Math 30810: Honors Algebra III Problem Set 5

Do the following problems:

1. Let G be a group such that $x^{2}=1$ for all $x \in G$. Prove that G is abelian.
2. Let $H \subset \mathbb{Q}$ be a finitely generated subgroup. Prove that $H \cong \mathbb{Z}$.
3. Let G be an abelian group and let $g_{1}, \ldots, g_{k} \in G$ be elements. Prove that there exists a unique homomorphism $\phi: \mathbb{Z}^{k} \rightarrow G$ such that ϕ takes $i^{\text {th }}$ basis element of \mathbb{Z}^{k} (i.e. the k-tuple of integers with a 1 in position i and zeros elsewhere) to g_{i} for all $1 \leq i \leq k$.
4. A group homomorphism $\phi: G \rightarrow Q$ is said to split if there exists another homomorphism $\psi: Q \rightarrow G$ such that $\phi: \psi=\mathrm{id}$.
(a) Prove that $\phi: G \rightarrow Q$ is split, then ϕ is surjective.
(b) Give an example of a non-split surjective group homomorphism.
(c) Prove that if G is an abelian group and $\phi: G \rightarrow Q$ is a split homomorphism, then $G \cong \operatorname{ker}(\phi) \oplus Q$.
(d) Prove that if G is a finitely generated abelian group and $\phi: G \rightarrow Q$ is a surjective homomorphism such that Q is a subgroup of \mathbb{Q}, then ϕ is split (hint: this requires the classification of finitely generated abelian groups together with problem (4)).
5. Say that an element g of an abelian group G is unimodular if there exists a basis $\left\{x_{1}, \ldots, x_{n}\right\}$ for G such that $x_{1}=g$.
(a) Consider a unimodular element $g \in \mathbb{Z}^{n}$. Write $g=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \in Z$. Prove that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$.
(b) Consider an element $g \in \mathbb{Z}^{n}$. Write $g=\left(a_{1}, \ldots, a_{n}\right)$ with $a_{i} \in \mathbb{Z}$. Say that $g^{\prime} \in \mathbb{Z}^{n}$ is the result of performing an elementary operation on g if g^{\prime} is obtained by doing one of the following things:
(i) Permuting the entries of g.
(ii) Multiplying one of the entries of g by -1 .
(iii) For some $1 \leq i, j \leq n$ with $i \neq j$ and some $k \in \mathbb{Z}$, replacing a_{j} with $a_{j}+k a_{i}$ and fixing every other entry.
Prove that if $g^{\prime} \in \mathbb{Z}$ is obtained by performing an elementary operation to $g \in \mathbb{Z}^{n}$ and g^{\prime} is unimodular, then g is unimodular.
(c) Consider an element $g=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ such that $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$. Prove that g is unimodular. (hint: prove that you can perform a sequence of elementary operations to g to transform it into $(1,0, \ldots, 0)$, which is clearly unimodular. for this, you'll want to first multiply the entries by
-1 to make them all nonnegative, then permute the so that $a_{1} \leq a_{i}$ for all $2 \leq i \leq n$, and then add multiples of a_{1} to a_{i} to make it so that $0 \leq a_{i}<a_{1}$).
