exercise* 15.3. (a) Suppose we are given three sequences of numbers a = (ak)k≥1,
b = (bk)k≥1 and c = (ck)k≥1. To these sequences we associate a sequence of tridiagonal
matrices known as Jacobi matrices

Jn =


a1 b1 0 0 · · · 0 0
c1 a2 b2 0 · · · 0 0
0 c2 a3 b3 · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · cn−1 an

 . (J)

Show that

det Jn = an det Jn−1 − bn−1cn−1 det Jn−2. (15.72)

(b) Suppose that above we have

ck = 1, bk = 2, ak = 3, ∀k ≥ 1.

Compute J1, J2. Using (15.72) determine J3, J4, J5, J6, J7. Can you detect a pattern? ut

Exercise* 15.4. Suppose we are given a sequence of polynomials with complex coefficients
(Pn(x))n≥0, degPn = n, for all n ≥ 0,

Pn(x) = anx
n + · · · , an 6= 0.

Denote by V n the space of polynomials with complex coefficients and degree ≤ n.

(a) Show that the collection {P0(x), . . . , Pn(x)} is a basis of V n.
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(b) Show that for any x1, . . . , xn ∈ C we have

det


P0(x1) P0(x1) · · · P0(xn)
P1(x1) P1(x2) · · · P1(xn)

...
...

...
...

Pn−1(x1) Pn−1(x2) · · · Pn−1(xn)

 = a0a1 · · · an−1

∏
i<j

(xj − xi). ut

Exercise* 15.5. To any polynomial P (x) = c0 + c1x+ . . .+ cn−1x
n−1 of degree ≤ n− 1

with complex coefficients we associate the n× n circulant matrix

CP =


c0 c1 c2 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−3 cn−2

cn−2 cn−1 c0 · · · cn−4 cn−3

· · · · · · · · · · · · · · · · · ·
c1 c2 c3 · · · cn−1 c0

 ,
Set

ρ := e
2πi
n , i :=

√
−1,

so that ρn = 1. Consider the n× n Vandermonde matrix Vρ = V (1, ρ, . . . , ρn−1), where

V (x1, . . . , xn) =


1 1 · · · 1
x1 x2 · · · xn
...

...
...

...

xn−1
1 xn−1

2 · · · xn−1
n

 . (15.73)

(a) Show that for any j = 1, . . . , n− 1 we have

1 + ρj + ρ2j + · · ·+ ρ(n−1)j = 0.

(b) Show that
CP · Vρ = Vρ ·Diag

(
P (1), P (ρ), . . . , P (ρn−1)

)
,

where Diag(a1, . . . , an) denotes the diagonal n×n-matrix with diagonal entries a1, . . . , an.

(c) Show that
detCP = P (1)P (ρ) · · ·P (ρn−1). ut

(d)∗ Suppose that P (x) = 1+2x+3x2+4x3 so that CP is a 4×4-matrix with integer entries
and thus detCP is an integer. Find this integer. Can you generalize this computation?

Exercise* 15.6. Let B1(0) denote the unit ball in Rn centered at the origin. Compute∫
B1(0)

(x1 · · ·xn)2|dx1 · · · dxn|.

ut



Chapter 16

Integration over
submanifolds

We begin here the study of integration over “curved” regions of Rn. This is a rather elab-
orate theory belonging properly to the area of mathematics called differential geometry.
Time constraints prevent us from covering it in all its details and generality. Think of this
as a first and low dimensional encounter with the subject.

16.1. Integration along curves

16.1.1. Integration of functions along curves. We start with a simpler situation.
Fix n ∈ N and suppose that we are given a convenient C1-curve C ⊂ Rn, i.e., a curve
(1-dimensional submanifold) that is the image of an injective, immersion α : (a, b)→ Rn.
Recall that α is an immersion if α′(t) 6= 0, ∀t ∈ (a, b). We think of α(t) as describing the
position at time t of a moving particle. The fact that α is an immersion signifies that the
particle does not double back. We will refer to a map α with the above properties as a
parametrization of the convenient curve.

During a tiny time interval [t0, t0 + dt] the particle travels from α(t0) to α(t0 + dt).
The arc of the curve C from α(t0) to α(t0 + dt) “does not bend too much” during the
infinitesimal period of time dt so the distance ds(t0) covered by the particle along C can
be approximated by the length of the line segment joining α(t0) to α(t0 + dt) i.e.,

ds(t0) ≈ ‖α(t0 + dt)−α(t0)‖ ≈ ‖α′(t0)‖ |dt|.

Thus, the length of C, viewed as the total distance covered by the particle ought to be

length(C)
?
=

∫ b

a
‖α′(t)‖ |dt|.

593
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Why the question mark? Intuition tells us that the length of a curve should be independent
of the way a particle travels along it without backtracking. The right-hand side seems to
depend on such travel as expressed by the parametrization α.

To deal with this issue we need to answer the following concrete question. Suppose
that β : (c, d) → Rn is another parametrization of the curve C; see Figure 16.1. Can we
conclude that ∫ b

a
‖α′(t)‖ |dt| =

∫ d

c
‖β′(τ)‖ |dτ |? (16.1)

a b c d

C

a b(  )(  )

t

t t

t

p

Figure 16.1. Different parametrizations of the same convenient curve C.

A point p ∈ C corresponds uniquely via α to a point t ∈ (a, b). Via β the point p
corresponds uniquely to a point τ ∈ (c, d). More precisely we have

α(t) = p = β(τ).

The correspondence

t 7→ p 7→ τ = τ(t),

produces a bijection (a, b)→ (c, d) that can be described formally by the equality τ = β−1
(
α(t)

)
.

Proposition 14.34(B) implies that the function (a, b) 3 t 7→ τ(t) ∈ (c, d) is C1.

The change in variables formula for the Riemann integral implies∫ d

c
‖β′(τ)‖dτ =

∫ b

a
‖β′( τ(t) )‖ ·

∣∣∣∣dτdt
∣∣∣∣ dt.

Derivating with respect to t the equality β
(
τ(t)

)
= α(t) we deduce

β′( τ(t) )
dτ

dt
= α′(t). (16.2)
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Using the equalities

ds(τ) = ‖β′(τ)‖|dτ |, ds(t) = ‖α′(t)‖|dt|, |dτ | =
∣∣∣∣dτdt

∣∣∣∣ |dt| ,
we deduce from (16.2) that ds(τ) = ds(t). For this reason we will rewrite the equality

length(C) =

∫ b

a
‖α′(t)‖ |dt| =

∫ d

c
‖β′(τ)‖ |dτ | (16.3)

in the simpler form

length(C) =

∫
C
ds .

More generally, the same argument as above shows that, if f : C → R is a continuous
function, then we have the equality

f
(
α(t)

)
‖α′(t)‖dt = f

(
β(τ)

)
‖β′(τ)‖dτ

and we set∫
C
f(p)ds :=

∫ b

a
f
(
α(t)

)
‖α′(t)‖ |dt| =

∫ d

c
f
(
β(τ)

)
‖β′(τ)‖ |dτ | . (16.4)

The integral in the left-hand side of (16.4) is called the integral of f along the curve C.
This type of integral is traditionally known as line integral of the first kind.

+ The integrals in the right-hand side of (16.4) could be improper integrals and, as such,
they may or may not be convergent. We say that the integral over the convenient curve C
is well defined if the integrals in the right-hand side of (16.4) are convergent.

Example 16.1. Consider the arc of helix H in R3 described by the parametrization (see
Figure 16.2)

α : (0, 1)→ R3, α(t) =
(

cos(4πt), sin(4πt), 2t
)
.

It is not hard to see that α is an injective immersion. Moreover

α̇(t) =
(
− 4π sin(4πt), 4π sin(4πt), 2

)
,

‖α̇(t)‖ =
√

(4π sin 4πt)2 + (4π cos 4πt)2 + 22 =
√

16π2 + 4 = 2
√

4π2 + 1.

We deduce that

length(H) =

∫
H
ds =

∫ 1

0
‖α̇(t)‖dt = 2

√
4π2 + 1. ut

Example 16.2. Suppose that f : [a, b] → R is a C1 function. Its graph with endpoints
removed is the set

Γf =
{

(x, y) ∈ R2; x ∈ (a, b), y = f(x)
}
.
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Figure 16.2. The helix described by the parametrization
(

cos(4πt), sin(4πt), 2t
)

is
winding up a cylinder of radius 1.

This is a curve that admits the parametrization

α : (a, b)→ R2, α(x) =
(
x, f(x)

)
, x ∈ (a, b).

Then
α′(x) =

(
1, f ′(x)

)
, ‖α′(x)‖ =

√
1 + f ′(x)2.

We deduce that the length of Γf is given by

length(Γf ) =

∫ b

a

√
1 + f ′(x)2dx.

This is in perfect agreement with our earlier definition (9.75). ut

If the curve C is the union of pairwise disjoint convenient curves C1, . . . , C`, then, for
any continuous function f : C → R we set∫

C
f(p)ds =

∫
⋃`
j=1 Cj

f(p)ds =
∑̀
j=1

∫
Cj

f(p)ds .

Remark 16.3 (A few points don’t matter). Suppose that C ⊂ Rn is a convenient curve
and p0 is a point on C. If we remove the point p0 we obtain a new curve C ′ consisting of
two arcs C0, C1 of the original curve; see Figure 16.3.

p

C

C
0

0

1

Figure 16.3. Cutting a convenient curve C in two parts by removing a point p0.
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We want to show that the removal of one point does not affect the computation of an
integral, i.e., if f : C → R is a continuous function, then∫

C
f(p)ds =

∫
C′
f(p)ds :=

∫
C0

f(p)ds+

∫
C1

f(p)ds.

Indeed, fix a parametrization α : (a, b)→ Rn of C. Then, there exists t0 ∈ (a, b) such that
α(t0) = p0. Assume that C0 is the curve swept by the moving point α(t) as t runs from
a to t0 and C1 is swept when t runs from t0 to b. Then∫

C
f(p)ds =

∫ b

a
f
(
α(t)

)
‖α̇(t)‖dt

=

∫ t0

a
f
(
α(t)

)
‖α̇(t)‖dt+

∫ b

t0

f
(
α(t)

)
‖α̇(t)‖dt

=

∫
C0

f(p)ds+

∫
C1

f(p)ds =:

∫
C′
f(p)ds. ut

Definition 16.4. A curve C is called quasi-convenient if it admits a convenient cut, i.e.,
a finite subset Z = {p1, . . . ,p`} ⊂ C whose complement C \ {p1, . . . ,p`} is a union of
finitely many pairwise disjoint convenient curves. ut

Example 16.5. The unit circle in R2,

C :=
{

(x, y) ∈ R2; x2 + y2 = 1
}

is quasi-convenient. Indeed, the set consisting of the point (1, 0) is a convenient cut because
its complement admits the parametrization

α : (0, 2π)→ R2, α(t) =
(

cos t, sin t
)
. ut

Suppose now that C is a quasi-convenient curve and f : C → R is a continuous
function. The integral of f along C, denoted by∫

C
f(p)ds

is defined as follows. Choose a convenient cut Z. Then the complement CZ = C \ Z is a
union of finitely many pairwise disjoint convenient curves and then we set∫

C
f(p)ds :=

∫
CZ

f(p)ds .

To show that this definition is independent of the convenient cut Z, suppose that Z0, Z1

are two convenient cuts. Then Z := Z0∪Z1 is also a convenient cut and Z0, Z1 ⊂ Z. Note
that CZ is obtained from either CZ0 or CZ1 by removing a few points. From Remark 16.3
we deduce ∫

CZ0

f(p)ds =

∫
CZ

f(p)ds =

∫
CZ1

f(p)ds.
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Example 16.6. Suppose that C is the unit circle in R2

C :=
{

(x, y) ∈ R2; x2 + y2 = 1
}
.

Denote by Z the convenient cut Z = {(1, 0)}. Then

length(C) = length(CZ).

The complement CZ admits the parametrization

α : (0, 2π)→ R2, α(t) =
(

cos t, sin t
)
.

We deduce

α̇(t) =
(
− sin t, cos t

)
,

length(CZ) =

∫ 2π

0
‖α̇(t)‖dt =

∫ 2π

0

√
sin2 t+ cos2 tdt = 2π. ut

Definition 16.7 (Curves with boundary). Let k, n ∈ N. A Ck-curve with boundary in
Rn is a compact subset C ⊂ Rn such that, for any point p0 ∈ C, there exists an open

neighborhood U of p0 in Rn and a Ck-diffeomorphism Ψ : U → Rn = R× Rn−1 with the
following property: either the image of U∩C is an interval (a, b) on the x1-axis, a < 0 < b,

Ψ
(
U ∩ C

)
= (a, b)× 0n−1 ∈ R× Rn−1, Ψ(p0) = (0,0n−1) ∈ R× Rn−1, (I)

or, the image of U ∩ C is an interval (a, 0] on the x1-axis, a < 0,

Ψ
(
U ∩ C

)
= (a, 0]× 0n−1 ∈ R× Rn−1, Ψ(p0) = (0,0n−1) ∈ R× Rn−1. (B)

The pair (U,Ψ) is called a (local) straightening diffeomorphism (or s.d. for brevity) at
p0.

If the alternative (B) occurs for some choice of straightening diffeomorphism, then
we say that p0 ∈ C is a boundary point. The boundary of a Ck-curve with boundary C,
denoted by ∂C, is the (possibly empty) subset of C consisting of the boundary points.
The curve C is called closed if ∂C = ∅.

A point p0 ∈ C is called an interior point if it is not a boundary point, i.e., the
alternative (I) holds for any choice of straightening diffeomorphism. The interior of C,
denoted by C◦, is the collection of interior points,

C0 = C \ ∂C. ut

Example 16.8. (a) Suppose that f : [a, b]→ R is a C1 function. Then its graph

Γf :=
{

(x, y) ∈ R2; x ∈ [a, b], y = f(x)
}

is a curve with boundary. Its boundary consists of the endpoints of the graph

∂Γf =
{

(a, f(a) ), ( b, f(b) )
}
.
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(b) More generally, suppose that

α : [a, b]→ Rn, α(t) =


α1(t)
α2(t)

...
αn(t)


is an injective map such that each of the components αi is a C1-function and, ∀t ∈ [a, b]

α̇(t) 6= 0.

Then the image of α is a curve C with boundary consisting of two points

∂C =
{
α(a), α(b)

}
.

The proof of this fact is a variation of the proof of Proposition 14.34 and we will skip it.
A curve with boundary obtained in this fashion is called convenient. A map α as above
is called a parametrization of the convenient curve (with boundary).

(c) The unit circle in R2 is a closed curve. ut

We have the following result whose proof we omit.

Theorem 16.9 (Classification of curves with boundary). (a) Any curve with boundary
C ⊂ Rn is the union of finitely many pairwise disjoint path connected curves with boundary
called the connected components of C

(b) If C ⊂ Rn is a path connected Ck-curve with boundary, then it is either a convenient
curve with boundary if ∂C 6= ∅, or, if C is closed, there exist T > 0 and a Ck-immersion
α : R→ Rn with the following properties

• α(R) = C,

• α(t) = α(t+ T ), ∀t ∈ R.

• The restriction to [0, T ) is injective.

A map with the above properties is called a T -periodic parametrization of the closed
connected curve C. ut

Example 16.10. The closed curve winding around the gold torus in Figure ?? admits
the 2π-periodic parametrization

α : R→ R3, α(t) =
(

(3 + cos(3t) ) cos(2t), (3 + cos(3t) ) sin(2t), sin(3t)
)
. ut

Remark 16.11. Suppose that C ⊂ Rn is a closed C1-curve and α : R → Rn is a T -
periodic parametrization of C. Set p0 := α(0). Then C ′ := C \ {p0}. Then C ′ is a
convenient curve and the restriction of α to the open interval (0, T ) is a parametrization
of C ′. ut
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Figure 16.4. A torus knot

From the above classification theorem we deduce that if C is a curve with boundary,
then its interior C◦ is a quasi-convenient curve. If f : C → R is a continuous function,
then we define ∫

C
f(p)ds :=

∫
C◦
f(p)ds .

Remark 16.12. We can think of a connected curve with boundary in Rn as a “bent wire”.
A function f : C → (0,∞) can be thought of as a linear density: the quantity f(p)ds
would be the mass of an infinitesimal arc C of length ds starting at p. The integral∫

C
f(p)ds

would then represent the mass of that “bent wire”. ut

Example 16.13. Consider the curve C ⊂ R3 obtained by intersecting the unit sphere
{x2 + y2 + z2 = 1} with the cone spanned by the rays at the origin that make an angle of
π
4 with the positive z-semiaxis: see Figure 16.5. We want to compute the integral

I =

∫
C
xyds. (16.5)

The resulting curve is a circle. To find a periodic parametrization for this circle we
use spherical coordinates, (ρ, θ, ϕ),

x = ρ sinϕ cos θ, y = ρ sinϕ sin θ, z = ρ cosϕ, ρ > 0, θ ∈ [0, 2π], ϕ ∈ [0, π] (16.6)

In these coordinates the unit sphere is described by the equation ρ = 1 and the cone is
described by the equation ϕ = π

4 . Taking into account that

cos
π

4
= sin

π

4
=

√
2

2
,
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Figure 16.5. A cone intersecting a sphere.

we deduce from (16.6) that a parametrization for C is described by

x =

√
2

2
sin θ, y =

√
2

2
cos θ, z =

√
2

2
, θ ∈ [0, 2π]. (16.7)

The arclength element ds on C is then

ds =
√
x′(θ)2 + y′(θ)2 + z′(θ)2 dθ =

√
2

2
dθ.

To compute the integral (16.5) we use the parametrization (16.7) and we deduce∫
C
xyds =

∫ 2π

0

(√
2

2

)3

cos θ sin θdθ =

(√
2

2

)3 ∫ 2π

0

1

2
sin 2θ dθ = 0.

ut

The next result shows that integral along a curve with boundary has several features
in common with the Riemann integrals.

Proposition 16.14. Suppose that Γ ⊂ Rn is a curve with boundary. (We recall that, by
our definition, the curves with boundary are compact.) We denote by C0(Γ) the vector
space of continuous functions Γ → R. Then the first kind integral along C defines a
linear map

C0(Γ) 3 f 7→
∫

Γ
fds ∈ R

satisfying the monotonicity property:∫
Γ
fds ≤

∫
Γ
gds

if f(p) ≤ g(p), ∀p ∈ Γ. ut
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We omit the simple proof of the above result.

16.1.2. Integration of differential 1-forms over paths. Let n ∈ N and suppose that
U ⊂ Rn is an open set. A differential form of degree 1 or a differential 1-form on U is an
expression ω of the form

ω = ω1dx
1 + · · ·+ ωndx

n,

where ω1, . . . , ωn : U → R are continuous functions. The precise meaning of a 1-form is
a bit more complicated to explain at this point but, for the goals we have in mind, it is
irrelevant. We will denote by Ω1(U) the collection of 1-forms on U .

Example 16.15. (a) If f ∈ C1(U), then its total differential as described in (13.21) is a
1-form

df = ∂x1fdx1 + · · ·+ ∂xnfdx
n.

A 1-form of this type is called exact.

(b) Suppose F : U → Rn is a continuous vector field on U ,

F (p) =


F 1(p)
F 2(p)

...
Fn(p)

 ,
then the infinitesimal work is the 1-form

WF := F 1dx1 + · · ·+ Fndxn.

Traditionally, in classical mechanics the infinitesimal work is denoted by F ·dp or 〈F , dp〉,
where “·” is short-hand for inner product and dp denotes the “infinitesimal displacement”

dp =


dx1

dx2

...
dxn

 .
Note that if f ∈ C1(U), then df = W∇f .

(c) The angular form on R2 \{0} is the infinitesimal work associated to the angular vector
field (see Figure 16.6)

Θ : R2 \ {0} → R2, Θ(x, y) :=

 − y
x2+y2

x
x2+y2

 .
More explicitly

WΘ = − y

x2 + y2
dx+

x

x2 + y2
dy. ut
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Figure 16.6. The angular vector field in the punctured plane.

Definition 16.16. Let n ∈ N and suppose that U ⊂ Rn is an open set. For any differential
1-form

ω = ω1dx
1 + · · ·+ ωndx

n ∈ Ω1(U),

and any C1-path

γ : [a, b]→ U, γ(t) =
(
γ1(t), . . . , γn(t)

)
, ∀a ≤ t ≤ b,

we define the integral of ω along the path γ to be the real number∫
γ
ω :=

∫ b

a

(
ω1

(
γ(t)

)
γ̇1(t) + · · ·+ ωn

(
γ(t)

)
γ̇n(t)

)
dt.

The integral
∫
γ ω is traditionally known as the line integral of the second kind ut

When ω is the infinitesimal work of a vector field F , ω = WF , then following the
physicists’ tradition, one uses the notation∫

γ
F · dp :=

∫
γ
WF .

Example 16.17. Fix a natural number N , a real number R > 0 and consider the path

γN : [0, 2πN ]→ R2 \ {0}, γN (t) =
(
x(t), y(t)

)
:=
(
R cos t, R sin t

)
.

Let WΘ ∈ Ω1(R2 \ {0}
)

be the angular form defined in Example 16.15(c), i.e.,

WΘ =
−y

x2 + y2
dx+

x

x2 + y2
dy.

Then ∫
γN

WΘ =

∫
γN

(
−y

x2 + y2
dx+

x

x2 + y2
dy

)
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(dx = ẋdt, dy = ẏdt)

=

∫ 2πN

0

−y
x2 + y2

ẋdt+

∫ 2πN

0

x

x2 + y2
ẏdt

Observing that along γN we have x2 + y2 = R2, ẋ = −R sin t, ẏ = R cos t, we deduce∫
γN

WΘ =

∫ 2πN

0

(
−R sin t

R2
(−R sin t) +

R cos t

R2
R cos t

)
dt

=

∫ 2πN

0

(
sin2 t+ cos2 t

)
dt = 2πN. ut

Theorem 16.18 (1-dimensional Stokes’ formula). Let n ∈ N and suppose that O ⊂ Rn is
an open subset. Then, for any f ∈ C1(O), and any C1-path γ : [a, b]→ O we have∫

γ
df = f

(
γ(b)

)
− f

(
γ(a)

)
. (16.8)

Proof. Denote by (x1(t), . . . , xn(t) ) the coordinates of the point γ(t). Then∫
γ
df =

∫
γ

(
∂x1fdx1 + · · ·+ ∂xnfdx

n
)

=

∫ b

a

(
∂x1f

(
x1(t), . . . , xn(t)

)
ẋ1 + · · ·+ ∂xnf

(
x1(t), . . . , xn(t)

)
ẋn
)
dt

(use the chain rule)

=

∫ b

a

d

dt
f
(
γ(t)

)
dt = f

(
γ(b)

)
− f

(
γ(a)

)
.

ut

Remark 16.19. (i) Although very simple, the above result has very important conse-
quences. First, let us observe that df is the infinitesimal work of the vector field ∇f

df = W∇f .

In classical mechanics the function U = −f is often called the potential of the gradient
vector field F = ∇f .

Think of γ(t) as describing the motion of a particle interacting with the force field
∇f . For example, ∇f can be the gravitational field and the particle is a “heavy” particle,
i.e., a particle with positive mass. The integral∫

γ
df =

∫
γ
W∇f

is interpreted in classical mechanics as the total energy required to generate the travel of
the particle described by the path γ. Stokes’ formula (16.8) shows that, when the force
field is a gradient vector field, then this total energy depends only on the endpoints of
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the travel and not on what happened in between. In particular, if the path γ is closed,
γ(b) = γ(a), so the particle ends at the same point where it started, this total energy is
trivial!

(ii) Let U ⊂ Rn be an open set. As we have mentioned earlier a 1-form ω ∈ Ω1(U) is exact
if there exists f ∈ C1(U) such that ω = df . A function f such that df = ω is called an

antiderivative of ω.

If

ω =
n∑
i=1

ωdx
i,

then ω is exact if there exists f ∈ C1(U) such that

ωi =
∂f

∂xi
, ∀i = 1, . . . , n.

Since ∂xi∂xjf = ∂xj∂xif , ∀i, j, we deduce that, if ω is exact then

∂ωi
∂xj

=
∂ωj
∂xi

, ∀i, j. (16.9)

A 1-form satisfying (16.9) is called closed. In other words,

ω exact ⇒ ω closed.

A famous result, known by the name of Poincaré Lemma [17, Thm. 4-11], states that the
converse is true if U is convex,

U convex, ω closed ⇒ ω exact.

The result is not true without the convexity assumption. Consider for example the 1-form

WΘ =
−y

x2 + y2︸ ︷︷ ︸ dx+
x

x2 + y2︸ ︷︷ ︸ dy ∈ Ω1
(
R2 \ {0}

)
.

As we will see soon in Example 16.35 we have

P ′y = Q′y,

so the form WΘ is closed.

On the other hand, it is not exact because, as shown in Example 16.17, its integral
over the counterclockwise oriented unit circle centered at the origin is 2π.

This curious phenomenon is the beginning of a rather deep story called cohomology.
ut

Definition 16.20. Let n ∈ N. A piecewise C1-path in Rn is a continuous map γ : [a, b]→ Rn
such that, there exists a partition

a = t0 < t1 < · · · < t` = b
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of [a, b] with the property that, for any i = 1, . . . , `, the restriction of γ to the subinterval
[ti−1, ti] is C1. A partition of [a, b] with the above properties is said to be adapted to γ.

ut

Example 16.21. Consider the continuous path γ : [0, 4]→ R2 defined by

γ(t) =



(
t, 0
)
, t ∈ [0, 1],(

1, t− 1
)
, t ∈ (1, 2],(

3− t, 1
)
, t ∈ (2, 3],(

0, 4− t
)
, t ∈ (3, 4].

The image of this path is the boundary of the unit square [0, 1] × [0, 1] ⊂ R2; see Figure
16.7. ut

Figure 16.7. The unit square [0, 1]2 and its boundary.

One can integrate differential forms over piecewise C1-paths. Suppose that U ⊂ Rn is
an open set,

ω = ω1dx
1 + · · ·+ ωndx

n ∈ Ω1(U)

and γ : [a, b] → U is a C1-path. If a = t0 < t1 < · · · < t` = b is any partition of [a, b]
adapted to γ then we set

∫
γ
ω =

∑̀
i=1

∫ ti

ti−1

(
ω1

(
γ(t)

)
γ̇1 + · · ·+ ωn

(
γ(t)

)
γ̇n
)
dt .

One can show that the right-hand side is independent of the choice of the partition adapted
to γ.
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Example 16.22. Let γ denote the piecewise path described in Example 16.21. Suppose
that

ω = −ydx+ xdy.

If we denote by (x(t), y(t)) the moving point γ(t) then we deduce∫
γ
(−ydx+ xdy) =

∫ 1

0

(
− yẋ+ xẏ

)
dt+

∫ 2

1

(
− yẋ+ xẏ

)
dt

+

∫ 3

2

(
− yẋ+ xẏ

)
dt+

∫ 4

3

(
− yẋ+ xẏ

)
dt.

Observing that on the intervals [0, 1] and [2, 3] we have ẏ = 0 while on the others we have
ẋ = 0 we deduce∫

γ
(−ydx+ xdy) = −

∫ 1

0
yẋdt︸ ︷︷ ︸

y=0,

+

∫ 2

1
xẏdt︸ ︷︷ ︸

x=1, ẏ=1

−
∫ 3

2
yẋdt︸ ︷︷ ︸

y=1, ẋ=−1

+

∫ 4

3
xẏdt︸ ︷︷ ︸

x=0

=

∫ 2

1
dt+

∫ 3

2
dt = 2. ut

16.1.3. Integration of 1-forms over oriented curves. There is a simple way of pro-
ducing a path given a connected curve, namely to assign an orientation to that curve.
Loosely speaking, an orientation describes a direction of motion along the curve without
specifying the speed of that motion; see Figure 16.8

C C

Figure 16.8. Two orientations on the same planar curve C.

The direction of motion at a point on the curve C would be given by a unit vector
tangent to the curve at that point. At each point p ∈ C there are exactly two unit vectors
tangent to C and an orientation would correspond to a choosing one such vector at each
point, and the choices would vary continuously from one point to another. Here is a precise
definition.

Definition 16.23. Let n ∈ N.

(i) An orientation on a C1-curve C ⊂ Rn is a continuous map T : C → Rn such
that, ∀p ∈ C, the vector T (p) has length 1 and it is tangent to C at p ∈ C.
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(ii) An oriented curve is a pair (C,T ), where C is a curve and T is an orientation
on C.

(iii) An orientation on a (compact) C1-curve with boundary C is an orientation on
its interior C◦.

(iv) Suppose that C is a convenient curve and T is an orientation of C. A parametriza-
tion γ : (a, b) → Rn is said to be compatible with the orientation if, ∀t ∈ (a, b),
the tangent vectors

γ̇(t), T
(
γ(t)

)
∈ Tγ(t)C

point in the same direction, i.e.,
〈
γ̇(t),T

(
γ(t)

) 〉
> 0.

ut

Let us observe that if C ⊂ Rn is a convenient curve, then any parametrization
γ(a, b)→ Rn of C defines an orientation on T : C → Rn on C according to the rule

T
(
γ(t)

)
=

1

‖γ̇(t)‖
γ̇(t). ∀t ∈ (a, b).

This is called the orientation induced by the parametrization. Clearly the parametrization
is compatible with the orientation it induces since〈

γ̇(t),T
(
γ(t)

) 〉
= ‖γ̇(t)‖ > 0.

It turns out that any orientation on a convenient curve is induced by a parametrization.

Lemma 16.24. Suppose that C is a convenient curve in Rn. For any parametrization
γ : (a, b)→ Rn of C we denote by γ− the parametrization

γ− : (−b,−a)→ Rn, γ−(t) := γ(−t).

If T is an orientation on C, then exactly one of the parametrizations γ and γ− is com-
patible with the orientation.

Proof. Observe that for any t ∈ (a, b), the nonzero vectors T
(
γ(t)

)
and γ̇(t) belong to

the 1-dimensional space Tγ(t)C. They are therefore collinear and thus〈
T
(
γ(t)

)
, γ̇(t)

〉
6= 0, ∀t ∈ (a, b)

Since the function

(a, b) 3 t 7→
〈
T
(
γ(t)

)
, γ̇(t)

〉
∈ R

and is nowhere zero, we deduce that either〈
T
(
γ(t)

)
, γ̇(t)

〉
> 0, ∀t ∈ (a, b),

or, 〈
T
(
γ(t)

)
, γ̇(t)

〉
< 0, ∀t ∈ (a, b).

In the first case we deduce that γ is compatible with T , while in the second case we deduce
that γ− is compatible with T ut
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Suppose now that U ⊂ Rn is an open set,

ω = ω1dx
1 + · · ·+ ωndx

n ∈ Ω1(U),

C ⊂ Rn is a convenient curve and T is an orientation on C.

To define the integral of ω on the oriented convenient curve (C,T ) we need to first
choose a parametrization α : (a, b)→ Rn of C compatible with the orientation. We then
set ∫

C
ω =

∫
(C,T )

ω :=

∫
α
ω =

∫ b

a

(
ω1

(
α(t)

)
α̇1(t) + · · ·+ ωn

(
α(t)

)
α̇n(t)

)
dt.

For the above definition to be consistent, the right-hand side has to be independent
of parametrization compatible with the given orientation.

Lemma 16.25. The above definition is independent of the choice of the parametrization
of C compatible with the orientation.

Proof. Indeed, if β : (c, d)→ Rn is another such parametrization, then, as argued in Subsection 16.1.1 (see Figure

16.1) there exists a continuous C1-bijection (a, b) 3 t 7→ τ(t) ∈ (c, d), such that

β
(
τ(t)

)
= α

(
t
)
,
dβ

dτ

(
τ(t)

)dτ
dt

= α̇(t), ∀t ∈ (a, b).

Since the tangent vectors

dβ

dτ

(
τ(t)

)
,
dα

dt
(t)

point in the same directions we deduce

dτ

dt
> 0, ∀t ∈ (a, b).

The 1-dimensional change-in-variables formula implies that∫ d

c
ωi
(
β(τ) )

dβi

dτ
dτ =

∫ b

a
ωi
(
β(τ(t)) )

dβi

dτ

dτ

dt
dt =

∫ b

a
ωi
(
α(t) )

dαi

dt
dt, ∀i = 1, . . . , n.

Hence ∫
α
ω =

n∑
i=1

∫ b

a
ωi
(
α(t) )

dαi

dt
dt =

n∑
i=1

∫ d

c
ωi
(
β(τ) )

dβi

dτ
dτ =

∫
β
ω.

ut

Proposition 16.26. Let U ⊂ Rn be an open set, and (C,T ) an oriented convenient curve
inside U . Then, for any 1-form ω ∈ Ω1(U) we have∫

(C,−T )
ω = −

∫
(C,T )

ω.
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Proof. Let

ω = ω1dx
1 + · · ·+ ωndx

n

Fix a parametrization

γ : (a, b)→ Rn, γ(t) =


x1(t)
x2(t)

...
xn(t)

 ,
compatible with the orientation T . Then γ− : (−b,−a) → Rn is a parametrization
compatible with −T . We have∫

(C,−T )
ω =

∫
γ−

ω =

∫ −a
−b

(
− ω1

(
γ(−t)

)
ẋ1(−t)− · · · − ωn

(
γ(−t)

)
ẋn(−t)

)
dt

(t := −τ)

=

∫ a

b

(
ω1

(
γ(τ)

)
ẋ1(τ) + · · ·+ ωn

(
γ(τ)

)
ẋ1(τ)

)
dτ

= −
∫ b

a

(
ω1

(
γ(τ)

)
ẋ1(τ) + · · ·+ ωn

(
γ(τ)

)
ẋ1(τ)

)
dτ

= −
∫
γ
ω = −

∫
(C,T )

ω.

ut

If C is an oriented quasi-convenient curve, choose a convenient cut {p1, . . . ,p`} so that
C becomes a disjoint union of convenient curves C1, . . . , CN equipped with orientations.
Then define ∫

C
ω :=

N∑
i=1

∫
Ci

ω .

One can show that the right-hand side of the above equality is independent of the choice
of the convenient cut.

Let us finally observe that the interior of an oriented (compact) curve with boundary
C is oriented and quasi-convenient and we define∫

C
ω :=

∫
C◦
ω .

Example 16.27. Suppose that C is the quarter of the unit circle contained in the first
quadrant and equipped with the counter-clockwise orientation; see Figure 16.9.

Its interior is a convenient curve and the map

(0, π/2) 3 t 7→ (cos t, sin t) ∈ R2
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C

Figure 16.9. An arc of the unit circle equipped with the counterclockwise orientation.

is a parametrization compatible with the counterclockwise orientation. We have∫
C
WΘ =

∫
C

(
−y

x2 + y2
dx+

x

x2 + y2
dy

)
(along C we have dx = − sin tdt, dy = cos tdt, x2 + y2 = 1)

=

∫ π
2

0

(
(− sin t)(− sin t)dt+ (cos t)(cos t)dt

)
=

∫ π
2

0
dt =

π

2
. ut

Definition 16.28. A 1-dimensional chain in Rn is a collection

C :=
{

(C1,m1), . . . , (Cν ,mν)
}

where C1, . . . , Cn are compact, oriented, curves (with or without boundary) andm1, . . . ,mν

are integers called the local multiplicities of the chain.

The integral of a 1-form ω over the above chain C is the real number∫
C
ω :=

ν∑
k=1

mk

∫
Ck

ω. ut

16.1.4. The 2-dimensional Stokes’ formula: a baby case. The integrals of 1-forms
over closed curves can often be computed as certain double integrals over appropriate
regions. This is roughly speaking the content of Stokes’ formula.

Definition 16.29. Let k, n ∈ N. A domain of Rn is an open, path connected subset of Rn.
A domain D ⊂ Rn is called Ck if its boundary is an (n− 1)-dimensional Ck-submanifold
of Rn. ut

Example 16.30. In Figure 16.10 we have depicted two Ck-domains in R2. The domain
D1 is a closed disk and its boundary is a circle. The boundary of D2 consists of three
closed curves. ut
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D

D

1

2

Figure 16.10. Two domains in R2.

Suppose that D ⊂ R2 is a bounded Ck domain. As one can see from Figure 16.10,
its boundary is a disjoint union of compact Ck curves in R2. Each of these components
is equipped with a natural orientation called the induced orientation. It is determined by
the right hand rule; see Figure 16.11 and 16.12.

Figure 16.11. Right-hand rule.

Figure 16.12. Right-hand rule.
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Here is the explanation for the above figures: place your right hand on the boundary
component, palm-up, so that the thumb points to the exterior of your domain. The index
finger will then point in the direction given by the orientation of that boundary component.
Another way of visualizing is as follows: if we walk along ∂D in the direction prescribed
by the induced orientation, then the domain D will be to our left; see Figure 16.13.

Figure 16.13. Walking around the boundary.

Here is a more rigorous explanation. Given a point p ∈ ∂D, there are exactly two
unit vectors that are perpendicular to the tangent line Tp∂D. These vectors are called the
normal vectors to ∂C at p. Denote by ν or ν(p) the outer normal vector at p ∈ ∂D: this
vector is perpendicular to Tp∂C and, when placed at p, it points towards the exterior of
D. The induced orientation at p is obtained from ν(p) after a 90 degree counterclockwise
rotation.

Thus, the boundary of a bounded C1-domain D ⊂ R2 is a disjoint union of closed
curves carrying orientations. It is therefore a 1-dimensional chain in the sense of Definition
16.28. Thus, we can integrate 1-forms on such boundaries.

Theorem 16.31 (Planar Stokes’ theorem). Let U ⊂ R2 be a bounded C1-domain. Suppose
that F is a C1-vector field defined on an open set O that contains cl(U),

F : O→ R2, F (x, y) =
(
P (x, y), Q(x, y)

)
Let ν : ∂U → R2 be the outer normal vector field. We denoted by ∂+U the boundary of U
equipped with the induced orientation. Then the following hold∫

∂+U
(Pdx+Qdy) =

∫
U

(
∂Q

∂x
− ∂P

∂y

)
|dxdy|. (16.10a)∫

∂+U
〈F ,ν〉ds =

∫
U

(
∂P

∂x
+
∂Q

∂y

)
|dxdy| (16.10b)

ut
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Remark 16.32. It turns out that the equality (16.10b) follows rather easily from (16.10a).
The hard part is proving (16.10a). ut

Definition 16.33. Let U ⊂ Rn be an open set and

F : U → Rn, F (p) =


F 1(p)
F 2(p)

...
Fn(p)

 .
a C1 vector field. The divergence of F is the function

div : U → R, divF (p) =
∂F 1

∂x1
(p) + · · ·+ ∂Fn

∂xn
(p). ut

Using the concept of divergence we can rephrase (16.10b) in the traditional form∫
∂D
〈F ,ν〉ds =

∫
D

divF |dxdy| . (16.11)

The integral in the left-hand side is usually called the the outer flux of F through ∂D.
The last equality is a special case of the flux-divergence formula

Figure 16.14. The radial vector field in the plane.

Example 16.34. The radial vector field R : R2 → R2 is given by

R(x, y) =

[
x
y

]
.
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Thus the vector field R associates to the point p ∈ (x, y), the point p itself but viewed
as a vector in R2; see Figure 16.14. In other words R, is the identity map under another
guise. Note that

divR = ∂xx+ ∂yy = 2.

If D is a bounded domain with C1-boundary, then the flux-divergence formula shows that
the outer flux of R through the boundary ∂D is equal to twice the area of D. Thus we can
compute the area of D by performing computations involving only boundary data and no
interior data. ut

Example 16.35. Suppose that U ⊂ R2 is a bounded C1-domain whose boundary C = ∂U
is a closed connected curve. We assume that the origin 0 is not on the boundary of U .
The induced orientation on ∂U is the counterclockwise orientation; see Figure 16.15. We
denote by ∂+U the boundary ∂U equipped with this orientation. We want to compute∫

∂+U
WΘ =

∫
∂+U

(
− y

x2 + y2︸ ︷︷ ︸
P

dx +
x

x2 + y2︸ ︷︷ ︸
Q

dy

)
. (16.12)

0
U

C

B ( )0

G

e

e

Figure 16.15. Integrating the angular form.

We distinguish two cases.

1. 0 6∈ U . To compute (16.12) we use (16.10a). To find Q′x−P ′y we set r :=
√
x2 + y2, so

P = − y

r2
, Q =

x

r2
.
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We have

r′x =
x

r
, r′y =

y

r
, Q′x =

1

r2
− 2x

r3
· x
r

=
1

r2
− 2x2

r4
,

P ′y = − 1

r2
+

2y

r3
· y
r

= − 1

r2
+

2y2

r4

Thus

Q′x − P ′y =
2

r2
− 2(x2 + y2)

r4
= 0, ∀(x, y) 6= (0, 0).

Using (16.10a) we deduce∫
∂+U

WΘ =

∫
U

(
Q′x − P ′y

)
|dxdy| = 0.

2. 0 ∈ U . The above approach does not work. Theorem 16.31 requires that the vector
field Θ be defined on an open set containing U . This is not the case. The vector field Θ
is not defined at the origin 0, and in fact the components P and Q do not have a limit
as (x, y) → (0, 0) so they cannot be the restrictions of some continuous functions on U .
Although this issue may seem trivial, it has enormous consequences.

To deal with this issue we will tread lightly around the singular point 0. Observe first
that there exists ε > 0 such that the closed ball Bε(0) is contained in U . Denote by Uε
the domain obtained by removing this ball from U ,

Uε := U \Bε(0).

The boundary of the domain Uε has two components: the boundary ∂U and the boundary
Γε of Bε(0). Each of these components is equipped with an induced orientation: on ∂U
this is the counterclockwise orientation, while on Γε this is the clockwise orientation;
see Figure 16.15. Observe that the clockwise orientation on Γε is the opposite of the
orientation induced as boundary of Bε(0). We denote by ∂+Bε(0) the curve Γε equipped
with the counterclockwise orientation. We have∫

∂+Uε

Wθ =

∫
∂+U

WΘ −
∫
∂+Bε(0)

WΘ.

Now observe that Θ is defined and C1 on the open set R2 \ 0 that contains Uε. We can
now safely invoke Theorem 16.31 to conclude that

0 =

∫
Uε

(
Q′x − P ′y

)
=

∫
∂+Uε

WΘ =

∫
∂+U

WΘ −
∫
∂+Bε(0)

WΘ.

Hence ∫
∂+U

WΘ =

∫
∂+Bε(0)

WΘ.

To compute the right-hand side of the above equality observe that a parametrization of
Γε compatible with the counterclockwise orientation is

γ(t) =
(
ε cos t, ε sin t

)
, t ∈ [0, 2π].
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Arguing exactly as in Example 16.27 we deduce∫
∂+Bε(0)

WΘ =

∫
γ

(
−y

x2 + y2
dx+

x

x2 + y2
dy

)
=

=

∫ 2π

0

(
(− sin t)(− sin t)dt+ (cos t)(cos t)dt

)
=

∫ 2π

0
dt = 2π.

This proves that ∫
∂+U

WΘ = 2π.

To put things in perspective let us mention that a famous result of Jordan1 states that if
C is a connected compact C1-curve, then it is the boundary of a bounded C1-domain U .
We equip it with the orientation as boundary of U . If 0 6∈ ∂U , then

∫
C is well defined and

the above computation shows

1

2π

∫
∂+U

WΘ = IU (0) =

∫
C
WΘ =

{
1, 0 ∈ U,
0, 0 6∈ U.

This “quantization” result has profound consequences in mathematics. ut

The Planar Stokes’ Theorem 16.31 extends to more general domains.

Definition 16.36. A domain D ⊂ R2 is called piecewise Ck if there exists a finite subset
F of the boundary ∂D such that each component of ∂D \ F is the interior of a Ck-curve
with boundary. ut

Example 16.37. Suppose that β, τ : [a, b] are C1-functions such that

β(x) < τ(x), ∀x ∈ (a, b).

Then the simple type domain

D(β, τ) =
{

(x, y) ∈ R2; x ∈ (a, b), β(x) < y < τ(x)
}

(16.13)

is a piecewise C1-domain. In particular an open rectangle (a, b)× (c, d) is a piecewise Ck

domain. ut

Suppose that D ⊂ R2 is a bounded piecewise C1 domain. Remove a finite subset F of
the boundary to obtain a union of convenient C1-curves. In fact, each of these components
is the interior of a (compact) curve with boundary. We denote by ∂∗U the complement
of this finite set. Using the right-hand rule we obtain orientations on each component
of ∂∗U . We denote by ∂∗+U the chain obtained this way, where the multiplicity of each
oriented component of ∂∗U is equal to 1. We have the following generalization of Theorem
16.31.

1I recommend T. Hales’ very lively discussion of this result in [10].
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Theorem 16.38 (Planar Stokes’ theorem). Let U ⊂ R2 be a bounded piecewise C1-
domain. Suppose that F is a C1-vector field defined on an open set O that contains cl(U),

F : O→ R2, F (x, y) =
(
P (x, y), Q(x, y)

)
Then ∫

∂∗+U
(Pdx+Qdy) =

∫
U

(
∂Q

dx
− ∂P

dy

)
|dxdy|. (16.14)

ut

16.2. Integration over surfaces

The various concepts of integrals over curves have higher dimensional counterparts, called
integrals overs submanifolds of a Euclidean space. In this section we will explain this
concept only in the special case of 2-dimensional submanifolds. The proper presentation
of the more general case requires a more complicated formalism that might bury the
geometry of the construction. The restriction to the 2-dimensional situation will afford
us more geometric transparency and a lighter algebraic burden. The extension to higher
dimensions involves few new geometric ideas, but requires more algebraic travails.

The most basic example of integral over a surface is the concept of area. To define it
we consider first the simplest of situations, when the surface in question is contained in a
2-dimensional vector subspace.

16.2.1. The area of a parallelogram. Suppose that we are given two linearly inde-
pendent, i.e., non-collinear, vectors

v1,v2 ∈ R2, v1 =

 v1
1

v2
1

 , v1 =

 v1
2

v2
2

 .
We denote by V the 2× 2 matrix with columns v1,v2, i.e.,

V =

 v1
1 v1

2

v2
1 v2

2

 .
The parallelogram spanned by v1,v2 coincides with the parallelepiped spanned by these
vectors defined in (15.34). More precisely, it is the set

P (v1,v2) =
{
x1v1 + x2v2; x1, x2 ∈ [0, 1]

}
⊂ R2. (16.15)

According to (15.35), the area of this parallelogram is equal to the absolute value of the
determinant of V ,

area
(
P (v1,v2)

)
= vol2

(
P (v1,v2)

)
=
∣∣ detV

∣∣.
This equality has one “flaw”: we need to know the coordinates of the vectors v1,v2. For
the applications we have in mind we would like a formula that does involve this knowledge.
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To achieve this we consider the product of matrices

G = G(v1,v2) := V T · V =

[
〈v1,v1〉 〈v1,v2〉
〈v2,v1〉 〈v2,v2〉

]
. (16.16)

Note two things.

(i) The matrix G(v1,v2) called the Gramian of v1,v2 , is symmetric, and it is
determined only by the scalar products 〈vi,vj〉.

(ii) We have

detG = detV > detV =
(

detV
)2
.

We deduce the following very important formula

area
(
P (v1,v2)

)
=
√

detG(v1,v2). (16.17)

Now suppose that n ∈ N, n ≥ 2, and u1,u2 ∈ Rn are two linearly independent vectors.
They define an n× 2 matrix

U = [u1 u2]

whose columns are the vectors u1,u2 We define their Gramian G(u1,u2) according to
formula (16.16)

G(u1,u2) := U>U =

[
〈u1,u1〉 〈u1,u2〉
〈u2,u1〉 〈u2,u2〉

]
.

The parallelogram spanned by u1,u2 is defined as in (16.15),

P (u1,u2) :=
{
x1u1 + x2u2; x1, x2 ∈ [0, 1]

}
⊂ Rn.

We define the area of P (u1,u2) by the formula

area
(
P (u1,u2)

)
:=
√

detG(u1,u2) . (16.18)

For example, if

u1 = (1, 1, 1) ∈ R3, u2 = (1, 0,−1) ∈ R3,

Then 〈u1,u1〉 = 3, 〈u1,u2〉 = 0, 〈u2,u2〉 = 2,

G(u1,u2) =

[
3 0
0 2

]
, detG(u1,u2) = 6, area

(
P (u1,u2)

)
=
√

6.

Remark 16.39. Let us point one other feature of (16.18) that adds extra plausibility to
our definition by diktat of the area of a parallelogram in a higher dimensional space.

Recall (see Exercise 11.25) that an orthogonal operator S : Rn → Rn is a linear map
S such that

〈Su, Sv〉 = 〈u,v〉, ∀u,v ∈ Rn.
Orthogonal operators preserve distances between points. In particular, an orthogonal
operator is bijective and it is natural to expect that it will map a parallelogram to another
parallelogram with the same area. The area as defined in (16.15) displays this orthogonal
invariance.
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To see this, note that the definition of an orthogonal operator implies that, for any
orthogonal operator S, we have

G(u1,u2) = G(Su1, Su2),

Note that the image via S of the parallelogram spanned by u1,u2 is the parallelogram
spanned by Su1, Su2, i.e.,

S
(
P (u1,u2)

)
= P (Su1, Su2).

In particular, we deduce that

area
(
SP (u1,u2)

)
= area

(
P (Su1, Su2)

)
= area

(
P (u1,u2)

)
.

Let us also observe that if u1,u2 ∈ Rn are two linearly independent vectors then there
exists an orthogonal operator S : Rn → Rn such that the vectors v1 := Su1 and v2 := Su2

belong to the subspace R2 × 0 ⊂ Rn.2 As we have explained at the beginning of this
subsection the area of the parallelogram spanned by the vector v1,v2 ⊂ R2, defined
in terms of Riemann integrals must be given by (16.18). Hence, due to the orthogonal
invariance of the Gramian, the area of the parallelogram spanned by u1,u2 must also be
given by (16.18). ut

16.2.2. Compact surfaces (with boundary). The concept of curve with boundary
has a 2-dimensional counterpart.

Definition 16.40. Let k, n ∈ N, n ≥ 2. A Ck-surface with boundary in Rn is a compact
subset Σ ⊂ Rn such that, for any point p0 ∈ Σ, there exists an open neighborhood U of p0

in Rn and a Ck-diffeomorphism Ψ : U→ Rn such that image U := Ψ(U ∩ Σ) is contained
in the subspace R2 × 0 ⊂ Rn and it is either

(I) an open disk in R2 centered at Ψ(p0) or

(B) the point Ψ(p0) lies on the y-axis and U is the intersection of a disk as above
with the half-plane

H− :=
{

(x, y) ∈ R2; x ≤ 0
}
.

The pair (U,Ψ) is called a straightening diffeomorphism at p0. The pair
(
U ∩ Σ,Ψ

∣∣
U∩Σ

)
is called a local coordinate chart of X at p0.

In the case (B), the point p0 ∈ X is called a boundary point of X. Otherwise p0 is
called an interior point.

The set of boundary points of X is called the boundary of X and it is denoted by ∂X.
The set of interior points of X is called the interior of X and it is denoted by X◦. The
surface with boundary is called closed if its boundary is empty, ∂X = ∅. ut

Remark 16.41. Before we present several examples of surfaces with boundary we want
to mention without proofs a few technical facts.

2This follows from a simple application of the Gram-Schmidt procedure.
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• If X ⊂ Rn is a surface with boundary and p0 is a boundary point, then, for any
straightening diffeomorphism (U,Ψ) at p0, the image Ψ(U ∩ X) is a half-disk
B−r .

• The boundary of a surface with boundary is a closed curve.

ut

Example 16.42 (Bounded Ck-domains in the plane). Suppose that D ⊂ R2 is a bounded
Ck domain. For n ≥ 2 we regard R2 as a subspace of Rn. One can show that

• the closure cl(D) of a bounded Ck domain in R2 is a Ck-surface with boundary
in Rn

• as a subset of R2, the closure cl(D) is Jordan measurable.

We will not present the proofs of the above claims. ut

Example 16.43 (Graphs). Suppose that D ⊂ R2 is a bounded Ck domain and f is a Ck

function defined on some open set U containing the closure of D, f : U → R. Then the
graph of f over D

Γf (D) :=
{

(x, y, z) ∈ R3; (x, y) ∈ D, z = f(x, y)
}

is a surface with boundary. Figure 16.16 depicts such a graph.

Figure 16.16. The graph of f(x, y) = 2xy2 over the annular domain

0.5 ≤
√
x2 + y2 ≤ 1.5 in R2.

Example 16.44 (Surfaces of revolution). Given a C1-function f : [a, b]→ (0,∞), then by
rotating its graph about the x-axis we obtain a surface with boundary Sf whose boundary
consists of two circles; see Figure 16.17. ut
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Figure 16.17. The surface of revolution generated by the graph of the function
f : [−2, 1]→ (0,∞), f(x) = x2 + 1.

Example 16.45 (Cutting surfaces transversally by a hypersurface). Suppose that S ⊂ Rn
is a closed Ck-surface and f : Rn → R is a Ck-function. Suppose that

∀x ∈ Rn f(x) = 0⇒ ∇f(x) 6= 0.

The zero set

Z =
{
x ∈ Rn; f(z) = 0

}
is a hypersurface of Rn. One expects that the intersection of the surface S with the
hypersurface Z is a curve; think e.g. of a plane Z in R3 intersecting a surface S in R3.

Figure 16.18. A half-torus in R3.

This intuition is indeed true if this intersection is transversal. This means that, for
any p ∈ S ∩ Z, the gradient vector ∇f(p) is not perpendicular to the tangent plane TpS.
This claim follows from the implicit function theorem, but we will omit the details.

If this transversality condition is satisfied then

S+ :=
{
p ∈ S; f(p) ≥ 0

}
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Figure 16.19. A half-sphere in R3.

is a surface with boundary ∂S+ = S ∩ Z. To get a better hold of this fact, think that
S is the surface of a floating iceberg and f(p) denotes the altitude of a point. Then, S+

consists of the points on the iceberg with altitude ≥ 0, i.e., the points on the surface above
the water level.

For example we cut the torus in Figure 14.8 with the vertical plane y = 0 we obtain
the half-torus depicted in Figure 16.18

Also, if we cut the sphere S = {x2 + y2 + z2 = 1} with the plane z = 1
2 , then the part

above the level z = 1
2 is the polar cap depicted in Figure 16.19. ut

16.2.3. Integrals over surfaces. Let n ∈ N, n ≥ 2, and suppose that Σ ⊂ Rn is a C1-
surface. Fix a point p0 and a straightening diffeomorphism (U,Ψ) near p0; see Definition
14.31.

The image of Ψ is an open subset U ⊂ Rn and the restriction of Ψ to U ∩ Σ is a
continuous bijection onto an open subset

U ⊂ R2 = U ∩ R2 × 0 ⊂ Rn.

Its inverse Ψ−1 : U → U is a C1-map and it induces a C1-map Φ : U → Rn such that
Φ(U) = U ∩Σ. The map Φ is called the local parametrization of the surface Σ associated
to the straightening diffeomorphism (U,Ψ).

The local parametrization Φ deforms the flat planar region U to a patch Φ(U) of the
curved surface Σ; see Figure 16.20. The region U lies in the two-dimensional vector space
R2, and we denote by (s, t) the coordinates in this space. Moreover, it may help to think
of the plane R2 as made of horizontal and vertical lines woven together. These lines form
a grid dividing the plane into infinitesimally small rectangular patches of size ds× dt; see
Figure 16.21.

The parametrization Φ takes the rectangular (s, t)-grid to a curvilinear grid on the
surface Σ; see Figure 16.20. For any point p in the patch Φ(U) ⊂ Σ there exists a unique
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Figure 16.20. A local parametrization deforms a (flat) planar region to a patch of
(curved) surface.

Figure 16.21. A planar infinitesimal grid.

point (s, t) ∈U such that p = Φ(s, t). We will write this in a simplified form as

p = p(s, t).

If we keep t fixed and vary s we get a (red) horizontal line in the (s, t)-plane; see Figure
16.20 and 16.21. This (red) line is mapped by Φ to a (red) curve on Σ. Similarly, if we
keep s fixed and vary t we get a vertical line in the (s, t)-plane mapped to a curve on Σ.
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Now take a tiny rectangular patch of size ds× dt with lower left-hand corner situated
at some point (s, t). The map Φ sends it to a tiny (infinitesimal) patch of the surface.
Because this is so small we can assume it is almost flat and we can approximate it with
the parallelogram spanned by the vectors (see Figure 16.20).

p′sds = Φ′sds and p′tdt = Φ′tdt.

The area of this infinitesimal tangent parallelogram is usually referred to as the area
element. It is denoted by |dA| and we have

|dA| =
√

detG(p′sds,p
′
tdt) =

√
detG(p′s,p

′
t) |dsdt|.

More intuitively, the parametrization Φ identifies a point p ∈ U∩Σ with a point (s, t) ∈U ⊂ R2.
We write this p = p(s, t) and we rewrite the above equality

|dA| =
√

detG(p′s,p
′
t) |dsdt|.

The quantity
√

detG(p′s,p
′
t) |dsdt| describes the area element in the s, t coordinates. We

provisorily define the area of U ∩ Σ to be

area(U ∩ Σ) =

∫
U∩Σ
|dA| :=

∫
U

√
detG(p′s,p

′
t) |dsdt| . (16.19)

Suppose that (V, Ψ̂) is another straightening diffeomorphism of Σ near p0 such that
U ∩ Σ = V ∩ Σ. We set

S := U ∩ Σ = V ∩ Σ.

The restriction of Ψ̂ to V ∩ Σ is a continuous bijection onto an open subset

V ⊂ R2 = R2 × 0 ⊂ Rn.

Its inverse is given by a C1-map Φ̂ : V → Rn such that Φ̂(V ) = U∩Σ. We denote by (u, v)
the Euclidean coordinates in the plane R2 that contains V . A point p ∈ S can now be
identified either with a point (s, t) ∈U or with a point (u, v) ∈ V . We write this p = p(s, t)
and respectively p = p(u, v).

We obtain in this fashion a map U 7→ V that associates to the point (s, t) ∈ U the
unique point (u, v) ∈ V such that p(s, t) = p(u, v). Formally, this is the compostion of

C1-maps Ψ̂ ◦ Φ. In particular, this is a C1-map.

We will indicate this correspondence (s, t) 7→ (u, v) by writing u = u(s, t) and v = v(s, t).
To recap

u = u(s, t), v = v(s, t)⇐⇒p(s, t) = p(u, v).

We now have two possible definitions of area(S)

area(S) =

∫
U

√
G(p′s,p

′
t) |dsdt| or area(S) =

∫
V

√
G(p′u,p

′
v) |dudv|.

We want to show that they both yield the same result.
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Lemma 16.46. ∫
U

√
detG(p′s,p

′
t) |dsdt| =

∫
V

√
detG(p′u,p

′
v) |dudv|.

Proof. We argue as in the proof of the equality (16.1). The key fact is the equality

p(s, t) = p(u, v).

Differentiating with respect to s, t we deduce

p′s = p′uu
′
s + p′vv

′
s, p

′
t = p′uu

′
t + p′vv

′
t (16.20)

Let us introduce the n× 2 matrices

Ps,t := [p′s p
′
t], Pu,v := [p′u p

′
v ].

Thus the columns of Ps,t consist of the vectors p′s,p
′
t ∈ Rn, and the columns of Pu,v consist of the vectors

p′u,p
′
v ∈ Rn We can rewrite (16.20)

Ps,t = Pu,v ·
[
u′s u′t
v′s v′t

]
︸ ︷︷ ︸

J

.

We note that J is the Jacobian matrix of the transformation (s, t) 7→ (u, v)

J =
∂(u, v)

∂(s, t)
.

Then

G(p′s,p
′
t) = PTs,tPs,t = JTPTu,vPu,vJ = JTG(p′u,p

′
v)J

so

detG(p′s,p
′
t) = (det JT ) detG(p′u,p

′
v)(det J) = detG(p′u,p

′
v)(det J)2,

and thus √
detG(p′s,p

′
t) =

√
detG(p′u,p

′
v) · | det J |.

The change in variables formula then implies∫
V

√
detG(p′u,p

′
v) |dudv| =

∫
U

√
detG(p′u,p

′
v)

∣∣∣∣det
∂(u, v)

∂(s, t)

∣∣∣∣ |dsdt|
=

∫
U

√
detG(p′u,p

′
v) · | det J | |dsdt| =

∫
U

√
detG(p′s,p

′
t) |dsdt|.

ut

Definition 16.47 (Convenient surfaces with boundary). A parametrized surface with
boundary is a triplet (Σ, D,Φ) with the following properties.

• D ⊂ R2 is a bounded domain in R2 with C1-boundary;

• Φ is an injective immersion Φ : U → Rn, where U is an open subset of R2

containing the closure cl(D) of D.

• Σ = Φ
(
cl(D)

)
.

The induced map Φ : cl(D) → Σ is called a parametrization of Σ. A surface with
boundary is called convenient if it can be parametrized as above. ut
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For example, the surfaces depicted in Figure 16.16, 16.18, 16.19 and 16.17 are conve-
nient.

Suppose now that Σ ⊂ Rn is a convenient surface with boundary with a parametriza-
tion Φ : cl(D)→ Σ. Here D ⊂ R2 is a bounded domain with C1-boundary. If we denote
by s, t the Euclidean coordinates in the plane R2 containing D, then we can describe the
parametrization Φ as describing point p on Σ depending on the coordinates,

p = p(s, t).

If f : Σ→ R is a function on Σ, then we say that it is integrable over Σ if the function

D 3 (s, t) 7→ f
(
p(s, t)

)√
detG(p′s,p

′
t)

is Riemann integrable. If this is the case, then we define the integral of f over Σ to be the
number ∫

Σ
f(p)|dA(p)| :=

∫
D
f
(
p(s, t)

)√
detG(p′s,p

′
t) |dsdt| .

The left-hand side of the above equality makes no reference of any parametrization while
the right-hand side is obviously described in terms of a concrete parametrization. We
want to show, that if we change the parametrization, then the resulting right-hand side
does not change its value, although it might look dramatically different.

If Φ :D→ Σ is another parametrization of Σ,

D ∈ (u, v) 7→ p(u, v) = Φ(u, v),

then Lemma 16.46 shows that∫
D
f
(
p(s, t)

)√
detG(p′s,p

′
t) |dsdt| =

∫
D
f
(
p(u, v)

)√
detG(p′u,p

′
v) |dudv|.

Example 16.48 (Integration along graphs). Suppose that D ⊂ R2 is a bounded domain
with C1-boundary, and h : cl(D)→ R is a C1-function. Its graph

Γf :=
{

(x, y, z); (x, y) ∈ cl(D), z = h(x, y)
}

is a convenient surface with boundary. The map

(x, y) 7→ p(x, y) :=
(
x, y, h(x, y)

)
∈ R3

is a parametrization of Γh. We have

p′x =
(

1, 0, h′x(x, y)
)
, p′y =

(
0, 1, h′y(x, y)

)
,

〈p′x,p′x〉 = 1 +
∣∣h′x∣∣2, 〈p′y,p′y〉 = 1 +

∣∣h′y∣∣2, 〈p′x,p′y〉 = h′xh
′
y,

detG(p′x,p
′
y) = 〈p′x,p′x〉 · 〈p′y,p′y〉 − 〈p′x,p′y〉2 =

(
1 +

∣∣h′x∣∣2 )( 1 +
∣∣h′y∣∣2 )− (h′xh′y)2

= 1 +
∣∣h′x∣∣2 +

∣∣h′y∣∣2 = 1 +
∥∥∇h∥∥2

.

Hence, the area element on the graph of h is

|dA| =
√

1 +
∥∥∇h∥∥2 |dxdy| .
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In particular, the area of Γh is

area(Γh) =

∫
D

√
1 +

∥∥∇h∥∥2 |dxdy|. ut

Example 16.49 (Revolving graphs about the z-axis). Suppose that 0 < a < b and
f : [a, b]→ R is a C1-function. We denote by Sf the surface in R3 obtained by revolving
the graph of f in the (x, z) plane,

Γf =
{

(x, z); x ∈ [a, b], z = f(x)
}

about the z-axis. Denote by D the annulus in the (x, y)-plane described by the condition

a ≤ r ≤ b, r =
√
x2 + y2.

Then Sf is the graph of the function

f̂ : D → R, f̂(x, y) = f(r) = f
(√

x2 + y2
)
.

Note that

f̂ ′x = f ′(r)
x

r
, f̂ ′y = f ′(r)

y

r
, 1 + ‖∇f̂‖2 = 1 + |f ′(r)|2.

Thus

|dA| =
√

1 + |f ′(r)|2 |dxdy|.
ut

Suppose in general that Σ is a compact surface with, or without boundary, and

f : Σ→ R

is a continuous function. We want to define the integral of f over Σ. We distinguish two
cases.

Case 1. Let p0 ∈ Σ and suppose that (U,Ψ) is a straightening diffeomorphism at p0 (see
Definition 16.40). This induces a homeomorphism

Ψ : U ∩ Σ→ D = Ψ(U ∩ Σ) ⊂ R2.

where D is either an open disk or an open half-disk. We denote by (s, t) the Euclidean
coordinates on R2. If

supp f ⊂ U , (16.21)

then we define ∫
Σ
f |dA| =

∫
D
f
(
p(s, t)

)√
detG(p′s,p

′
t) |dsdt|.

Case 2. Let us explain how to deal with the general case, when the support of f is not
necessarily contained in the domain of a straightening diffeomorphism as in (16.21).

Fix an atlas of Σ, i.e., a collection{
(Uα,Ψα)

}
α∈A
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where each (Uα,Ψα) is a straightening diffeomorphism of Σ at a point pα ∈ Σ and

Σ ⊂
⋃
α∈A

Uα.

Now choose a continuous partition of unity χ1, . . . , χN subordinated to the open cover
(Uα)α∈A of Σ. Thus, each χi is a compactly supported continuous function Rn → R and
there exists α(i) ∈ A such that

suppχi ⊂ Uα(i). (16.22)

Moreover

χ1(p) + · · ·+ χN (p) = 1, ∀p ∈ Σ.

In particular

f(p) = χ1(p)f(p) + · · ·+ χN (p)f(p), ∀p ∈ Σ.

Due to the inclusions (16.22), each of the functions χif satisfies the support condition
(16.21). We define ∫

Σ
f |dA| :=

N∑
i=1

∫
Σ
χif |dA| ,

where each of the integrals in the right-hand side are defined as in Case 1.

Clearly, the definition used in Case 2 depends on several choices.

• A choice of atlas, i.e., a collection
{

(Uα,Ψα); α ∈ A
}

of local charts covering
Σ.

• A choice of a partition of unity subordinated to the open cover (Uα)α∈A of Σ.

One can show that the end result is independent of these choices. We omit the proof
of this fact. This type of integral over a surface is traditionally known as surface integral
of the first kind.

The above definition of the integral of a continuous function over a compact surface
is not very useful for concrete computations. In concrete situations surfaces are quasi-
parametrized.

Definition 16.50. Suppose that Σ ⊂ Rn is a compact C1-surface with or without bound-
ary. A quasi-parametrization of Σ is an injective C1-immersion Φ : D → Rn, where D ⊂ R2

is a bounded domain, such that Φ(D) almost covers Σ, i.e., Φ(D) ⊂ Σ and Σ \ Φ(D) is a
finite union of compact C1-curves with or without boundary. ut

The next result extends Theorem 15.50 to “curved” situations.

Theorem 16.51. Let n ∈ N and suppose that Σ ⊂ Rn is a compact surface, with or
without boundary. Suppose that

Φ : D → Rn, (s, t) 7→ p(s, t) := Φ(s, t) ∈ Rn
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is quasi-parametrization of Σ. Then, for any continuous function f : Σ→ R we have∫
Σ
f(p) |dA(p)| =

∫
D
f
(
p(s, t)

)√
detG(p′s,p

′
t) |dsdt|. ut

Example 16.52. Consider the unit sphere

S :=
{

(x, y, z) ∈ R3; x2 + y2 + z2 = 1
}
.

In spherical coordinates (ρ, ϕ, θ) this sphere is described by the equation ρ = 1.

The spherical coordinates define an injective immersion

(0, π)× (0, 2π) 3 (ϕ, θ) 7→ p(ϕ, θ) = (sinϕ cos θ, sinϕ sin θ, cosϕ)

that almost covers S: its image is the complement in the sphere of the “meridian” obtained
by intersecting the sphere with the half-plane

y = 0, x ≥ 0.

Thus this map almost covers S. Note that

p′ϕ = (cosϕ cos θ, cosϕ sin θ,− sinϕ), p′θ = (− sinϕ sin θ, sinϕ cos θ, 0).

Then

〈p′ϕ,p′ϕ〉 = (cosϕ cos θ)2 + (cosϕ sin θ)2 + sin2 ϕ = 1,

〈p′ϕ,p′θ〉 = 0, 〈p′θ,p′θ〉 = (sinϕ sin θ)2 + (sinϕ cos θ)2 = sin2 ϕ,

so that √
detG(p′ϕ,p

′
θ) = sinϕ.

This shows that, in spherical coordinates, the area element of the sphere is

|dA(p)| = sinϕ|dϕdθ| .

If f : S → R is a continuous function, then∫
S
f(p) |dA(p)| =

∫
0≤θ≤,2π,
0≤ϕ≤π

f(ϕ, θ) sinϕ |dϕdθ|.

In particular

area(S) =

∫
0≤θ≤2π,
0≤ϕ≤π

sinϕ |dϕdθ| =
(∫ 2π

0
dθ

)
︸ ︷︷ ︸

=2π

(∫ π

0
sinϕdϕ

)
︸ ︷︷ ︸

=2

= 4π. ut

Example 16.53. Consider again the unit sphere

S :=
{

(x, y, z) ∈ R3; x2 + y2 + z2 = 1
}
.

Fix a real number c ∈ (0, 1) and consider the polar cap

Sc :=
{

(x, y, z) ∈ S; z ≥ c
}
.
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We want to compute the area of this surface with boundary. This time we will use
cylindrical coordinates (r, θ, z). In cylindrical coordinates the sphere is described by the
equation

r2 + z2 = 1.

In the northern hemisphere z > 0 we have

z =
√

1− r2 =
√

1− x2 − y2.

Along the polar cap we have z ≥ c so√
1− r2 ≥ c⇒ 1− r2 ≥ c2 ⇒ r2 ≤ 1− c2 ⇒ s ≤

√
1− c2.

Thus the polar cap admits the quasi-parametrization

p =

 x
y
z

 =

 r cos θ
r sin θ√
1− r2

 , 0 ≤ r ≤
√

1− c2, θ ∈ [0, 2π].

Then

p′r =

 cos θ
sin θ
− r√

1−r2

 , p′θ =

 −r sin θ
r cos θ

0

 ,
〈p′r,p′r〉 = 1 +

r2

1− r2
=

1

1− r2
, 〈p′θ,p′θ〉 = r2, 〈p′r,p′θ〉 = 0

detG(p′r,p
′
θ〉 = 〈p′r,p′r〉 · 〈p′θ,p′θ〉 =

r2

1− r2
,

Then, in polar coordinates (r, θ) the area on the unit sphere is given by

|dA| = r√
1− r2

|drdθ|,

and we deduce

area(Sc) =

∫
0≤r≤

√
1−c2

θ∈[0,2π]

r√
1− r2

drdθ

= 2π

∫ √1−c2

0

r√
1− r2

dr = −2π

∫ √1−c2

0

d(1− r2)

2
√

1− r2

= −2π

(√
1− r2

∣∣∣r=√1−c2

r=0

)
= 2π(1− c). ut

Example 16.54. Suppose that g : [a, b]→ (0,∞) is a C1-function. We denote by Sg ⊂ R3

the surface obtained by rotating the graph of g about the x-axis. Using polar coordinates
in the (y, z)-plane

y = r cos θ, z = r sin θ

we can describe Sg via the equation r = g(x). The injective immersion

(0, 2π)× (a, b) 3 (θ, x) 7→ p(θ, x) =
(
x, g(x) cos θ, g(x) sin θ

)
∈ R3
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almost covers Sg. We have

p′θ =
(

0,−g(x) sin θ, g(x) cos θ
)
, p′x =

(
1, g′(x) cos θ, g′(x) sin θ

)
〈p′θ,p′θ〉 = g(x)2, 〈p′θ,p′x〉 = 0,

〈p′x,p′x〉 = 1 + |g′(x)|2,
detG(p′θ,p

′
x) = g(x)2

(
1 + |g′(x)|2

)
so

|dA(p)| = g(x)
√

1 + |g′(x)|2 |dxdθ|.
In particular

area(Sg) =

∫
0≤θ≤2π,
a≤x≤b

g(x)
√

1 + |g′(x)|2 |dxdθ =

∫ 2π

0
dθ

∫ b

a
g(x)

√
1 + |g′(x)|2dx

= 2π

∫ b

a
g(x)

√
1 + |g′(x)|2dx.

This is in perfect agreement with the equality (9.78) obtained by alternate means.

For example, if g(x) = R > 0, ∀x ∈ [a, b], then Sg is the cylinder

CR :=
{

(x, y, z) ∈ R3; y2 + z2 = R2, x ∈ [a, b]
}
.

Thus ∫
CR

f(x, y, z)|dA|) =

∫
a≤x≤b

0≤θ≤2π

f
(
x,R cos θ,R sin θ

)
|dxdθ|. ut

Example 16.55. Consider the hypersurface in R3 given by the equation

x2 + y2 = 2x.

Note that we can rewrite this as

x2 − 2x+ 1 + y2 = 1⇐⇒ (x− 1)2 + y2 = 1

showing that this is a cylinder with radius 1 and vertical axis passing through the point
(1, 0, 0). We want to compute the area of the portion Σ of this cylinder that lies inside
the sphere

x2 + y2 + z2 = 4.

We observe first that Σ is symmetric with respect to the plane (x, y). We set

Σ+ =
{

(x, y, z) ∈ Σ; z ≥ 0
}

Σ− =
{

(x, y, z) ∈ Σ; z ≤ 0
}
.

Due to the above symmetry of Σ we have

area(Σ+) = area(Σ−) =
1

2
area(Σ).

Using polar coordinates about (1, 0) we obtain the quasiparametrization of Σ+

x = 1 + cos θ, y = sin θ, z = z,
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Figure 16.22. Intersecting a cylinder with a sphere.

where

θ ∈ (0, 2π), 0 < z <
√

4− x2 − y2 =
√

4− 2x =
√

2− 2 cos θ = 2| sin θ|.

We have

p′θ = (− sin θ, cos θ, 0), p′z = (0, 0, 1),

,

detG(p′θ,p
′
z) = 0, area(Σ+) =

∫ 2π

0
| sin θ| dθ = 4.

Hence area(Σ) = 8. ut

16.2.4. Orientable surfaces in R3. Suppose that Σ ⊂ R3 is a surface in R3. Roughly
speaking a surface is orientable if it has two sides. For example, the xy-plane in R3 is
orientable: it has one side facing the positive part of the z-axis, and one side facing the
negative part of the z-axis. Not all surfaces are two-sided. The most famous and arguably
the most important example is the Möbius strip (or band) depicted in Figure 16.23. It
can be described by the parametrization

x =
(

3 + r cos (t/2)
)

cos (t) ,
y =

(
3 + r cos (t/2)

)
sin (t) ,

z = r sin (t/2) ,
− 1 < r < 1, 0 ≤ t ≤ 2π.
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Figure 16.23. The Möbius strip (band) is the prototypical example of non-orientable surface.

Definition 16.56. Let Σ ⊂ R3 be a surface in R3, with or without boundary. An
orientation on Σ is a choice of a continuous, unit-normal vector field along Σ, i.e., a
continuous map ν : Σ→ R3 satisfying the following conditions

(i) ‖ν(p)‖ = 1, ∀p ∈ Σ.

(ii) ν(p) ⊥ TpΣ, ∀p ∈ Σ◦.3

The surface Σ is called orientable if it admits an orientation. An oriented surface is
a pair (Σ,ν) consisting of a surface Σ ⊂ R3 and an orientation ν on Σ. ut

Intuitively, the unit-normal vector field defining an orientation points towards one side
of the surface.

Example 16.57. Suppose that f : R3 → R is a C1-function. We denote by Z its zero set,

Z =
{
p ∈ R3; f(p) = 0

}
.

Suppose that

∇f(p) 6= 0, ∀p ∈ Z.
The implicit function theorem shows that Z is a surface in R3. It is orientable because
the vector field

ν : Z → R3, ν(p) =
1

‖∇f(p)‖
∇f(p),

is an orientation on Z. ut
3We recall that Σ0 denotes the interior of Σ.
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Example 16.58. Suppose that U ⊂ R3 is a bounded domain with C1-boundary. Then
its boundary is orientable. The induced orientation of the boundary is that defined by the
unit normal vector field that points towards the exterior of U . We will use the notation
∂+U when referring to the boundary of U equipped with this induced orientation. ut

Important orientation convention. Suppose that Σ ⊂ R3 is a compact C1-surface
with nonempty boundary ∂Σ. Fix an orientation on Σ described by the normal unit
vector field ν : Σ→ R3. Then we can equip the boundary with an orientation as follows:
a person traveling on ∂Σ according to this orientation while the toe-to-head direction is
given by ν will notice the surface Σ to her left-hand side; see Figure 16.24. This orientation
of ∂Σ is called the orientation induced by the the orientation of Σ.

S

Figure 16.24. An orientation on a surface induces in a natural way an orientation on its boundary.

Remark 16.59. Observe that if D ⊂ R2 is a bounded C1-domain, then it is also a surface
with boundary. The constant unit vector field k along D defines an orientation on D which
in turn induces an orientation on the boundary ∂D. This orientation coincides with the
induced orientation as described at page 612. ut

16.2.5. The flux of a vector field through an oriented surface in R3.

Definition 16.60 (Flux a vector field). Suppose that Σ ⊂ R3 is compact surface (with or
without boundary) and ν is an orientation on Σ. Suppose that F : Σ→ R3 is a continuous
vector field along Σ. The flux of F in the direction defined by the orientation is the scalar

Flux(F ,Σ,ν) :=

∫
Σ
〈F (p),ν(p) 〉 |dA(p)|. ut

Remark 16.61 (How one computes the flux of a vector field trough an oriented surface).
Suppose Σ ⊂ R3 is a compact surface (with or without boundary), ν is an orientation on
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Σ and F is a continuous vector field along Σ.

Σ 3 p = (x, y, z) 7→ F (p) = P (x, y, z)i+Q(x, y, z)j +R(x, y, z)k =

 P (x, y, z)
Q(x, y, z)
R(x, y, z)

 .
(16.23)

To compute the flux Flux(F ,Σ,ν) one typically proceeds as follows.

Step 1. Parametrizing. Fix a quasi-parametrization of Σ, Φ : D → R3, D bounded
open domain of R2,

D 3 (s, t) 7→ Φ(s, t) = p(s, t) =

 x(s, t)
y(s, t)
z(s, t)

 . (16.24)

Step 2. Understanding the orientation. The vectors p′s, p
′
t are linearly independent

and tangent to Σ. Thus p′s × p′t is perpendicular to the tangent space of Σ at p(s, t). In
particular, exactly one of the vectors p′s × p′t or p′t × p′s = −p′s × p′t points in the same
direction as the normal ν

(
p(s, t)

)
defining the orientation. Find ε(s, t) ∈ {±1} such that

ε(s, t)(p′s × p′t) and ν point in the same direction, i.e.,

ε(s, t) =

{
1,

〈
p′s × p′t,ν

〉
> 0,

−1,
〈
p′s × p′t,ν

〉
< 0.

Note that

ε(s, t) = −ε(t, s) .

Step 3. Integrating. We have

ν =
ε(s, t)

‖p′s × p′t‖
p′s × p′t.

On the other hand (see Exercise 16.8)

|dA| =
∥∥p′s × p′t∥∥ |dsdt|,

〈F ,ν〉 |dA| = ε(s, t)〈F ,p′s × p′t〉 |dsdt| .

Observe that

〈F ,p′s × p′t〉 = det

 P x′s x′t
Q y′s y′t
R z′s z′t

 .
Then

Flux(F ,Σ,ν) =

∫
D
ε(s, t) det

 P x′s x′t
Q y′s y′t
R z′s z′t

 |dsdt| (16.25)
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or, equivalently

Flux(F ,Σ,ν) =

∫
D
ε(t, s) det

 P x′t x′s
Q y′t y′s
R z′t z′s

 |dsdt| . (16.26)

Expanding along the first column of the determinant in (16.25) we deduce

det

 P x′s x′t
Q y′s y′t
R z′s z′t

 = P det

[
y′s y′t
z′s z′t

]
+Qdet

[
z′s z′t
x′s x′t

]
+R det

[
x′s x′t
y′s y′t

]
. (16.27)

The above steps are best remembered using the language of differential forms of degree 2
or 2-forms.

To the vector field F = P i+Qj +Rk we associate the degree 2 differential form

ΦF := Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy . (16.28)

Above, the symbol “∧” is called the exterior product or the wedge. Don’t worry about its
meaning yet. For now you only need to know that it differs from a usual product in that
it is anti-commutative, i.e., for any differential 1-forms ω and η,

ω ∧ η = −η ∧ ω, ω ∧ ω = 0

The product ω ∧ η is a differential form of degree 2.

In (16.27) we think of x, y, z as functions depending on the variables s, t as in (16.24).
Then dx, dy, dz are the (total) differentials of these functions as defined in (13.21). We
have

dy ∧ dz = (y′sds+ y′tdt) ∧ (z′sds+ z′tdt)

= y′sz
′
sds ∧ ds︸ ︷︷ ︸

=0

+y′sz
′
t ds ∧ dt+ y′tz

′
s dt ∧ ds︸ ︷︷ ︸

=−ds∧dt

+ y′tz
′
tdt ∧ dt︸ ︷︷ ︸

=0

=
(
y′sz
′
t − z′sy′t

)
ds ∧ dt = det

[
y′s y′t
z′s z′t

]
ds ∧ dt.

We can write this

det

[
y′s y′t
z′s z′t

]
=
dy ∧ dz
ds ∧ dt

. (16.29)

Arguing in a similar fashion we deduce from (16.27)

det

 P x′s x′t
Q y′s y′t
R z′s z′t

 = P
dy ∧ dz
ds ∧ dt

+Q
dz ∧ dx
ds ∧ dt

+R
dx ∧ dy
ds ∧ dt

so

Pdy ∧ dz +Qdz ∧ dz +Rdz ∧ dy = det

 P x′s x′t
Q y′s y′t
R z′s z′t

 ds ∧ dt.
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Now observe that

〈
F ,ν

〉
|dA| = ε(s, t)

〈
F ,p′s,p

′
t

〉
|dsdt| = det

 P x′s x′t
Q y′s y′t
R z′s z′t

 ε(s, t) |dsdt|.
It is now time to give an idea of what ds ∧ dt is. We “define”

ds ∧ dt := ε(s, t) |dsdt| . (16.30)

This is not an entirely satisfying definition because it is not clear what is the nature of
|dsdt|. Intuitively, it is the area of an “infinitesimal curvilinear parallelogram” on Σ, but
the concept of “infinitesimal parallelogram” is a rather nebulous one. This will have to
do for a while. Note that (16.29) implies

dy ∧ dz = det

[
y′s y′t
z′s z′t

]
ds ∧ dt = ε(s, t) det

[
y′s y′t
z′s z′t

]
|dsdt|.

The issue of the nature of ∧ aside, we deduce that〈
F ,ν

〉
|dA| = Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy,

For this reason we set ∫
Σ,ν

ΦF := Flux(F ,Σ,ν) ,

where we recall that

ΦF = Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

The integral ∫
Σ,ν

Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

is traditionally called a surface integral of the second kind. It depends on a choice of orien-
tation specified by the unit normal vector field ν. The differential form ΦF is sometimes
referred to as the infinitesimal flux of F ut

Example 16.62. Let us see how the above strategy works in a special case. Suppose that
Σ is unit sphere

Σ =
{

(x, y, z) ∈ R3; x2 + y2 + z2 = 1
}
.

We fix on Σ the orientation defined by the unit normal vector field pointing towards the
exterior of the unit ball bounded by this sphere. Let F be the vector field F = i+ j.

The spherical coordinates provide a quasi-parametrization of this sphere

(θ, ϕ) 7→ p(θ, ϕ) =

 x = sinϕ cos θ
y = sinϕ sin θ
z = cosϕ,

 , θ ∈ (0, 2π), ϕ ∈ (0, π).

If we keep ϕ fixed and we let θ vary increasingly, the moving point θ 7→ p(θ, ϕ) runs
West-to East along a parallel; see Figure 16.25. The vector p′θ is tangent to this parallel



16.2. Integration over surfaces 639

and points East. If we keep θ fixed and we let ϕ vary increasingly, the moving point
θ 7→ p(θ, ϕ) runs North-to-South along a meridian; see Figure 16.25. The vector p′ϕ is
tangent to this meridian and points South.

x

y

z

p

q

ρ

θ

ϕ

r

Figure 16.25. If we vary θ keeping ϕ fixed the point p runs along a parallel, while if
we vary ϕ keeping theta fixed the point p runs along a meridian.

The right-hand-rule for computing cross products (see page 368) shows that p′ϕ × p′θ
points towards the exterior of the sphere, i.e., in the same direction as the normal ν
defining the chosen orientation on the sphere. Thus, in this case

ε(ϕ, θ) = 1 = −ε(θ, ϕ).

We have

〈
F ,p′ϕ × p′θ

〉
= det

 P x′ϕ x′θ
Q y′ϕ y′θ
R z′ϕ z′θ

 = det

 1 cosϕ cos θ − sinϕ sin θ
1 cosϕ sin θ sinϕ cos θ
0 − sinϕ 0


= det

[
cosϕ sin θ sinϕ cos θ
− sinϕ 0

]
− det

[
cosϕ cos θ − sinϕ sin θ
− sinϕ 0

]
= sin2 ϕ

(
cos θ + sin θ

)
.

We have ∫
Σ

〈
F ,ν

〉
|dA| =

∫
0≤θ≤2π,
0≤ϕ≤π

sin2 ϕ
(

cos θ + sin θ
)
|dϕdθ|
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=

(∫ π

0
sinϕdϕ

)
·
(∫ 2π

0
( cos θ + sin θ ) dθ

)
︸ ︷︷ ︸

=0

= 0.

16.2.6. Stokes’ Formulæ. To state these formulæ we need to introduce new concepts.
Suppose that U ⊂ R3 is an open set and F : U → R3 is a C1 vector field

F = P i+Qj +Rk.

The curl of F is the continuous vector field curlF : U → R3

curlF :=
(
∂yR− ∂zQ

)
i+

(
∂zP − ∂xR

)
j +

(
∂xQ− ∂yP

)
k . (16.31)

The right-hand side of the above equality looks intimidating, but there are cleverer ways
of describing it.

Consider the formal4 vector field

∇ := ∂xi+ ∂yj + ∂zk.

We then have
curlF = ∇× F , (16.32)

where “×” denotes the cross product of two vectors in R3. Recall that it is uniquely
determined by the anti-commutativity equalities

i× j = −j × i = k, j × k = −k × j = i, k × i = −i× k = j,

i× i = j × j = k × k = 0.

Let us point out that if we use the classical interpretation of the inner product on R3 as
a “dot product”

x · y := 〈x,y〉, x,y ∈ R3,

then the divergence of F can be given the more compact description

divF = ∇ · F = 〈∇,F 〉 . (16.33)

Theorem 16.63 (2D Stokes). Suppose that Σ ⊂ R3 is a compact C1-surface with bound-
ary oriented by a unit normal vector field ν : Σ→ R3. Denote by ∂+Σ the boundary of Σ
equipped with the orientation induced by the orientation of Σ as described at page 635. If

F := P i+Qj +Rk

is a C1 vector field defined on an open set O containing Σ, then∫
∂+Σ

WF =

∫
Σ

(curlF ) · ν dA = Flux(∇× F ,Σ,ν) =

∫
Σ

ΦcurlF . (16.34)

ut

The equality (16.34) is often referred to as Green’s formula

4In mathematics the term formal usually refers to objects that exist on paper and whose natures are not
important for a particular argument. In this particular case ∇ can be given a precise rigourous meaning.
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Theorem 16.64 (3D Stokes). Suppose that U ⊂ R3 is a bounded C1-domain. Let
ν : ∂U → R3 denote the outer unit normal vector field along ∂U ; see Example 16.58.
If

F := P i+Qj +Rk

is a C1 vector field defined on an open set O containing clU , then∫
∂+U

ΦF = Flux(F , ∂U,ν) =

∫
U

divF |dxdydz|. (16.35)

ut

Often (16.35) is referred to as divergence formula.

Example 16.65. Suppose that D ⊂ R3 with a bounded C1-domain and R = xi+yj+zk.
Denote by νout the outer unit normal vector field. Note that

divR = 3.

The divergence formula then implies

Flux(R, ∂D,νout) =

∫
D

3 |dxdydz| = 3 vol(D). ut

Example 16.66. Consider the vector field V : R3 \ 0→ R3

V (x, y, z) =
x

ρ3
i+

y

ρ3
j +

z

ρ3
k, ρ =

√
x2 + y2 + z2.

Let Br(0) the open ball of radius r centered at 0 ∈ R3. Its boundary is the sphere Σr(0)
of radius r centered at 0. The outer unit vector field along ∂Br(0) is

νout(x, y, z) =
x

r
i+

y

r
j +

z

r
k.

Thus, along ∂Br(0) we have ρ = r and〈
V (x, y, z),νout(x, y, z)

〉
=
x2 + y2 + z2

r4
=
r2

r4
=

1

r2
.

Thus

Flux(V , ∂Br(0),νout〉 =

∫
Σr

1

r2
dA =

1

2
area(Σr) = 4π.

Let us compute the divergence of V . From the equality ρ2 = x2 + y2 + z2 we deduce

ρ′x =
x

ρ
, ρ′y =

y

ρ
, ρ′z =

z

ρ

∂x

(
x

ρ3

)
=

1

ρ3
− 3

x2

ρ5
, ∂y

(
y

ρ3

)
=

1

ρ3
− 3

y2

ρ5
, ∂z

(
z

ρ3

)
=

1

ρ3
− 3

z2

ρ5

Thus

divV =
3

ρ3
− 3

x2 + y2 + z2

ρ5
= 0
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so that ∫
Br(0)

divV |dxdydz| = 0.

This seems to contradicts the divergence theorem. The problem with this is that the
vector field V has a singularity at the origin and it is not defined there. The divergence
formula requires that the vector field be defined everywhere in the domain.

Suppose now that D is a bounded C1 domain such that 0 ∈ D. We want to compute
Flux(V , ∂D,νout).

There exists r0 > 0 such that Br0(0) ⊂ D. For any 0 < ε < r0 we set

Dε := D \ cl
(
Bε(0)

)
.

The vector field is well defined everywhere on Dε and the divergence formula implies

Flux(V , ∂Dε,νout) =

∫
Dε

divV |dxdydz| = 0.

Now observe that

∂Dε = ∂D ∪ ∂Bε(0).

The normal vector field along ∂Bε(0) that points towards the exterior of Dε is the normal
vector field that points towards the interior of Bε(0). We denote it with νin(Bε). Thus

0 = Flux(V , ∂Dε,νout) = Flux(V , ∂D,νout) + Flux(V , ∂Bε,νin(Bε))

= Flux(V , ∂D,νout)− Flux(V , ∂Bε,νout(Bε)) = Flux(V , ∂D,νout)− 4π

so that

Flux(V , ∂D,νout) = 4π. ut

Remark 16.67. Suppose that D ⊂ R2 is a bounded C1-domain, and

F : U → R2, F = P (x, y)i+Q(x, y)j

is a C1-vector field defined on an open set U ⊂ R2 that contains cl(D). Then D can be
viewed as a surface with boundary in R3. If we write

F = P (x, y)i+Q(x, y)j + 0k

we see that we can view F as a 3-dimensional C1-vector field defined on the the open set
O = U×R ⊂ R3. The constant vector field k defines an orientation on D, and the induced
orientation on ∂D defined by this unit normal vector field coincides with the orientation
of ∂D as boundary of a planar domain. Note that

curlF =
(
Q′x − P ′y

)
k

so we deduce from (16.34)∫
∂+D

F · p = Flux(curlF , D,k) =

∫
D

(
Q′x − P ′y

)
|dxdy|.

This shows that (16.10a) is a special case of (16.34). ut
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16.3. Differential forms and their calculus

16.3.1. Differential forms on Euclidean spaces. So far we have encountered differ-
ential forms of degree 1

Pdx+Qdy +Rdz,

differential forms of degree 2,

Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy,

where we recall that the operation “∧” satisfies the unusual anti-commutativity conditions

dx ∧ dy = −dy ∧ dx, dy ∧ dz = −dz ∧ dy, dz ∧ dx = −dx ∧ dz,

dx ∧ dx = dy ∧ dy = dz ∧ dz = 0.

A differential form of degree 3 or 3-form on an open set O ∈ R3 is an expression of the
form

ρ dx ∧ dy ∧ dz,
where ρ : O→ R is a continuous function. Again, we avoid explaining the meaning of the
quantity dx ∧ dy ∧ dz, but we want to point out a few oddities.

dx ∧ dy ∧ dz = dx ∧
(
dy ∧ dz

)
= dx ∧

(
− dz ∧ dy

)
= −

(
dx ∧ dz

)
∧ dy =

(
dz ∧ dx

)
∧ dy = dz ∧ dx ∧ dy

This is a bit surprising! The anti-commutative operation “∧” becomes commutative when
2-forms are involved,

dx ∧ dy ∧ dz = dz ∧ dx ∧ dy.
We still have not explained the meaning of the quantities dx ∧ dy, dx ∧ dy ∧ dz etc. and
we will not do so for a while.

Definition 16.68. Given an open set O ⊂ Rn and k = 1, . . . , n we denote by Ωk(O) the
space of differential forms of degree k on O. i.e., expressions of the form

ω =
∑

1≤i1<···<ik≤n
ωi1,...,ikdx

i1 ∧ · · · ∧ dxik ,

where the coefficients ωi1,...,ik are continuous functions on O. We set

Ω0(O) := C0(O).

A differential form is called Cm if its coefficients are Cm xzfunctions. We denote by
Ωk(O)Cm the space of Cm-forms of degree k ut

To simplify the exposition we introduce the following conventions.

• We set

[m] := {1, . . . ,m}.
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• We denote by [n][m] the set of maps [m] → [n] and by Inj(m,n) the set of
injections [m]→ [n], k 7→ ik. We describe such an injection I using the notation
I = (i1, . . . , im). We denote by {I} the range of I, {I} := {i1, . . . , im}. We will
refer to such injections as multi-indices.

• We denote by Sn the group of permutations of n objects, Sn = Inj(n, n).

• We denote by Inj+(m,n) the subset of increasing multi-indices I : [m]→ [n].

• if σ ∈ Sm i and I = (i1, . . . , im) ∈ Inj(m,n) we set

Iσ = (iσ(1), . . . , iσ(m)) ∈ Inj(m,n)

• For I ∈ Inj(m,n) we set

dx∧I := dxi1 ∧ · · · ∧ dxim .

The terms dx∧I , I ∈ Inj(m,n) are called exterior monomials

Thus, any ω ∈ Ωk(O) has the form

ω =
∑

I∈Inj+(k,n)

ωIdx
∧I , ωI ∈ C0(O). (16.36)

The space Ωk(O) is a vector space. The addition is defined by(∑
I

αIdx
∧I

)
+

(∑
I

βIdx
∧I

)
=
∑
I

(αI + βI)dx
∧I ,

and the scalar multiplication is defined in a similar fashion.The elementary monomials dxi

satisfy the anti-commutativity rules

dxi ∧ dxj =

{
−dxj ∧ dxi, i 6= j,

0, i = j.
(16.37)

This implies that if I ∈ Inj(m,n) and σ ∈ Sm, then

dx∧Iσ = ε(σ)dx∧I , (16.38)

where ε(σ) ∈ {−1, 1} is the signature or parity of the permutation σ.

We can define dx∧I in the obvious way for any I ∈ [n][m] with the understanding that
dx∧I = 0 if I is not an injection. For example if I = (2, 3, 2) then

dx∧I = dx2 ∧ dx3 ∧ dx2 = −dx2 ∧ dx2 ∧ dx3 = 0.

For I ∈ [n][k] and J ∈ [n][`] we define

I ∗ J := (i1, . . . , ik, j1, . . . , j`). ∈ [n][k+`].

Then

dx∧I ∧ dx∧J = dx∧I∗J .

This allows us to define a product

∧ : Ωk(O)× Ω`(O)→ Ωk+`(O), k + ` ≤ n,
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 ∑
I∈Inj+(k,n)

αIdx
∧I

 ∧
 ∑
J∈Inj+(`,n)

βJdx
∧J


:=

∑
I∈Inj+(k,n),
J∈Inj+(`,n)

αIβJdx
∧I ∧ dx∧J =

∑
I∈Inj+(k,n),
J∈Inj+(`,n)

αIβJdx
∧I∗J .

As we know, the 1-forms can be integrated over oriented curves, and the 2-forms can
be integrated over oriented surfaces. A 3-form ρdx∧dy∧dz ∈ Ω(O) can also be integrated
and we set ∫

O

ρ dx ∧ dy ∧ dz :=

∫
O

ρ |dxdydz|,

whenever the integral on the right-hand side is absolutely convergent.

Let us point out a curious but important fact: since dx∧ dy ∧ dz = −dx∧ dz ∧ dy, we
have ∫

O

ρ dx ∧ dz ∧ dy = −
∫
O

ρ dx ∧ dy ∧ dz.

There is also a notion of derivative of a differential form called exterior derivative.

Definition 16.69 (Exterior derivative). Let O ⊂ Rn be an open subset. The exterior
derivative is the linear operator

d : Ωk(O)C1 → Ωk+1(O), k = 0, 1, . . . , n− 1,

defined as follows.

• If k = 0 so that Ω0(O)C1 = C1(O), then

df =
n∑
i=1

∂xifdx
i ∈ Ω1(O), ∀f ∈ C1(O).

• If k > 0, then for any α ∈ Ωk(O)C1 we set

dα := d

 ∑
I∈Inj+(k,n)

αIdx
∧I

 =
∑

I∈Inj+(k,n)

dαI ∧ dx∧I .

ut

Example 16.70. The exterior derivative of a 0-form is a 1-form, the exterior derivative of
a 1-form is 2-form, the exterior derivative of a 2-form is a 3-form, and the exterior derivative
of a 3-form is identically zero. Here is how one computes these exterior derivatives.

The differential of a C1 form of degree zero, i.e., a C1-function f : O → R is its total
differential

df = f ′xdx+ f ′ydy + f ′zdz = W∇f .

If ω is a C1 differential form of degree 1 on O,

ω = Pdx+Qdy +Rdz = WF , F = P i+Qj +Rk,
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then

dω = dWF = dP ∧ dx+ dQ ∧ dy + dR ∧ dz
= (P ′xdz + P ′ydy + P ′zdz) ∧ dx
+(Q′xdx+Q′ydy +Q′zdz) ∧ dy
+(R′xdx+R′ydy +R′zdz) ∧ dz

= P ′y dy ∧ dx+ P ′z dz ∧ dx+Q′x dx ∧ dy +Q′z dz ∧ dy +R′x dx ∧ dz +R′y dy ∧ dz
=
(
R′y −Q′z

)
dy ∧ dz +

(
P ′z −R′z

)
dz ∧ dx+

(
Q′x − P ′y

)
dx ∧ dy

(use (16.28) and (16.31) )

= ΦcurlF .

Thus

dWF = ΦcurlF . (16.39)

Suppose finally that η is a C1 form of degree 2 on O

η = ΦF = Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

Then

dη = dP ∧ dy ∧ dz + dQ ∧ dz ∧ dx+ dR ∧ dx ∧ dy
=
(
P ′xdx+ P ′ydy + P ′zdz

)
dy ∧ dz

+
(
Q′xdx+Q′ydy +Q′zdz

)
dz ∧ dz

+
(
R′xdx+R′ydy +R′zdz

)
dx ∧ dy

= P ′x dx ∧ dy ∧ dz +Q′y dy ∧ dz ∧ dx+R′z dz ∧ dx ∧ dy
=
(
P ′x +Q′y +R′z

)
dx ∧ dy ∧ dz =

(
divF

)
dx ∧ dy ∧ dz.

Thus

dΦF =
(

divF
)
dx ∧ dy ∧ dz . (16.40)

ut

In view of the computations in Example 16.70 we can give the following equivalent
reformulations of Theorem 16.63 and Theorem 16.64.

Theorem 16.71. Suppose that F is a C1-vector field defined on the open set O ⊂ R3.

(i) If Σ ⊂ O is an oriented compact surface with boundary, then∫
∂+Σ

WF =

∫
Σ
dWF .

(ii) If U ⊂ R3 is a bounded C1 domain such that clU ⊂ O, then∫
∂+U

ΦF =

∫
U
dΦF .

ut
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The above result is not a low dimensional accident. In the remainder of this subsection
we hint on how this works in higher dimensions. The key to this process is a more subtle
operation on differential forms.

Suppose that O0 ⊂ Rn0 and O1 ⊂ Rn1 are open sets. We denote by x = (xi) the
Cartesian coordinates in Rn0 and by y = (yj) the Cartesian coordinates in Rn1 . Let

Φ : O0 → O1

be a C1, map described in the above coordinates by the functions

yj = Φj
(
x1, . . . , xn0

)
, j = 1, . . . , n1.

For each k ≤ min(n0, n1), the pullback via Φ of a k-form on O1 (to a k-form on O0) is the
linear operator

Φ∗ : Ωk(O1)→ Ωk(O0),

Φ∗η = Φ∗

 ∑
I∈Inj+(k,n1)

ηIdy
∧I

 .

:=
∑

I∈Inj+(k,n1)

ηI
(
Φ(x)

)
dΦi1(x) ∧ · · · ∧ dΦik(x), ∀η ∈ Ωk(O1).

Example 16.72. Consider the map Φ : R2 → R2, (r, θ) 7→ (x, y) = (r cos θ, r sin θ). Then

Φ∗(dx ∧ dy) = d(r cos θ) ∧ d(r sin θ)

= (cos θdr − r sin θdθ) ∧ (sin θdr + r cos θdθ)

= r cos2 θdr ∧ dθ − r sin2 θ dθ ∧ dr︸ ︷︷ ︸
=−dr∧dθ

= (r cos2 θ + r sin2 θ)dr ∧ dθ

= rdr ∧ dθ = detJΦdr ∧ dθ.
More generally, given open sets U, V ⊂ Rn and Φ : U → V a C1-map, we have

Φ∗
(
dv1 ∧ · · · ∧ dvn

)
= (det JΦ)du1 ∧ . . . ∧ dun, (16.41)

where (vi) are the Cartesian coordinates on V and (uj) are the Cartesian coordinates on
U .

(b) Consider the map

Φ : (0,∞)× R→ R2 \ {0}, (r, θ) 7→ (x, y) = (r cos θ, r sin θ).

Let

ω = − y

x2 + y2
dx+

x

x2 + y2
dy.

Then

Φ∗ω =
−r sin θ d(r cos θ) + r cos θ d(r sin θ)

r2
= dθ.

ut
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Example 16.73. Suppose that U ⊂ Rn is an open set that intersects nontrivially the
subspace

Rm × 0 =
{

(u1, . . . , un) ∈ Rn : ui = 0, ∀i > m
}
.

We set U = U ∩ Rm × 0 and we denote by i the inclusion map

U 3u 7→ (u,0) ∈ U.

For any k ≤ m and any α ∈ Ωk(U) we set

α
∣∣
U

:= i∗α. (16.42)

For example if k = m and

α =
∑

I∈Inj(m,n)

αI(u)du∧I ,

then

α
∣∣
U

= α1,2,...,m(u,0)du1 ∧ · · · ∧ um ∈ Ω1(U). ut

The top degree forms on Rn can be integrated. Let U ⊂ Rn be an open set. Denote
by Ωk

cpt(U) the space of degree k-forms on U with compact support, i.e., forms η such that
there exists a compact set K ⊂ U such that all the coefficients ηI are zero outside K.

Observe first that a degree n form ω defined on open set U in Rn has the form

ω = ρωdVn := ρωdu
1 ∧ · · · ∧ dun

where ρω is a continuous function on U called the density of ω, and u1, . . . , un are the
canonical Cartesian coordinates on Rn. The top degree form dVn is called the canonical
volume form on Rn.

Example 16.74. Suppose that U, V are open subset of Rn and Φ : U → V is a C1. Then
the density of the top degree form ω = Φ∗dVn ∈ Ωn(U) is

ρω(u) = detJΦ(u). ut

Definition 16.75. Let U ⊂ Rn be an open set. An orientation on U is a choice of
a nowhere vanishing form η of maximum degree n. Two orientations defined by the top
degree forms η0 or η1 are two be considered equivalent if there exists a continuous function
ρ : U → (0,∞) such that η1 = ρη0. ut

Remark 16.76. Observe that if U is an open subset if Rn, then any nowhere vanishing
degree n form ω can be described explicitly as a product

ω = ρωdVn,

where density ρω is a nowhere vanishing continuous function on U . We have a well defined
continuous function

ε = εω : U → {−1, 1}, εω(u) = sign ρω(u) =
ρω(u)

|ρω(u)|
.
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The orientation defined by ε is therefore equivalent with the orientation defined by εωdVn.
If U is a path connected open subset of Rn then there are precisely two nonequivalent
orientations, one defined by the form

dVn := dx1 ∧ · · · ∧ dxn,

called the canonical orientation, and one defined by −dVn.

If U has k connected components, then there 2k nonequivalent choices of orientation,
each determined by a continuous function5

ε : U → {−1, 1}.

For this reason we will identify the set of possible orientations on U with the set O(U) of
continuous functions ε : U → {−1, 1}. The orientation defined my ε is, by definition, the
orientation defined by the nowhere vanishing top degree form ε(u)dVn. ut

Definition 16.77. An oriented open subset of Rn is a pair (U, ε), where U is an open set
and ε ∈ O(U) is an orientation on U . ut

Any oriented open set (U, ε) in Rn defines a linear map∫
U,ε

: Ωn
cpt(U)→ R,∫

U,ε
ω =

∫
U,ε
ρωdu

1 ∧ · · · ∧ dun :=

∫
U
ε(u)ρω(u) |du1 · · · dun|. (16.43)

When ε is identically equal to 1 we omit it from the notion.

Let us point out a simple but confusing fact. For any σ ∈ Sn we have

ε(σ)ρωdu
σ(1) ∧ · · · ∧ duσ(n) = ω,∫

U
ρωdu

σ(1) ∧ · · · ∧ duσ(n) = ε(σ)

∫
U
ρωdu

1 ∧ · · · ∧ dun.

Because of this it is important to keep in mind the following naive but important advice.

* When integrating differential forms, the order in which we
write the coordinates matters!

Definition 16.78. Let (Ui, εi), i = 0, 1 be oriented open sets in Rn, i = 0, 1 and
Φ : U0 → U1 a C1-diffeomorphism. We say that Φ is orientation preserving if

ε0(u)ε1
(
Φ(u)

)
det JΦ(u) > 0, ∀u ∈ U0. ut

The proof of the next result is left to you as a simple but very instructive Exercise
16.19.

5Such a function is constant on the connected components of U .



650 16. Integration over submanifolds

Proposition 16.79. Suppose that (Ui, εi), i = 0, 1 are oriented open sets in Rn, i = 0, 1
and Φ : U0 → U1 a C1-map.

(i) For any k = 0, 1, . . . , n− 1 and any α ∈ Ωk(U)C1 we have

d
(
Φ∗α

)
= Φ∗

(
dα
)
.

(ii) If Φ : (U0, ε0) → (U1, ε1) is an orientation preserving diffeomorphism such that
U1 = Φ(U0), then for any η ∈ Ωn

cpt(V ) we have∫
U1,ε1

η =

∫
U0,ε0

Φ∗η. (16.44)

ut

We close this subsection with a technical result which will play a key role in extending
to higher dimensions the concept of integration of a differential form.

0

0
1

1

F

VV

V
V

Figure 16.26. A transition map.

Proposition 16.80. Suppose that Vi ⊂ Rn, i = 0, 1, are open sets such that

V i := Vi ∩ Rm × 0 6= ∅, i = 0, 1.

Let Φ : V0 → Rn be a C1-diffeomorphism such that (see Figure 16.26)

Φ(V0) = V1, Φ(V 0) = V 1.

Then the following hold.

(i) The induced map Φ : V 0 → V 1 ⊂ Rm is a C1-diffeomorphism

(ii) If ω1 ∈ Ωm(V1) and ω0 := Φ∗ω1, then (see (16.42))

ω0

∣∣
V 0

= Φ
∗
ω1

∣∣
V 1
.
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Proof. Denote by y = (y1, . . . , yn) the Cartesian coordinates on V1 and by x = (x1, . . . , xn) the Cartesian

coordinates on V0. We set

x= (x1, . . . , xm), y= (y1, . . . , ym),

x⊥ = (xm+1, . . . , xn), y⊥ = (ym+1, . . . , yn).

For simplicity we set

ωi := ωi
∣∣
V i
, i = 0, 1.

The diffeomorphism Φ is described by a collection of functions

yi = yi(x), i = 1, . . . , n.

Since Φ(V0) = V1 we deduce

yj(x,0) = 0, ∀x∈ V0., j > m.

We write this
∂y⊥
∂x

(x,0) = 0 (16.45)

(i) The map Φ is described by the functions

yj = yj(x,0), j = 1, . . . , k.

We write this succinctly

y=y(x,0).

The map Φ : V0 → V1 is a homeomorphism since Φ : V0 → V1 is such. We have to show that if (x,0) ∈ V0, then

det J
Φ

(x,0) 6= 0

The Jacobian J
Φ

(x,0) is given by the m×m matrix

∂y

∂x
(x,0).

We know that det JΦ(x, 0) 6= 0 since Φ is a diffeomorphism. Now observe that JΦ(x, 0) has the block decomposition

JΦ(x, 0) =

 ∂y/∂x ∂y⊥/∂x

∂y⊥/∂x ∂y⊥/∂x⊥


(x,0)

(16.45)
=

 ∂y/∂x 0

∂y⊥/∂x ∂y⊥/∂x⊥


(x,0)

.

Hence

0 6= det JΦ(x, 0) = det
∂y

∂x
· det

∂y⊥
∂x⊥

⇒ det J
Φ

(x,0) = det
∂y

∂x
6= 0.

(ii). Let

ω1 =
∑

I∈Inj+(m,n)

ωI(y)dy∧I .

Then

ω0 =
∑

I∈Inj+(m,n)

ωI
(
y(x)

)
dyi1 (x) ∧ · · · ∧ dyim (x),

ω1 = ω1,...,m(y,0)dy1 ∧ · · · ∧ dym,

ω0 =
∑

I∈Inj+(m,n)

ωI
(
y(x,0)

)
dyi1 (x,0) ∧ · · · ∧ dyim (x,0).

From (16.45) we deduce that for j > m we have

dyj(x,0) =

m∑
i=1

∂yj

∂xi
(x,0)dxi = 0.

Hence

ω0 = ω1,2,...,m

(
y(x,0)

)
dy1(x,0) ∧ · · · ∧ dym(x,0) = Φ

∗
ω1.

ut
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16.3.2. Orientable submanifolds. . Suppose thatX is anm-dimensional C1-submanifold
of Rn, 0 < m < n. Every point p ∈ X admits (at least) a straightening diffeomorphism
(U,Ψ). For brevity we will use the acronym s.d. when referring to straightening diffeo-
morphisms. We recall what this entails (see Definition 14.31)

• U is an open neighborhood of p ∈ Rn.

• Ψ : U→ Rn is a C1-diffeomorphism with image U = Ψ(U).

• Ψ
(
U ∩X) =U := U ∩ Rm × 0.

• We denote by Φ the induced map Ψ−1 :U→ U

An orientation for the s.d. (U,Ψ) is a choice of orientation ε ∈ O(U). An oriented s.d.
is a triplet (U,Ψ, ε), where (U,Ψ) is a s.d. and ε is an orientation of that s.d..

0

0

00
1

1

1

1

F

F
F

X

V

VV

V

V

Figure 16.27. The transition map determined by two overlapping straightening diffeomorphisms.

If (U0,Ψ0) and (U1,Ψ1) are two straightening diffeomorphism near p ∈ X, we set
V := U0 ∩ U1, and we get open sets (see Figure 16.27)

Ui = Ψi(Ui) ⊂ Rn, Vi = Ψi(V) ⊂ Ui, i = 0, 1,

Ui := Ui ∩ Rm × 0 ⊂ Rm, V i = Vi ∩ Rm ⊂Ui, i = 0, 1,

and C1-maps

Φi : V i → V.

The composition

Φ10 : Ψ1 ◦Ψ−1
0 : V0 → V1
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is a diffeomorphism. It induces a homeomorphism

Φ10 : V 0 → V 1.

Note that

Φ10 = Ψ1 ◦Φ0.

According to Proposition 16.80(i) the induced map Φ10 is a diffeomorphism with im-
age V 1. We will refer to Φ10 as the transition diffeomorphism associated to the pair of
overlapping s.d.-s (Ui,Ψi), i = 0, 1.

Definition 16.81. Let X ⊂ Rn, 1 ≤ m ≤ n, be an m-dimensional C1-submanifold.

(i) An atlas of X is a collection of s.d.-s
{

(Ui,Ψi)
}
i∈I such that the collection

(Ui)i∈I is an open cover of X. For i, j ∈ I we set Uij = Ui ∩ Uj .

(ii) An orientation of an atlas
{

(Ui,Ψi)
}
i∈I ofX is a choice of orientations εi ∈ O(Ui),

Ui = Ψi(Ui ∩ X) ⊂ Rm, i ∈ I . The orientation is called coherent if, for any
i, j ∈ I such that Uij 6= ∅, the associated transition map

Φji : (V i, εi)→ (V j , εj),

is orientation preserving. Above V i = Ψi

(
Uij
)
, V j = Ψj

(
Uij
)
.

(iii) The submanifold X is called orientable if it admits a coherently oriented atlas.

(iv) An orientation on X is a choice of a coherently oriented atlas.

(v) Two orientations on X given by the coherently oriented atlases

A :=
{

(Ui,Ψi, εi)
}
i∈I , B :=

{
(Vj ,Ψj , εj)

}
j∈J

are to be considered equivalent if their union is also a coherently oriented atlas.

ut

Example 16.82. Suppose that X is described by n−m equations

X :=
{
x ∈ Rn : F 1(x) = · · · = Fn−m(x) = 0, F 1, . . . , Fn−m ∈ C1(Rn)

such that, for

∀x ∈ X, the vectors ∇F 1(x), . . . ,∇Fn−m(x) are linearly independent.

Suppose that A := (Ui,Ψi) is an atlas for X. Set as usual

Ui := Ψi(Ui ∩X) ⊂ Rm, Φi := Ψ−1
i

∣∣
Ui
.

For simplicity we set x(ν) := Φi(u). Denote by u1, . . . , um the canonical Cartesian coor-
dinates on Ui and we set

Tk(u) =
∂Φi
∂ui

(u), k = 1, . . . ,m.
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The collection {T1(u), . . . , Tm(u)} is a basis of the tangent space Tx(u)X. The vectors

∇F j(x(u)) are perpendicular to this space. It follows that the n × n matrix Bi(u) with
columns

∇F 1(x(u)), . . . ,∇Fn−m(x(u)), T1(u), . . . , Tm(u)

is nonsingular. We obtain an orientation εi on Ui given by

εi(u) = sign detBi(u).

One can show that the collection
{

(Ui,Ψi, εi)
}

is a coherently oriented atlas and thus
defines an orientation on X.

The natural proof of this fact is based on a bit more differential geometry than I can
safely assume you, the reader, may know at this point in time. There exist proofs of this
claim that use essentially only linear algebra, but the geometric meaning will be lost in
the heap computations. For this reason I have decided not to include a proof of this claim.
Instead, I encourage you to supply a proof in the special case m = 2, n = 3 and compare
this with the arguments in Remark 16.61. ut

16.3.3. Integration along oriented submanifolds. Suppose that X ⊂ Rn is an ori-
entable m-dimensional C1-submanifold. We denote by Ωm

cpt(X) the subspace of Ωm
cpt(Rn)

consisting of compactly supported degree m forms ω such that X ∩ suppω is a compact
subset of X. We want to associate to any orientation orX on X an integration map∫

X,orX

: Ωm
cpt(X)→ R.

We will build this integral in stages.

Fix an orientation ~ε on X defined by a coherently oriented atlas

A =
{

(Ui,Ψi, εi)
}
i∈I

We denote by Ωm
cpt(X,A) the subspace of Ωm

cpt(Rn) consisting of compactly supported
degree m forms ω such that

• The support of ω is contained in the union

UA :=
⋃
i∈I

Ui.

• X ∩ suppω is a compact subset of X.

We will define a canonical linear map∫
X

=

∫
X,A

: Ωm
cpt(X,A)→ R,

Ωm
cpt(X,A) 3 ω 7→

∫
X,A

ω.

We achieve this in several steps.
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Step 1. The form ω has small support, i.e., ∃i ∈ I such that suppω ∩ X ⊂ Ui ∩ X.
Consider the map

Ui 3 u 7→ x(u) = Φi(u) ∈ U.

Set

ωi := Φ
∗
iω ∈ Ωm(Ui).

In this case we set ∫
X,A

ω :=

∫
Ui,εi

ωi,

where
∫
U,ε is defined in (16.43). Suppose suppω ∩X ⊂ Ui ∩X.

Suppose that we also have suppω ∩X ⊂ Uj ∩X for a different j ∈ I . Then, we can
propose new definition of

∫
X ω ∫

X,A
ω :=

∫
Uj ,εj

ωj .

Set

V i = Ψi(Ui ∩ Uj ∩X), V j = Ψj(Ui ∩ Uj ∩X).

Thus

suppωi ⊂ V i, suppωj ⊂ V j .
From Proposition 16.80 we deduce that

ωi = Φ
∗
jiωj .

Since

Φji : (V i, εi)→ (V j , εj)

is orientation preserving we have∫
Ui,εi

ωi =

∫
V i,εi

ωi
(16.44)

=

∫
V j ,εj

ωj =

∫
Uj ,εj

ωj .

Set Xi := X ∩ Ui. We have thus defined an integration map∫
Xi

: Ωm
cpt(Xi)→ R.

This map is linear and it is independent of any other choice of local coordinates we could
choose on Xi.

Step 2. Extension to Ωm
cpt(X,A). Let ω ∈ Ωm

cpt(X,A). Choose a continuous partition of
unity on suppω

ψ1, . . . , ψk : Rn → R
subordinated to the open cover (Ui)i∈I . For each a = 1, . . . , k choose i(a) ∈ I such that
suppψa ⊂ Ui(a). We have

ω =

l∑
a=1

ψaω.
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Note that ωa = ψaω ∈ Ωm
cpt

(
Xi(a)

)
. We define∫
X,A

ω =
∑
a

∫
Xi(a)

ψaω

A priori, this definition depends on the choice of the partition of unity. Let us show that
this is not the case.

Choose another partition of unity on suppω, φ1, . . . , φ`, subordinated to the cover (Ui)i∈I . For each b = 1, . . . , `

choose j(b) ∈ I such that suppφb ⊂ Uj(b). Note that

ωa =
∑
b

φbωa︸ ︷︷ ︸
ωab

Since suppωab ⊂ U(i(a) ∩ Uj(b) we have∫
Xi(a)

ωa =
∑
b

∫
Xi(a)

ωab =
∑
b

∫
Xj(b)

ωab,

so ∑
a

∫
Xi(a)

ψaω =
∑
a

∫
Xi(a)

ωa =
∑
b

∫
Xj(b)

∑
a

ωab︸ ︷︷ ︸
=φbω

=
∑
b

∫
Xj(b)

φbω.

This proves that the definition of
∫
X,A is independent of the choices of partions of unity.

Let us observe that the above proof shows that if ω1, ω2 ∈ Ωcpt(X,A) coincide in an
open neighborhood of X, then ∫

X,A
ω1 =

∫
X,A

ω2.

Step 3. The argument in the previous step shows that if A and B are two coherently
oriented atlases such that A ⊂ B, then

Ωm
cpt(X,A) ⊂ Ωm

cpt(X,B),

and, for any ω ∈ Ωm
cpt(X,A), we have∫

X,A
ω =

∫
X,B

ω.

In particular this shows that if the coherently oriented atlases A and B define equivalent
orientation, then for any ω ∈ Ωm

cpt(X,A) ∩ Ωm
cpt(X,B) we have∫

X,A
ω =

∫
X,A∪B

ω =

∫
X,B

ω.

Step 4. Using partitions of unity one can show (but we will skip the details) that for any
ω ∈ Ωm

cpt and for any coherently oriented atlas A defining an orientation orX on X there
exists a form ω̃ ∈ Ωm

cpt(X,A) such that ω = ω̃ in an open neighborhood of X. We then set∫
X,orX

ω :=

∫
X,A

ω̃.

Clearly the right-hand side does not depend on any particular choices of ω̃.
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16.3.4. The general Stokes’ formula. We first need to introduce the concept of mani-
folds with boundary. This is a simple generalization of the concept of surface with bound-
ary introduced in Definition 16.40. We will skip many technical details.

Definition 16.83. Let k,m, n ∈ N, n ≥ m ≥ 1. An m-dimensional Ck-submanifold with
boundary in Rn is a compact subset X ⊂ Rn such that, for any point p0, there exists an
open neighborhood U of p0 in Rn and a Ck-diffeomorphism Ψ : U → Rn such that the
image U = Ψ(U ∩X) is contained in the subspace Rm × 0 ⊂ Rn and it is either

(I) an open ball in Rm centered at Ψ(p0) or

(B) the point Ψ(p0) lies in plane {x1 = 0} ⊂ Rm and U it is the intersection of an
open ball Br(p0) with the half-plane

Hm
− :=

{
(x1, x2, . . . , xm) ∈ R2; x1 ≤ 0

}
.

The pair (U,Ψ) is called a straightening diffeomorphism (abbreviated s.d.) at p0. The
pair

(
U ∩X,Ψ

∣∣
U∩X

)
is called a local coordinate chart of X at p0.

In the case (B), the point p0 ∈ X is called a boundary point of X. Otherwise p0 is
called an interior point.

The set of boundary points of X is called the boundary of X and it is denoted by ∂X.
The set of interior points of X is called the interior of X and it is denoted by X◦. The
submanifold with boundary is called closed if its boundary is empty, ∂X = ∅. ut

An atlas of a manifold with boundary X is a collection of s.d.-s
{

(Ui,Ψi)
}
i∈I such

that

X ⊂
⋃
i∈I

Ui.

An orientation of a s.d. (U,Ψ) is an orientation on the interior of Ψ(X ∩ U). The
transition maps are defined in a similar fashion which leads as in the boundary-less case
to the concept of orientation of a manifold with boundary. Equivalently, an orientation
on a manifold with boundary is equivalent to a choice of orientation on its interior.

There is a new phenomenon. Namely, an orientation on X induces in a natural fashion
an orientation on its boundary ∂X.

Suppose that A :=
{

(Ui,Ψi, εi)
}
i∈I is a coherently oriented atlas of X. The s.d.-s

(Ui,Ψi) are of two types.

• interior, i.e., U ∩ ∂X = ∅ and

• boundary, i.e., U ∩ ∂X 6= ∅.

Consider the subcollection A∂ :=
{

(Ua,Ψa)
}
a∈A⊂I consisting of all the boundary type

s.d.-s in A. The collection A∂ is also an atlas for the manifold ∂X. For any a ∈ A we set

Va := Ψa(UA ∩ ∂X) ⊂ ∂Hm
− .
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Note that for a ∈ A we have

Ua := Ψa(Ua ∩X) = Br(a)(pa) ∩Hm
− , pa ∈ ∂Hm

− .

Denote by u1, . . . , um the Cartesian coordinates on the space Rm where the half-space
Hm
− lives. An orientation εa on the interior intUa is given by the top degree form

ωa := εadu
1 ∧ du2 ∧ · · · ∧ dum.

The boundary ∂Hm
− is the subspace Rm−1 with Cartesian coordinates u2, . . . , um. The

induced orientation on Va is, denoted by ∂εa is described by the top degree form

ω∂a := εadu
2 ∧ · · · ∧ dum.

There is a simple mnemonic device to help you remember this construction. It is called
the outer conormal first convention. Let us explain.

Note that traveling in Hm
− in the direction of increasing u1 one eventually exits Hm

− .
Equivalently, observe that along ∂Hm

− the vector field e1 = (1, 0, . . . , 0) ∈ Rm is an outer
pointing normal vector field. Note that

ωa = du1 ∧ ω∂a ,

or,

orientation interior = outer conormal ∧ orientation boundary,

whence the terminology outer conormal first.

One can show that if

A :=
{

(Ui,Ψi, εi)
}
i∈I

is a coherently oriented atlas of the manifold with boundary X, then the collection

A∂ =
{

(Ua,Ψa, ∂εa)
}
a∈A, A =

{
a ∈ I; Ua ∩ ∂X 6= ∅

}
,

is a coherently oriented atlas of ∂X. While we will not present all the tedious details, we
want to explain the simple fact behind this. Its proof is left to you as an exercise.

Lemma 16.84. Let (Ui, εi), i = 0, 1, be two oriented open subsets of Rm such that
Ui ∩ ∂Hm

− 6= ∅ for all i = 0, 1, If Φ : (U0, ε0) → (U1, ε1) is an orientation preserving
diffeomorphism such that

Φ
(
U0 ∩ ∂Hm

−
)
⊂ ∂Hm

− ,

then the induced map

Φ∂ : (U0 ∩ ∂Hm
− , ∂ε0)→ (U1 ∩ ∂Hm

− , ∂ε1),

is also orientation preserving. ut

Just like in the case of submanifolds without boundary, an orientation ε on an m-
dimensional manifold with boundary defines an integration map∫

X,ε
: Ωm(Rn)→ R.
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The submanifolds with boundary are, by our definition, compact so we no longer need to
work with compactly supported forms.

The construction follows the same four steps as in the bondary-less case so we can
safely omit de details.

At the same time, we have another oriented submanifold (∂X, ∂ε). In particular, we
also have an integration map ∫

∂X,∂ε
: Ωm−1(∂X)→ R.

Theorem 16.85 (General Stokes’ formula). Suppose that (X, ε) is an m-dimensional
oriented C1-submanifold with boundary of Rn. Then for any ω ∈ Ωm−1(Rn)C1 we have∫

∂X,∂ε
ω =

∫
X,ε

dω, (16.46)

where dω ∈ Ωm(Rn) is the exterior derivative of ω.

Proof. Fix a coherently oriented atlas

A :=
{

(Ui,Ψi, εi)
}
i∈I

that defines the orientation ε. Set

UA :=
⋃
i∈I

Ui

Fix a compact set K such that6

X ⊂ intK, K ⊂ UA (16.47)

Using the results in Exercise 13.14 we can find a C1-partition of unity along K and
subordinated to the open cover (Ui)i∈I . Recall that this is a finite collection (χs)s∈S of
compactly supported C1-functions χs : Rn → R satisfying the following properties.

• For all s ∈ S there exists i = i(s) ∈ I such that suppχs ⊂ Ui(s).

• ∑
s∈S

χs(x) = 1, ∀x ∈ K.

Let ω ∈ Ωm−1(Rn)C1 .For s ∈ S set

ηs := χsω ∈ Ωm−1
cpt (Rn),

and define

η :=
∑
s

ηs.

Note that on intK ⊃ X we have

ω = η, dω = dη =
∑
s

dηs.

6Can you see why a compact set K satisfying (16.47) exists?
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so it suffices to prove (16.46) for η. On the other hand∫
∂X,∂ε

η =
∑
s

∫
∂X,∂ε

ηs,

∫
X,ε

dη =
∑
s

∫
X,ε

dηs

so it suffices to prove (16.46) for each of the individual ηs. Thus we have to prove that
(16.46) holds form η ∈ Ωm−1

cpt (Rn)C1 satisfying the additional propperty that there exists
an oriented s.d. (U,Ψ, ε) such that supp η ⊂ U. We distingush two cases.

Interior case, i.e., U ∩ ∂X = ∅. In this case η is identically zero in a neighborhood of
∂X so ∫

∂X,∂ε
η = 0.

We have to prove that ∫
X,ε

dη = 0.

We set U = Ψ(U ∩X) so that U is an open subset of Rm. Denote by Φ the inverse of Ψ
and by Φ the restriction of Φ to U. Then, according to (??), we have∫

X,ε
dη =

∫
U,ε

Φ
∗
dη.

We set

η := Φ
∗
η.

From (??) we deduce that

Φ
∗
dη = dΦ

∗
ηdη.

Thus we have to show that ∫
U,ε

dη= 0,

for any η ∈ Ωm−1
cpt (U)C1 .

Let η be such a degree (m− 1) form. Fix a positive number R such that

U ⊂ CmR := [−R,R]m ⊂ Rm.

We have

η= η1du
2 ∧ du3 ∧ · · · ∧ dum + η2du

1 ∧ du3 ∧ · · · ∧ dum

+ · · ·+ ηmdu
1 ∧ du2 ∧ · · · ∧ dum−1.

This can be written in a more compact form as

η=
m∑
k=1

ηkdu
1 ∧ · · · ∧ d̂uk ∧ · · · ∧ dum, (16.48)
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where a hat ̂ indicates a missing entry. We deduce

dη=

(
∂η1

∂u1
− ∂η2

∂u2
+ · · ·+ (−1)m−1 ∂ηm

∂um

)
du1 ∧ du2 ∧ · · · ∧ dum

=

(
m∑
k=1

(−1)k−1 ∂ηk
∂uk

)
du1 ∧ du2 ∧ · · · ∧ dum.

(16.49)

Then ∫
U,ε

dη=

m∑
k=1

(−1)k−1ε

∫
U

∂ηk
∂uk
|du1 · · · dum|.

We will prove that ∫
U

∂ηk
∂uk
|du1 · · · dum| = 0, ∀k = 1, . . . ,m.

For simplicity we discuss only the case k = 1. The other cases are completely similar. We
have ∫

U

∂η1

∂u1
|du1 · · · dum| =

∫
CmR

∂η1

∂u1
|du1 · · · dum|

(use Fubini)

=

∫
Cm−1
R

(∫ R

−R

∂η1

∂x1
|dx1|

)
|du2 · · · dum|

=

∫
Cm−1
R

(
η1(R, u2, . . . , um)︸ ︷︷ ︸

=0

− η1(−R, u2, . . . , um)︸ ︷︷ ︸
=0

)
= 0.

Boundary case, i.e., U ∩ ∂X = ∅. In this case U := Ψ(U ∩X) is a half-ball (see Figure
16.28)

U = Hm
− ∩Br(p0), p0 ∈ ∂Hm

−

We can find L > 0 such that U is contained in the closed box

B− = [−L,L]m ∩Hm
− ⊂ Rm.

We define

B0 := [−L,L]m ∩ ∂Hm
− = {0} × [−L,L]m−1.

. Arguing as in the previous case we deduce that∫
X,ε

dη =

∫
U,ε

dη=

∫
B−,ε

dη,

∫
∂X,∂ε

η =

∫
B0,∂ε

η.

If

η=
m∑
k=1

ηkdu
1 ∧ · · · ∧ d̂uk ∧ · · · ∧ dum,
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-
B

1
u

U

Figure 16.28. Integrating over a half-ball.

then ∫
B−,ε

dη=
m∑
k=1

(−1)k−1ε

∫
B−

∂ηk
∂uk
|du1 · · · dum|,

and ∫
B0,∂ε

= ε

∫
B0

η1(0, u2, . . . , um) |du2 · · · dum|.

We will show that∫
B−

∂η1

∂u1
|du1 · · · dum| =

∫
B0

η1(0, u2, . . . , um) |du2 · · · dum|, (16.50a)∫
B−

∂ηk
∂uk
|du1 · · · dum| = 0, ∀k = 2, . . . ,m. (16.50b)

To prove (16.50a) we use Fubini’s theorem and we deduce∫
B−

∂η1

∂u1
|du1 · · · dum| =

∫
|uk|≤L, 2≤k≤m

(∫ 0

−L

∂η1

∂u1
du1

)
|du2 · · · dum|

(use the Fundamental Theorem of Calculus)

=

∫
|uk|≤L, 2≤k≤m

 η1(0, u2, . . . , um)− η1(−L, u2, . . . , um)︸ ︷︷ ︸
=0

 |du2 · · · dum|

∫
B0

η1(0, u2, . . . , um) |du2 · · · dum|
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The equality (16.50b) also follows from Fubini’s theorem. We prove only the case k = m
which involves simpler notations. ∫

B−

∂ηm
∂um

|du1 · · · dum|

=

∫
[−L,0]×[−L,L]m−2

(∫ L

−L

∂ηm
∂um

(
u1, . . . , um−1, um

)
dum

)
|du1du2 · · · dum−1|

(use the Fundamental Theorem of Calculus)

=

∫
[−L,0]×[−L,L]m−2

(
ηm(u1, . . . , um−1, um)

∣∣∣um=L

um=−L

)
︸ ︷︷ ︸

=0

|du1du2 · · · dum−1| = 0.

ut

16.3.5. What are these differential forms anyway. In lieu of epilogue to this book,
I will try to crack open the door to another world to which the considerations in this last
section properly belong.

We’ve developed a theory of integration of objects whose nature was left nebulous.
What are these differential forms?

Suppose that U is an open subset of Rn, n ≥ 2. The equality (13.20) of Example
13.18 explained that the terms dxi should be viewed as linear forms. A linear form, as
you know, is a “beast” that, when fed avector it spits out a number. If you feed a vector
v to the “beast” dxi, it will return the number vi, the i-th coordinate of the vector v.

The exterior monomials dxi∧dxj , dxi∧dxj∧dxk etc. are more sophisticated “beasts”:
they are multilinear maps with certain additional properties. To explain their nature we
consider a slightly more complicated situation.

Let m ∈ N and consider m linear functionals

α1, . . . , αm → R.

Their exterior product is m-linear map

α1 ∧ · · · ∧ αm : Rn × · · · × Rn︸ ︷︷ ︸
m

→ R,

α1 ∧ · · · ∧ αm(v1, . . . ,vm) := det



α1(v1) α1(v2) · · · α1(vm)

α2(v1) α2(v2) · · · α2(vm)

...
...

. . .
...

αm(v1) αm(v2) · · · αm(vm)


. (16.51)
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Note that the m-linear form α1 ∧ · · · ∧ αm satisfies the skew-symmetry conditions

ασ(1) ∧ · · · ∧ ασ(m) = ε(σ)α1 ∧ · · · ∧ αm,

α1 ∧ · · · ∧ αm(vσ(1), . . . ,vσ(m)) = ε(σ)α1 ∧ · · · ∧ αm(v1, . . . ,vm),

for any permutation σ ∈ Sm. Let us observe that if m > n, then any collection of m
vectors v1, . . . ,vm ∈ Rn is linearly dependent and we deduce from (16.51) that

α1 ∧ · · · ∧ αm = 0,

for any linear forms α1, . . . , αm : Rn → R.

When m = n and αi = ẋi, then

dx1 ∧ · · · ∧ dxn(v1, . . . ,vn) = det
[
vij
]
1≤i,j≤n

(15.35)
= ± vol

(
P (v1, . . . ,vn)

)
,

where we recall that P (v1, . . . ,vn) denotes the parallelepiped spanned by v1, . . . ,vn.

More generally, if m < n, then for any vectors v1, . . . ,vm, the number

dx1 ∧ · · · ∧ dxm(v1, . . . ,vm)

is equal, up to a sign, with the volume of the parallelepiped spanned by the orthogonal pro-
jections of the vectors v1, . . . ,vm onto the m-dimensional subspace of Rn with coordinates
x1, . . . , xm.

In general, and exterior form of degree m is an m-linear map

ω : Rn × · · · × Rn︸ ︷︷ ︸
m

→ R,

satisfying the skew-symmetry condition

ω(vσ(1), . . . ,vσ(m)) = ε(σ)ω(v1, . . . ,vm), ∀v1, . . . ,vm ∈ Rn, σ ∈ Sm. (16.52)

Such a form can be thought of as “gauging m-dimensional” parallelepipeds. This gauging
is of a special kind: its output depends on the order in which we “feed” the vectors
spanning the parallelepiped according to (16.52) .

Take for the example the case m = 2. Think of a parallelogram as having two faces:
a white face and a black face. When a 2-form gauges a white-face-up parallelogram it
outputs a number, but when it gauges the same parallelogram but with its black face up,
it outputs the opposite number.

We can use the canonical basis e1, . . . , en to express an m-form ω as a linear combi-
nation (compare with (16.36))

ω =
∑

I∈Inj+(m,n)

ωIdx
∧I ,

where, for any I = (i1, . . . , im) ∈ Inj+(m,n), we have

dx∧I = dxi1 ∧ · · · ∧ dxim , ωI := ω(ei1 , . . . , eim) ∈ R.
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A differential form of degree m on an open set U ⊂ Rm is a continuous assignment of an
m-form ωx to each point x ∈ U . More precisely this means that

ωx =
∑

I∈Inj+(m,n)

ωI(x)dx∧I ,

where ωI(x) depends continuously on x.

Intuitively we can think that we have a continuous family of “gauges” ωx, where ωx
is to be used to gauge parallelepipeds originating at x.

In the case m = 2 such a differential form gauges parallelograms. In particular, given a
surface S ∈ Rn, such a form gauges infinitesimal parallelograms on S, i.e., parallelograms
spanned by a pair of vectors tangent to the same point x ∈ S. We use the form ωx to
gauge such a parallelogram. An orientation on S is essentially a rule we use to determine
the order in which we feed infinitesimal parallelograms to the differential form because we
know that the output is order sensitive.

The above intuitive interpretation of differential forms gives a pretty accurate idea
on the nature of differential forms. Unfortunately, it is essentially useless if we want to
perform meaningful mathematical computations with them.

At this point a deeper look at the concept of differential form is needed and this
requires substantial algebraic and analytic considerations. However at this point you
have all knowledge you need to digest the classic booklet [17] of M. Spivak on this topic.
Although it is more than half a century old as I write these lines, it remains very actual
and a gem of mathematical writing. However don’t let the tiny size of [17] fool you: it
has a high density of subtle ideas per square inch of page.

The good news is that you should be very familiar with the first half of [17]. The
second half, on integration of differential forms and various Stokes’ formulæ, is a rather
steep, but very rewarding intellectual climb.
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16.4. Exercises

Exercise 16.1. Denote by C the line segment in the plane R2 that connects the points
p0 := (3, 0) and p1 := (0, 4).

(i) Compute the integrals∫
C
ds,

∫
C
f(p)ds, f(x, y) = x2 + y2.

(ii) Compute the integral of the angular form

WΘ =
−y

x2 + y2
dx+

x

x2 + y2
dy

along the segment C equipped with the orientation corresponding to the travel
from p1 to p0.

ut

Exercise 16.2. Denote by S the open square (−1, 1) × (−1, 1) in R2. Suppose that
P,Q : S → R are continuous functions. We set

ω = Pdx+Qdy.

Prove that the following statements are equivalent.

(i) There exists f ∈ C1(S) such that df = ω, i.e.,

P =
∂f

∂x
, Q =

∂f

∂y
.

(ii) For any piecewise C1 path γ : [a, b]→ S such that γ(a) = γ(b) we have∫
γ
ω = 0.

(iii) For any piecewise C1 paths γi : [ai, bi]→ S, i = 1, 2, such that

γ1(a1) = γ2(a2), γ1(b1) = γ2(b2)

we have ∫
γ1

ω =

∫
γ2

ω.

Hint. (iii) ⇒ (i) Define

f(x, y) =

∫ x

0
P (s, 0)ds+

∫ y

0
Q(x, t)dt

and use (iii) prove that

f(x+ h, y) = f(x, y) +

∫ x+h

x
P (s, y)ds, f(x, y + k) = f(x, y) +

∫ y+k

y
Q(x, t)dt,

and ∂xf = P , ∂yf = Q. ut
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Exercise 16.3. Let U ⊂ Rn be an open set and suppose that f, g : U → R are C2-
functions. Prove that

∆g = div∇g, div(f∇g) = 〈∇f,∇g〉+ f∆g,

where ∆g is the Laplacian of g,

∆g :=

n∑
k=1

∂2
xkg. ut

Exercise 16.4. Let D ⊂ R2 be a bounded domain with C1-boundary, U an open set
containing clD and f, g : U → R are C2 function. Denote by ν the outer normal vector
field along ∂D. Prove that∫

D
f∆g |dxdy| =

∫
∂D

f(p)
∂g

∂ν
(p)|ds| −

∫
D
〈∇f,∇g〉 |dxdy|,∫

∂D

∂g

∂ν
|ds| =

∫
D

∆g |dxdy|,∫
D
f∆g|dxdy| =

∫
∂D

(
f(p)

∂g

∂ν
(p)− g(p)

∂f

∂ν
(p)

)
|ds|+

∫
D
g∆f |dxdy|,

where we recall that, for p ∈ ∂D, we have

∂g

∂ν
(p) := 〈∇g(p),ν(p)〉.

Hint. Use Exercise 16.3 and the flux-divergence formula (16.11). ut

Exercise 16.5. Consider the function K : R2 → R,

K(x, y) =

{
1

2π ln r, (x, y) 6= (0, 0),

0, (x, y) = (0, 0), r =
√
x2 + y2.

Suppose that f : R2 → R is a C2-function with compact support.

(i) Show that ∆K = 0 on R2 \ {0}.
(ii) Show that the integral ∫

R2

K∆f |dxdy|

is absolutely integrable.

(iii) Show that ∫
R2

K∆f |dxdy| = −f(0).

Hint. (ii) Have a look back at Exercise 15.31. (iii) Fix R > 0 sufficiently large so that the support of f is contained

in the disk DR = {r < R}. For ε > 0 small we consider the disk Dε = {r < ε} and the annulus Aε,R := {ε < r < R}.
Use Exercise 16.4 to show that ∫

Aε,R

K∆f |dxdy| = −
∫
∂Dε

(
f
∂K

∂ν
−K

∂f

∂ν

)
|ds|,
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and then prove that

lim
ε↘0

∫
∂Dε

K
∂f

∂ν
ds = 0, lim

ε↘0

∫
∂Dε

f
∂K

∂ν
|ds| = f(0).

ut

Exercise 16.6. Suppose that β, τ : [a, b] are C1-functions such that

β(x) < τ(x), ∀x ∈ (a, b).

Consider the simple type domain

D(β, τ) =
{

(x, y) ∈ R2; x ∈ (a, b), β(x) < y < τ(x)
}

(16.53)

Prove Stokes’ formula (16.14) when the piecewise C1 domain is U = D(β, τ).
Hint. To compute

∫
D P

′
y |dxdy| use Fubini’s Theorem 15.41. To compute

∫
D Q

′
x|dxdy| use the change of variables

x = u, y = β(u) + (τ(u)− β(u))v, u ∈ [a, b], v ∈ [0, 1],

and the chain rule
∂

∂x
=
∂u

∂x

∂

∂u
+
∂v

∂x

∂

∂v
= ∂u −

β′(u) +
(
τ ′(u)− β′(u)

)
v

τ(u)− β(u)
∂v .

(You have to justify the second equality above.) We set

f(u, v) := Q
(
x(u, v), y(u, v) ).

Show that ∫
D

∂Q

∂x
|dxdy| =

∫
a≤u≤b
0≤v≤1

(
∂uf −

β′(u) +
(
τ ′(u)− β′(u)

)
v

τ(u)− β(u)
∂vf

)(
τ(u)− β(u)

)
︸ ︷︷ ︸

=:g(u,v)

|dudv|.

On the other hand, if we write Qdy in (u, v) coordinates we get

Qdy = f(u, v)y′udu+ f(u, v)y′vdv = f(u, v)
(
β′(u) + v(τ ′(u)− β′(u))

)︸ ︷︷ ︸
=:A(u,v)

du+ f(u, v)τ(u)︸ ︷︷ ︸
=:B(u,v)

dv.

Show that

g(u, v) =
∂B

∂u
−
∂A

∂v

and then compute ∫
a≤u≤b
0≤v≤1

(
∂B

∂u
−
∂A

∂v

)
|dudv|

using Fubini. ut

Exercise 16.7. Suppose that D1, D2 ⊂ R2 are two bounded piecewise C1 domains that
intersect only along portions of their boundaries and ∂D1∩∂D2 is a piecewise C1 connected
curve. Set D := D1 ∪D2.

(i) Show that D is also piecewise C1.

(ii) Assume that O ⊂ R2 is an open set containing the closure of D and F : O→ R2

is a continuous vector field, F (x, y) =
(
P (x, y), Q(x, y)

)
. Show that∫

∂∗+D
Pdx+Qdy =

∫
∂∗+D1

Pdx+Qdy +

∫
∂∗+D2

Pdx+Qdy.
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(iii) Conclude that if Stokes’ formula (16.14) holds for D1 and D2 then it also holds
for D = D1 ∪D2.

ut

Exercise 16.8. Suppose that u,v ∈ R3 are two linearly independent vectors. Prove that

‖u× v‖ = area
(
P (u,v)

)
,

where the cross product “×” is defined by (11.22) and area
(
P (u,v)

)
is defined by (16.18).

ut

Exercise 16.9. Fix a, b, r, R ∈ R, a,R > r > 0. Consider the map Φ : R2 \ {0} → R3

Φ(x, y) =


R
r x

R
r y

ar + b

 , where r = r(x, y) =
√
x2 + y2.

Denote by D the annulus

D =
{

(x, y) ∈ R2; 1 <
√
x2 + y2 < 2

}
.

(i) Show that Φ satisfies all the conditions (i)-(iii) in Proposition 14.34.

(ii) Show that the image S of Φ is a cylinder of radius R with the z-axis as symmetry
axis.

(iii) Describe the area element on S in terms of the coordinates x, y induced by Φ.

(iv) Set Σ := Φ
(
cl(D)

)
. Show that Σ is a convenient surface with boundary and Φ

defines a parametrization of Σ.

(v) Denote by f the restriction to Σ of the function f(x, y, z) = z. Compute∫
Σ
f(p) |dA(p)|.

ut

Exercise 16.10. Suppose that f, g : (0, 1) → R are C1 functions such that f(x) < g(x),
∀x ∈ (0, 1). Let U ⊂ R2 be the region (0, 1)× [0, 1]. Construct a diffeomorphism

Φ : (0, 1)× R→ R2

such that Φ(U) is the region.

D =
{

(x, y) ∈ R2; 0 < x < 1, f(x) ≤ y ≤ g(x)
}
.

Conclude that the region D is a surface with boundary in R2.

Hint. Think of vertically shearing U onto D. ut

Exercise 16.11. Suppose that S ⊂ Rn is a compact surface, with or without boundary.
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(i) Show area(S) <∞.

(ii) If f : S → R is continuous and f(p) ≥ 0, ∀p ∈ S, then∫
S
f(p) |dA(p)| ≥ 0.

(iii) Prove that if L : Rn → Rn is an orthogonal linear operator, i.e., L>L = 1n, then

area
(
L(S)

)
= area(S).

(iv) If f, g : S → R are continuous and f(p) ≥ g(p), ∀p ∈ S, then∫
S
f(p) |dA(p)| ≥

∫
S
g(p) |dA(p)|.

(v) If f : S → R is continuous, C > 0 and |f(p)| ≤ C, ∀p ∈ S, then∣∣∣∣∫
S
f(p) |dA(p)|

∣∣∣∣ ≤ C area(S).

ut

Exercise 16.12. For each r > 0 we denote by Sr the sphere of radius r in R3 centered
at the origin. i.e.,

Sr :=
{

(x, y, z) ∈ R3; x2 + y2 + z2 = r2
}
.

(i) Show that area(Sr) = 4πr2.

(ii) Prove that if f : R3 → R is a continuous function, then

lim
r→0

1

4πr2

∫
Sr

f(p) |dA(p)| = f(0).

ut

Exercise 16.13. Let S denote the unit sphere in R3

S =
{

(x, y, z) ∈ R3; x2 + y2 + z2 = 1
}
.

Denote by N the North Pole, i.e., the point on S with coordinates (0, 0, 1). The stereo-
graphic projection is the map

F : S \ {N} → R2 × 0 = {(x, y, z) ∈ R3 : z = 0 ]
}

F (p) = intersection of the line Np with the plane R2 × 0

(i) For p ∈ S \ {N} compute the coordinates (u, v) of F (p) in terms of the coor-
dinates (x, y, z) of p and conversely, compute the coordinates (x, y, z) of p in
terms of the coordinates (u, v) of F (p)

(ii) Prove that F is a homeomorphism and the inverse map Φ = F−1 : R2 → S\{N}
is an immersion so Φ is a parametrization of S \ {N}.

(iii) Describe the area element dA on S \ {N} in terms of the coordinates (u, v)
defined by Φ.
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ut

Exercise 16.14. Suppose that O ⊂ R3 is an open set, f : O → R is a C2-function and
F : O→ R3 is a C2-vector field. Compute

curl
(
∇f
)
, div

(
∇f

)
,

curl
(

curlF
)
, div

(
curlF

)
, ∇

(
divF

)
. ut

Exercise 16.15. Let D ⊂ R3 be a bounded domain with C1-boundary, U an open set
containing clD and f, g : U → R are C2 function. Denote by ν the outer normal vector
field along ∂D. Prove that∫

D
f∆g |dxdydz| =

∫
∂D

f(p)
∂g

∂ν
(p)|dA| −

∫
D
〈∇f,∇g〉 |dxdydz|,∫

∂D

∂g

∂ν
|dA| =

∫
D

∆g |dxdydz|,∫
D
f∆g|dxdydz| =

∫
∂D

(
f(p)

∂g

∂ν
(p)− g(p)

∂f

∂ν
(p)

)
|dA|+

∫
D
g∆f |dxdydz|,

where we recall that, for p ∈ ∂D, we have

∂g

∂ν
(p) := 〈∇g(p),ν(p)〉.

Hint. Use Exercise 16.3 and the flux-divergence formula (16.35). ut

Exercise 16.16. Consider the function K : R3 → R,

K(x, y, z) =

{
1

4πρ (x, y, z) 6= (0, 0, 0),

0, (x, y, z) = (0, 0, 0), ρ =
√
x2 + y2 + z2.

Suppose that f : R3 → R is a C2-function with compact support.

(i) Show that ∆K = 0 on R3 \ {0}.
(ii) Show that the integral ∫

R3

K∆f |dxdydz|

is absolutely integrable.

(iii) Show that ∫
R3

K∆f |dxdydz| = −f(0).

Hint. (ii) Have a look back at Example 15.69. (iii) Fix R > 0 sufficiently large so that the support of f is contained
in the ball BR = {ρ < R}. For ε > 0 small we consider the ball Bε = {ρ < ε} and the annulus Aε,R := {ε < ρ < R}.
Use Exercise 16.15 to show that∫

Aε,R

K∆f |dxdydz| = −
∫
∂Bε

(
f
∂K

∂ν
−K

∂f

∂ν

)
|dA|,
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and then prove that

lim
ε↘0

∫
∂Bε

K
∂f

∂ν
|dA| = 0, lim

ε↘0

∫
∂Bε

f
∂K

∂ν
|dA| = f(0).

ut

Exercise 16.17. Suppose that f : Rn → R is a C1-function with compact support.
Denote by H− the half-space

H− :=
{

(x1, . . . , xn) ∈ Rn; x1 ≤ 0
}
.

Prove that ∫
H−

∂f

∂x1
(x)|dx1 · · · dxn| =

∫
Rn−1

f(0, x2, . . . xn) |dx2 · · · dxn|,

and ∫
H−

∂f

∂xk
(x)|dx1 · · · dxn| = 0, ∀k ≥ 2.

Hint. Use Fubini. ut

Exercise 16.18. Let m,n ∈ N, m ≤ n. Consider

ω1, . . . , ωm ∈ Ω1(Rn),

ωi =

n∑
j=1

ωijdx
j , i = 1, . . . , n.

Prove that

ω1 ∧ · · · ∧ ωm =
∑

J∈Inj+(m,n)

det (
¯
ωijk

)
1≤j,k≤mdx

∧J .

In particular, if m = n

ω1 ∧ · · · ∧ ωn =
(

det
(
ωij
)

1≤i,j≤n
)
dx1 ∧ · · · ∧ dxn. ut

Exercise 16.19. Prove (16.41). ut

Exercise 16.20. Prove Proposition 16.79.

Hint. For part (i) consider first the case when α is a monomial α = αIdv
∧I , αI ∈ C1(V ), where I ∈ Inj(k, n).

Start with the case I = (1, 2, . . . , k). ut

16.5. Exercises for extra credit

Exercise* 16.1. (a) Suppose that f : [a, b]→ R is a C1-function. Prove that the length
of its graph is not smaller than that of the length of the line segment that connects the
endpoints of the graph.

(b) Suppose that C ⊂ Rn is a compact, connected C1-curve with nonempty boundary.
Prove that its length is not smaller than that of the line segment that connects its end-
points. ut



16.5. Exercises for extra credit 673

Exercise* 16.2. Let n ∈ N, n ≥ 2. Suppose that S ⊂ Rn is a closed C1-surface and
f : Rn → R is a C1-function satisfying the following transversality condition: if p ∈ S and
f(p) = 0, then ∇f(p) 6⊥ TpS. Prove that the set{

p ∈ S; f(p) = 0
}

is a closed C1-curve.

Hint. Use the implicit function theorem. ut
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∇f , 441

(2k)!!, 280

(2k − 1)!!, 280

A \B, 9

A×B, 9

BW property, see also Bolzano-Weierstrass property

Bnr (p), 370

Br(p), 370

C(X), 399

C0(I), 166

C1(U), 439

C◦, 598

C∞(I), 166

C∞(U), 454

Ck(U), 454

Cn(I), 166

Ccpt(Rn), 413, 536

Cr(p), 372

D(K,β, τ), 542

G(v1,v2), 619

Hp,N , 367

IS , 535

Ik(P ), 252

JF (x0), 430

P (v1, . . . ,vn), 550

R • C, 356

Tx0X, 499

V ⊥, 369, 502

WF , 602

X ∼ Y , 38

#X, 39

∆k(P ), 252

Hom(Rn,Rm), 354

⇔, 3

Matn(R(, 355

Matm×n(R), 355

Mean(f), 273

Ω1(U), 602

Ωk(O), 643

ProjC x0, 421

R(f), 11

⇒, 2

Σr(p), 419

‖A‖HS , 398

‖x‖, 363

‖x‖∞, 371

arccos, 151

arcsin, 151

arctan, 151

arg z, 328

C, 326

In, 38

N, 35

N0, 36

Q, 46

R, 19

S1, 496

S2, 497

Z, 44

ek, 351(n
k

)
, 41

ωn, 562

pq, 349

F ′
xi

, 432

H(f,x0), 467

P ′ � P , 257

P ∨ P ′, 258

S(f,P , ξ), 252

S∗(f,P ), 519

S∗(f,P ), 519
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x ⊥ y, 364

x↓, 365

ξ†, 365

∩, 9

cl(X), 412

cos, 127

cosh, 189, 245

cot, 129

∪, 9

curlF , 640

diam(S), 410

dist(z1, z2), 331

divF , 614

C (P ), 518

J(A), 570

Jc(A), 570, 573

Na, 106

R[0, 1], 381

R[a, b], 253

Rn(S), 539

S(P ), 252

SNa, 106

`p,v , 347

∅, 8

ε(σ), 644

∃, 6

∀, 6
∂F
∂x

, 430
∂F
∂xi

, 432
∂F
∂xj

, 432
∂F
∂v

, 432
dnf
dxn

, 166

i, 325

Im z, 326

∈, 8

inf, 28∫
B f(x)|dx|, 521∫
B f(x)dx1 · · · dxn, 521∫
C f(p)ds, 595∫
Σ f(p)|dA(p)|, 627∫ b
a f(x)dx, 254

int(X), 412

kerA, 361

∧, 2

bxc, 45

limn→∞ xn, 62

lim sup, 97

←→, 5

¬, 2

∨, 2

3, 8

6∈, 8

ω(f,P ), 256

1X , 12

osc, 152, 410

Br(p), 373

∂X, 412

∂vF , 432

∂xiF , 432

∂xjF , 432

lg, 114

ln, 114

log, 114

loga, 114

Re z, 326

sin, 127

sinh, 189, 245
n
√
a, 51

⊂, 8

(, 8

sup, 28

supp(f), 413

tan, 129

|X|, 39

|x|, 24

|z|, 326

z, 326

{f ≤ r}, 422

ax, 111

a
1
n , 51

dVn, 649

dF (x0), 429

e, 72

f ′(x0), 162

f : X → Y , 11

f (n), 166

f−1, 14

iA, 12

m|n, 45

n!, 41

n!!, 280

x > y, 23

x ≥ y, 23

x−1, 22

x±, 575

, 337

S∗(f),S∗(f), 259

](x,y), 364

Cr(p), 373

‖P ‖, 252

curve

quasi-convenient, 597

Abel’s trick, 100, 137

absolute value, 24

AM-GM inequality, 220

angular form, 602

antiderivative, 229

area, 307, 309

area element, 625
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arithmetic progression, 59

initial term, 59

ratio of, 59

atlas, 653

coherent orientation, 653

coherently oriented, 653

orientation, 653

automorphism, 384

axes, 31

Banach space, 382

Bernstein polynomial, 196

Beta function, 579

binary operation, 20

binomial

coefficient, 41

formula, 42, 84

Bolzano-Weierstrass property, 402

bounded

map, 410

sequence, 60

set, 27

box

closed, 402

nondegenerate, 518

open, 402

volume, 517

canonical basis, 345

Cartesian

coordinates, 31

plane, 30, 125

axes, 31

Cauchy product, 100

Cauchy-Schwarz inequality, 222

center of mass, 209

chain, 611

local multiplicities, 611

chain rule, see also rule

chord, 211

closed

ball, 373

cube, 373

in X, 380

set, 373, 382

closed curve, 598

closure, see also set

cluster point, 105, 380

compact exhaustion, 571

Jordan measurable, 571

compact set, 408

compactness, 408

complex number, 325

argument, 328

conjugate, 326

norm, 326

trigonometric representation, 328

complex plane, 327

connected component, 599

conservation law, 453

convenient cut, 597

convergence, 61, 382

pointwise, 142, 400

uniform, 143, 400

convex

function, 211

set, 350

coordinate neighborhood, 490

coordinate axes, 348

coordinates

Cartesian, 344

cylindrical, 498, 555

polar, 496, 497, 551

spherical, 498, 556

n-dimensional, 559

critical point, 181, 469

cross product, 367

curl, 640

curve, 490, 593

convenient, 593

parametrization, 593

length of a, 593

orientation on a, 607

oriented, 608

quasi-convenient, 597

with boundary, 598

convenient, 599

Darboux

integrable, 259

integral

lower, 259, 521

upper, 259, 521

sum

lower, 256, 519

upper, 256, 519

decreasing

function, 113

dense subset, 380

derivative, see also function

along a path, 448

derivative along a vector, 432

diameter, 410

diffeomorphism, 473

elementary, 567

orientation preserving, 649

difference quotients, 164

differential, 165, 429

Fréchet, 429

differential equation, 193, 239

linear, 239

differential form, 602, 643

degree 1, 602

degree 2, 637
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degree 3, 643

exact, 602, 605

integral along a path, 603

differential from

exterior derivative, 645

direction, 442

distance

Euclidean, 370

divergence, 614

domain, 611

Ck, 611

piecewise Ck, 617

dual, 365

Einstein’s convention, 344, 351

elementary diffeomorphism, 567

Euclidean

space, 344

Euler

Beta function, 579

formula, 340

Gamma function, 303

identity, 449

number, 72, 73

exact form, 605

exterior

derivative, 645

monomial, 644

extremum

local, 179

facet, 517

factorial, 41

Fermat principle, 468

Fermat’s Principle, 179

flow line, 451

flux, 614, 635

infinitesimal, 638

formula, 1

change in variables, 549

change of variables, 284

Euler, 340

flux-divergence, 614

Green, 640

Moivre’s, 329

Newton’s binomial, 42, 167, 190, 329

Pascal, 190

Pascal’s, 43

Stirling, 288

Stokes’, 611

Wallis, 281, 291

function, 10

Cn, 166

n-times differentiable, 166

absolutely integrable, 573

average value of a, 273

bijective, 12, 113

codomain, 11

concave, 211

continuous, 139

continuous at a point, 139

convex, 211, 509

critical point of a, 181

Darboux integrable, 259

decreasing, 113

derivative of a, 162

differentiable, 162

domain of, 11

even, 128, 185, 315

fiber of, 12

graph of, 11, 31, 225, 226, 228, 392

homogeneous, 422

hyperbolic, 245

image, 11

implicit, 485

increasing, 113

indefinite integral of a, 230

indicator, 535

injective, 12

integrable, 521, 535

inverse of, 14

linearizable, 161

Lipschitz, 134, 141, 193

locally integrable, 570

mean of a, 273

monotone, 113

nondecreasing, 112, 113

nonincreasing, 113

odd, 128, 315

one-to-one, 12

onto, 12

oscillation of a, 152

periodic, 128

piecewise C1, 307

piecewise constant, 270

range, 11

Riemann integrable, 253, 521, 535

smooth, 166, 454

stationary point of a, 181

strictly monotone, 113, 149

support of, 413

surjective, 12

trigonometric, 127

uniformly continuous, 152, 411

Gamma function, 303

Gauss bell, 244

geometric progression, 60

initial term, 60

ratio, 60

gradient, 441

Gramian, 619

graph, 11, 31, 114, 127, 226, 228, 392
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Hölder’s inequality, 221

Heine-Borel property, 404

weak, 404

Hermite polynomial, 245

Hessian, 467

homeomorphic sets, 412

homeomorphism, 412

hyperbolic

cosine, 189

functions, 189

sine, 189

hyperplane, 352

normal vector, 367

hypersurface, 515

iff, 3

imaginary part, 326

immersion, 491

increasing

function, 113

inequality

AM-GM, 220

Bernoulli, 41

Cauchy-Schwarz, 222

Hölder’s, 221

Jensen’s, 219

Minkowski, 223, 381

triangle, 369

Young’s, 185, 243

infimum, 28

infinitesimal work, 602

inner product

canonical, 362

integer, 44

integer part, 45

integrable function, 521

integral

improper, 575

along a curve, 595

along a path, 603

improper, 293

absolutely convergent, 301

convergent, 293

indefinite, 230

iterated, 530

repeated, 530

Riemann, 254

integral curve, 451

integration

by parts, 231

by substitution, 234

interior, see also set

interval, 24

closed, 24

open, 24

Jacobi matrix, 591

Jacobian

matrix, 430

Jordan measurable, 537

Kronecker symbol, 346, 365

L’Hôpital’s rule, see also rule

Lagrange remainder, see also Taylor approximation

Landau’s notation, 132

Laplacian, 478

polar coordinates, 478

Legendre polynomial, 191, 319

Leibniz rule, see also rule

length, 304, 593

limit, 393

limit point, 75, 97

line, 347

parametric equations of a, 348

segment, 350

line direction vector of, 347

line integral

first kind, 595

second kind, 603

linear

form, 350

basic, 351

functional, 350

map, 354

operator, 354

ker, 361, 501

kernel of, 361

linear approximation, 161, 430

linearization, 161, 430

Lipschitz

constant, 396

function, 134, 141, 193

map, 396

local

extremum, 179, 468

strict, 179

maximum, 179, 468

strict, 179

minimum, 179, 468

strict, 179

local chart, 490

local coordinate chart, 620, 657

logarithm, 114

natural, 114

lower bound, 27

Möbius strip, 633

Maclaurin

polynomial, 199

map

continuous, 394

differentiable, 428

mapping, see also function
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marginal, 530, 533

matrix, 355

associated to linear operator, 356

column, 355

diagonal, 360

invertible, 385

multiplication, 358

nilpotent, 385

orthogonal, 387

product, 358

row, 355

square, 355

symmetric, 360

indefinite, 469

negative definite, 469

positive definite, 469

trace, 386

transpose of a, 387

maximum

global, 146

local, 179

strict local, 179

mean oscillation, 256, 519

minimum

global, 146

local, 179

strict local, 179

Minkowski’s inequality, 223

multi-index, 458

size, 458

natural basis, 345

negligible, 528

neighborhood, 62, 105

deleted, 106

open, 370

symmetric, 106

Newton’s method, 216

norm, 224, 381

Euclidean, 363

Frobenius, 398

Hilbert-Schmidt, 398

sup-, 371, 382

normed space

complete, 382

normed space, 381

number

Euler, 72, 83

natural, 35

open

ball, 370, 382

cube, 372

disk, 331

in X, 380

set, 331, 370, 382

open cover, 404

open neighborhood, 370

operator

linear, 354

orthogonal, 387, 619

orientable surface, 634

orientation, 634, 648, 657

induced, 612, 635

oriented open set, 649

oriented surface, 634

orthogonal operator, 387, 619

oscillation, 410

pairing, 356

parallelepiped, 550

parametrization, 348, 491, 496

local, 490, 623

partial derivatives, 432

partial sum, 78, 334

partition, 251, 518

interval of a, 252

mesh size, 252, 518

node of a, 251

order of a, 251

refinement of a, 257

sample, 252

uniform, 252, 581

partition of unity, 414, 566

subordinated to, 414

continuous, 414

path

differentiable, 447

continuous, 395

piecewise C1, 605

path connected, 401

permutation

signature of a, 644

Poincaré Lemma, 605

potential, 452

power series, 89, 337

domain of convergence, 89

radius of convergence, 91, 99, 338

predicate, 1

preimage, 11

prime integral, 453

primitive, 229

principle

Archimedes’, 44

Cavalieri, 538, 546

inclusion-exclusion, 538

induction, 36

squeezing, 63, 396

well ordering, 38

product rule, see also rule

pullback, 647

quantifier, 6

existential, 6
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universal, 6

quasi-parametrization, 629

quotient rule, see also rule

radially symmetric, 564

radius of convergence, 91, 99, 338

ratio test, 86

rational

function, 237

number, 46

real

line, 29

real number, 19

negative, 23

nonnegative, 23

positive, 23

real part, 325

Riemann

integrable, 253

integral, 254, 521

sum, 252, 522

zeta function, 82

right-hand rule, 368

roots of unity, 330

rule

chain, 173, 443

inverse function, 177

L’Hôpital’s, 205

Leibniz, 170

product, 170

quotient, 171

s.d., 652

orientation of a, 652

oriented, 652

s.t., 5

segment, 350

sequence, 59

bounded, 60, 332, 375, 404

Cauchy, 76, 377, 382

convergent, 61, 332, 374

decreasing, 60

divergent, 61

Fibonacci, 60

fundamental, 76, 377

increasing, 60

limit point of, 75

monotone, 60

nondecreasing, 60

nonincreasing, 60

series, 78, 389

absolutely convergent, 85, 335

Cauchy product, 100

conditionally convergent, 88

convergent, 78, 334

geometric, 78

ratio test, 86

sum of the, 78, 334

set
boundary of a, 412

bounded, 27, 402

bounded above, 27
bounded below, 27

closed, 331

closure of a, 412
countable, 39

finite, 38, 39

cardinality, 39
inductive, 35

interior of a, 412

open, 331
simple type, 307, 542, 545

simplex, 546

space
Euclidean, 344

sphere
Euclidean, 419

stationary point, 181

stereorgraphic projection, 670
Stokes’ formula

1-dimensional, 604

straightening diffeomorphism, 490
sublevel set, 422

submanifold, 489

boundary of a, 657
boundary point, 657

closed, 657

explicit description, 493
implicit description, 494

interior of a, 657
local chart, 490

local parametrization, 490

orientable, 653
orientation of a, 653

parametric description, 491

parametrization, 491
with boundary, 657

submersion, 494, 495

subsequence, 61
subset, 8

proper, 8

subspace
affine, 353

coordinate, 483
linear, 353

vector, 353

support, 413
supremum, 28

surface, 490, 497

boundary of a, 620
boundary point, 620

closed, 620

convenient, 626
parametrization, 626
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interior of a, 620

local parametrization, 623

orientable, 634

orientation of a, 634

oriented, 634

with boundary, 620

parametrized, 626

surface integral

first kind, 629

second kind, 638

tangent

space, 499

vector, 499

tangent line, 164

tautology, 4, 6

Taylor

approximation, 202

integral remainder, 281

Lagrange remainder, 202

remainder, 202

polynomial, 199

series, 199

Taylor approximation, 465

test

ratio, 86

Weierstrass, 86

theorem

absolute convergence, 86

Banach’s fixed point, 389

Bolzano-Weierstrass, 75, 403, 404

Cauchy, 77, 85, 296

Cauchy’s finite increment, 187

chain rule, 173, 443

classification of curves with boundary, 599

comparison principle, 82

continuity of uniform limits, 143

D’Alembert test, 86

Darboux, 188

Fermat’s Principle, 179

Fubini, 529

fundamental theorem of calculus, 275, 277

fundamental theorem of arithmetic, 46

Heine-Borel, 405

implicit function, 480, 484

integral mean value, 274

intermediate value, 409

intermediate value theorem, 146

inverse function, 474

Jensen’s inequality, 219, 583

Lagrange, 182, 449

Lagrange multipliers, 506

mean value, 182, 449

nested intervals, 74

planar Stokes’, 613, 618

Pythagoras, 365

Pythagoras’, 305

Ratio Test, 86, 89

Riemann-Darboux, 259, 523
Rolle, 181

Stokes, 640

Taylor approximation, 201
Weierstrass, 71, 145, 410, 411

Weierstrass M -test, 86

Well Ordering Principle, 38
total differential, 440, 637

trace, 386

transformation, see also function
transition diffeomorphism, 653

transversal intersection, 622

transversality, 495
trigonometric

circle, 126
function, 127

uniform convergence, see also convergence
upper bound, 27

vector
length, 363

vector field, 451

vector space, 344
dual, 350

normed, 381

vectors, 344
addition of, 344

angle, 364

Cartesian coordinates, 344
collinear, 347, 383

orthogonal, 364
velocity, 448

vertex, 517

volume, 517

Wronskian, 193
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