Math 30810: Honors Algebra III Problem Set 5

Do the following problems:

- 1. Let G be a group such that $x^2 = 1$ for all $x \in G$. Prove that G is abelian.
- 2. Let $H \subset \mathbb{Q}$ be a finitely generated subgroup. Prove that $H \cong \mathbb{Z}$.
- 3. Let G be an abelian group and let $g_1, \ldots, g_k \in G$ be elements. Prove that there exists a unique homomorphism $\phi \colon \mathbb{Z}^k \to G$ such that ϕ takes i^{th} basis element of \mathbb{Z}^k (i.e. the k-tuple of integers with a 1 in position i and zeros elsewhere) to g_i for all $1 \le i \le k$.
- 4. A group homomorphism $\phi: G \to Q$ is said to *split* if there exists another homomorphism $\psi: Q \to G$ such that $\phi: \psi = id$.
 - (a) Prove that $\phi: G \to Q$ is split, then ϕ is surjective.
 - (b) Give an example of a non-split surjective group homomorphism.
 - (c) Prove that if G is an abelian group and $\phi: G \to Q$ is a split homomorphism, then $G \cong \ker(\phi) \oplus Q$.
 - (d) Prove that if G is a finitely generated abelian group and $\phi: G \to Q$ is a surjective homomorphism such that Q is a subgroup of \mathbb{Q} , then ϕ is split (hint: this requires the classification of finitely generated abelian groups together with problem (4)).
- 5. Say that an element g of an abelian group G is unimodular if there exists a basis $\{x_1, \ldots, x_n\}$ for G such that $x_1 = g$.
 - (a) Consider a unimodular element $g \in \mathbb{Z}^n$. Write $g = (a_1, \ldots, a_n)$ with $a_i \in Z$. Prove that $gcd(a_1, \ldots, a_n) = 1$.
 - (b) Consider an element $g \in \mathbb{Z}^n$. Write $g = (a_1, \ldots, a_n)$ with $a_i \in \mathbb{Z}$. Say that $g' \in \mathbb{Z}^n$ is the result of performing an *elementary operation* on g if g' is obtained by doing one of the following things:
 - (i) Permuting the entries of g.
 - (ii) Multiplying one of the entries of g by -1.
 - (iii) For some $1 \le i, j \le n$ with $i \ne j$ and some $k \in \mathbb{Z}$, replacing a_j with $a_j + ka_i$ and fixing every other entry.

Prove that if $g' \in \mathbb{Z}$ is obtained by performing an elementary operation to $g \in \mathbb{Z}^n$ and g' is unimodular, then g is unimodular.

(c) Consider an element $g = (a_1, \ldots, a_n) \in \mathbb{Z}^n$ such that $gcd(a_1, \ldots, a_n) = 1$. Prove that g is unimodular. (hint: prove that you can perform a sequence of elementary operations to g to transform it into $(1, 0, \ldots, 0)$, which is clearly unimodular. for this, you'll want to first multiply the entries by -1 to make them all nonnegative, then permute the so that $a_1 \leq a_i$ for all $2 \leq i \leq n$, and then add multiples of a_1 to a_i to make it so that $0 \leq a_i < a_1$).